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Abstract

There is consensus that the adult lexicon exhibits lexical competition. In particular, substantial evi-
dence demonstrates that words with more phonologically similar neighbors are recognized less effi-
ciently than words with fewer neighbors. How and when these effects emerge in the child’s lexicon is
less clear. In the current paper, we build on previous research by testing whether phonological onset
density slows lexical access in a large sample of 100 English-acquiring 30-month-olds. The children
participated in a visual world looking-while-listening task, in which their attention was directed to one
of two objects on a computer screen while their eye movements were recorded. We found moderate
evidence of inhibitory effects of onset neighborhood density on lexical access and clear evidence for
an interaction between onset neighborhood density and vocabulary, with larger effects of onset neigh-
borhood density for children with larger vocabularies. Results suggest the lexicons of 30-month-olds
exhibit lexical-level competition, with competition increasing with vocabulary size.
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1. Introduction

Spoken word recognition in adults involves the incremental and parallel activation of candi-
date words that compete for selection. One compelling source of evidence for these processes
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comes from neighborhood effects: the more similar sounding neighbors a word has (e.g.,
mint, lint, dint, etc.), the less efficiently it is recognized (see Vitevitch & Luce, 2016). Similar
effects are observed when other measures of phonological relatedness are used. For example,
words that have denser cohorts (i.e., words that have the same phonological onsets, e.g., book,
bike, bat, etc.) are typically accessed more slowly than words with less dense cohorts, con-
trolling for overall phonological neighborhood density (e.g., Magnuson, Dixon, Tanenhaus,
& Aslin, 2007; Marslen-Wilson, 1987; for review see Vitevitch & Luce, 2016). Models of
spoken word recognition such as TRACE (McClelland & Elman, 1986) and Shortlist (Norris,
1994) explain these effects by postulating lexical-level inhibitory connections between words.

While it is well known that variables like phonological neighborhood density influence the
acquisition of new words (Carlson, Sonderegger, & Bane, 2014; Fourtassi, Bian, & Frank,
2020; Storkel, 2004; Swingley & Aslin, 2007), how phonological neighborhood proper-
ties of the lexicon affect online spoken word recognition in young children, and thus when
inhibitory-level connections develop between words, is unclear. Evidence from computational
modeling suggests that lexical-level inhibitory connections are not initially present in the
emerging lexicon. Notably, Mayor and Plunkett (2014) used TRACE, a connectionist model
of the adult model of spoken word recognition, to simulate several observations from spo-
ken word recognition in toddlers, including graded sensitivity to a word’s mispronunciations
in 18-month-olds (White & Morgan, 2008). The model was not able to accommodate these
findings until the authors greatly reduced inhibitory connections between words (in addition
to connections between phonemes and words).

The most direct empirical evidence for neighborhood-like effects in toddler spoken word
recognition comes from a pair of studies by Mani and Plunkett (2010, 2011), who investigated
phonological priming effects using a modified intermodal preferential looking task. In these
studies, participants first saw a single image, whose label was known to them (e.g., bed) and
which functioned as a prime. They then saw two images (e.g., a boot and a fork), one of
which was labeled (i.e., the target). On half the trials the label of the prime image and the
target word had the same onset (e.g., boot). Mani and Plunkett (2010) found that 18-month-
old infants looked proportionately more to the target image when the prime and target shared
the same onset than when they did not. However, Mani and Plunkett (2011) found that 24-
month-olds looked proportionately less to the target image when it shared the same onset
as the prime label. In follow-up analyses, Mani and Plunkett (2011) found that the priming
effect was moderated by the target word’s onset neighborhood density for 24-month-olds.
In particular, for these children, the difference between matching and non-matching onset
primes was larger for target words from dense onset neighborhoods (e.g., many words begin
with /b/) than for target words of sparser onset neighborhoods (e.g., fewer words begin with
/f/). They hypothesized that in older children the target word’s onset neighbors competed for
selection because they were activated by the onset-matching prime.

To test this hypothesis, Mani and Plunkett (2011) conducted a second study with 24-month-
old children, in which they crossed target onset neighborhood size with prime type. They also
included a condition where trials were un-primed. They found that participants looked at
the target from high-density onset neighborhoods proportionally less in all three conditions,
including the un-primed condition. They also found that, for targets from high-density onset
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neighborhoods, children looked to the target proportionately less when presented with an
onset matched prime than when un-primed, suggesting that the prime increased the interfer-
ence due to the target word’s onset neighbors.

