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Abstract: We present a model of radiative neutrino masses which also resolves anomalies
reported in B-meson decays, RD(?) and RK(?) , as well as in muon g− 2 measurement, ∆aµ.
Neutrino masses arise in the model through loop diagrams involving TeV-scale leptoquark
(LQ) scalars R2 and S3. Fits to neutrino oscillation parameters are obtained satisfying all
flavor constraints which also explain the anomalies in RD(?) , RK(?) and ∆aµ within 1σ. An
isospin-3/2 Higgs quadruplet plays a crucial role in generating neutrino masses; we point
out that the doubly-charged scalar contained therein can be produced in the decays of the
S3 LQ, which enhances its reach to 1.1 (6.2) TeV at

√
s = 14 TeV high-luminosity LHC

(
√
s = 100 TeV FCC-hh). We also present flavor-dependent upper limits on the Yukawa

couplings of the LQs to the first two family fermions, arising from non-resonant dilepton
(pp → `+`−) processes mediated by t-channel LQ exchange, which for 1 TeV LQ mass,
are found to be in the range (0.15− 0.36). These limits preclude any explanation of RD(?)

through LQ-mediated B-meson decays involving νe or νµ in the final state. We also find
that the same Yukawa couplings responsible for the chirally-enhanced contribution to ∆aµ
give rise to new contributions to the SM Higgs decays to muon and tau pairs, with the
modifications to the corresponding branching ratios being at (2–6)% level, which could be
tested at future hadron colliders, such as HL-LHC and FCC-hh.
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1 Introduction

Among the many reasons to consider physics beyond the Standard Model (SM), an un-
derstanding of the origin of neutrino masses stands out, as neutrino oscillations have been
firmly established [1] which require nonzero neutrino masses, in contradiction with the SM.
While neutrino masses may be accommodated at tree-level simply by the addition of three
SM-singlet right-handed neutrino fields having large Majorana masses via the type-I see-
saw mechanism [2–7], or by the addition of an SU(2)L-triplet scalar (or fermion) via the
type-II [7–9] (or type-III [10]) seesaw, there are other interesting scenarios where small
neutrino masses arise naturally as quantum corrections [11–14]. These models of radiative
neutrino masses, which we focus on in this paper, are more likely to be accessible for di-
rect experimental tests at colliders. (For recent reviews on radiative neutrino mass models
and constraints, see Refs. [15, 16].) Here we show that the new particles that are present
in these models to induce neutrino masses can also play an important role in explaining
certain persistent experimental anomalies, viz. the anomalous magnetic moment of the
muon (∆aµ), and the lepton-flavor-universality violating decays of the B meson (RD(?) and
RK(?)).

There has been a long-standing discrepancy in the measured value of the anomalous
magnetic moment of the muon by the E821 experiment at Brookhaven National Labora-
tory [17] and the SM theory prediction [18], resulting in a value for ∆aµ ≡ aexp

µ − aSM
µ =

(27.4 ± 7.3) × 10−10, which indicates a 3.7 σ discrepancy. The muon g − 2 experiment
at Fermilab [19] which is currently in the data accumulation stage, in conjunction with
more precise calculations of the dominant hadronic vacuum polarization contribution [20–
26], is expected to settle in the near future whether this discrepancy is indeed due to new
physics [27]. Meanwhile, it appears to be productive to envision TeV-scale new physics
that can account for the observed anomaly. We shall pursue this line of thought here in
the presence of an R2(3,2, 7/6) leptoquark (LQ) scalar (in the notation of Ref. [28], where
the numbers in parenthesis denote SU(3)c×SU(2)L×U(1)Y quantum numbers) that also
takes part in radiative neutrino mass generation.

Independently, various anomalies have been reported in the semi-leptonic rare de-
cays of the B-meson by BaBar [29, 30], Belle [31–33] and LHCb [34–37] experiments.
The combined average ratio of branching ratios for the charged-current decay, RD(?) =

BR(B → D(?)τν)/BR(B → D(?)`ν) (with ` = e, µ) [29–35] differs from the SM pre-
diction [38] by 1.4 (2.7)σ. The ratio of branching ratios for the neutral-current decay
RK(?) = BR(B → K(?)µ+µ−)/BR(B → K(?)e+e−) [36, 37] differs from the SM predic-
tions [39–42] by 2.6 (2.4)σ in the high-momentum range, while the discrepancy is 2.2σ

in the lower-momentum range for RK? . These anomalies, while taken together, appear to
suggest some lepton-flavor-universality violating new physics beyond the SM. The most pop-
ular explanation of these anomalies is in terms of scalar LQs. While the charged-current
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B-anomaly requires the relevant LQ to have a mass around 1 TeV, the neutral-current
anomaly may be explained with a LQ that is somewhat heavier.

A single scalar LQ solution to both b→ s`+`− and b→ cτν anomalies [43–46] seems to
be ruled out when such models are confronted with global fits to b→ sµ+µ− observables, as
well as perturbativity constraints and direct limits from the LHC [47] (see also Refs. [48, 49]).
The RD(?) anomaly may be explained by either an S1(3,1, 1/3) or an R2(3,2, 7/6) LQ, while
the RK(?) anomaly may be explained in terms of an S3(3,3, 1/3) LQ.1 Thus, in order to
explain both RD(?) and RK(?) anomalies, there are two logical options: Addition of (i)
R2(3,2, 7/6) and S3(3,3, 1/3) LQs, or (ii) S1(3,1, 1/3) and S3(3,3, 1/3) LQs. Among
these options, we find it more compelling to adopt (i) as there is a direct connection with
neutrino masses induced radiatively in this case, since both the LQs are essential to generate
neutrino mass, unlike option (ii) where only one such LQ is sufficient, along with a color-
sextet diquark to ensure lepton number violation [50]. Therefore, we adopt here a radiative
neutrino mass model involving R2(3,2, 7/6) and S3(3,3, 1/3) LQs, along with an isospin-
3/2 Higgs field ∆(1,4, 3/2) which is needed to induce an R2–S?3 mixing that leads to lepton
number violation, a requirement to generate Majorana neutrino masses.

