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The involutory subalgebra K(e9) of the affine Kac–Moody algebra e9 was recently

shown to admit an infinite sequence of unfaithful representations of ever increasing

dimensions [1]. We revisit these representations and describe their associated ide-

als in more detail, with particular emphasis on two chiral versions that can be

constructed for each such representation. For every such unfaithful representa-

tion we show that the action of K(e9) decomposes into a direct sum of two mu-

tually commuting (‘chiral’ and ‘anti-chiral’) parabolic algebras with Levi subalgebra

so(16)+ ⊕ so(16)−. We also spell out the consistency conditions for uplifting such

representations to unfaithful representations of K(e10). From these results it is evi-

dent that the holonomy groups so far discussed in the literature are mere shadows

(in a Platonic sense) of a much larger structure.
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1 Introduction

In studies of supersymmetric solutions of supergravity, a central role is played by the Killing

spinor equation that expresses the vanishing of the supersymmetry variation of the gravitino

δεΨM = D̂M (ω, F )ε ≡
[
∂M +

1

4
ωM ABΓAB + F · Γ

]
ε = 0 . (1.1)

Here, ε represents the spin-1
2 local supersymmetry parameter, ωM AB the components of the

spin connection and F · Γ is shorthand for flux contributions, where the components of the

field strengths are contracted with elements of the gamma matrix algebra; the explicit form

of this term depends on the theory in question. For maximal supergravity, the idea that the

combination of the spin connection and the flux terms should be interpreted as a generalised

connection goes back to [2,3]. More recently, and in a more general context, it was pointed out

that these flux terms extend the notion of holonomy of the spin bundle to that of a generalised

holonomy [4–7]. The latter has been a subject of intense study in connection with classifying

supersymmetric solutions, also in the context of (exceptional) generalised geometry [8–12]. In

particular, the groups

SO(16)+ × SO(16)− ⊂ SO(32) ⊂ SL(32,R) (1.2)

have been put forward as candidate generalised holonomy groups of maximal supergravity in [5,

6, 13], and we shall focus on this theory in the following. The basis for this conjecture and the
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chain of embeddings in (1.2) is that the D = 11 gamma matrices appearing in (1.1) generate

the whole Lie algebra of sl(32) upon commutation (together with its subalgebras so(32) and

so(16) ⊕ so(16)), such that the 32-component parameter ε can be viewed as belonging to the

fundamental representation of this group.

However, it was already pointed out in [14] that these conjectures are problematic at the

group level in the sense that they do not contain the correct R-symmetry groups appearing upon

dimensional reduction, notably the Spin(16)/Z2 symmetry in D = 3 maximal supergravity. This

incompatibility of the group structures negates the idea that the proposed generalised holonomy

groups could be true symmetry groups ofD = 11 supergravity, although their properties continue

to be useful for the study of supersymmetric solutions. A further argument against SO(32)

or SL(32) as symmetries is that, while these groups can act on the spin-1
2 supersymmetry

parameter ε, they cannot act on the propagating fermion of the theory, namely the gravitino:

for maximal supergravity, the latter is a vector spinor (‘spin-3
2 ’) representation of the Lorentz

group Spin(1, 10), but there is no way to turn it into a representation of SL(32).

A resolution of these issues was proposed in the context of studies of Kac–Moody sym-

metries of supergravity. It was found in [15–18] that the involutory subalgebra K(e10) of the

Kac–Moody Lie algebra e10 admits a 32-dimensional representation, dubbed spin-1
2 for obvious

reasons, as well as a 320-component representation that corresponds to the spin-3
2 gravitino.

These representations have the property that they lift correctly to the spin cover K̃(E10) of the

corresponding group (see [19] for a discussion of the spin cover). Moreover, the representations

have the property that they possess the correct branching to the other maximal supergravity

theories, including the chiral fermions of type IIB, which cannot be obtained by usual dimen-

sional reduction [20], and thus provide a common origin for both IIA and IIB fermions. Since the

fermionic representations are finite-dimensional representations of an infinite-dimensional group,

they are unfaithful and there is thus a huge kernel of the representation map. The correspond-

ing quotient groups turn out to be SO(32) for the spin-1
2 representation and the non-compact

SO(288, 32) for the spin-3
2 representation [21].1 The significance of these results is that they

represent incontrovertible evidence for the fact that (1.2) are not the actual symmetry groups,

but that the chain of embeddings (1.2) must be replaced by [23]

K̃(E9) ⊂ K̃(E10) ⊂ K̃(E11) . (1.3)

Accordingly, the finite-dimensional symmetry groups which have appeared so far must be in-

terpreted as quotient groups which are obtained by dividing K̃(En) (for n = 9, 10, 11) by the

annihilator ideals of the corresponding unfaithful spinor representations. Hence our claim that

the holonomy groups identified so far are merely shadows of the full symmetry expressed by

(1.3) (and their analogs for non-maximal supergravities). Since the actual group is K̃(En), the

topological obstructions found in [14] disappear, as it is no longer necessary to embed the R-

symmetry Spin(16)/Z2 into SL(32) but it embeds correctly (as a quotient) into K̃(En). In this

1For the spin- 1
2

and spin- 3
2

representations of K(e11) defined in [20] the corresponding quotients algebras are

sl(32) and sl(352), respectively. See also [13] and [22] for work related to the spin- 1
2

and spin- 3
2

representations

of K(e11).
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sense, the proposed Kac–Moody symmetries are much more promising candidates, see also [24]

for a related discussion.

The purpose of this paper is to amplify this point, with special emphasis on the affine

case, and in this way actually prove part of the claim (1.3). Since the finite-dimensional spin-
1
2 and spin-3

2 representations furnish only infinitesimal glimpses of the huge Kac–Moody-type

symmetry, it is important to understand the structure of its representations better. First steps

were taken for K(e10) by the construction of two new ‘higher spin’ representations in [25, 26]

(see also [21] for a review), where the ‘spin’ actually refers to DeWitt superspace. In contrast

to the spin-1
2 and spin-3

2 representations these can no longer be deduced from supergravity.