However, several aspects of Mani and Plunkett’s design complicate this interpretation.
First, onset density was operationalized as a binary variable, high versus low, and the high
category contained only words with a /b/ onset. To rule out the possibility that these results
reflect something particular about the set of words beginning with /b/, a stronger approach
would be to determine whether there are interference effects across a set of words with a
range of onset neighborhood densities. Second, their dependent variable was the proportion
of looks to target. While this is common for infant preferential-looking data, it does not
directly reflect the relevant metric–the speed with which children recognize the target word.
Other research suggests the interpretation of this dependent variable may not always be clear:
While Mani and Plunkett (2011) found that phonological primes decreased looks to target
among 24-month-olds, which they attribute to activation of the target’s number of onset
neighbors, Angulo-Chavira and Arias-Trejo (2018) found that a variation of phonological
priming increased the proportion of looks to target amongst 30-month-olds, the opposite
pattern of results from Mani and Plunkett (see Avila-Varela, Arias-Trerjo & Mani, 2021, for
a similar result with children aged 18 to 24 months).1 Third, while Mani and Plunkett (2011)
argue that differences between 18- and 24-month-olds likely reflect different vocabulary
sizes of the two groups, this assumes that age is a proxy for vocabulary and not other relevant
variables. Thus, overall, the current evidence for the presence of neighborhood onset effects
in young children and their relationship to vocabulary size is limited.

The current study aimed to address these limitations. One hundred 30-month-old chil-
dren completed a looking-while-listening (LWL) task (Fernald, Pinto, Swingley, Weinberg,
& McRoberts, 1998; Fernald, Zangl, Portillo, & Marchman, 2008), where we measured their
lexical access to targets that were manipulated for onset neighborhood density. Importantly,
we build upon the past research in three ways. First, target words were selected from nine
different onset groups, allowing us to examine the effect across a range of onset neighbor-
hoods, and rule out the effect being driven by a single onset. Testing 30-month-olds ensured
that children had large enough vocabularies to include target words from several onset neigh-
borhoods. Second, for each trial, both reaction times (RTs) and proportions were calculated,
allowing a more precise examination of the speed of lexical access and how it relates to more
commonly used eye-movement measures. Finally, we collected an independent measure of
the children’s vocabulary size in order to examine the moderating effect of vocabulary size
on the slope of onset neighborhood density. Finding that this effect was moderated by vocab-
ulary size in a sample of children older than those tested by Mani and Plunkett (2011) would
provide compelling evidence that increases in vocabulary size drove the emergence of these
effects.

Based on the past research, we had two hypotheses. First, following Mani and Plun-
kett (2011), we hypothesized that target words coming from denser onset neighborhoods
would yield slower RTs and proportionately less looking to target than targets from compar-
atively less dense onset neighborhoods. Second, following Mani and Plunkett (2010, 2011),
we hypothesized that the onset neighborhood density effects would interact with individual
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differences in children’s vocabulary size, such that the effect of onset neighborhood density
would be greater in children with larger vocabularies.

2. Method

2.1. Participants

Data came from a cohort of children who are being followed as part of a larger longitudinal
project tracking the interaction between language processing and language development from
9 months to 5 years (see Donnelly & Kidd, 2020; Kidd, Junge, Spokes, Morrison, & Cutler,
2018). Families were recruited from Canberra, a medium-sized city in Australia. Inclusion
criteria for the longitudinal study were: (i) full-term (at least 37 weeks gestation) babies born
with a typical birth weight (> 2.5 kg), (ii) a predominantly monolingual language environ-
ment (mean percentage of a language other than English = 2%, range: [0, 40%], mode =
0), and (iii) no history of medical conditions that would affect typical language development,
such as repeated ear infections, visual or hearing impairment, or diagnosed developmental dis-
abilities. Consistent with the demographics of the city, the sample was drawn from families
of high socioeconomic status. Approximately 75% of the parents had completed a bachelor’s
degree or higher. Of the original 130 participants, 12 had withdrawn prior to 30 months, 16 did
not complete at least one of the tasks at 30 months, and two were diagnosed with hearing loss.
As a result, the present sample contains 100 children for whom sufficient data were available
during the 30-month session (mean age = 133 weeks, SD = 0.937, range = 131:136).

2.2. Materials

2.2.1. LWL task
Participants completed a visual world LWL eye-tracking task (Fernald et al., 1998, 2008),

containing 18 target words, reflecting nine different onsets (/b/, /d/, /f/, /h/, /k/, /m/, /p/, /sh/,
/tr/). The 18 targets were chosen because they were highly likely to be familiar to children
of this age group: According to the American English subsample of the Wordbank database
(Frank, Braginsky, Yurovsky, & Marchman, 2017), the minimum proportion of 30-month-old
children producing a target word was 93%.2 Two words were selected per onset to allow vari-
ability in age of acquisition (AoA; quantified by the earliest age at which 75% of the American
English sample from the Wordbank database produced the word) and frequency3 within each
onset. Doing so reduced the likelihood of confounding onset neighborhood density and the
variables, which were controlled in our analyses. Each word occurred with the same distracter
object twice, once on the left side and once on the right side, over the course of the experi-
ment. See Table 1 for information on the target words and distracter words. Distracter objects
were concrete nouns, highly likely to be known by participants, without restrictions on the
number of syllables. Distracter images were chosen to have similar AoAs as the target words.
Two images were chosen for each target and distracter image so that no image was repeated
over the course of the experiment.

