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Nöthnitzer Street 38, D-01187 Dresden, Germany

3Department of Physics and Astronomy, Trinity University, San Antonio, Texas 78212, USA
(Dated: June 15, 2021)

This study concerns the two-body scattering of particles in a one-dimensional periodic potential.
A convenient ansatz allows for the separation of center-of-mass and relative motion, leading to a
discrete Schrödinger equation in the relative motion that resembles a tight-binding model. A lattice
Green’s function is used to develop the Lippmann-Schwinger equation, and ultimately derive a multi-
band scattering K-matrix which is described in detail in the two-band approximation. Two distinct
scattering lengths are defined according the limits of zero relative quasi-momentum at the top
and bottom edges of the two-body collision band. Scattering resonances occur in the collision band
when the energy is coincident with a bound state attached to another higher or lower band. Notably,
repulsive on-site interactions in an energetically closed lower band lead to collision resonances in an
excited band.

I. INTRODUCTION

Ultracold gases embedded in optical lattices present
numerous theoretical and experimental opportunities for
the investigation of few- and many-body physics [1, 2].
Such systems provide a versatile platform for a number
of reasons. Control of the laser intensity, wavelength
and beam geometry enable detailed tunability of the
depth, spacing, and geometry of the lattice. Moreover,
the variety of atomic species that have been successfully
trapped includes bose, fermi and even mixed-symmetry
systems [2–4], all of which can be studied by tuning their
mutual interactions via Feshbach resonances [5]. For ex-
ample, bosonic ensembles in a lattice permitted the re-
alization of a many-body phase transition from super-
fluid to Mott insulator [6, 7], and site-resolved imaging
of Bose [8, 9] and Fermi [10, 11] systems has enabled yet
more flexibility.

In addition, two-dimensional (2D) Fermi gases in lat-
tices are proposed as candidates to study topological
many-body phases such as p-wave superfluidity [12]. Re-
cently, ultracold atoms in driven optical lattices proved
to be a panacea for the experimental realization of time
crystals [13–15]; an exotic many-body phase that fea-
tures a broken translation symmetry both in space and
time, where Wilczek’s [16] initial proposal laid the ground
for a more systematic theoretical understanding [17–20].
Furthermore, non-equilibrium dynamics in 1D lattices in-
duced via interaction quenches on few-bosonic ensembles
result in the formation of global density-waves [21, 22],
directional transport by spatially modulated interactions
[23], and many-body expansion in weakly interacting
Bose-Fermi mixtures [24].

Apart from these advances in the realm of many-body
physics, studies on the few-body aspects of ultracold
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atoms in lattice geometries explore their multi-faceted
collisional properties, such as the formation of bound
pairs [25–30], lattice-induced resonances [31–33], Fesh-
bach resonances in lattices [34], and the physics of reac-
tive and Umklapp processes [35]. More refined theoreti-
cal studies on the two-body collisional physics permitted
the inclusion of finite range effects [36] and explored the
impact of the energetically higher-bands [35, 37]. Two-
body collisions on a lattice occur within a set of energy
bands which loosely behave as collision channels, with
two-body interactions yielding intra- and inter-band ef-
fects on collisional processes [37] similar to the behavior
seen in confinement induced resonances [38]. Beyond the
two-body physics, theoretical studies have shown the ex-
istence of three-body bound states in three-dimensional
and 1D lattices [39, 40]. Additionally, in such systems
an on-site attractive three-body interaction can emerge
that induces an instability yielding thus the collapse of
the many-body ground state [41]. Evidently, the detailed
understanding of scattering processes in lattice geome-
tries, and the necessary conditions under which resonant
phenomena can occur is of paramount importance to the
design and manipulation of exotic many-body phases.

In this work a systematic pathway to address collisional
physics of two particles, with either bosonic or fermionic
character, in the presence of a periodic potential is de-
veloped based on the K−matrix formalism. Within this
formalism, the energy-normalized Bloch states are em-
ployed as scattering waves incorporating contributions
from both energetically accessible (open) and inaccessi-
ble (closed) bands. In agreement with previous works,
we observe that for attractive interactions comparable in
strength to the band gap, a resonance arises for scatter-
ing between particles in the lowest band due to virtual
transitions into the closed bands [27, 32, 33, 36, 37, 42]
Furthermore, we observe that for repulsive on-site inter-
actions with energy similar to the band gap additional
resonant features occur for scattering of two particles in
an excited band.
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The paper is organized as follows: In Sec. II, we de-
scribe the two-body, multi-band Hamiltonian in a basis
of Wannier states, and separate it into discrete center-
of-mass and relative motion coordinates. In Sec. III
we develop the Green’s operator for the relative non-
interacting Hamiltonian via a lattice Green’s function for
both energetically open and closed bands. In Sec. IV we
derive the lattice K-matrix for two-body, on-site interac-
tions, examine the special case where each particle can
occupy only 2 energy bands. In Sec. V we derive the lat-
tice scattering length which can be used to describe the
interaction between two particles at energies near the top
or bottom of the two-body bands. Finally in Sec. VI we
summarize our results and discuss future work.