A more systematic study in the case of affine e9, relevant in the context of D = 2 maximal

supergravity [27–29, 23], was initiated in [1] where a general construction of infinite families of

unfaithful representations was given. This construction, reviewed in section 2 below, hinges

on some properties that are specific to the affine case, but it is hoped that this serves as a

stepping stone to the more interesting hyperbolic algebra e10. This hope stems from the fact

that all known representations of K(e10) split into two chiral halves when decomposed under

K(e9) ⊂ K(e10) and the resulting K(e9) representations belong to the family of representations

constructed in [1]. We stress that the converse is not true: not every K(e9)-representation can

be ‘doubled’ and uplifted to a K(e10) representation. It is one of the aims of this paper to find

conditions when this is possible.

As one of our main results we will exhibit for the affine case the general structure of the

quotient group Q of K̃(E9) as a product of two mutually commuting (‘chiral’ and ‘anti-chiral’)

parabolic groups (see (3.20) for the Lie algebra version of this statement)

Q =
(
SO(16)+ n U+

)
×
(
SO(16)− n U−

)
, (1.4)

where the Levi subgroups of the two parabolic groups are SO(16)± and the unipotent subgroups

U± are N -step unipotent, with N referring to a truncation condition in the construction of the

unfaithful representations. This is the infinite series of groups that generalises the left-most

entry in (1.2). From (1.4) we see that the proper generalisation of the holonomy group to non-

trivial spinor representations therefore differs substantially from (1.2). In particular there is no

limit on the size of the group Q, since the ‘cutoff parameter’ N can be taken arbitrarily large.

For maximal supergravity the structure of (1.4) is in complete accord with the known action of

K(E9) on the supergravity fermions that was first exhibited in [23].

Since K(e10) differs from K(e9) by exactly one simple Berman generator (designated by x1

with our labeling of the E10 Dynkin diagram, see figure 1 in section 5), representations of K(e9)

that can be doubled to K(e10) representations then must have a realisation of this Berman

generator that mixes and interchanges the two parabolic subgroups in (1.4). The relations that

this Berman generator must satisfy are known and spelt out in section 5. The problem of finding

K(e10) representation is thus greatly reduced, but it is worth stressing that the action of this

extra Berman generator is not simply an interchange of the two chiral halves. As we shall see

with the concrete examples of the known K(E10) representations, the very existence of these

representations relies on subtle consistency conditions that go beyond the affine construction

in an essential way, and whose general form remains to be fully explored. We also note that
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the structure of (1.4) implies that K(e10) representations obtained in this way must necessarily

have non-compact quotients whenever the unipotent parts U± are non-trivial. This explains one

of the strangest features of our construction, namely the fact that these quotient groups are

generically non-compact even though they descend from a ‘maximally compact’ subgroup [21].

The results presented in this paper are given for K(e9), but most of the general structure

is applicable to any K(g) where g is a non-twisted affine algebra. One possible other arena

for the considerations of this paper would therefore be pure N = 1 supergravity reduced from

D = 4 to D = 2 dimensions where the (Geroch) symmetry algebra g is affinised sl(2) [30].

However, the main challenge at this point concerns the extension of our results to K(e10), with

the idea that its corresponding unfaithful representations can be constructed by appropriately

‘gluing’ two chiral representations of K(e9), and by combining the two nilpotent subalgebras in

(3.20), as we sketch in section 5. The latter strategy is suggested by the fact that all known

unfaithful spinorial representations of K(e10) are of this type. In section 5 we also state the

consistency conditions that must be satisfied in order for such an ‘uplift’ to K(e10) to work.

This is important because we know that not every representation of K(e9) admits such an uplift

to K(e10) (an example is obtained by truncating a 16⊕ 16 from the spin-3
2 representation).

The structure of this article is as follows. We first review the general construction of K(e9)

representations of [1] in section 2. In section 3, we discuss the structure of the associated ideals in

more detail and in particular introduce the notion of chirality, showing that the chiral quotients

commute. Section 4 connects the results of this paper to the explicit higher-spin representations

of K(e10) found in [25] and how they reduce to K(e9). In section 5 we then discuss the converse

problem and discuss conditions for lifting K(e9) representations to K(e10).
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2 Parabolic and filtered algebras

In this section, we review the basic set-up from [1].

2.1 K(E9) from E9

The Kac–Moody algebra e9 can be defined in terms of a Chevalley–Serre basis and associated

relations described by its Dynkin diagram. As for any affine Lie algebra it can be equivalently

given in terms of a centrally extended loop algebra as

e9 = e8[t, t−1]⊕ Rk ⊕ Rd (2.1)

where e8[t, t−1] ∼= R[t, t−1] ⊗ e8 denotes e8-valued Laurent polynomials in a formal variable t

and k and d are semi-simple elements of the algebra, with k being central. The commutation
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relations are given by

[tm ⊗ x, tn ⊗ y] = tm+n ⊗ [x, y] +mδm,n(x, y)k ,

[tm ⊗ x, k] = [d, k] = 0 , [tm ⊗ x, d] = mtm ⊗ x (2.2)

for m,n ∈ Z and x, y ∈ e8 and with (x, y) the canonically normalised Killing pairing on e8. We

only consider the split real form of the algebra.

The 248-dimensional algebra e8 has a Cartan–Chevalley involution ω̊ whose fixed point set is

the 120-dimensional compact subalgebra so(16) of e8. The remaining 128 generators transform

in a spinor representation of so(16). We shall denote the generators in the associated Cartan

decomposition as (XIJ , Y A) with XIJ = X [IJ ] the 120 so(16) generators while Y A are the 128

coset generators. The commutation relations are[
XIJ , XKL

]
= 2δK[JXI]L − 2δL[JXI]K ,[

XIJ , Y A
]

= −1

2
ΓIJABY

B , (2.3)[
Y A, Y B

]
=

1

4
ΓIJABX

IJ .