On each trial, the two images were presented on a 1920 × 1200 pixel screen for 6000 ms.
The images were of approximately equal size and enclosed in 470 × 450 pixel boxes equal
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TABLE 1
Descriptive statistics for each target and distracter word

Target
Word

Distracter
Image

Target
Proportion

Distracter
Proportion

Target
AoA

Distracter
AoA

Frequency
Target

Onset Neigh-
borhood
Density

Ball Apple 0.99 0.97 16 22 43,512 36
Bee Horse 0.93 0.97 26 23 6342 36
Cake Flower 0.93 0.97 24 24 13,336 14
Car Book 0.99 0.97 19 19 133,571 14
Dog Bird 0.96 0.97 18 20 52,347 7
Duck Cow 0.97 0.95 22 23 8335 7
Fish Balloon 0.97 0.98 22 22 41,488 7
Fork Pillow 0.94 0.93 25 25 7742 7
Hat Spoon 0.95 0.96 22 23 18,198 10
House Clock 0.93 0.89 27 29 149,251 10
Milk Chair 0.97 0.94 22 24 17,812 11
Moon Bunny 0.93 0.92 24 24 13,959 11
Pants Tree 0.97 0.79 26 23 12,457 27
Pig Cheese 0.95 0.97 24 22 8307 27
Shirt Cup 0.96 0.97 25 22 21,486 7
Shoe Boat 0.98 0.95 18 24 26,945 7
Train* Frog 0.97 0.94 24 26 21,766 2
Truck* Couch 0.97 0.85 22 28 31,536 2

Note. For train and truck, /tr/ was treated as the onset, and other /tr/ onset words were counted for the onset
neighborhood density measure.

distances from the center of the screen. An audio file, recorded by a female native speaker of
Australian English in child-friendly natural speech, directed the child to the target image. The
audio was timed so that the target word began playing at around 4000 ms. There was some
variability across trials in the exact onset time of the target word, but each word’s specific
onset time was used to calculate RTs and proportions. The target word was introduced using
one of three carrier phrases (“look at the,” “where is the,” or “find me the”).

Four pseudo-randomized lists were created so that no target word was repeated within
three trials and that the target image appeared on the same side of the screen on no more
than two consecutive trials. Attention-getting fillers were played after every six trials. These
were dynamic cartoons with encouraging audio (e.g., “Did you see it?!”), which aimed to
keep the children engaged. Eye-tracking data was captured using a Tobii T60XL, sampling
at a rate of 60 Hz. Two dependent variables were calculated: RT and proportions. RTs were
calculated following the procedure from Fernald, Perfors, and Marchman (2006): On the trials
in which participants were looking to the distracter image prior to the onset of the target
word, we calculated the duration between the onset of the target word and the participant’s
first 100 ms fixation on the target between 200 and 1800 ms post onset. While previous
research has extracted RTs after 300 ms, these studies have typically been done with younger
children (Donnelly & Kidd, 2020; Fernald et al., 2006), and we found that doing so dropped
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an unacceptable number of trials (347 trials or 25% of possible trials, compared to 171% or
12% of possible trials when 200 ms was used). The proportion of looks to the target image
was calculated after the onset of the target word.

2.2.2. MacArthur Bates Communicative Development Inventory (MB-CDI)
The MB-CDI: Words and Sentences (Fenson et al., 2007) was used to estimate children’s

vocabulary size. This is a caregiver report checklist, for which caregivers must indicate
whether or not their child produces words, from a list of 682. The MB-CDI has excellent
internal consistency (alpha’s > .90) and test-retest reliability (r at all ages > .9), and has good
concurrent reliability with laboratory-based assessments of vocabulary (.53 < r < .73). Fol-
lowing Reilly et al. (2007), some minor changes were made to a small number of words to
better capture the Australian dialect, resulting in 678 items. Throughout these analyses, we
used the total productive vocabulary score as our relevant vocabulary measure.

2.2.3. Calculating onset neighborhood density
In addition to using the CDI to calculate each child’s vocabulary size, we used the CDI

to calculate onset neighborhood density. For each target in the LWL task, we calculated the
number of nouns on the CDI with the same onset reported to be known by each participant.
We counted the total nouns, rather than total words, to ensure we limited our analysis to words
that could have plausibly occurred in the carrier phrase in the context of the task. Words were
counted as onset neighbors if they had identical segments to the target word prior to the vowel
(e.g., words that only contained /d/ prior to the vowel were treated as onset neighbors of /d/
words, and words that contained /tr/ prior to the vowel were treated as onset neighbors of
/tr/ words). Following Mani and Plunkett (2011), we used the median of this value across
participants as the onset neighborhood density measure. Onset neighborhood densities for
each word are presented in Table 1.