II. 1D LATTICE

In this section, we describe a system consisting of
two particles confined to a periodic one-dimensional
(1D) potential Vlat (x) with periodicity λ. In the ab-
sence of a two-body interaction the behavior of each

particle is described by the simple Hamiltonian Ĥ0 =

− ~2

2m
d2

dx2 +Vlat (x) which is diagonalized by a Bloch func-
tion φµ (q;x) where µ is a band index and q is the quasi-
momentum. Bloch waves are delocalized functions that
extend throughout the entire lattice. However, they can
be combined into an orthonormal basis localized to each
lattice site for each band. These are the Wannier func-
tions which take the form

wµn (x) =

(
λ

2π

)1/2 ∫ π/λ

−π/λ
eiqnλφµ (q;x) dq. (1)

Here, beyond the band index µ, there is an additional
index in the Wannier functions; the site index, n ∈ Z,
specifying the lattice site location x = nλ at which the
function is localized.

The behavior of a single particle in the lattice is char-
acterized by the Hamiltonian

ĥ =
∑
µ,n

εµ |µn〉 〈µn| (2)

−
∑

µ,n,j>0

Sµj (|µn〉 〈µ (n+ j)|+ |µ (n+ j)〉 〈µn|) ,

where |µn〉 is the Wannier state associated with a par-
ticle in the µth band localized to the nth lattice site.

Here, εµ =
〈
µn
∣∣∣Ĥ0

∣∣∣µn〉 is the onsite energy and Sµj =

−
〈
µn
∣∣∣Ĥ0

∣∣∣µ (n+ j)
〉

is the energy associated with the

particle hopping j sites from site n to site n±j. Note that
we have assumed that the band energies are symmetric in
the quasi momentum q. Diagonalizing this Hamiltonian
gives, not at all surprisingly, the band dispersion relation
written as its cosine Fourier transform, i.e.

Eµ (q) = εµ −
∞∑
j=1

2Sµj cos (jq) . (3)

For localized Wannier functions we can expect that tun-
neling to more distant sites will be suppressed. This re-
sults in a strong suppression in the hopping energy Sµj
for j > 1. Thus, for the purposes of this work we will
assume only nearest neighbor hopping terms survive, i.e.
Sµj = Sµδ1,j .

With the single particle discrete Hamiltonian in hand,
we may now proceed to write the two-body Hamiltonian
in terms of the localized discrete Wannier basis. In first
quantized form, the full Hamiltonian is given by

Ĥ = ĥ1 + ĥ2 + V̂ (4)

where ĥj is the single particle Hamiltonian Eq. (2) for

particle j, and V̂ is the interaction between the two par-
ticles. In the Wannier basis, the interaction is expressed
as

V̂ =
∑

µ,ν,µ′,ν′

m,n

Uµ,νµ′,ν′ (|n−m|) |µm; νn〉 〈µ′m; ν′n| , (5)

Here, |µm; νn〉 represents the two-body Wannier state of
particle 1 in band µ localized to site m and particle 2
in band ν localized to site n. This interaction matrix
element is given by

Uµ,νµ′,ν′ (|n−m|) = 〈µm; νn |Vint (x1 − x2)|µ′m; ν′n〉 ,

where Vint (x) is the 1D interaction potential. In this
work we will be concerned with short range interactions
with Wannier states localized to a single lattice site lead-
ing to on-site interactions, Uµ,νµ′,ν′ (|n−m|) = Uµ,νµ′,ν′δm,n.
We leave the interaction in a more general form here for
completeness, and it will be specified in Sec. IV A.

The eigenfunctions of Ĥ can be expanded in the Wan-
nier basis as |Ψ〉 =

∑
µνmn Ψm,n

µ,ν |µm; νn〉, leading to the
discrete Schrödinger equation:

(E − εµ − εν) Ψm,n
µ,ν =− Sµ

[
Ψ(m+1),n
µ,ν + Ψ(m−1),n

µ,ν

]
(6)

− Sν
[
Ψm,(n+1)
µ,ν + Ψm,(n−1)

µ,ν

]
+
∑
µ′,ν′

Uµ,νµ′,ν′ (|n−m|) Ψm,n
µ′,ν′

A. Center of mass separation

The most important aspect of the discrete Schrödinger
equation in Eq. (6) is that it can be separated into the
discrete center-of-mass Z = (m+ n) /2 and relative sep-
aration z = m−n coordinates with the separation ansatz

Ψ(Z+z/2),(Z−z/2)
µ,ν ∝ ψµν (z) eiKλZ+iφµνK z, (7)

where K is the center of mass quasi-momentum. Here
the angle

φµνK = arg
(
Sµe

iKλ/2 + Sνe
−iKλ/2

)
, (8)
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has been included to subtract a constant offset in the
relative motion quasi-momentum. Inserting this ansatz
into Eq. (6) yields the discrete Schrödinger equation in
the separation coordinate,

Eψµν (z) = εµνψµν − [JµνK ψµν (z + 1) + JµνK ψµν (z − 1)]

+
∑
µ′ν′

e
i
(
φµ

′ν′
K −φµνK

)
z
Uµ,νµ′,ν′ (|z|)ψµ′ν′ (z) , (9)

where the relative-coordinate hopping and two-body on-
site energy are defined as

JµνK =
√
S2
µ + S2

ν + 2SµSµ cos (Kλ),

εµν = εµ + εν .