Indices can be raised and lowered with the so(16)-invariant metrics δIJ for fundamental indices

and δAB for spinor indices. The matrices ΓIJAB are taken from the so(16) Clifford algebra and they

are of size 128×128 for fixed I, J . Conjugate spinor representations of so(16) will be denoted

with indices Ȧ. The involution ω̊ acts on these basis generators by

ω̊(XIJ) = XIJ , ω̊(Y A) = −Y A . (2.4)

The Cartan–Chevalley involution ω̊ on e8 can be extended to an involution ω on e9 by letting

ω(tn ⊗ x) = t−n ⊗ ω̊(x) , ω(d) = −d , ω(k) = −k . (2.5)

We denote the invariant subalgebra under this involution by K(e9) ≡ k.

2.2 Filtered and parabolic algebras

A basis for K(e9) can be given explicitly by

X IJn :=
1

2
(tn + t−n)⊗XIJ for n ≥ 0, (2.6a)

YAn :=
1

2
(tn − t−n)⊗ Y A for n > 0 . (2.6b)

The elements d and k are projected out when descending from e9 to K(e9).

We shall refer to the elements (2.6) as the filtered basis of K(e9). The reason for this

terminology is that the commutation relations in this basis are no longer graded (as in (2.2))

but read [
X IJm ,XKLn

]
= 2δ[I[K

(
XL]J ]
m+n + XL]J ]

|m−n|

)
, (2.7a)[

X IJm ,YAn
]

= −1

4
ΓIJAB

(
YBm+n − sgn(m− n)YB|m−n|

)
, (2.7b)[

YAm,YBn
]

=
1

8
ΓIJAB

(
X IJm+n −X IJ|m−n|

)
. (2.7c)
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As the involution (2.5) sends t→ t−1 one can also consider a different algebra that is more

adapted to the fixed points of this involution on Laurent polynomials R[t, t−1]. The fixed points

are given by t∗ = ±1 and we consider the explicit change of variables

u =
1∓ t
1± t

⇐⇒ t = ±1− u
1 + u

(2.8)

for the two choices of fixed points. Around these fixed points we define the Lie algebra

N = R[[u2]]⊗ 〈XIJ〉 ⊕ uR[[u2]]⊗ 〈Y A〉 (2.9)

with the bracket defined in the obvious way and allowing for arbitrary formal power series.

Written explicitly, a basis is of this Lie algebra is given by

AIJ2n := u2n ⊗XIJ for n ≥ 0,

SA2n+1 := u2n+1 ⊗ Y A for n ≥ 0. (2.10)

We stress that the Lie algebra (2.9) is allowed to contain arbitrary formal power series in u.

Since only positive powers of u arises, the commutation relations of the basis elements are graded

according to[
AIJ2m,AKL2n

]
=

1

2
δJKAIL2(m+n) −

1

2
δIKAJL2(m+n) −

1

2
δJLAIK2(m+n) +

1

2
δILAJK2(m+n) , (2.11a)

[
AIJ2m,SKL2n+1

]
= −1

4
ΓIJABSB2(m+n)+1 , (2.11b)

[
SA2m+1,SB2n+1

]
=

1

8
ΓIJABAIJ2(m+n+1) . (2.11c)

We refer to this algebra as a parabolic Lie algebra as the Levi part so(16), generated by AIJ0 ,

acts on the (generalised) nilpotent part with positive subscripts.

One of the main results of [1] was that there are injective Lie algebra homomorphisms

ρ± : K(e9)→ N. These can be obtained by expanding out the explicit change of variables (2.8)

according to

tn + t−n = (±1)n
∑
k≥0

a
(n)
2k u

2k , tn − t−n = (±1)n
∑
k≥0

a
(n)
2k+1u

2k+1 (2.12)

for n ≥ 0 and n > 0, respectively. The two choices of sign correspond to the two choices in (2.8).

The two Lie algebra homomorphisms are then defined explicitly by

ρ±(X IJn ) = (±1)n
1

2

∑
k≥0

a
(n)
2k A

IJ
2k , ρ±(YAn ) = (±1)n

1

2

∑
k≥0

a
(n)
2k+1S

A
2k+1 . (2.13)

As explained in [1], the homomorphisms are not surjective as one would require power series in

R[[t, t−1]] that, however, do not behave well under multiplication.
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Explicit formulas for the coefficients are

a
(n)
2k = 2

n∑
`=0

(
2n

2`

)(
k − `+ n− 1

k − `

)
for n ≥ 1 and k ≥ 1 , (2.14a)

a
(n)
2k+1 = −2

n−1∑
`=0

(
2n

2`+ 1

)(
k − `+ n− 1

k − `

)
for n ≥ 0 and k ≥ 0 . (2.14b)

Also a
(0)
2k = 0 for all k ≥ 1 and a

(n)
0 = 2 for all n ≥ 0.

2.3 Representations from truncations

It is easy to construct finite-dimensional representations for the parabolic algebra N defined

in (2.9) by considering quotients of the algebra. Examples can be obtained by quotienting the

ring of power series R[[u]] by the ideal uN+1R[[u]] of power series whose lowest order term is

uN+1. As a vector space, the quotient corresponds to polynomials of degree at most N , but the

quotient construction also endows the vector space with a product structure. This is given by

working modulo terms of order O(uN+1). In terms of the parabolic generators this amounts to

setting

AIJ2k = 0 for k > bN/2c , SA2k+1 = 0 for k > b(N − 1)/2c . (2.15)

There are two cases to be distinguished here, according to whether the highest ‘active’ generator

is of type A2k or of type S2k+1. Since these two cases are largely analogous we will for definiteness

assume N = 2 k0 even and

AIJ2k = SA2k−1 = 0 for k > k0 = N
2 (2.16)

in the remainder, such that the highest ‘active’ generators are AIJ2k0
and SA2k0−1. This quotient

on the ring of power series induces a quotient Lie algebra of N that we denote by NN . Repre-

sentations of this quotient Lie algebra can be constructed by considering all elements of degree

at most N in the universal enveloping algebra of NN acting on a given so(16) module V0. In

practice, this means that we are considering the graded representation

WN =

N⊕
i=0

Vi (2.17)

with the constituent so(16) modules (with N = 2k0)

V0

V1 = 〈SA1 V0〉

V2 = 〈S(A
1 S

B)
1 V0〉 ⊕ 〈AIJ2 V0〉 (2.18)

...