We show by explicit construction that a model with R2(3,2, 7/6) and S3(3,3, 1/3)

LQs plus ∆(1,4, 3/2) Higgs field [46] can simultaneously explain the RD(?) , RK(?) and ∆aµ
anomalies, while being consistent with all low-energy flavor constraints, as well as with
the LHC limits. We propose a minimal Yukawa flavor structure that achieves these, while
also providing excellent fits to neutrino oscillation parameters. We have also evaluated
constraints from

√
s = 13 TeV LHC data on the LQ Yukawa couplings to fermions of the

first two families arising from non-resonant pp → `+i `
−
j processes mediated by t-channel

exchange of LQs. These limits on the couplings are found to be in the range (0.15− 0.36)

for a 1 TeV LQ, which would preclude any solution of RD(?) with new LQ-mediated decays
of the B meson involving νe or νµ, an a priori logical possibility. We also show that the ∆++

scalar from the ∆(1,4, 3/2) multiplet, which decays to same-sign dileptons for much of the
parameter space, can be probed to masses as large as 1.1 TeV at the high-luminosity (HL)
phase of the

√
s = 14 TeV LHC with 3000 fb−1 of data, as it can be produced via strong

interactions in the decay of S4/3
3 → (R?2)−2/3 + ∆++. The mass reach in this new mode is

somewhat better than in the standard Drell-Yan (DY) channel. We also find that the same
Yukawa couplings responsible for the chirally-enhanced contribution to ∆aµ give rise to
new contributions to the SM Higgs decays to muon and tau pairs, with the modifications to
the corresponding branching ratios being at a few percent level with opposite signs, which
could be tested at future hadron colliders, such as HL-LHC and FCC-hh.

There have been various attempts to explain radiative neutrino masses and a subset
of the anomalies in RD(?) , RK(?) and ∆aµ using scalar LQs. For instance, Ref. [45] has
studied neutrino masses, RD(?) and ∆aµ, whereas Refs. [51–56] address neutrino masses
and RK(?) . Similarly, Refs. [57, 58] explain radiative neutrino masses, RD(?) and RK(?) ,
while Ref. [59] explains neutrino masses and lepton g− 2. In some cases such explanations

1The R2 LQ can also explain RK(?) [46], but only by modifying b→ se+e− at tree-level and thus cannot
explain the other b→ sµ+µ− anomalies like P ′5 [42].
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are disconnected from neutrino mass generation, in the sense that removing certain particle
from the model would still result in nonzero neutrino masses [60, 61]. Our approach here
is similar in spirit to Ref. [62], which address all three anomalies, viz., RD(?) , RK(?) and
∆aµ, in the context of radiative neutrino masses; but unlike Ref. [62] we do not introduce
new vector-like fermions into the model. In the model proposed here there is a close-knit
connection between the RD(?) and RK(?) anomalies, ∆aµ and neutrino mass. In particular,
neutrino mass generation requires all particles that play a role in explaining these anomalies.
Removing any new particle from the model would render the neutrino to be massless. For
other models of radiative neutrino mass using LQ scalars, see Refs. [63–68].

The rest of the paper is organized as follows. In Section 2 we present the basic features
of the model, including the Yukawa Lagrangian (cf. Section 2.1), scalar potential (cf. Sec-
tion 2.2), radiative neutrino mass generation mechanism (cf. Section 2.3) and a desired
texture for the Yukawa coupling matrices (cf. Section 2.4) consistent with flavor constraints
that can explain the flavor anomalies. In Section 3 we discuss how the LQ scalars present
in the model explain the RD(?) and RK(?) flavor anomalies. In Section 4 we show how the
R2 LQ explains the ∆aµ anomaly. In this section, we also point out the difficulty in simul-
taneously explaining the electron g−2 (cf. Section 4.1), as well as the model predictions for
related processes, namely, Higgs decay to lepton pairs (cf. Section 4.2) and muon electric
dipole moment (cf. Section 4.3). Section 5 summarizes the low-energy constraints on the
LQ couplings and masses. Section 6 analyzes the LHC constraints on the LQs. In Section 7
we present our numerical results for two benchmark fits to the neutrino oscillation data that
simultaneously explain RD(?) , RK(?) and (g−2)µ anomalies, while being consistent with all
the low-energy and LHC constraints. Section 8 further analyzes the collider phenomenology
of the model relevant for the ∆++ scalar, and makes testable predictions for HL-LHC and
future hadron colliders. Our conclusions are given in Section 9.

2 The Model

The model proposed here aims to explain the B-physics anomalies RD(?) and RK(?) , as well
as the muon (g − 2) anomaly ∆aµ, and at the same time induce small neutrino masses as
radiative corrections. To this end, we choose the gauge symmetry and the fermionic content
of the model to be identical to the SM, while the scalar sector is extended to include three
new states, apart from the SM Higgs doublet H:

R2 (3,2, 7/6) =
(
ω5/3 ω2/3

)T
, S3 (3̄,3, 1/3) =

(
ρ4/3 ρ1/3 ρ−2/3

)T
,

∆ (1,4, 3/2) =
(

∆+++ ∆++ ∆+ ∆0
)T

, H (1,2, 1/2) =
(
H+ H0

)T
. (2.1)

Here the numbers within brackets represent the transformation properties under the SM
gauge group SU(3)c × SU(2)L × U(1)Y . The superscripts on various fields denote their
respective electric charge Q defined as Q = I3 + Y , with I3 being the third-component of
SU(2)L-isospin. The R2 and S3 LQs are introduced to explain RD(?) and RK(?) anomalies
respectively. The R2 LQ also explains ∆aµ through a chirally-enhanced operator it induces,
which is proportional to the top quark mass. The SU(2)L-quadruplet ∆ field mixes ω2/3
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from R2 with ρ̄2/3 from S?3 (the complex conjugate of ρ−2/3), which is needed to generate
Majorana neutrino masses radiatively. This multiplet, with its characteristic triply-charged
component, was introduced to generate tree-level neutrino masses from dimension (d)-7
effective operators in Ref. [69]; here we use it for radiative mass generation, also via d = 7

operators.

2.1 Yukawa Couplings

In addition to the SM Yukawa couplings of the fermions involving the Higgs-doublet field
H, the following Yukawa couplings of the R2 and S3 LQs are allowed in the model:2

LY = f̂ab(u
cT
a Cψib)R

j
2εij−f̂ ′ab(QiTa Cecb)R̃j2εij+ŷab(QTaCταψb)S3α−ŷ′ab(QTaCταQb)S?3α+H.c.