Note that the separated Schrödinger equation is now in
the form of a simple tight-binding model with nearest-
neighbor hopping with“on-site energies” that are modi-
fied by the interaction matrix elements Uµ,νµ′,ν′ (|z|). Also
note that in the relative coordinate z, the hopping ener-
gies JµνK are now dependent on the center of mass quasi
momentum K.

In the absence of interactions, Eq. 9 is solved simply
by plane waves in the relative coordinates, i.e.

ψ (µ, ν, z) ∝ eikλz

where k is the relative coordinate quasi-momentum. The
resulting dispersion relations define two-body energy
bands that depend on the center-of-mass motion with
dispersion

εµν (K, k) = εµν − 2JµνK cosλk. (10)

III. LATTICE GREEN’S FUNCTION

To examine scattering of two particles in the lattice de-
scribed above, we must first construct the Green’s oper-
ator associated with the relative coordinate Hamiltonian
at fixed center of mass quasi-momentum K given by

Ĥrel =ĥrel + Û (11)

ĥrel =
∑
µ,ν,z

εµν |K;µνz〉 〈K;µνz|

−
∑
µ,ν,z

JµνK (|K;µν (z + 1)〉 〈K;µνz|

+ |K;µν (z − 1)〉 〈K;µνz|)

Û =
∑
µ,ν
µ′,ν′

z

e
i
(
φµ

′ν′
K −φµνK

)
z
Uµνµ′,ν′ (|z|) |K;µνz〉 〈K;µ′ν′z|

where ĥrel is the non-interacting relative Hamiltonian,
and Û is the interaction. Here, we have defined the basis
state |K;µνz〉 as the state where the two particles have
a center of mass motion defined by quasi-momentum K

and a particle separation of z with particle 1 in band µ
and particle 2 in band ν, i.e.

|K;µνz〉 = N
N∑
Z=0

eiKλZ |µ (Z + z/2) ; ν (Z − z/2)〉

where N is a normalization constant.
We will define the lattice Green’s operator Ĝ such that〈
K;µ′ν′z′

∣∣∣(ĥrel − E) Ĝ∣∣∣K;µνz
〉

= δµµ′δνν′δzz′ .

We will proceed to find Ĝ by expanding it in the Wannier
states, i.e.

Ĝ =
∑
µν
z′,z

gµν (K; z, z′) |K;µνz〉 〈K;µνz′| (12)

where gµν (K; z, z′) is the lattice Green’s function (LGF)
which is a solution to

δz,z′ = (εµν − E) gµν (K; z, z′) (13)

− JµνK [gµν (K; z + 1, z′) + gµν (K; z − 1, z′)] .

For the purposes of this work, we are concerned with even
parity states associated with two bosons or two spin-1/2
fermions in a singlet state. Therefore, below we will only
consider even parity solutions to Eq.13

The even parity LGF can be broken into two cases:
(1) When the scattering energyE is within the available
2-body energies εµν (K, k) corresponding to an open two-
body scattering band ; or (2) when E it is outside of the
available energies defined by εµν (K, k) corresponding to
a closed two-body scattering band.

A. Open band Green’s function

For energies within the {µ, ν} two-body band (i.e.
|E − εµν | < 2 |JµνK |), we can define the relative quasi-
momentum k through the dispersion relation in Eq. (10).
For z 6= z′ Eq. 13 are solved by the ansatz

gµν (K; z, z′) = A sin (kλz>) cos (kλz<) ,

where z>(<) is the larger (smaller) of z and z′. Here we
have chosen to use the principle value Green’s function
which obeys standing-wave boundary conditions. This is
similar to the approach taken in other work [(cite some
others)] in which the singular portion of the Green’s func-
tion corresponding to direct classical trajectories is sep-
arated and removed. The remaining constant A can be
found by simply inserting the ansatz into Eq. 13 for
z = z′ giving

gµν (K; z, z′) = − sin (kλz>) cos (kλz<)

JµνK, sin (kλ)
. (14)
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This can be further simplified by writing it in terms of
the regular, f+µν , and irregular, f−µν , band-energy normal-
ized scattering solutions of the noninteracting Hamilto-
nian given respectively by

f+µν (z) =

√
λ

π |vµνg |
cos (kλz) , (15)

f−µν (z) =

√
λ

π |vµνg |
sin (kλz) ,

vµνg = 2λJµνK sin (λk) =
∂εµν (K, k)

∂k
.

so that
∑
z f
±∗
µν (E; z)f±µν(E′; z) = δ(E−E′). In terms of

f+µν and f−µν the open-band LGF is now given by

gµν (K; z, z′) = −2πf+µν (z<) f−µν (z>) (16)