2.3. Analytic strategy

Data were analyzed using Bayesian mixed models using STAN (STAN Development Team,
2018) and the BRMS package (Bürkner, 2018). This approach was used because Bayesian
software typically contains a wider range of likelihood functions than frequentist software.
For all models of RT, we used a shifted log-normal likelihood function (Rouder & Province, in
press), to account for the skew and heteroscedasticity exhibited by RT data, as well as the floor
of 200 ms used to calculate the RTs. When the dependent variable was the proportion of looks
to target we used a beta-likelihood function with a logit link function (Smithson & Verkuilen,
2006). The beta distribution is defined between 0 and 1, exclusive, and can accommodate
the heteroscedasticity common to proportions and rates. Because the beta distribution is not
defined for values of 0 or 1, raw proportions were transformed using the equation in Smithson
and Verkuilen (2006), which resulted in a range of .004 to .996.

All models were estimated using four chains of 5000 samples with 2500 warm-up sam-
ples. The minimum number of effective samples for any parameter was ∼ 800. All models
had random effects by participant and target word. For each random factor, we included
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uncorrelated random intercepts and all relevant random slopes. For all models, we used
BRMS’s default priors for fixed effects but used slightly more informative priors (t(3, 0,
2)) for random effect standard deviations. These priors are more informative because they
assign very little prior probability to random effect standard deviations greater than 4 or less
than −4. We did this because all of our models employed link functions (log for log-normal
models and the logit function for beta regressions), and random effect standard deviations
greater than 4 are implausible (e.g., in the log-normal model, this would imply that individual
differences in regression parameters that span four orders of magnitude).

We fit four models for both RTs and proportions, all containing several control variables.
First, we fit models with a main effect for onset neighborhood density. Second, we fit a model
with the interaction between onset neighborhood density and vocabulary. We then conducted
a median split on vocabulary, and our third and fourth models examined the effect of onset
neighborhood density for high- and low-vocabulary participants separately. For each model,
we present all fixed effects estimates with 95% credible intervals. We also conducted direc-
tional hypothesis tests on the posterior distribution for parameters of substantive interest; that
is, we calculated the proportion of the posterior distribution greater than or less than 0 in the
hypothesized direction. Given our directional hypotheses, we expected to observe the follow-
ing effects: For RTs we tested (a) the probability that the effect of onset neighborhood density
was positive (i.e., longer RTs with higher onset densities) and the probability that the inter-
action between onset neighborhood density and vocabulary was positive. For proportions,
we tested that the probability that the effect of onset neighborhood density for proportions
was negative (i.e., proportionately fewer looks to target with higher onset densities) and that
the probability that the interaction between onset neighborhood density and vocabulary was
negative.

3. Results

All data and scripts are available online: https://osf.io/rgahv/. Table 2 presents the descrip-
tive statistics for LWL outcomes for each word. One thing to note is that the pre-onset propor-
tion of looks for many words is greater than 0.5, with a particularly large proportion of looks
to cake (0.75). In general, words that attracted more pre-onset looks yielded fewer usable RTs.
Therefore, prior to our main analyses, we examined looks to target during this initial window.

3.1. Pre-onset looking

To determine whether overall looks to target differed from chance in the pre-onset window,
we estimated a mixed effects beta regression without any predictor variables. We included
random intercepts by participant and target word. Results indicated that average looks to
target differed from chance (b = .29, Credible Interval (CI) = 0.08: 0.51, on the logit scale;
b = .58, CI = 0.52: 0.63 on the proportion scale).

Given these above-chance looks, it was important to determine (a) whether this could be
explained by practice effects over the course of the task, and (b) whether performance in this
window was related to our predictor variables, in particular onset neighborhood density and

https://osf.io/rgahv/
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TABLE 2
Proportion of looks to target, RTs, and number of RT trials for each target word

Target Word Post-Onset Prop Pre-Onset Prop RT N RT

Ball 0.72 (0.25) 0.50 (0.23) 672.18 (303.00) 81
Bee 0.80 (0.19) 0.65 (0.19) 533.65 (253.42) 48
Cake 0.90 (0.16) 0.76 (0.20) 449.39 (208.74) 23
Car 0.85 (0.19) 0.62 (0.23) 443.59 (156.26) 31
Dog 0.72 (0.24) 0.55 (0.19) 508.94 (244.63) 64
Duck 0.77 (0.23) 0.56 (0.20) 503.68 (192.50) 59
Fish 0.80 (0.19) 0.62 (0.18) 518.76 (236.81) 66
Fork 0.80 (0.19) 0.57 (0.18) 499.35 (231.82) 67
Hat 0.69 (0.24) 0.44 (0.21) 537.30 (243.02) 96
House 0.77 (0.22) 0.54 (0.22) 594.15 (335.65) 81
Milk 0.84 (0.18) 0.64 (0.18) 506.48 (195.55) 48
Moon 0.68 (0.22) 0.41 (0.19) 544.31 (227.39) 94
Pants 0.62 (0.23) 0.43 (0.18) 689.26 (336.55) 109
Pig 0.77 (0.23) 0.57 (0.19) 462.80 (208.93) 40
Shirt 0.75 (0.20) 0.52 (0.20) 513.97 (254.00) 88
Shoe 0.76 (0.25) 0.52 (.20) 536.32 (295.23) 66
Train 0.81 (0.20) 0.62 (0.21) 472.47 (207.12) 59
Truck 0.86 (0.17) 0.65(0.24) 495.79 (167.59) 52