(2.2)
Here we have adopted a notation where all fermion fields are left-handed. Q = (u d)T

and ψ = (ν e)T are the SM quark and lepton doublets respectively, {i, j} are SU(2)

indices, {a, b} are flavor indices, C is the charge conjugation matrix, εij is the SU(2) Levi-
Civita tensor, R̃2 = iτ2R

?
2, and τα (with α = 1, 2, 3) are the Pauli matrices in the doublet

representation of SU(2). The color contraction is unique in each term, which is not shown.
It is to be noted that S3 possesses both leptoquark and diquark couplings, as shown in
Eq. (2.2), which would lead to potentially dangerous proton decay operators. Therefore, we
set the diquark coupling ŷ′ab to zero in Eq. (2.2), so that baryon number remains unbroken.
This is achieved by assigning baryon number B = −1/3 to S3 and R?2, along with B = 1/3

for quarks and −1/3 for anti-quarks, and 0 for leptons and anti-leptons.
We redefine fields to go from the flavor basis (u, d, e) to the mass eigenstates (u0, d0, e0)

for the charged fermions (and similarly for the (uc, dc, ec) fields) via the following unitary
rotations in family space:

u = Vu u
0, d = Vd d

0, e = Ve e
0, ν = Ve ν

0 ,

uc = Vuc u
c 0, dc = Vdc d

c 0, ec = Vec e
c 0 . (2.3)

The Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix VCKM is generated in the
process and is given by

V = V †uVd = P VCKMQ , (2.4)

where P , Q are diagonal phase matrices which are unphysical in the SM, but become
physical in non-SM interactions, such as the ones involving the LQs. These phases will have
an effect on CP -violating observables, such as the muon electric dipole moment (EDM),
see Section 4.3. Note that the unitary rotation on the neutrino fields in Eq. (2.3) is the
same as for left-handed lepton fields e, and therefore no Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) mixing in the charged weak-current interactions of leptons is induced at this stage.
For explaining the anomalies in B-decays and in muon g − 2, there is no need to go to the
mass eigenstates of the neutrinos; the distinction between the mass and flavor eigenstates

2The field ∆ has no Yukawa couplings with fermions at the tree-level, but couples to the leptons at
one-loop level (cf. Eq. (2.52)).
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will only affect neutrino oscillation phenomenology. For convenience, we also redefine the
Yukawa couplings as follows:

V T
uc f̂Ve ≡ f, V T

u f̂
′Vec ≡ V T f ′, V T

u ŷVe ≡ V T y . (2.5)

Eq. (2.2) can now be written in terms of mass eigenstate fermions (except for neutrinos
which are still flavor eigenstates) and the redefined Yukawa couplings as

LY = ucTCfνω2/3 − ucTCfeω5/3 + uTC(V ?f ′)ecω−5/3 + dTCf ′ecω−2/3

− uTC(V ?y)νρ−2/3 + uTC(V ?y)e
ρ1/3

√
2

+ dTCyν
ρ1/3

√
2

+ dTCyeρ4/3 + H.c. (2.6)

Here we have dropped the superscript 0 in the labeling of mass eigenstates. In the discus-
sions that follow, the quark and lepton fields are to be identified as mass eigenstates. Note
that the Yukawa coupling matrices f ′ and y, which respectively appear in the d − ec and
d − e couplings, also appear in the u − ec and u − e couplings, along with the generalized
CKM matrix V . Any texture adopted for f ′ and y should therefore be consistent with
flavor violation in both down-type and up-type quark sectors. The flavor indices i and j in
fij (and similarly for f ′ and y) refer to the quark flavor and the lepton flavor respectively.
We shall make use of these interactions in explaining the B-anomalies, ∆aµ and radiative
neutrino masses.

2.2 Scalar Sector

The most general renormalizable Higgs potential involving H, R2, S3 and ∆ is given by:

V = − µ2
HH

†H + µ2
RR
†
2R2 + µ2

SS
†
3S3 + µ2

∆∆†∆ +
λH
2

(H†H)2 +
λR
2

(R†2R2)2

+
λ̃R
2

(R†α2 R2β)(R†β2 R2α) +
λS
2

(S†3S3)2 +
λ′S
2

(S†3TaS3)2 +
λ̃S
2

(S†
α

3 S3β)(S†β3 S3α)

+
λ̃′S
2

(S†
α

3 TaS3β)(S†β3 TaS3α) +
λ∆

2
(∆†∆)2 +

λ′∆
2

(∆†T ′a∆)2 + λHR(H†H)(R†2R2)

+ λ′HR(H†τaH)(R†2τaR2) + λHS(H†H)(S†3S3) + λ′HS(H†τaH)(S†3TaS3)

+ λH∆(H†H)(∆†∆) + λ′H∆(H†τaH)(∆†T ′a∆) + λRS(R†2R2)(S†3S3)

+ λ′RS(R†2τaR2)(S†3TaS3) + λ̃RS(R†α2 R2β)(S†α3 S3β) + λ̃′RS(R†α2 τaR2β)(S†α3 TaS3β)

+ λR∆(R†2R2)(∆†∆) + λ′R∆(R†2τaR2)(∆†T ′a∆) + λS∆(S†3S3)(∆†∆)

+ λ′S∆(S†3TaS3)(∆†T ′a∆) + λ
′′
S∆(S†3TaTbS3)(∆†T ′aT

′
b∆)

+
(
µ∆?ijkR2iS3jk + λRHS2Ri∗2 S3ijS3klHmε

jkεlm + λ∆H3∆?ijkHiHjHk + H.c.
)
.

(2.7)

Here {i, j} are SU(2)L indices, {α, β} are SU(3)c indices, τa are the Pauli matrices, and Ta,
T ′a (with a = 1, 2, 3) are the normalized generators of SU(2) in the triplet and quadruplet
representations, respectively.3 Color-singlet contractions not shown explicitly are to be

3This potential differs considerably from the one given in Ref. [46], which is missing many terms.
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assumed among two colored fields within the same bracket. For example, the λ′RS term
has the color contraction (R†α2 τaR2α)(S†β3 TaS3β). Here S3ij and ∆ijk are the completely
symmetric rank-2 and rank-3 tensors of SU(2), with their components related to those
given in Eq. (2.1) as:

S311 = ρ4/3 , S312 =
ρ1/3

√
2
, S322 = ρ−2/3 ,

∆111 = ∆+++ , ∆112 =
∆++

√
3
, ∆122 =

∆+

√
3
, ∆222 = ∆0 . (2.8)

The presence of the quartic coupling with coefficient λ∆H3 in Eq. (2.7) will induce a
vacuum expectation value (VEV) for the neutral component of ∆, even when µ2

∆ > 0 is
chosen. The cubic coupling with coefficient µ would then lead to mixing of ω2/3 and ρ̄2/3

components of R2 and S?3 LQ fields. Such a mixing is required to realize lepton number
violation and to generate neutrino masses. We shall be interested in the choice µ2

H > 0

(which leads to electroweak symmetry breaking), and µ2
R, µ

2
S > 0 (so that electric charge

and color remain unbroken), and µ2
∆ > 0 – so that ∆0 acquires only an induced VEV. To

ensure that this desired vacuum is indeed a local minimum of the potential, we now proceed
to derive the masses of all scalars in the model.