B. Closed band Green’s function

For energies outside of the {µ, ν} two-body energy
band (when |E − εµν | > 2 |JµνK |) we have a slightly dif-
ferent situation, where the probability of the two par-
ticles has to vanish at large separation distances, i.e.
|z − z′| → ∞. This implies that in this limit the LGF
must obey exponentially decaying boundary conditions.
Namely, for this case the z 6= 0 is solved by the ansatz
[36]

gµν (K; z, z′) = Aα|z−z
′|,

where α is defined as the solution to

E − εµν = −JµνK
1 + α2

α
. (17)

where we restrict |α| ≤ 1. Again the coefficient A in the
ansatz can be found by inserting into Eq. 13 at z = z′

giving

gµν (K; z, z′) =
α|z−z

′|+1

JµνK (1− α2)
. (18)

Note that when E < εµν − 2JµνK (i.e. below the band)
Eq. 17 gives 0 < α < 1 such that the LGF decays expo-
nentially. When E > εµν + 2JµνK (i.e. above the band)
Eq. 17 gives −1 < α < 0 so that the amplitude of the
LGF still decays exponentially but with alternating sign.

IV. SCATTERING FOR ON-SITE
INTERACTIONS

Here we will use the Green’s operator found above
to extract scattering properties of two particles in a
1D lattice interacting via on-site interactions only. The

full Schrödinger equation for the relative motion can be
solved via the Lippmann-Schwinger equation (LSE) given
by

|ψ〉 = |ψ0〉 − ĜÛ |ψ〉 , (19)

where the homogeneous solution |ψ0〉 =∑
z f

+
µν (z) |K;µνz〉 is the initial state of the sys-

tem. Note here that we are using the band-energy
normalized scattering states from Eq. 15. In the z →∞
limit, inserting the LGF from Eq. 16 gives the scattering
solution

ψµν (z) =f+µν (z) + 2πf−µν (z)
〈
f+µν

∣∣∣Û ∣∣∣ψ〉 , (20)〈
f+µν

∣∣∣Û ∣∣∣ψ〉 =
∑
µ′ν′z′

f+µν (z′) e
i
(
φµ

′ν′
K −φµνK

)
z′

× Uµνµ′,ν′ (|z′|)ψµ′ν′ (z′) .

Here we assume the interaction between the two particles
is short range in comparison with lattice’s periodicity, i.e.
`int � λ where `int is the length scale of the inter-particle
interaction. Additionally, we assume that the Wannier
states are localized to single lattice sites. These two as-
sumptions, sufficiently, imply that the particles interact
via on-site interactions only, Uµνµ′ν′ (|z|) = Uijδz,0, where

the double band index {µ, ν} is collectively denoted by
a single index vector, i.e. i = {µ, ν}, j = {µ′, ν′},
and the onsite interaction matrix elements are given by
Uij = Uµνµ′ν′ .

In addition, Eq. 20 can be generalized to include transi-
tions between two open bands with overlapping energies.
From this the lattice K-matrix element KL

ji is identified
which in return determines the admixture of the irregular

solution f
(−)
j (z) in the final band j:

〈K; jz|ψ〉 = δjif
+
i (z)−KL

jif
−
j (z) , (21)

KL
ji = −2π

〈
f+j

∣∣∣Û ∣∣∣ψ〉 ,
where

∣∣∣f+j 〉 =
∑
z f

+
j (z) |K; jz〉 . Solving this equation

self-consistently for the K-matrix yields,

KL
ji = −2π

〈
f+j

∣∣∣∣(1 + ÛĜ
)−1

Û

∣∣∣∣ f+i 〉 , (22)

where Ĝ and Û indicate the LGF and interaction oper-
ators, respectively.

In the case of on-site interactions, Û =∑
ij Uij |K; i0〉 〈K; j0|, we show in Appendix A that

by partitioning Ĝ and Û into N open and M closed
band contributions the lattice K-matrix for scattering
from one open band to another is given by

KL = −2λv̄−1/2g

[
Uoo − Uocḡc (1 + Uccḡc)−1 Uco

]
v̄−1/2g .

(23)
Here Uoo is the N × N matrix of interaction matrix el-
ements Uij for initially and finally open bands. Uco =
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[Uoc]† is the M ×N matrix of interaction matrix element
between the finally closed and initially open bands. Ucc is
the M ×M matrix of interaction matrix elements for ini-
tially and finally closed bands. The M×M diagonal ma-
trix ḡc has a diagonal of closed channel LGFs evaluated at

z = z′ = 0. Finally, [v̄g]
−1/2

is an N×N diagonal matrix
with diagonal values given by the inverse of the square

root of the open-band group velocities
(
vig (ki)

)−1/2
.