TABLE 3
Models predicting proportion of looks to target in window prior to onset of target word

Parameter Model 1 Model 2

M CI M CI

Intercept .30 (.06 : .55) .30 (.06 : .55)
Repetition –.09 (–.20 : .02) –.09 (–.19 : .02)
Trial Number .21 (–.40 : .84) .22 (–.40 : .84)
Log Frequency –1.19 (–29.34 : 26.62) –1.28 (–28.66 : 26.00)
Vocab .00 (–.05 : .06) .00 (–.05 : .06)
AoA .63 (–7.07 : 8.52) .69 (–6.95 : 8.21)
Onset Density –.21 (–2.38 : 2.03) –.20 (–2.35 : 1.93)
Onset Density * Vocab –.07 (–.56 : 43)

Note. M represents posterior mean; CI represents 95% credible interval.

its interaction with vocabulary. Therefore, we ran two additional beta regressions, predicting
the proportion of looks to target in this window from vocabulary, frequency, onset neighbor-
hood density, trial number, and a dummy-coded variable indicating whether the present trial
was the first or second trial containing the target word (which we call repetition from here).
We included all possible (uncorrelated) random slopes, by participant and target. Model 1
included only main effects for onset neighborhood density and vocabulary, and model 2 con-
tained both main effects and their interactions. Parameter estimates and credible intervals
for all predictors are presented in Table 3. As can be seen, there was no evidence that onset
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TABLE 4
Models predicting RT from onset neighborhood density and control variables

Model 1 Model 2 Model 3 Model 4

M CI M CI M CI M CI

Intercept 6.30 (5.83 : 6.77) 6.30 (5.85 : 6.76) 6.36 (5.73 : 7.02) 6.07 (5.54 : 6.58)
Repetition –.01 (–.10: .08) –.01 (–.10 : .08) –.07 (–.20 : .06) .06 (–.06 : .17)
Frequency 3.64 (–4.57 : 12.53) 3.59 (–4.52 : 12.17) 2.52 (–9.77 : 14.73) .64 (–3.56 : 5.55)
Target Prop –.86 (–1.75 : .00) –.86 (–1.74 : –.01) –1.46 (–2.67 : –.22) –.17 (–1.12 : .78)
Part Target Prop –.19 (–.49 : .10) –.20 (–.50 : .10) .03 (–.42: .48) –.46 (–.87 : –.06)
Duration .01 (–.06: .07) .01 (–.06 : .07) –.01 (–.11 : .09) .03 (–.05 : .11)
Vocabulary –.08 (–.13 : –.02) –.09 (–.14 : – .03) .06 (–.15 : .26) –.06 (–.16 : .01)
AoA 1.36 (–1.39 : 4.40) 1.36 (–1.33 : 4.39) 1.42 (–2.41 : 5.76) .47 (–1.87 : 2.90)
Onset Density .51 (–.20 : 1.22) .56 (–.15 : 1.28) .76 (–.25 : 1.77) .15 (–.65 : .95)
Onset Density *

Vocab
.36 (–.05 : .76)

Note. M represents posterior mean; CI represents 95% credible interval.

neighborhood density or its interaction with vocabulary were related to the proportion of
looks in this window. There was, however, evidence that participants looked to the target
image more on their second instance than their first, suggesting a practice effect (propor-
tion of posterior probability < 0 = 0.05). Therefore, we included this variable as a predictor
variable in our main analyses.

3.2. Post-onset looking

For both RTs and proportions, we fit mixed effects models, including an interaction
between (centered) onset neighborhood density and (centered) vocabulary (both divided by
100 to make coefficients more easily interpretable). We also included the following con-
trol variables: repetition, the logarithm of lemma frequency (centered), word duration (in
milliseconds, centered), AoA (centered and divided by 100), and two additional variables
to account for differential proportion of looks to target in the pre-onset window: (i) Target
Proportion, the average proportion of looks to the target in the pre-onset window averaged
across participants, and (ii) Participant Target Proportion, the average looks to the target in
the pre-onset window within participants. Including both of these allowed us to control for
(a) features of the stimuli that cause it to attract more attention across all participants as well
as (b) individual participant’s idiosyncratic preferences for particular objects.