VN = 〈S(A1

1 · · · SAN )
1 V0〉 ⊕ · · · ⊕ 〈SA1 SBN−1V0〉 ⊕ 〈AIJN V0〉 (2.19)
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where the generators must be ordered in accordance with the Poincaré–Birkhoff–Witt theorem.

As these are representations of a quotient NN of the parabolic Lie algebra N into which K(e9)

embeds injectively, the representations can be pulled back to finite-dimensional representations

of K(e9) using the homomorphisms ρ± [1]. They provide a plethora of new representations.

Yet more representations can be obtained from (2.18) by further truncating away subrep-

resentations at any level together with their associated submodules of WN , as was already

explained in [1]. Unlike the quotient to WN , removing further so(16) representations within one

of the constituent Vi may require a careful check that the resulting space is a representation

of K(e9). Nevertheless, the known examples of K(e10) representations suggest that such extra

truncations may be necessary for the existence of the over-extended Berman generator x1 and

for a consistent uplift to K(E10) [26].

3 Ideals

The representations WN defined in the previous section are characterised by the fact that AIJ2k =

0 and SA2k−1 = 0 for k > k0, where we fix k0 throughout this section. The case when the highest

active generator is of type S can be dealt with similarly.

We therefore have the finite sum relations valid in these representations

ρ±(X IJn ) = (±1)n
1

2

k0∑
k=0

a
(n)
2k A

IJ
2k , (3.1a)

ρ±(YAn ) = (±1)n
1

2

k0∑
k=1

a
(n)
2k−1S

A
2k−1 . (3.1b)

We can consider the first relation for 0 ≤ n ≤ k0 and the second one for 1 ≤ n ≤ k0. From

the explicit form of the a
(n)
2k one can check that these represent linear systems of relations with

unique solutions for A2k and S2k−1 in terms of Xn and Yn for n ≤ k0. Substituting this solution

with the AIJ2k and SA2k+1 in terms of the corresponding X IJn and YAn back into (3.1) we can

express any of the higher X IJn and YAn for n > k0 in terms of these. Explicitly, we have

(±1)nX IJn =

k0∑
m=0

(±1)mcn,mX IJm , (3.2a)

(±1)nYAn =

k0∑
m=1

(±1)mdn,mYAm (3.2b)

where the coefficients are given by

cn,m ≡ c(k0)
n,m :=

∏
0≤j≤k0
j 6=m

n2 − j2

m2 − j2
, dn,m ≡ d(k0)

n,m :=
n

m

∏
1≤j≤k0
j 6=m

n2 − j2

m2 − j2
. (3.3)

where always m ≤ k0 (below we will often suppress the superscript k0). For 0 ≤ n ≤ k0,

the relations (3.2) become tautologies, as in this range c
(k0)
n,m = d

(k0)
n,m = δn,m (remember that the
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second index m is always restricted to a finite range). Consequently, only the X IJn for 0 ≤ n ≤ k0

and the YAn for 1 ≤ n ≤ k0 are independent, whereas the higher index objects depend linearly on

them via the above ideal relations. Put differently, for X IJn with n > k0 and YAn with n > k0 the

relations (3.2) are non-trivial relations among the representation matrices of K(e9). Importantly,

these are valid only in the representations obtained by truncating the parabolic algebra. For

ease of notation we omit the homomorphisms ρ± and representation maps from the formulæ

that are always to be understood in the representation WN .

The above coefficients are the unique solutions to the problem of finding coefficients that

satisfy the conditions that c
(k0)
n,m = d

(k0)
n,m = δn,m for small 0 ≤ n ≤ k0, and are polynomial of the

right degree and parity in n.

3.1 Chiral ideals

We denote representations where the relations (3.2) are satisfied with a definite choice of sign

as chiral representations, and write them as S±. In the following discussion we shall not write

out the so(16) indices IJ and A on X IJm and YAm as they are spectators in the whole discussion.

Corresponding to the two choices of sign in (3.2) we define the following elements

I±n := Xn −
k0∑
m=0

(±1)n+mcn,mXm ,

J ±n := Yn −
k0∑
m=1

(±1)n+mdn,mYm . (3.4)

The I±n and the J ±n are only non-zero for n > k0. These are represented trivially in the truncated

representations for any n, and therefore we have the two ideals

i± =
⊕
n>k0

R I±n ⊕
⊕
n>k0

RJ ±n ⊂ k . (3.5)

The non-direct sum i+ + i− ⊂ k is consequently spanned by the even and odd combinations

X2n −
b k0

2
c∑

m=0

c
(k0)
2n,2mX2m and Y2n −

b k0
2
c∑

m=1

d
(k0)
2n,2mY2m ,

X2n+1 −
b k0−1

2
c∑

m=0

c
(k0)
2n+1,2m+1X2m+1 and Y2n+1 −

b k0−1
2
c∑

m=0

d
(k0)
2n+1,2m+1Y2m+1 , (3.6)

and the combinations

b k0
2
c∑

m=0

c
(k0)
2n+1,2mX2m and

b k0
2
c∑

m=1

d
(k0)
2n+1,2mY2m ,

b k0−1
2
c∑

m=0

c
(k0)
2n,2m+1X2m+1 and

b k0−1
2
c∑

m=0

d
(k0)
2n,2m+1Y2m+1 . (3.7)

9



These combinations are, respectively, obtained by adding and subtracting the above ideal com-

ponents for even and for odd n.