The form of Eq. 23 is familiar in scattering theory, be-
ing quite reminiscent of the standard channel closing for-
mulas of multi-channel quantum defect theory [43]. The
first term describes the background scattering in the open
bands. The second term incorporates the contributions
from virtual scattering into energetically closed two-body
bands. Notice that including these closed band terms al-
lows for resonances when det (1 + Uccḡ) = 0 in the open
band K-matrix KL. In essence, this means that all these
virtual transitions in closed bands can collectively give
rise to lattice induced resonances in the open bands. Also
note that the K-matrix can related to the standard S-
matrix via the expression SL=

(
1 + iKL

) (
1− iKL

)−1
.

In the absence of other bands, Eq. 23 gives that the
K-matrix for single band scattering with onsite interac-
tions is simply proportional to the interaction strength
as expected. By analogy to this, in a single open band,
the contributions from excited bands results in a quasi-
momentum dependent effective interaction given by

Ueff = Uoo − Uocḡc (1 + Uccḡc)−1 Uco. (24)

Properly including these effects in many-body models
like the Bose-Hubbard model is likely quite important
especailly in the presenece of the above mentiond lattice
induced resonances.

A. Two-band approximation

Here we simplify our system by assuming a simple two-
band approximation. We will assume that each parti-
cle is in the Wannier states wµ (x) corresponding to ei-
ther the lowest band (µ = 0) or the first excited band
(µ = 1) meaning that the available two-body states are
restricted to {µ, ν} = {0, 0} , {0, 1} , {1, 0} , and {1, 1}.
If we assume that the interaction potential is symmetric
under inversion and the Wannier states are parity eigen-
states, then the two-body state with one particle in the
excited band is decoupled by parity, i.e. U10

00 = U10
11 = 0.

We will further assume that the interaction potential
V (x) is short range enough to be approximated by a
contact interaction. For notation simplicity we will la-
bel the interaction matrix elements Uµ

′ν′

µν as U00
00 = U00,

U01 = U10 = U11
00 = U00

11 ; and U11 = U11
11 .

If both particles start in the lowest {0, 0} band such
that the {1, 1} band is energetically inaccessible, Eq. (23)

becomes

KL
00→00 =

−1

J00
K sinλk

(25)

×

U00 −
U2
01

U11 +

√
(E − ε11)

2 − (2J11
K )

2

 .
In the case where the onsite interactions in the excited
band are attractive, i.e. U11 < 0, a resonance occurs at
precisely the energy of a dimer bound state attached to

the excited band, Edim = ε11 −
√
U2
11 + (2J11

K )
2
. Thus,

we see that a lattice induced resonance occurs due to
virtual scattering into a bound state attached to an ex-
cited band that energetically lies in the continuum of
the lower band. Intuitively, this means that the lattice
induced resonances fulfill a Fano-Feshbach-like scenario
where the continuum is structured into bands due to the
presence of the lattice.

Unlike scattering in free space, the energy bands in-
duced by the lattice allow the existence of scattering
channels at energies below the scattering energy that are
energetically inaccessible. In the case of the two-band ap-
proximation this means that two-particles scattering in
the excited band can go through virtual scattering pro-
cesses in a lower, energetically inaccessible, band. The
K-matrix for the {1, 1} → {1, 1} scattering process is
given from Eq. 23 as

KL
11→11 =

−1

J11
K sinλk

(26)

×

U11 −
U2
01

U00 −
√

(E − ε00)
2 − (2J00

K )
2

 .
In this case we can see that a scattering resonance oc-
curs for U00 > 0 when a state is bound above the lowest

band at energy Edim = ε00 +

√
U2
00 + (2J00

K )
2

is embed-

ded in the excited two-body band. Counter-intuitively,
this brings about the possibility for repulsive on-site in-
teractions in an energetically closed lower band inducing
resonant interactions in an excited band. This might be
relevant for the case of spin 1/2 fermions in which the
Fermi level is at the bottom of an excited band. In this
case, it might be possible for repulsive onsite interactions
between opposite spin particles in the lowest band to in-
duce strong effectively attractive interactions in particles
at the Fermi level in the conduction band.

Figure 1 shows the K-matrix for scattering in the low-
est and first excited two-body bands assuming that the
lattice potential is deep enough such that the lowest sev-
eral Wannier states can be approximated by oscillator

states, i.e. wµ (x) ∝ e−x
2/2`2HOHn

(
x

`HO

)
, where `HO

is the local osciallator length near the bottom of a lat-
tice site and Hn (y) is a Hermite polynomial. Here, the
interaction potential is taken to be a simple contact in-
teraction whose strength is governed by the 1D free space
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FIG. 1: (color online) JµνK sin (kλ)KL
µν→µν under the two-

band approximation with harmonic oscillator Wannier states
is shown for (a) scattering in the lowest 2-body band {0, 0} →
{0, 0} with λ = 8`HO and a1D set so that the bound ex-
cited band bound state intersects the upper two-body bad at
λK = 3π/4. The same is shown in (b) for scattering in the
first excited band {1, 1} → {1, 1} with λ = 8`HO and a1D set
so that the bound state attached to the lower band intersects
the lower portion of the two-body band at λK = 3π/4. The
lower yellow region and upper blue regions represent positive
and negative values of K respectively, with darker color repre-
senting a larger magnitude. In both (a) and (b) the solid black
curves mark the edge of the respective 2-body bands while the
dashed red curves represent the position of a bound state at-
tached to the (a) excited and (b) ground 2-body bands.

scattering length:

Vint (x1 − x2) = − 2~2

ma1D
δ (x1 − x2) .