3.2.1. Reaction times
Parameter estimates for all four models of RTs are presented in Table 4. Model 1 included

the main effects of both vocabulary and onset neighborhood density. The mean posterior
estimate for onset neighborhood density was positive, suggesting slower reaction times for
words from denser onset neighborhoods. Moreover, a test of the directional hypothesis that
this effect was positive revealed that 92% of the posterior distribution was positive. This effect
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Fig. 1. Main effect of onset neighborhood density on RT from Model 1 with RTs for individual trials. The left
plane plots the effect with all data points. Because we have plotted individual data points, rather than means, there
is a great deal of variability between data points. The left pane displays the effect of onset neighborhood density
with all data points displayed. The right pane shows the same effect with the y-axis reduced, to zoom in on the
effect.

is visualized in Fig. 1. Model 2 additionally included the interaction between onset neighbor-
hood density and vocabulary. The main effect of onset neighborhood density was similar to
that in Model 1 and this effect was larger for high vocabulary children. For the main effect
of onset neighborhood density, corresponding to its slope for participants with vocabulary
sizes at the median, 94% of its posterior distribution was above 0. For the interaction, 96%
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Fig. 2. Interaction between onset neighborhood density and vocabulary from Model 2 with RTs for individual
trials. The left plane plots the effect with all data points. Because we have plotted individual data points, rather
than means, there is a great deal of variability between data points. The left pane displays the effect of onset
neighborhood density with all data points displayed. The right pane shows the same effect with the y-axis reduced,
to zoom in on the effect.

of its posterior distribution was above 0, indicating a reliable interaction between these two
variables. The latter effect is visualized in Fig. 2.

To understand the nature of this interaction, we re-parameterized the posterior distribution
from Model 2 to estimate the slope of onset neighborhood density at varying levels of vocabu-
lary. When vocabulary size was fixed at one standard deviation below the mean (415 words),
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TABLE 5
Models predicting the proportion of looks to target after the onset of the target word

Model 1 Model 2 Model 3 Model 4

M CI M CI M CI M CI

Intercept –.84 (–1.38 : –.34) –.85 (–1.40 : –.34) –.90 (–1.46 : –.35) –.74 (–1.44 : –.10)
Repetition .00 (–.09 : .10) .00 (–.09 : .10) .10 (–.02 : .23) –.10 (–.23 : .03)
Frequency .86 (–9.21 : 9.85) .89 (–9.11 : 10.57) .78 (–3.56 : 5.74) –1.17 (–14.32 : 11.01)
Target Prop 2.45 (1.54 : 3.43) 2.45 (1.53 : 3.44) 2.43 (1.44 : 3.45) 2.35 (1.17 : 3.64)
Target Part Prop 1.29 (1.02 : 1.56) 1.29 (1.02: 1.56) 1.27 (.91 : 1.63) 1.27 (.87: 1.66)
Vocabulary .01 (–.04 : .07) .01 (–.05 : .07) .07 (–.13: .27) –.01 (–.10 : .09)
AoA –1.28 (–4.80 :1.72) –1.29 (–4.63 : 1.72) –.21 (–2.65: 2.40) –2.11 (–6.59 : 1.98)
Onset Density –.55 (–1.28 : .23) –.53 (–1.27 : .23) –.38 (–1.14 : .40) –.73 (–1.74 : .31)
Onset Density *

Vocab
.11 (–.24 : .46)

Note. M represents posterior mean; CI represents 95% credible interval.

the slope for onset neighborhood density was small and its credible interval greatly over-
lapped with 0 (b = .11, CI = −0.73: 1.0, posterior prob = 0.60). When vocabulary size was
fixed to the sample mean (524 words), the effect of onset neighborhood density was larger,
with much more of its credible interval covering positive values (b = .51, CI = −0.21: 1.24,
posterior prob = 0.92). When vocabulary size was fixed at one standard deviation above the
mean (635 words), the effect of onset neighborhood density was larger still, and its credible
interval did not overlap with 0 (b = .90, CI = 0.05: 1.73, posterior prob = 0.98). Thus, Model
2 suggests that the effect of onset density was larger for children with larger vocabularies and
that this difference was reliably different from 0 for children with the largest vocabularies. To
contextualize these effects, we compared the vocabulary sizes above to the American sample
of the Wordbank database. Notably, a vocabulary size of 415 words falls between the 50th and
75th percentiles of vocabulary scores for 24-month-olds (316 and 454 words, respectively).
This suggests that the lowest-vocabulary children in our experiment were comparable to the
24-month-olds in Mani and Plunkett (2011).