We can now show that these combinations together span all of k = K(e9).

Lemma. We have

i+ + i− = k . (3.8)

Proof: We first note that the relations (3.7) only involve the generators Xm and Ym for m ≤ k0.

Consequently we have an infinite set of relations for finitely many objects, and these relations

are not of finite corank due to the structure of the coefficients (3.3). From this we conclude

that all Xm for 0 ≤ m ≤ k0 and all Ym for 1 ≤ m ≤ k0 can be obtained by suitable linear

combinations, and are therefore contained in i+ + i−. Taking linear combinations with (3.6) we

then see that all Xm and Ym for any index are contained in i+ + i− which therefore equals k.

3.2 Commuting chiral quotients

We now consider the representation of k that is given by the direct sum S+ ⊕ S− of two chiral

representations S± with ideals i± and associated quotient algebras

q± = k/i± . (3.9)

Note that the ideals do not fix the representations and the following statements should be

correct for any choice of representations with the same ideal. The representations S+ and S−
are related to one another by exchanging Xm ↔ (±1)mXm and Ym ↔ (±1)mYm, and in this

sense equivalent. From the explicit form of the ideals we see that representatives of the quotient

algebras can be given solely in terms of the generators X0,X1, . . . ,Xk0 and Y1,Y2, . . . ,Yk0 .

The ideal of the representation S+⊕S− is given by the intersection of ideals i+ ∩ i− and the

quotient algebra therefore by

q := k/i , i := i+ ∩ i− . (3.10)

We first describe the intersection ideal i in more detail. This intersection consists of linear

combinations of elements in i± given in (3.5) that can be formed such that the choice of sign

disappears. We discuss this for the case when k0 is even for concreteness; other cases can be

analysed similarly.

The spanning elements (3.4) have different signs depending on the chirality and the I±n (resp.

J ±n ) therefore do not lie in the intersection ideal i. We need to form linear combinations that

are common to i+ and i− where these alternating signs do not appear and we describe this in

detail for the Xm. This can be done by choosing k0 + 1 appropriate elements I±n that we take

to be I±k0+1, I
±
k0+2, . . . , I

±
2k0+1. The (±1)mXm with m ≤ k0 can be expressed in terms of these

elements so that we have found expressions that do not involve any alternating sign and these

elements belong to the intersection ideal. Because they involve combinations of evenly indexed

Xm with 0 ≤ m ≤ 2k0 + 1, the range of indices is extended over twice the previous range. We

10



therefore conclude that the intersection ideal i = i+ ∩ i−is given by

i =
⊕
n>k0

R

(
X2n −

k0∑
m=0

c
(k0)
2n,2mX2m

)
⊕

⊕
n>k0+1

R

(
Y2n −

k0∑
m=1

d
(k0)
2n,2mY2m

)

⊕
⊕
n>k0

R

(
X2n+1 −

k0∑
m=0

c
(k0)
2n+1,2m+1X2m+1

)
⊕

⊕
n>k0−1

R

(
Y2n+1 −

k0−1∑
m=0

d
(k0)
2n+1,2m+1Y2m+1

)
(3.11)

with the same coefficients as in (3.3). However, the indices are doubled and, compared to (3.6), so

is the summation range. Therefore the quotient algebra q defined in (3.10) has representatives

given in terms of X0,X1, . . .X2k0+1 and Y1,Y2, . . . ,Y2k0 , exactly twice as many as the chiral

quotients q±.

As an example we consider k0 = 2. The I±n elements occurring in i± are

I±2n = X2n −
1

4
(4n2 − 1)(4n2 − 4)X0 ±

4

3
n2(4n2 − 4)X1 −

1

3
n2(4n2 − 1)X2 ,

I±2n+1 = X2n+1 ∓ (n2 + n)(4n2 + 4n− 3)X0 +
1

3
(2n+ 1)2(4n2 + 4n− 3)X1

∓ 1

3
(n2 + n)(2n+ 1)2X2 . (3.12)

For I±n with n ∈ {0, 1, 2} they vanish identically. For other values of n we can use this to solve

for ±X1, ∓X0 and ∓X2. For example, as I±4 is given by

I±4 = X4 − 45X0 ± 64X1 − 20X2 , (3.13)

we have

±X1 =
1

64

(
I±4 + 45X0 + 20X2 −X4

)
. (3.14)

Substituting this back into (3.12) leads to expressions that are identical in i+ and i−. For the

even case we get

I±2n −
1

48
n2(4n2 − 4)I±4 = X2n −

1

4
(n2 − 1)(n2 − 4)X0 +

1

3
n2(n2 − 4)X2 −

1

12
n2(n2 − 1)X4

(3.15)

as elements of i±. As the right-hand side does not depend on the choice of chirality, these

elements belong to the intersection ideal. Among the even Xn we therefore remain with X0,

X2 and X4 in the quotient algebra (3.10). Performing the same analysis for the elements with

odd indices, we arrive at the conclusion that q has representatives given by X0,X1, . . . ,X5 and

Y1,Y2, . . . ,Y4. (The case when the highest active generator is of S-type can be treated analo-

gously.)

We next discuss the relation between the quotients q± and q of k. Since we have trivially

i ⊂ i± as an ideal, we can view q± also canonically as quotients of q via

q± ∼= q/
(
i±/i

)
. (3.16)

11



From the truncation construction it also follows that q± are actually subalgebras of q. Using

the relation (3.8) above we also obtain

q± =
(
i+ + i−

)
/i± = i∓/i . (3.17)

Proposition. For any finite-dimensional representation of k defined by the cutoff conditions

(2.15) the quotient algebra q decomposes into a direct sum of two mutually commuting subal-

gebras

q = q+ ⊕ q− ,
[
q+, q−

]
= 0 as subalgebras of q. (3.18)

Both algebras are parabolic, with so(16)± as their Levi subalgebras. In the supergravity reali-

sation q± correspond to chiral and anti-chiral subalgebras [23] (as we will make explicit below).