Experimentally, in the presence of a strong transverse
confinement, a1D could be tuned using a confinement
induced resonance [38]. With these assumptions we can
calculate all of the relevant parameters from Eqs. 2 and 4.
The resulting K-matrix for scattering in the lowest band,
KL

00→00 is shown in Fig. 1(a) plotted as a function of K
in units of 1/λ and E shifted to the center of the {0,0}
band in units of |S0|. The local oscillator length is set
so that `HO = λ/8. The lattice-free 1D scattering length
a1D has been set by requiring the binding energy of a
bound state attached to the excited band to intersect the
upper part of the {0,0} two-body band at center-of-mass
quasi-momentum λK = 3π/4. Also shown is the energy
of the bound state attached to the excited 2-body band,
indicated by the red dashed line. Here we can clearly
see the resonance that occurs when the bound state is at
energies accessible in the band. Figure 1(b) shows the K-
matrix for scattering in the excited band, KL

11→11, for the
same lattice parameters with a 1D lattice-free scattering
length set to be negative with a bound state attached
to the lower band intersecting the lower portion of the
{1,1} two-body band at λK = 3π/4. Note that in both
Fig. 1(a) and (b), we have multiplied the K-matrix by
JµνK (K) sin (λk) to remove the singularities at the edge
of the two-body band (when λk = 0,±π). The energy of
the bound state attached to the lower two-body band is
shown as a dashed red line in Fig. 1b. As the state cuts
through the band, the related a scattering resonance can
be seen in KL

11→11.

B. Beyond two band approximation

In the case of scattering in the lowest two-body band
in the presence of more than one excited band, if the
excited bands are uncoupled, the above results can be
easily extended to give

KL
00→00 =− 1

J00
K sinλk

[
U00
00

−
∑

{µν}6={00}

∣∣U00
µν

∣∣2
Uµνµν +

√
(E − εµν)

2 − (2JµνK )
2

 .
The sum here accounts for virtual scattering into each
excited band. Notice that a properly tuned attractive
interaction diagonal matrix element in an excited band,
Uµνµν , can create a bound state attached to that two-body
band that cuts through the lowest band creating a scat-
tering resonance, similarly to Fig.1 (a). Coupling be-
tween excited bands can shift the position of these bound
states However, even with these shifts, if the states be-
come degenerate with the {µν} = {00} band, we expect
a band-induced scattering resonances to occur.

In the case of scattering in excited bands, it is possible
for multiple excited two-body bands to overlap in energy.
In this case, whenever the scattering energy and center
of mass quasi-momentum place the system in the over-
lap region of multiple two-body bands, Eq. 23 still hold,



7

but the K-matrix is an N × N matrix where N is the
number of overlapping bands. The diagonal elements of
K represent elastic scattering processes where the inci-
dent and outgoing states are in the same bands. How-
ever, the off diagonal elements represent inelastic scatter-
ing processes where the energy and center-of-mass quasi-
momentum of the system K is conserved, but the relative
quasi-momentum k is not.

For example, in the case where the lattice sites are
deep enough to be treated locally as harmonic oscilla-
tors, the {µν} = {11} band overlaps with the {20} and
{02} bands meaning that the lattice K-matrix, KL, is
a 3 × 3 matrix (or 2 × 2 in the case of symmetrized
states for bosonic scattering). The K-matrix elements
are shown in Fig. 2(a-d) for the case of the {1, 1} and the
symmetrized {0, 2} two-body bands overlapping . Here,
the lattice and interaction parameters are set to be the
same as in Fig. 1(b).The solid and dotted black lines
show the edges of the {1, 1} and the symmetrized {0, 2}
two-body bands respectively. The position of a resonant
state attached to the lower {0, 0} band is shown as the
red dashed curve. The {0, 2} band complete encloses the
{1, 1} band. Figures 2(b) and (c) showing the K11→02

and K02→11 inelastic K-matrix element respectively are
identical. According to Eq. 23 the K11→11 matrix ele-
ment is the same as in the two-band case given in Eq. 26
and thus Fig. 2(a) is the same as Fig. 1(b) but plotted on
a different energy scale. Notice that a resonance appears
at the same energy for all K-matrix elements.

Notice in Eq. 23 that the resonance condition
det (1 + Uccḡ) = 0 deals only with information from the
closed bands. Thus if a resonance appears in the diago-
nal K-matrix elements (the elastic scattering processes),
it will appear at the same energy in the off diagonal ele-
ments (in the inelastic scattering processes).

V. THE LATTICE SCATTERING LENGTH

Just as in normal lattice-free scattering in 1D, we can
define the 1D lattice scattering length. In contrast, the
scattering length in the presence of a lattice can be de-
fined as the relative quasi-momentum reaches the edge of
a two-body band either at the top or the bottom of the
band, here when λk → 0, π:

lim
k→0

kKL
µν→µν =

1

a
(−)
µν

, (27)

lim
k→π/λ

(π
λ
− k
)
KL
µν→µν =

1

a
(+)
µν

.