2.2.1 Scalar Masses

We denote the VEVs of H0 and ∆0 fields as〈
H0
〉

=
v√
2
,

〈
∆0
〉

=
v∆√

2
, (2.9)

with (v2 + 3 v2
∆) ' (246.2 GeV)2 determined from the Fermi constant GF . While v can be

taken to be real by a gauge rotation, v∆ is complex in general. However, all the complex-
valued couplings of the potential, i.e. terms in the last line of Eq. (2.7), can be made real by
field redefinitions, which we adopt, and consequently minimization of the potential would
make v∆ real as well.

We obtain the following conditions for the potential to be an extremum around the
VEVs of Eq. (2.9), assuming that v 6= 0:

−µ2
H +

1

2
λHv

2 +
v∆

4

(
6λ∆H3v + 2λH∆v∆ + 3λ′H∆v∆

)
= 0 , (2.10)

µ2
∆v∆ +

1

2
λ∆H3v3 +

(
1

2
λH∆ +

3

4
λ′H∆

)
v2v∆ +

(
1

2
λ∆ +

9

8
λ′∆

)
v3

∆ = 0 . (2.11)

We eliminate µ2
H and µ2

∆ using these two conditions. To derive the scalar mass spectrum, we
construct the mass matrices from the bilinear terms resulting from expanding the potential
in Eq. (2.7) around the VEVs v and v∆.

The 2×2 mass matrix involving the mixing of the charge-2/3 LQs in the basis (ω2/3, ρ̄2/3)

is found to be:

M2
2/3 =

(
m2
ω2/3 µ v∆√

2
,

µ v∆√
2

m2
ρ2/3

)
, (2.12)
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where

m2
ω2/3 = µ2

R +
v2

2
(λHR + λ′HR) +

v2
∆

4
(2λR∆ + 3λ′R∆) , (2.13)

m2
ρ2/3 = µ2

S +
v2

2
(λHS + λ′HS) +

v2
∆

8
(4λS∆ + 6λ′S∆ + 9λ′′S∆) . (2.14)

The mass eigenstates denoted as X1,2 are given by

X1 = cosϕω2/3 + sinϕ ρ̄2/3 , (2.15)

X2 = − sinϕω2/3 + cosϕ ρ̄2/3 , (2.16)

where the mixing angle ϕ is defined as

tan 2ϕ =

√
2v∆µ

(m2
ω2/3 −m2

ρ2/3)
. (2.17)

The mass eigenvalues of the charge-2/3 LQ fields are then given as

m2
X1,X2

=
1

2

[
m2
ω2/3 +m2

ρ2/3 ±
√

(m2
ω2/3 −m2

ρ2/3)2 + 2µ2v2
∆

]
. (2.18)

The masses for the remaining LQ components (ω5/3, ρ1/3, ρ4/3) are obtained as follows:

m2
ω5/3 = µ2

R +
v2

2
(λHR − λ′HR) +

v2
∆

4
(2λR∆ − 3λ′R∆) , (2.19)

m2
ρ1/3 = µ2

S +
v2

2
λHS +

v2
∆

4
(2λS∆ + 3λ′′S∆) , (2.20)

m2
ρ4/3 = µ2

S +
v2

2
(λHS − λ′HS) +

v2
∆

8
(4λS∆ − 6λ′S∆ + 15λ′′S∆) . (2.21)

As for the ∆ fields, the masses of the triply and doubly-charged components are given
by

m2
∆+++ = −3λ′H∆v

2

2
− 9λ′∆v

2
∆

4
− λ∆H3v3

2v∆
, (2.22)

m2
∆++ = −λ′H∆v

2 − 3λ′∆v
2
∆

2
− λ∆H3v3

2v∆
. (2.23)

The singly-charged components of H and ∆ will mix, with a mass matrix given by:

M2
+ =

1

2

(
λ∆H3v + λ′H∆v∆

)(−3v∆

√
3v√

3v − v2

v∆

)
. (2.24)

One combination of (H±, ∆±) fields is the Goldstone boson (G±) eaten up by the W±

gauge boson, while the other combination (δ±) is a physical charged Higgs field. These
fields are

G+ =
vH+ +

√
3v∆∆+√

v2 + 3v2
∆

, δ+ =

√
3v∆H

+ − v∆+√
v2 + 3v2

∆

, (2.25)
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with the mass of δ+ given by4

m2
δ+ = −λ

′
H∆

(
v2 + 3v2

∆

)
2

− λ∆H3

(
v3 + 3v2

∆v
)

2v∆
. (2.26)

The neutral CP -even scalars do not mix with the CP -odd scalars, since all couplings
and VEVs are real. The mass matrix for the CP -even states in the basis (Re H0, Re ∆0)

reads as:

M2
even =

(
λHv

2 + 3
2λ∆H3vv∆

v
2

[
3λ∆H3v + (2λH∆ + 3λ′H∆) v∆

]
v
2

[
3λ∆H3v + (2λH∆ + 3λ′H∆)v∆

]
−λ∆H3v3

2v∆
+
(
λ∆ + 9

4λ
′
∆

)
v2

∆

)
. (2.27)

The resulting mass eigenvalues are given by

m2
h,H =

1

2

[
λHv

2 + (λ∆ +
9

4
λ′∆)v2

∆ −
λ∆H3v(v2 − 3v2

∆)

2v∆
±
√
A

]
(2.28)

where

A =

{
λHv

2 −
(
λ∆ +

9

4
λ′∆

)
v2

∆ +
λ∆H3v(v2 + 3v2

∆)

2v∆

}2

+ v2
[
3λ∆H3v + (2λH∆ + 3λ′H∆)v∆

]2
. (2.29)

The corresponding mass eigenstates are given by

h = cosαRe(H0) + sinαRe(∆0) , (2.30)

H = − sinαRe(H0) + cosαRe(∆0) , (2.31)

with

sin 2α =
v
[
3λ∆H3v + (2λH∆ + 3λ′H∆)v∆

]
(m2

H −m2
h)

. (2.32)

The field h is to be identified as the SM-like Higgs boson of mass 125 GeV.
Similarly, the CP -odd scalar mass matrix, in the basis (Im H0, Im ∆0) is given by

M2
odd =

1

2
λ∆H3v

(
−9v∆ 3v

3v − v2

v∆

)
. (2.33)

We identify the Goldstone mode G0 eaten up by the Z0 gauge boson and the physical
pseudoscalar Higgs boson A0 as

G0 =
v Im(H0) + 3v∆Im(∆0)√

v2 + 9v2
∆

, A0 =
3v∆Im(H0)− v Im(∆0)√

v2 + 9v2
∆

, (2.34)

with the mass of A0 given by

m2
A = −λ∆H3v3

2v∆
− 9λ∆H3vv∆

2
. (2.35)

4In the limit v∆ � v, the physical δ+ field is nearly identical to the original ∆+ field. So we will use the
same notation for mδ+ and m∆+ .
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The VEV v∆ must obey the condition v∆ � v from electroweak T -parameter con-
straint. In presence of v∆, the electroweak ρ parameter deviates from unity at tree-level,
with the deviation given by [69]

δρ ' −6
v2

∆

v2
. (2.36)

Although there are also loop-induced contributions to δρ, arising from the mass splittings
among components of ∆, R2, S3 fields which typically have the opposite sign compared
to Eq. (2.36), we assume that there is no precise cancellation between these two types of
contributions. A parameter ρ0, defined as

ρ0 =
m2
W

m2
Z ĉ

2
Z ρ̂

(2.37)

(where ĉZ ≡ cos θW (mZ) in the MS scheme, θW being the weak mixing angle, and ρ̂ includes
leading radiative corrections from the SM), has a global average ρ0 = 1.00038±0.00020 [1].
Eq. (2.36) can be compared to this global value, with ρ0 = 1 in the SM, which sets a limit
of |v∆| ≤ 1.49 GeV, allowing for 3σ variation, and ignoring loop contributions proportional
to mass splitting among multiplets.