Proof: We only need to show the subalgebras q± ⊂ q commute since this will imply their direct

sum structures. In order to see that they commute we take recourse to (3.17) which tells us that

we can find representatives of q± of the form x∓ + i with x∓ ∈ i∓. Then the commutator is

[x− + i, x+ + i] ∈ i+ ∩ i− , (3.19)

which is equal to zero in q.

These observations imply that for all finite-dimensional K(e9) representations the action

of the algebra splits into a direct sum of mutually commuting chiral and anti-chiral parabolic

algebras. Hence we conclude that the quotient algebra (alias the generalised holonomy algebra)

has the form

q =
(
so(16)+ ⊕ n+

)
⊕
(
so(16)− ⊕ n−

)
(3.20)

where the nilpotent algebras n± are N -step nilpotent. We repeat that this structure holds

only for the finite-dimensional representations considered here, but is not true generally because

neither so(16)+ ⊕ so(16)− nor its parabolic extensions are subalgebras of K(e9). They only

arise as quotients via the above construction and depend on the choice of ideal through a

representation. The group-theoretic version of (3.20) is encapsulated in (1.4) of the introduction.

4 Examples and relation to root basis form

In this section we exemplify the abstract considerations above in terms of concretely known rep-

resentations, referred to as spin-1
2 , spin-3

2 spin-5
2 and spin-7

2 . These are actually representations

of K(E10) [25, 26, 21], but we will here focus on the affine subalgebra K(E9) by restricting the

E10 roots to the K(E9) root system (see [32] for a more detailed analysis of this embedding).

With the E8 roots α̊, β̊, ... and the affine null root δ, the roots of affine E9 are mδ (null roots)

and mδ + α̊ (real roots) for m ∈ Z. The E9 generators are thus

E(mδ + α̊) and H i(mδ) for m ∈ Z (4.1)

12



plus the central charge, which will however drop out. The corresponding K(E9) generators are

J(mδ + α̊) := E(mδ + α̊)− E(−mδ − α̊) for m ≥ 0

J i(mδ) := H i(mδ)−H i(−mδ) for m ≥ 1 (4.2)

so that

J(γ) = −J(−γ) (4.3)

for all E9 roots γ.

4.1 Spin-1
2

Recall that the generators of K̃(E8) ≡ Spin(16) can be expressed by the gamma matrices Γ(α̊),

where α̊ runs over the positive roots of E8 (see [25, 26, 21] for details). These descend from the

real 32-by-32 gamma matrices Γ(α) for K(E10) (where α is a root of E10), but decompose into

two blocks of 16-by-16 matrices for K(E8). Furthermore we have the mod 2 property (also valid

for K(E10))

Γ(α̊) = Γ(−α̊) = Γ(α̊+ 2nβ̊) ∀n ∈ Z (4.4)

for any elements α̊ and β̊ of the E8 root lattice. To ensure (4.3) one would have to include an

extra co-boundary factor

Γ̃(α̊) ≡ σα̊Γ(α̊) , σα̊σ−α̊ = −1 (4.5)

but this subtlety can be ignored as long as we are dealing only with positive roots (as will be

the case in the remainder).

The general form of real K(E10) generators in this language for the representations found

in [25,26,21] is then

J(α) = −2 X(α)⊗ Γ(α) , (4.6)

where the ‘polarisation tensor’ X(α) is constructed only out of data associated with the real

root α. For spin-1
2 , the tensor X(α) = −1

4 is a pure number.

For K(E9) we need the null root δ as an extra root in addition to the E8 roots. From the

gamma matrix relations derived before we have (with the wall basis of [25,26])

Γ(δ) ≡ Γ2 · · ·Γ10 = Γ0Γ1 (4.7)

which is just the two-dimensional chirality matrix (note that Γ(2mδ) ≡ 1). Hence, in this

representation, K(E9) decomposes into mutually commuting chiral and anti-chiral Spin(16)

algebras, with generators (recall that α · δ = 0 for all E9 roots)

1

2

(
1± Γ(δ)

)
Γ(α̊) ≡ 1

2

(
Γ(α̊)± Γ(α̊+ δ)

)
(α̊ > 0) (4.8)

In terms of the previous abstract construction the chiral doubling is already apparent from the

sign ambiguity in (2.13) where the positive (negative) chirality gets tied to the two fixed points

of the involution in the spectral parameter plane [23].
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4.2 Spin-3
2

From [25] we recall the correspondence with the generators written in spin-3
2 form

J(mδ + α̊) ∼= Xab(mδ + α̊)Γ(mδ + α̊)

J i(mδ) ∼= mξi[aδb]Γ(mδ) (4.9)

where the symmetric 10× 10 matrices Xab are defined by

Xab(α) := −1

2
αaαb +

1

4
Gab = Xab(−α) (4.10)

with the Lorentzian metric Gab ≡ 1 − δab, and for any real E9 root α (as we said this formula

is actually valid also for E10).

For the further correspondence with the generators X IJm and YAm we now take α̊ > 0 to be a

positive E8 root, and identify2

Xm(α̊) =
1

2

[
X(mδ + α̊) + X(mδ − α̊)

]
Γ(mδ + α̊) (α̊ > 0 , m ≥ 0)

Ym(α̊) =
1

2

[
X(mδ + α̊)−X(mδ − α̊)

]
Γ(mδ + α̊) (α̊ > 0 , m ≥ 1)

and m(ξi ∧ δ) Γ(mδ) (for m ≥ 1) (4.11)

To determine the ideal relations directly from these formulas we note the elementary identities

which follow directly from (4.10)

1

2

[
X(nδ + α̊) + X(nδ − α̊)

]
= n2 · 1

2

[
X(δ + α̊) + X(δ − α̊)

]
+ (1− n2)X(α̊) ,

1

2

[
X(nδ + α̊)−X(nδ − α̊)

]
= n · 1

2

[
X(δ + α̊)−X(δ − α̊)

]
. (4.12)