Here a
(−)
µν and a

(+)
µν is the scattering length at the bottom

and top of the two-body bad respectively corresponding
to elastic scattering in the {µν} band. In the two-band

approximation from above this yields

λJ00
K

a
(±)
00

= −

U00 −
U2
01

U11 +

√(
E

(±)
00 − ε11

)2
− (2J11

K )
2

 ,
(28)

λJ11
K

a
(±)
11

= −

U11 −
U2
01

U00 −
√(

E
(±)
11 − ε00

)2
− (2J00

K )
2

 .
(29)

Here E
(±)
µν = εµν ±2JµνK is the energy at the top (+) and

bottom (−) of the band.
Contrary to the 3D case, strong effective interactions

occur in 1D near zeros in the scattering length. Con-
versely, poles in the scattering length occur at zeros in the
lattice K-matrix near the top or bottom of the two-body

bands. Figure 3 shows the lattice scattering length a
(±)
µν

for the lowest and first excited two-body band within the
two-band approximation plotted as a function of the free-
space 1D scattering length a1D. We have again assumed
that the lattice sites are deep enough to be treated as
local harmonic oscillator with lattice spacing λ = 8`HO.
We can clearly see that at finite values of the 1D free-
space scattering length, there are poles in the lattice
scattering length corresponding to areas of weak effective
interaction. The zeros in the lattice scattering length cor-
respond to strong, resonant effective interactions. While
we show the K = 0 scattering lengths here, similar struc-
tures with small shifts appear for all values of the center-
of-mass quasi-momentum. In the case of a deep lattice
such as that used here, the hopping energy becomes much
smaller than the local oscillator energy, and thus much
smaller than the band gap energy. When the on-site in-
teraction energy is much larger than the hopping energy

for all center of mass quasi-momenta (
∣∣∣Uµ′ν′

µν

∣∣∣ � |Jµν |)
the quasi-momentum dependence of the lattice scatter-
ing length drops out from the right hand side of Eqs. (28)
and (29). In addition, when the hopping energy is small
compared to the interaction energy, there is effectively

no difference between a
(+)
µν and a

(−)
µν .

Large positive lattice scattering lengths correspond to
a weakly bound state. Within the lattice approximations
made here, the energy of the bound state is given approx-
imately by

Ebnd ≈ εµν ± JµνK

√√√√4 +

(
λ

a
(±)
µν

)2

, (30)

with the approximation becoming exact at unitarity, i.e.∣∣∣a(±)µν

∣∣∣ → ∞. Note that poles in the lattice scattering

length occur when that bound state becomes degenerate
with the two-body band continuum.
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FIG. 2: The matrix elements of v̄
1/2
g KLv̄

1/2
g for scattering are shown as a density plots with harmonic oscillator Wannier

states. Here we have included the {0, 0}, {1, 1}, and the symmetrized {0, 2} two-body bands, and are showing the K-matrix
for scattering in the overlapping excited states. (a) and (d) show the matrix elements for elastic scattering in the {1, 1} and
{0, 2} states respectively. (b) and (c) show the matrix elements for inelastic scattering {1, 1} → {0, 2} and {0, 2} → {1, 1}
respectively. The lattice and interaction parameters are the same as in Fig. 1(b).

VI. SUMMARY

In this study we explored two-body scattering in the
presence of a one dimensional lattice. By transforming
into a basis of Wannier states and removing the dis-
crete center-of-mass position we derived the multi-band
Green’s operator using a Lattice Green’s function for ei-
ther energetically open or closed bands. This Green’s
operator was then used with in the Lippmann-Schwinger
equation to extract the lattice K-matrix.

In the case of on-site interactions, the K-matrix con-
sists of two terms, the first, which is proportional to the
open-channel interaction matrix, correspond to scatter-

ing between the energetically open two-body bands, while
the second term accounts for virtual scattering events
into energetically closed bands allowing for resonant scat-
tering. In the absence of coupling between closed band,
resonances occur when bound states attached to closed
bands are embedded in the open bands.

The expression for the scattering K-matrix derived
here incorporates the scattering contributions from any
number of overlapping open bands with any number of
closed bands. In deriving Eq. 23 we have assumed near-
est neighbor hopping and on-site interactions only. How-
ever, as the band index increases, the contributions from
distant hopping will become larger, and will not neces-
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a1 D /ℓHO

a(
±
) /
λ
Jμ

ν

FIG. 3: (color online) The lattice scattering length a(±) is
shown in the {0, 0} (blue solid curve) and {1, 1} (red dashed
curve) two-body bands is shown as a function of the 1D scat-
tering length a1D for a lattice with lattice spacing λ = 8`HO.
For a lattice this deep, the hopping energy is much smaller
than the local oscillator energy and thus a(+) ≈ a(−).

sarily be negligible. Additionally, higher index Wannier
states will become less and less localized to the point
where individual states span multiple sites creating in-
teractions beyond the onsite ones making the contact
potential approximation invalid. Higher band contribu-
tions in 3D lattices were directly incorporated for scatter-
ing in the lowest band in the zero center-of-mass quasi-
momentum regime in Refs. [31] and [37]. Properly incor-
porating higher energy bands in the K-matrix as well as
extending these results to higher dimensions is the focus
of ongoing work.