We then examined the effects of onset neighborhood density for high and low vocabulary
participants separately (defined as participants with vocabularies larger and smaller than 545
words). Model 3 considered only high vocabulary participants and revealed a positive effect of
onset neighborhood density; 94% of the posterior distribution for this coefficient was positive.
Model 4 considered only the low vocabulary group and revealed a positive effect of onset
neighborhood density with 60% of the posterior distribution positive. Overall, these results
suggest that onset neighborhood density slowed lexical access but that this effect was limited
to higher vocabulary children.

3.2.2. Proportions
Parameter estimates from all models of proportions are presented in Table 5. Model 1,

which included the main effect of onset neighborhood density and a main effect of vocab-
ulary, yielded a negative effect of onset neighborhood density on proportions, and 93% of
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Fig. 3. Main effect of onset neighborhood density on the proportion of looks to target from Model 1 with propor-
tions for individual trials. The left plane plots the effect with all data points. Because we have plotted individual
data points, rather than means, there is a great deal of variability between data points. The left pane displays the
effect of onset neighborhood density with all data points displayed. The right pane shows the same effect with the
y-axis reduced, to zoom in on the effect.

its posterior distribution was negative. This effect is visualized in Fig. 3. Model 2 included
an interaction between onset neighborhood density and vocabulary. The effect of onset
neighborhood density was negative; however, its interaction with vocabulary was positive,
with the credible interval containing 0 and with 74% of its posterior distribution negative.
This effect is visualized in Fig. 4. Model 3 considered only high vocabulary children and
produced a negative coefficient for onset neighborhood density (with 84% of its posterior
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Fig. 4. Interaction between onset neighborhood density and vocabulary from Model 2 with proportions for indi-
vidual trials. The left plane plots the effect with all data points. Because we have plotted individual data points,
rather than means, there is a great deal of variability between data points. The left pane displays the effect of onset
neighborhood density with all data points displayed. The right pane shows the same effect with the y-axis reduced,
to zoom in on the effect.

distribution in the negative range). Model 4 considered only low vocabulary children and
found a negative coefficient (with 93% of its posterior distribution in the negative range).
Thus, there was moderate evidence that onset neighborhood density reduced the propor-
tion of looks to the target word and no evidence that this effect was not moderated by
vocabulary.
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4. Discussion

The current study aimed to determine whether there were inhibitory effects of onset
neighborhood density on spoken word recognition in toddlers and whether this effect was
larger for individuals with larger vocabularies. Consistent with our hypotheses, we found
moderate evidence of an inhibitory effect of onset neighborhood density, which was moder-
ated by vocabulary size. The results are consistent with similar past research by Mani and
Plunkett (2011), whose observation of age-based differences in inhibitory processes are thus
most likely attributable to individual differences in lexical knowledge acquired over develop-
mental time.

Our results build on previous work in several ways. First, by operationalizing onset neigh-
borhood density as a continuous variable, rather than a factor, we demonstrated that these
effects cannot be attributed to the particular characteristics of a set of words beginning with
/b/. Second, by using reaction times as a dependent measure, we demonstrated clearly that
onset neighborhood density slows lexical access as similar measures do in adults (Vitevitch
& Luce, 2016). Critically, we observed this effect even after controlling for several theoret-
ically substantive (frequency, vocabulary size, duration) and methodological variables (pro-
portion of looks to the target prior to the onset of the target word), strongly supporting the
inference that this effect specifically reflects onset neighborhood density and not correlated
lexical variables.

We found strong evidence that the effect of onset neighborhood density was larger for
children with larger vocabulary sizes when RTs were used as the dependent variable. This is
consistent with the conclusion of Mani and Plunkett (2011) that inhibitory lexical connections
emerge as vocabulary size increases. Moreover, given that our sample was 6 months older than
Mani and Plunkett’s, the fact that the slope was not reliably different from 0 for children with
the lowest vocabulary strongly suggests that vocabulary size, and not age, is the driving factor
in the emergence of these sorts of dynamics.