In the approximation |v∆| � |v|, one can solve for v∆ from Eq. (2.11), to get

v∆ ' −
λ∆H3v3

2µ2
∆

. (2.38)

Substituting this into the masses of the Higgs quadruplet components, we obtain [69]

m2
∆i
' µ2

∆ − qi
λ′H∆v

2

2
, (2.39)

where qi is the (non-negative) electric charge of the component field ∆i (with i = 1, 2, 3, 4

denoting the four components of ∆ given in Eq. (2.1)). We note that there are two pos-
sibilities for mass ordering among these components, depending on the sign of the quartic
coupling λ′H∆, with m∆+++ being either the heaviest or the lightest member. Phenomenol-
ogy of these scenarios has been studied extensively in Refs. [69–72].

By choosing all the bare mass parameters µ2
X (for X = H,R2, S3,∆) in Eq. (2.7) to be

positive, and the quartic coupling λH to be positive, the desired minimum can be shown
to be a local minimum, as long as the masses of ∆, R2, S3 are well above v ' 246 GeV. To
verify that this minimum is also the absolute minimum of the potential for some range of
parameters, further work has to be done, which is beyond the scope of this paper. Since
none of the quartic couplings, except for λ∆H3 , plays any crucial role for our analysis, it
appears possible to achieve this condition. Similarly, there is enough freedom to choose the
quartic couplings so that the potential remains bounded from below. We shall discuss below
a set of necessary conditions for the potential to be bounded, which will find application in
Section 4.2 in the discussion of modified rates for h→ `+`− in the model.

2.2.2 Necessary Conditions for Boundedness of the Potential

While the full set of necessary and sufficient conditions on the quartic couplings of Eq. (2.7)
for the Higgs potential to be bounded from below is not easily tractable, certain necessary
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conditions of phenomenological interest (cf. Section 4.2) can be analyzed analytically. We
focus on the quartic couplings involving only the H and R2 fields, which will turn out to
be of phenomenological interest. With SU(2)L and SU(3)c rotations, these fields can be
brought to the form

H =

(
0

v

)
, R2 =

(
x 0 0

y sinαeiφ y cosα 0

)
, (2.40)

where in R2, the color indices run horizontally. Here v, x, y can be taken to be real. The
quartic terms V (4)(H,R2) can be then written as

V (4)(H, R2) =
1

2

(
v2 x2 y2

)
λ̂

v2

x2

y2

 , (2.41)

where λ̂ is defined as

λ̂ =

 λH λHR − λ′HR λHR + λ′HR
λHR − λ′HR λR + λ̃R λR + λ̃R sin2 α

λHR + λ′HR λR + λ̃R sin2 α λR + λ̃R

 . (2.42)

The necessary and sufficient conditions for boundedness of this potential can now be derived
from the co-positivity of real symmetric matrices [73–75]:

λH ≥ 0 , (2.43)

λR + λ̃R ≥ 0 , (2.44)

λHR − λ′HR ≥ −
√
λH(λR + λ̃R) , (2.45)

λHR + λ′HR ≥ −
√
λH(λR + λ̃R) , (2.46)

λR + λ̃R sin2 α ≥ −(λR + λ̃R) , (2.47)

(λHR − λ′HR)

√
λR + λ̃R + (λR + λ̃R sin2 α)

√
λH

+(λHR + λ′HR)

√
λR + λ̃R + (λR + λ̃R)

√
λH ≥ 0 or det(λ̂) ≥ 0 . (2.48)

These conditions should hold for any value of the angle α.
Note that from Eq. (2.45) it follows that if (λHR − λ′HR) is negative, its magnitude

cannot exceed about 1.33, if we demand that none of the quartic couplings should exceed√
4π in magnitude from perturbativity considerations, and using the fact that λH ' 0.25

is fixed from the mass of h, mh = 125 GeV. This result will be used in the calculation of
the modified Higgs branching ratio h→ `+`− in Section 4.2.

2.3 Radiative Neutrino Masses

Neutrino masses are zero at the tree-level in the model. However, since lepton number is
not conserved, nonzero Mν will be induced as quantum corrections. The leading diagrams
generatingMν are shown in Fig. 1, mediated by the charge-2/3 LQs. The Yukawa couplings
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ν νuc u

ω2/3 ρ2/3

∆

〈H〉
〈H〉

〈H〉

ν νuc u

ω2/3 ρ2/3

H

〈H〉〈H〉
∆

Figure 1: Feynman diagram generating neutrino masses through the exchange of LQs in
the model. The one-loop diagram shown is the leading contribution, while the two-loop
diagram can be important. The dot (•) on the SM fermion line in the one-loop diagram
indicates mass insertion arising from the SM Higgs doublet VEV. There is a second set of
diagrams obtained by reversing the arrows on the internal particles.

in Eq. (2.6), together with the ∆?R2S3 trilinear term and the ∆?HHH quartic term in
the scalar potential (2.7), guarantee lepton number violation. These interactions result
in an effective d = 9 operator that violates lepton number by two units, given by Õ1 =

(ψQ)(ψuc)(HH)H [16, 76–78]. Smallness of neutrino mass can be loosely understood even
when the new particles have TeV scale masses, owing to a loop suppression factor and a
chiral suppression affecting Mν .