Apendix A

Starting from the K-matrix element given in Eq. 22 we
wish to show the result of Eq. 23 in the case of on-site
interactions. Expanding the scattering states

∣∣fi(j)〉 and
inserting a complete set of Wannier states yields

KL
ji = −2π

 ∑
l∈open

∑
z,z′

f+j (z′)
〈
jz′
∣∣∣D̂−1∣∣∣ lz〉〈lz ∣∣∣Û ∣∣∣ iz〉 f+i (z)

(31)

+
∑

l∈closed

∑
z,z′

f+j (z′) 〈jz′| D̂−1 |lz〉
〈
lz
∣∣∣Û ∣∣∣ iz〉 f+i (z)



where D̂ =
(

1 + ÛĜ
)

and we have dropped the center

of mass quasi-momentum K dependence everywhere for
notational simplicity. Note that we have split the sum
over the band indices into the contributions from the N
open and M closed bands. We have used the fact that
〈lz′′| Û |iz〉 = 〈lz| Û |iz〉 δzz′′ . We now wish to invert D̂
in the basis of Wannier states which can be broken into
4 blocks:

D̄ =

(
D̄oo D̄oc

D̄co D̄cc

)

where D̄ is the operator D̂ expressed as a matrix in the
Wannier basis whose the matrix elements are given by

D̄jl (z′, z) =
〈
jz′
∣∣∣D̂∣∣∣ lz〉

=δjlδz′z

+ ei(φ
l
K−φ

j
K)z′Ujl (|z′|) gl (z, z′) .

Here D̄oo (z, z′) is an N ×N matrix where both j and l
correspond to open bands, D̄co (z, z′) is an M×N matrix
where j is a closed band and l is open, D̄oc (z, z′) is an
N ×M matrix where j is an open band and l is closed,
and D̄cc (z, z′) is an M ×M matrix where both j and l
correspond to closed bands. Notice that the only differ-
ence between closed and open bands is the LGF gl (z, z′)
used. Thus the form of the matrix elements for D̄oo (z, z′)
and D̄co (z, z′) are the same given by

D̄jl (z′, z) =δjlδz′z (32)

+ 2πei(φ
l
K−φ

j
K)z′Ujl (|z′|) f+l (z>) f−l (z<) ,

Similarly, the form of thematrix elements for D̄cc (z, z′)
and D̄oc (z, z′) are of the same given by

D̄jl (z′, z) =δjlδz′z (33)

+ ei(φ
l
K−φ

j
K)z′Ujl (|z′|)

α
|z−z′|+1

l

JµνK (1− α2
l )
,

where αl is given by Eq. 18.

Inverting D̄ directly gives

D̄−1 =

( (
D̄oo − D̄ocD̄

−1
cc D̄co

)−1 −D̄−1cc D̄co

(
D̄oo − D̄ocD̄

−1
cc D̄co

)−1
−D̄−1oo D̄oc

(
D̄cc − D̄coD̄

−1
oo D̄oc

)−1 (
D̄cc − D̄coD̄

−1
oo D̄oc

)−1
)
.

In Eq. 31, we are only concerned with the open-open segment. Inserting D̄ and carrying out the matrix multiplication
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gives

KL
ij = −2π

∑
z,z′

f+j (z′)
[(
D̄oo − D̄ocD̄

−1
cc D̄co

)−1
Ūoo

]r
ij
f+i (z) (34)

−
∑
z,z′

f+j (z′)
[
D̄−1oo D̄oc

(
D̄cc − D̄coD̄

−1
oo D̄oc

)−1
Ūco

]
ij
f+i (z)

 .

Where Ūji = ei(φ
i
K−φ

j
K)zUji (|z|) are matrix elements of the interaction in the two-body Wannier basis.

Equation 34 is general for interactions of any range. Here, we are concerned with on-site interactions where

Ūji = ei(φ
i
K−φ

j
K)zUjiδz,0. Inserting this collapses the double sum and we may evaluate this at z = z′ = 0. We may also

note that f−l (0) = 0 while f+i (0) =
√
λ/πvig. This simplifies the expression for the Dji matrix elements considerably

for open channels leaving D̄oo = 1 and Dco = 0 Inserting this gives

KL
ij =− 2π

∑
z,z′

f+j (z′)
[
Ūoo
]
ij
f+i (z)−

∑
z,z′

f+j (z′)
[
D̄ocD̄

−1
cc Ūco

]
ij
f+i (z)

 ,

=− 2λ
(
vigv

j
g

)−1/2 [Uoo − Uocḡc (1 + Uccḡc)−1 Uco
]
ij
,

which is the expression that appears in Eq. 23.
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