Here, we already recognise some of the previously derived relations, but we still need to keep

track of the extra Γ-matrix factors in (4.11) which differ according to whether δ is multiplied by

an even or an odd integer. Not mixing even and odd multiples of δ, we thus derive the relations

X2n = n2X2 + (1− n2)X0 ,

X2n+1 =
1

8
[(2n+ 1)2 − 1]X3 −

1

8
[(2n+ 1)2 − 9]X1 ,

Y2n = nY2 , Y2n+1 = (2n+ 1)Y1 . (4.13)

For n ≥ 2 these relations correspond precisely to the combinations in (3.6) which span the

intersection ideal i+ ∩ i−. As we saw above, in the parabolic basis this corresponds to the

truncation

A4 = A6 = · · · = 0 , S3 = S5 = · · · = 0 . (4.14)

2There is no need to spell out the explicit relation between the generators X IJ
m and YA

m and the root basis

here, as we hope the notation is self-explanatory.
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To get the chiral combinations we must now combine the X factors with the ‘wrong’ Γ-

matrices by means of these relations, and re-express them in terms of X generators; idem for Y.

For instance,

1

2

[
X(δ + α̊) + X(δ − α̊)

]
Γ(α̊) =

1

4

(
1

2

[
X(2δ + α̊) + X(2δ − α̊)

]
+ 3X(α̊)

)
Γ(α̊) (4.15)

from which obtain the chiral combinations

1

2

[
X(δ + α̊) + X(δ − α̊)

]
Γ(δ + α̊)

(
1± Γ(δ)

)
= X1 ±

1

4

(
X2 + 3X0

)
(4.16)

which are, respectively, elements of i+ and i−. Similarly,

X(α̊)Γ(α̊)
(
1± Γ(δ)

)
= X0 ∓

1

8

(
X3 − 9X1

)
. (4.17)

For the Y generators the relevant relations are even simpler: we have

1

2

[
X(δ + α̊)−X(δ − α̊)

]
Γ(δ + α̊)

(
1± Γ(δ)

)
= Y1 ±

1

2
Y2 . (4.18)

Hence, all chiral and ant-chiral generators can be expressed as linear combinations of X0, X1,

X2, X3 and Y1, Y2, giving a total of 2× (120 + 128 + 120) generators, which is the correct count

corresponding to k/i+ ∩ i−, and in complete agreement with the supergravity analysis [23].

To check that chiral and anti-chiral transformations commute, we compute (for instance)[
Y1 +

1

2
Y2 , Y1 −

1

2
Y2

]
=

1

4

(
−X4 + 4X2 − 3X0

)
,[

X1 +
1

4

(
X2 + 3X0

)
, X1 −

1

4

(
X2 + 3X0

)]
=

1

16
(−X4 + 4X2 − 3X0) . (4.19)

Both commutators vanish by the ideal relation (4.13) (actually identically in this explicit rep-

resentation!), so chiral and anti-chiral transformations indeed commute by virtue of the ideal

relations. In the explicit representation with chiral projectors this commutation property is of

course obvious, and merely confirms the abstract argument given before.

As shown in the preceding section one can therefore abstract from such concrete realisations,

and define the commuting chiral algebras entirely in terms of the Xn and Yn and ideal relations,

such that closure of the given subalgebra depends on the respective ideal relations.

4.3 Spin-5
2

For spin-5
2 we have a similar representation as in (4.9), except that the matrices Xab|cd now act

in a 55-dimensional space [25], where

Xab,cd(α) :=
1

2
αaαbαcαd − α(aGb)(cαd) +

1

4
Ga(cGd)b . (4.20)

The formula (4.20) now yields the relations

1

2

[
X(nδ + α̊) + X(nδ − α̊)

]
=

1

12
n2(n2 − 1) · 1

2

[
X(2δ + α̊) + X(2δ + α̊)

]
(4.21)

−1

3
n2(n2 − 4) · 1

2

[
X(δ + α̊) + X(δ − α̊)

]
+

1

4
(n4 − 5n2 + 4)X(α̊)
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and

1

2

[
X(nδ + α̊)−X(nδ − α̊)

]
=

1

24
(n3 − n) · 1

2

[
X(3δ + α̊)−X(3δ − α̊)

]
+

1

8
(−n3 + 9n) · 1

2

[
X(δ + α̊)−X(δ − α̊)

]
. (4.22)

These are exactly the relations we have found above in (3.2) with k0 = 2, i.e., for for

A6 = A8 = · · · = 0 , S5 = S7 = · · · = 0 . (4.23)

4.4 Spin-7
2

For spin-7
2 the polarisation matrices Xa1a2a3|b1b2b3(α) = X(a1a2a3)|(b1b2b3)(α) are given by [25]

X(α)a1a2a3b1b2b3 = −1

3
αa1αa2αa3αb1αb2αb3 +

3

2
α(a1αa2δ

a3)
(b1
αb2αb3) −

3

2
α(a1δa2(b1

δ
a3)
b2
α
b3)

+
1

4
δ

(a1
(b1
δ
a2
b2
δ
a3)
b3) +

1

12
(2−

√
3)α(a1Ga2a3)G(b1b2αb3) (4.24)

+
1

12
(−1 +

√
3)
(
α(a1αa2αa3)G(b1b2αb3) + α(a1Ga2a3)α(b1αb2αb3)

)
,

where as before we raise (and lower) indices with the DeWitt metric Gab. Restricting from E10

roots α to affine roots mδ ± α̊ one can deduce the following relations from (4.24)

1

2

[
Xa1a2a3|b1b2b3(nδ + α̊) + Xa1a2a3|b1b2b3(nδ − α̊)

]
= − 1

36
(n2 − 9)(n2 − 4)(n2 − 1)Xa1a2a3|b1b2b3(α̊)

+
1

48
(n2 − 9)(n2 − 4)n2

[
Xa1a2a3|b1b2b3(δ + α̊) + Xa1a2a3|b1b2b3(δ − α̊)