Taken together, our results provide strong evidence to suggest that known mechanistic
processes that influence adult lexical access, in this case, word-level inhibitory connections
emerge early in ontogeny, demonstrating that the emerging lexicon likely contains process-
based architectural similarities to the mature (i.e., adult-like) state once a critical mass of
vocabulary is acquired. For adult-oriented theories of lexical processing (e.g., McClelland
& Elman, 1986; Norris, 1994), this means that one can assume a degree of continuity
between the developing and adult state (lexicon size notwithstanding; Mayor & Plunkett,
2014). Our findings also complement recent results from the study of semantic neighborhood
density on lexical access in infants in toddlers (Borovsky & Peters, 2019; Borovsky, Ellis,
Evans, & Elman, 2016; Wojcik & Saffran, 2019). For example, Borovsky and Peters (2019)
found an interaction between vocabulary size and semantic neighborhood density amongst
21-month-olds on the proportion of looks to target in the LWL task. Intriguingly, they found
that low-vocabulary 21-month-olds recognized words from semantically dense categories
more efficiently than those from semantically less dense categories, but high-vocabulary
21-month-olds did not vary across these conditions. The broad generalization is that the
structure of children’s lexicon significantly influences lexical access.
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Taken with these findings, our results place an important constraint on the large cur-
rent research focused on lexical processing as a predictor of individual differences in lan-
guage outcomes (e.g., Egger, Rowland, & Bergmann, 2020; Fernald et al., 2006; Marchman
& Fernald, 2008). An important conceptual limitation of this work is that it is conducted
largely without a working theoretical model of the lexicon (see Donnelly & Kidd, 2020); it
implicitly assumes a largely unidirectional and linear relationship between knowledge and
lexical processing speed (i.e., faster RTs are always better). Our results, as well as the liter-
ature described above, indicate that there are subtle item-based influences on lexical access
that are inconsistent with this assumption but which fit with what we know about adult lexical
access. While it is clear that lexical processing is subject to individual differences and faster
processing is related to language both concurrently and longitudinally, we recommend that
future theoretical development of the concept of lexical processing takes into account that
infants are developing toward the (well-described) adult state. A productive research effort
would be to understand better how online processing both depends upon and begets linguistic
knowledge over development, thereby laying down the architectural properties of the future
adult lexicon.

We did not observe an interaction between onset neighborhood density and vocabulary
when proportions were used as the dependent variable. This may reflect the limitations of
using proportions as a dependent variable for this age group. While proportions are commonly
used in the LWL task at a young age (Lany, Giglio, & Oswalt, 2018), given that the RTs on
the LWL task decrease with age (Donnelly & Kidd, 2020; Fernald et al., 1998; Fernald et al.,
2006), proportions may become less reliable as they are affected by where the participant
looks after fixating on the target word. This is consistent with the fact that Mani and Plunkett
(2011) and Angulo-Chavira and Arias-Trejo (2018) found that phonological primes had the
opposite effect on the proportion of looks to target in a preferential looking task (see also
Avila-Varela et al., 2021).

Several limitations of this study warrant discussion. First, while using the LWL task
allowed us to calculate RTs and was a strength of the present study, this task necessarily
results in a great deal of missing data. Notably, given that participants looked to some target
images at above-chance levels prior to the onset of the target word, there was more missing
data for some target words than others. While we determined that the proportion of pre-onset
looks to target was not related to onset neighborhood density, vocabulary, or their interaction,
and included many relevant controls in our analyses of RTs and proportions, future research
should aim to minimize the number of missing trials and ideally keep the number of missing
trials balanced across items (Egger et al., 2020). In particular, while the AoA of non-target
images was controlled for, the frequency was not. Therefore, differences in frequency across
distracter items could explain differences for preferences across items prior to the onset of the
target word.

Second, we used children’s productive vocabulary as a measure of vocabulary and to
calculate onset neighborhood density. We did so because collecting item-level data regard-
ing children’s receptive vocabulary is quite challenging for children older than 18 months.
Given that receptive vocabulary is likely the more relevant measure, and we know of no
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research comparing onset neighborhood density measures calculated using production and
comprehension data, this may be seen as a limitation. However, we note that the two scores are
likely strongly related (the correlation between the two scores in the American English sample
on Wordbank is 0.63). Moreover, psychometric modeling suggests that productive vocab-
ulary checklists have better measurement properties than receptive vocabulary checklists
(Frank, Braginsky, Yurovsky, & Marchman, 2021, Chap. 4). Thus, we are confident that using
productive vocabulary as measured by the MB-CDI accurately and reliably reflects the make-
up of the children’s larger lexicon. Third, our control measure of frequency was based on
adult corpus data, not child corpus data. The extent to which these metrics align is unclear,
and no doubt there will be some differences. This may explain why there was no effect of
frequency in our data.

5. Conclusion

In the current study, we found that vocabulary size moderates the effect of onset neigh-
borhood density on lexical access in 30-month-olds. This suggests that children with larger
productive vocabularies experience more lexical interference than children with smaller
vocabularies. These results are consistent with empirical findings and simulation results
(Mani & Plunkett, 2011; Mayor & Plunkett, 2014), suggesting that the emergence of
inhibitory lexical connections early in language development is driven by increases in vocab-
ulary size. These results suggest continuity between the processes mediating lexical access in
young children and adults and suggest an important constraint on models of the relationship
between lexical processing efficiency and other aspects of language development.
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Notes

1 Note, however, that Angulo-Chavira and Ariajs-Trejo (2018) did not report analyses sep-
arately for more or less dense onset-neighborhoods.

2 We used American norms to choose the targets because not enough Australian data exist
to reliably estimate the same metric. The lexical differences between the standard forms
of the two dialects are minimal, and we do not expect them to influence our results.

3 Frequencies came from the Corpus of Contemporary American English: https://www.
wordfrequency.info/freeList.asp?s=y
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