The induced neutrino mass matrix arising from Fig. 1 can be evaluated to be

Mν = (κ1 + κ2)(fTMuV
?y + yTV †Muf) , (2.49)

where Mu = diag{mu,mc,mt} is the diagonal up-quark mass matrix, and κ1, κ2 are re-
spectively the one-loop and two-loop factors given by

κ1 =
1

16π2
sin 2ϕ log

(
m2
X2

m2
X1

)
, (2.50)

κ2 ≈
1

(16π2)2

λ∆H3vµ

M2
. (2.51)

The leading contribution to Mν is the one-loop term proportional to κ1. In evaluating
this loop integral we have ignored the masses of the up-type quarks in relation to the
LQ masses. In Eq. (2.50) the parameter ϕ is the ω2/3 − ρ̄2/3 mixing angle given in Eq.
(2.17). Since the effective operator for Mν arising from the one-loop diagram is of the type
Od=7

eff = ψψHHH†H, which is of d = 7, one should also consider the lower dimensional
d = 5 operator Od=5

eff = ψψHH that can be induced at the two-loop level as shown in Fig. 1.
In the approximate expression for κ2 given in Eq. (2.51), the relevant mass scale is that of
the heaviest particle in the loop, denoted here byM , defined asM = max(mX1 ,mX2 ,m∆0),
withmX1,X2 being the physical masses of the charge-2/3 LQs (cf. Eq. (2.18)) andm∆0 being
the physical masses of the quadruplet (cf. Eq. (2.39)). When mX1,X2 � m∆0 , the ratio
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κ2/κ1 ∼ m2
∆0/(16π2v2), which becomes of order unity for m∆0 < 3 TeV or so. However,

as we will see later in Section 7, the R2 LQ is required to have a mass not larger than
about 1 TeV in order for it to explain the RD(?) anomaly. In this case the two-loop diagram
is negligible, and therefore, we only include the one-loop contribution in the neutrino fit
described in Section 7.2, although the κ2 term can be important in a more general setting.
The overall factor κ1 in Eq. (2.49) is a free parameter which needs to be of O(10−8) to
get the correct order of magnitude for the neutrino masses. Note that the Yukawa matrix
elements fij and yij must have at least some entries that are of order one in order to explain
the B-decay anomalies. κ1 ∼ 10−8 can be achieved by taking either the cubic coupling µ in
Eq. (2.7) or the induced VEV v∆ to be small. Both these choices are technically natural,
since if either of these parameters is set to zero, lepton number becomes a good symmetry.

We note that the same operator that leads to neutrino masses in this model also
induces an effective ∆-quadruplet coupling to the SM leptons. (Recall that ∆ cannot
couple to fermions at the tree level in the model.) This can be seen from partner diagrams
of Fig. 1, where the SU(2)L components are chosen differently. Ignoring small SU(2)L-
breaking effects, these couplings would all arise from the same effective operator (ψψH†∆).
Therefore, one can write these couplings as being proportional to Mν . Explicitly, we find
that the ∆++ coupling to leptons has the Yukawa coupling matrix given by

(Y∆++``)ij =

√
2√
3

(Mν)ij
v∆

, (2.52)

where the 1/
√

3 is a Clebsch-Gordan factor for the ∆++ component of the quadruplet in
the expansion of the (ψψH†∆) operator. Eq. (2.52) will play a crucial role in the collider
phenomenology of the quadruplet, as discussed in Section 8.

2.4 Yukawa Textures

In order to minimize the number of parameters in our numerical fit to RD, RD? , RK ,
RK? , (g− 2)µ, and the neutrino oscillation observables, while satisfying all flavor and LHC
constraints, we choose the following economical textures for the Yukawa matrices f ′, f and y
defined as in Eq. (2.6) with the first (second) index corresponding to quark (lepton) flavors:

f ′ =

 0 0 0

0 0 0

0 f ′32 f
′
33

 , f =

 0 0 0

0 f22 f23

0 f32 f33

 , (2.53)

y =

 0 0 0

0 y22 y23

y31 y32 0

 (Fit− I) , or y =

 0 0 0

0 y22 0

y31 y32 y33

 (Fit− II) . (2.54)

Our motivation for the above textures is as follows: Nonzero (f ′32, f32) can explain the
anomalous magnetic moment of the muon via chirally-enhanced top-quark loops. The cou-
plings (f ′33, f22, f23) are responsible for RD(?) , while (y22, y32) can explain RK(?) . Similarly,
the coupling f33 is required to suppress the lepton-flavor-violating (LFV) constraint from
chirally-enhanced τ → µγ, while simultaneously explaining (g−2)µ. The remaining param-
eters (y23 (33), y31) in Eq. (2.54) are needed to satisfy the six neutrino oscillation observables
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(∆m2
21, ∆m2

31, sin2 θ13, sin2 θ23, sin2 θ12, δCP). For more details, see Section 7. We also
note that the zeros in the coupling matrices of Eqs. (2.53)-(2.54) need not be exactly zero;
but they need to be sufficiently small so that the flavor changing processes remain under
control (cf. Section 5).

3 B-physics Anomalies

In this section, we present our strategy to reconcile the observed tension between experiment
and theory in the lepton flavor universality violating observables in the charged-current
decays B → D(?)`ν (with ` = e, µ, τ) and the neutral-current decays B → K(?)`+`− (with
` = e, µ) by making use of the R2 and S3 LQs.

3.1 Charged-current Observables

The relevant lepton universality violating ratios RD and RD? are defined as

RD(?) =
BR(B → D(?)τν)

BR(B → D(?)`ν)
(with ` = e, µ) . (3.1)

These observables have been measured by both BaBar [29, 30] and Belle [31–33] in the
B̄0 → D+(?)`−ν̄` decays, while LHCb has measured only the RD? parameter using both
B̄0 → D+?`−ν̄` [79] and B̄0 → D−?`+ν` decays [35]. Combining all these measurements,
the average of these ratios are found to be [38]:

RExp
D = 0.340± 0.027± 0.013 , (3.2)

RExp
D? = 0.295± 0.011± 0.008 , (3.3)

which induce tensions at the levels of 1.4σ and 2.5σ respectively with respect to the cor-
responding SM predictions [80–88] given by:

RSM
D = 0.299± 0.003 , (3.4)

RSM
D? = 0.258± 0.005 . (3.5)

Considering the RD and RD? total correlation of −0.38, the combined difference with
respect to the SM is about 3.08σ.

A related observable is the ratio RJ/ψ defined as

RJ/ψ =
BR(B → J/ψτν̄τ )

BR(B → J/ψ`ν̄`)
(with ` = e, µ) , (3.6)

which also shows a mild discrepancy of 1.7σ between the experimental measurement [34]

RExp
J/ψ = 0.71± 0.17± 0.184 , (3.7)

and the corresponding SM prediction [89–96]

RSM
J/ψ = 0.289± 0.01 . (3.8)
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However, the experimental uncertainty on this measurement is rather large at the moment,
and any new physics scenario that explains the RD(?) anomaly automatically explains the
RJ/ψ anomaly. Therefore, we will not explicitly discuss RJ/ψ in what follows.