]
− 1

120
(n2 − 9)(n2 − 1)n2

[
Xa1a2a3|b1b2b3(2δ + α̊) + Xa1a2a3|b1b2b3(2δ − α̊)

]
+

1

720
(n2 − 4)(n2 − 1)n2

[
Xa1a2a3|b1b2b3(3δ + α̊) + Xa1a2a3|b1b2b3(3δ − α̊)

]
(4.25)

and

1

2

[
Xa1a2a3|b1b2b3(nδ + α̊)−Xa1a2a3|b1b2b3(nδ − α̊)

]
=

1

48
(n2 − 9)(n2 − 4)n

[
Xa1a2a3|b1b2b3(δ + α̊)−Xa1a2a3|b1b2b3(δ − α̊)

]
− 1

60
(n2 − 9)(n2 − 1)n

[
Xa1a2a3|b1b2b3(2δ + α̊)−Xa1a2a3|b1b2b3(2δ − α̊)

]
+

1

240
(n2 − 4)(n2 − 1)n

[
Xa1a2a3|b1b2b3(3δ + α̊)−Xa1a2a3|b1b2b3(3δ − α̊)

]
. (4.26)

These correspond precisely to the relations obtained by truncation with k0 = 3 in (3.2). Re-

markably, the square root appearing in (4.24) that is needed for satisfying the Berman relations

does not affect the ideal relations. The appearance of ‘strange’ prefactors in (4.24) (which are

absolutely necessary for the K(E10) Berman relations to work, see following section) is another

clear indication of subtleties that go beyond the affine construction.
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Figure 1: Dynkin diagram of E10 with nodes labelled.

5 Extension to K(e10)

In order to discuss the extension from K(e9) to K(e10) we make use of the labelling of the

Dynkin diagram shown in figure 1. The algebra K(e10) is generated by ten Berman generators

x1, . . . , x10 with Berman relations [31]

[xi, xj ] = 0 if i and j disconnected in the diagram,

[xi [xi, xj ]] = −xj if i and j connected in the diagram. (5.1)

The K(e9) subalgebra is obtained by restricting to the abstract generators x2, . . . , x10.

For any finite-dimensional representation of K(e9), the Berman generators x2, . . . , x10 are

represented by specific matrices X2, . . . , X10 that can be written as

Xi :=
1

4

(
γi,i+1
αβ X

αβ
0 + γi,i+1

α̇β̇
X α̇β̇0

)
(5.2)

for i = 3, ..., 9, and

X10 := −1

2
γ8 9 10
αβ̇

Xαβ̇0 and X2 := −1

2
γ2
αβ̇

(
Xαβ̇1 + Yαβ̇1

)
, (5.3)

where all Xn and Yn are realised as finite-dimensional matrices in the concrete unfaithful repre-

sentation under consideration. In the above equations we use the notation of [32] as well as the

decomposition of the SO(16) indices [IJ ] and A under the SO(8)× SO(8) subgroup of SO(16)

explained there.

We then seek a realisation of the K(e10) Berman generators for the ‘doubled’ representation

S+ ⊕ S− by means of the ansatz

x1 =

(
0 B

C 0

)
, x2 =

(
X2 0

0 X2

)
, xi =

(
Xi 0

0 Xi

)
, x10 =

(
X10 0

0 −X10

)
(5.4)

with i = 3, ..., 9 as before. The relation [x1, xj ] = 0 for j = 2, ..., 10 requires

[B,Xj ] = [C,Xj ] = 0 (5.5)

or j = 3, . . . , 9, and {B,X10} = {C,X10} = 0. Therefore, B and C must be SO(16) singlets.

Since the Berman relations for j = 2, ..., 10 are satisfied by construction, the critical Berman

relations are the two remaining ones which read

[x1, [x1, x2]] = −x2 , [x2, [x2, x1]] = −x1 (5.6)
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These follow if

{BC , X2} − 2BX2C
!

= −X2 , {CB , X2} − 2CX2B
!

= −X2 (5.7)

and

[X2, [X2, B]]
!

= −B , [X2, [X2, C]]
!

= −C . (5.8)

If x1 simply rotated the two chiralities, we would obtain that B = −C = 1
2 . While this

solves (5.7), it clearly does not solve (5.8) and therefore this is not a viable solution. From the

physics perspective this is clear, because the Berman generator x1 is associated to a spatial so(2)

rotation, whereas the chirality refers to the behaviour under a non-compact space-time so(1, 1)

(the group SO(1, 1) scales the chiral and antichiral parts with inverse factors).

This is borne out in the example of spin-1
2 where one check that the equations (5.7) and (5.8)

are indeed satisfied with B = −C = −1
2γ

2 and X2 = 1
2γ

23. For the higher spin examples

s = 3
2 ,

5
2 ,

7
2 we can similarly read off the solution from the explicit formulas of the foregoing

section, with the result

B = −C = −2 X(α1)⊗ γ2 (5.9)

where α1 is the over-extended (left-most) simple root in the E10 Dynkin diagram. This formula

is valid for all representations of K(e10) constructed as in (4.6). The relations (5.7) and (5.8)

are then implied by the properties of the tensor X(α1) together with X2 = −2 X(α2)⊗ γ23.

For any given unfaithful representation of K(E9) the problem of uplifting it to an unfaithful

representation of K(E10) is thus reduced to finding finite-dimensional matrices B and C solving

the relations (5.7) and (5.8). Consider for example the (chiral) K(e9) representation that consists

of V0
∼= 16 and V1

∼= 128c. Doubling this chiral representation leads to a 288-dimensional space

that can not be turned into a K(e10) representation, i.e., no x1 satisfying the relations (5.6)

exists, because the spin-3
2 representation of K(e10) requires a second V2

∼= 16 in the chiral

K(e9) representation [32]. We therefore see from the explicit examples that it is by no means

trivial that matrices B and C exist, and it is furthermore quite possible that a more general

ansatz than (5.9) may be needed.
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