In order to confront our model with the experimental data for the charged-current
processes, we shall consider LQ contributions to the flavor specific process b → cτ−ν̄.
Thus, only the numerator of Eq. (3.1) is modified by the new LQ interactions. To this
end, we consider the general low-energy effective Hamiltonian induced by SM interactions
as well as the R2 and S3 LQs, which is given by

Heff =
4GF√

2
Vcb

[
(τ̄Lγ

µντL) (c̄LγµbL) + g`V (µR) (τ̄Lγ
µν`L) (c̄LγµbL) + g`S(µR) (τ̄Rν`L) (c̄RbL)

+g`T (µR) (τ̄Rσ
µνν`L) (c̄RσµνbL)

]
+ H.c. , (3.9)

where the first term is the SM contribution, while the remaining terms correspond to new
physics contribution, with g`V,S,T being the Wilson coefficients defined at the appropriate
renormalization scale µR. As shown in Fig. 2, left panel, the ω2/3 component of the R2 LQ
mediates the b→ cτ−ν̄` semileptonic decay via a tree-level contribution. After integrating
out the R2 field, we obtain the following Wilson coefficients at the matching scale µR = mR2 :

g`S (µR = mR2) = 4g`T (µR = mR2) =
f2`f

′?
33

4
√

2m2
R2
GFVcb

, (3.10)

where ` = e, µ, τ correspond to the outgoing neutrino flavors νe, νµ, ντ respectively. These
Wilson coefficients are then run down in momentum to the B-meson mass scale in the
leading logarithm approximation, yielding [97]

gS(µR = mb) =

[
αs(mb)

αs(mt)

]− γs

2β
(5)
0

[
αs(mt)

αs(mR2)

]− γs

2β
(6)
0 gS(µR = mR2) , (3.11)

gT (µR = mb) =

[
αs(mb)

αs(mt)

]− γT

2β
(5)
0

[
αs(mt)

αs(mR2)

]− γT

2β
(6)
0 gT (µR = mR2), (3.12)

where β(nf )
0 = 11 − 2nf/3 is the running coefficient, with nf being the number of quark

flavors effective in the relevant momentum regime [98, 99]. γS and γT are anomalous
dimension coefficients given by γS = −8 and γT = 8/3. Thus, using αs(mZ) = 0.118,
which yields (using QCD running at four loops) αs(mb) = 0.2169, αs(mt) = 0.1074 and
αs(mR2) = 0.09 for our benchmark value of mR2 = 900 GeV, we obtain the following
renormalization factors:5

gS(µR = mb) = 1.596 gS(µR = mR2) , (3.13)

gT (µR = mb) = 0.855 gT (µR = mR2) . (3.14)

We see that the tensorial coupling gT becomes less important at µR = mb, with its value
given by gS(µR = mb) ≈ 7.56 gT (µR = mb) [101]. We also note that we have ignored
here the mixing between between the Wilson coefficients gS and gT , which is an excellent
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ρ4/3
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s

Figure 2: Feynman diagrams for the dominant LQ contributions to the b → cτ−ν̄ (left)
and b→ sµ−µ+ (right) transitions.

approximation, as these off-diagonal terms are much smaller than the diagonal terms [101].

The ρ1/3 component of the S3 LQ can also contribute in principle to b→ cτ ν̄` via the
Wilson coefficient g`V given by

g`V (µR = mS3) = − y3`(V
?y)?23

8m2
S3
GFVcb

. (3.15)

However, this contribution cannot accommodate RD(?) as the relevant Yukawa couplings are
highly constrained from flavor physics. Any nonzero y2` is subject to D0 − D̄0 mixing and
must be small (cf. Section 5.5), while LHC limits constrain both y31 and y32 (cf. Section 6).
Furthermore, the product of the Yukawa couplings y2` and y3`′ is strongly constrained by
processes such as B → Kνν̄. It is also worth mentioning that one can induce Wilson
coefficient g`V of Eq. (3.15) proportional to y3`y

?
33, in conjunction with CKM mixing. How-

ever, for ` = 3, this contribution has an opposite sign compared to the SM, and therefore
would require the new contribution to be twice as large as the SM one, bringing it to the
non-perturbative regime. For ` = 1 or 2, there is no interference with the SM term, which
would again require large non-perturbative values from the S3 contribution. Thus we shall
ignore these S3-induced contributions to RD(?) . In Section 7.1, we have shown two best
fit values of the Yukawa coupling matrices. For these choices of Yukawa couplings, shown
in Eqs. (7.3) and (7.4), we get negligible contribution to g`V = −5 × 10−5 for Fit I and
g`V = 6× 10−6 for Fit II from the S3 LQ, whereas the allowed 1σ range to explain RD(?) is
[0.072, 0.11]. Therefore, we will only focus on the R2 contribution to RD(?) induced through
the Wilson coefficients g`S and g`T . RD and RD? induced through the Wilson coefficients g`s
and g`T at µR = mb with ντ in the final state are approximately given by [102]

RD ' RSM
D

(
1 + 1.54 Re[gτS ] + 1.09 |gτS |2 + 1.04 Re[gτT ] + 0.75 |gτT |2

)
, (3.16)

RD? ' RSM
D?
(
1− 0.13 Re[gτS ] + 0.05 |gτS |2 − 5.0 Re[gτT ] + 16.27 |gτT |2

)
, (3.17)

where the numerical coefficients arise from the relevant form factors. These expressions
are applicable for νe,µ final states as well, but by setting the Re[gτS ] and Re[gτT ] terms in
Eqs. (3.16) and (3.17) to zero. This is because the new physics and the SM contributions
interfere only when ν` = ντ .

5The running of gS is identical to that of the b-quark mass, see for e.g., Ref. [100].
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The required values for the Wilson coefficient to get a simultaneous fit for both RD and
RD? is depicted in Fig. 3. We make use of Flavio package [103] that has NNLO QCD and
NLO electroweak corrections coded in it, in generating Fig. 3. The left panel shows the 1σ

allowed range of RD (light blue band) and R?D (light coral band) in the complex plane of gτS
with ge,µS = 0, i.e., with f23 6= 0 and f21 = f22 = 0 in Eq. (3.10). The intersection between
the two bands, highlighted by the purple shaded regions, represents the allowed region that
satisfies both anomalies. From this plot, we find that Im(gτS) must be nonzero, as first
noted in Ref. [104], while Re(gτS) should be nearly zero to fit RD(?) . From Eqs. (3.16) and
(3.17) it is clear that any nonzero Re[gτs ] would pull RD and R∗D in opposite directions,
in contradiction with experimental values (cf. Eqs. (3.2) and (3.3)), which is what forces
Re(gτS) ' 0. In the right panel, we set Re(gτS) = 0, i.e., we set gτS (or, equivalently, the f23

coupling) to be purely imaginary, and switch on the f22 coupling as well, as is the case with
our texture in Eq. (2.53). Again, the 1σ allowed ranges for RD and RD? are shown by the
light blue and light coral bands, respectively. The same result is obtained by replacing f22

with f21, i.e., by using geS instead of gµS . In our numerical fit to RD(?) in Section 7, we fix
mR2 (f22) close to its minimum (maximum) allowed value from LHC constraints (discussed
in Section 6), and find a neutrino mass fit for f23 and f ′33 such that the gµ,τS values are
within the allowed region for both RD and RD(?) shown in Fig. 3.

The same effective Hamiltonian (3.9) relevant for RD(∗) also gives rise to the exclusive
decay Bc → τν. Within our model, the branching ratio for this decay is given by [94, 105]:

BR(Bc → τν) = 0.023 |1− 4.068 gS(µR = mBc)|2 . (3.18)

Here we have used τ [Bc] = (0.507±0.009) ps, fBc = 0.43 GeV, and mBc = 6.2749 GeV. The
branching ratio BR(Bc → τν) has not been measured experimentally. Thus, Bc lifetime
needs to be compared with theoretical calculations [106–110]. With the benchmark fits
shown in Section 7, we obtain branching ratio at the level of 12 %, which is consistent with
the limit quoted in Refs. [102, 105, 111, 112].

3.2 Neutral-current Observables

The relevant lepton flavor universality violation ratios RK and RK? are defined as

RK =
BR(B+ → K+µ+µ−)

BR(B+ → K+e+e−)
, RK? =

BR(B0 → K?0µ+µ−)

BR(B0 → K?0e+e−)
. (3.19)

The latest LHCb measurement of RK in the q2 ∈ [1.1, 6] GeV2 region (q2 is the invariant
mass of the lepton pair in the decays) is [36]6

RLHCb
K = 0.846+0.060+0.016

−0.054−0.014 , (3.20)

which shows a discrepancy at the level of 2.6σ from its SM prediction [39, 114]

RSM
K = 1.0003± 0.0001 . (3.21)

6For the recent update, see Ref. [113].
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Figure 3: Left: The 1σ allowed ranges for RD and RD? in the complex plane of gτS with
ge,µS = 0. The purple shaded regions correspond to the allowed region that explains both
RD and RD? . Right: The 1σ allowed ranges for RD and RD? in the plane of (gτS , g

µ
S) (with

geS = 0). The same result is obtained by replacing gµS with geS .

Analogously, the LHCb Collaboration has also measured the RK? ratio in two bins of
low-q2 region [37]:

RLHCb
K? =

{
0.660+0.110

−0.070 ± 0.024 q2 ∈ [0.045, 1.1] GeV2 ,

0.685+0.113
−0.069 ± 0.047 q2 ∈ [1.1, 6.0] GeV2 .

(3.22)

which have respectively 2.2σ and 2.4σ deviations from their corresponding SM results [40]:

RSM
K? =

{
0.92± 0.02 q2 ∈ [0.045, 1.1] GeV2 ,

1.00± 0.01 q2 ∈ [1.1, 6.0] GeV2 .
(3.23)

In addition to these LHCb results, Belle has recently announced new measurements on both
RK [115] and RK? [116], but these results have comparatively larger uncertainties than the
LHCb measurements on RK? .

The effective Hamiltonian describing the new physics contribution to the neutral-
current process b→ sµ+µ−, in presence of S3 LQ, is given by

Heff = −4GF√
2
VtbV

?
ts

e2

(4π)2

[
Cµµ9 (s̄γµPLb)(µ̄γ

µµ) + Cµµ10 (s̄γµPLb)(µ̄γ
µγ5µ)

]
+ H.c. , (3.24)

with Cµµ9 and Cµµ10 being the Wilson coefficients. Here we have assumed that the new
physics couplings to electrons are negligible. We focus on new physics contributions in the
b → sµ+µ− channel, i.e. modifying only the numerator of Eq. (3.19). This is motivated
by the fact that an explanation of RK(?) by modifying the b → sµ+µ− decay provides a
better global fit to other observables, as compared to modifying the b→ se+e− decay [42].
It is known that both RK and RK? can be explained by either a purely vectorial Wilson
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coefficient Cµµ9 < 0, or a purely left-handed combination, Cµµ9 = −Cµµ10 < 0 [47], with the
latter combination performing better in the global analysis due to a ∼ 2σ tension in the
BR(Bs → µµ) decay which remains unresolved in the Cµµ9 scenario [42]. In our model,
the dominant contribution to b→ sµ+µ− comes at tree level via the mediation of the ρ4/3

component of the S3 LQ, as shown in Fig. 2, right panel. After integrating out the S3 field,
one can extract the Wilson coefficient for b→ sµ−µ+ decay as:

Cµµ9 = −Cµµ10 =
πv2

VtbV
?
tsαem

y22y
?
32

m2
S3

. (3.25)

The required best fit values of the Wilson coefficients at µ = mb are C9 = −C10 = −0.53,
with the 1σ range being [−0.61,−0.45] [42]. In our numerical fit, y22 and y32 are fixed by
the neutrino mass fit (up to an overall factor), which is then used to fix mS3 such that the
best-fit value of C9 = −C10 is obtained from Eq. (3.25).

Note that the R2 LQ can also give rise to b → s`+`− transition at tree-level with the
corresponding Wilson coefficient given by:

Cµµ9 = Cµµ10 = − πv2

VtbV
?
tsαem

f ′22f
′?
32

m2
R2

. (3.26)

There is no acceptable fit to RK(∗) with C9 = C10. Thus, taking the product of couplings
f ′2α and f ′3α to be zero (or very small), one can suppress R2 contribution to RK(?) . On the
other hand, a loop-level contribution to b→ s`+`− transition can in principle accommodate
RK(?) , but not simultaneously with RD(?) , due to the stringent limits from τ → µγ [117].
In our numerical fit, therefore, the R2 contribution will not play a role in explaining RK(?) .

4 Muon Anomalous Magnetic Moment and Related Processes

Virtual corrections due to the LQ states can modify the electromagnetic interactions of
charged leptons. The contribution from scalar LQ to anomalous magnetic moments has
been extensively studied [118–120]. In particular, the ω5/3 component of the R2 LQ can
explain the muon (or electron) anomalous magnetic moment, as it couples to both left-
handed and right-handed fermions, see Eq. (2.6). The new contribution to the anomalous
magnetic moment arising from ω5/3 LQ can be written as [118, 121]:

∆a` = − 3

16π2

m2
`

m2
R2

∑
q

[ (
|fq`|2 + |(V ?f ′)q`|2

)
(QqF5(xq) +QSF2(xq))

−mq

m`
Re[fq` (V ?f ′)?q`] (QqF6(xq) +QSF3(xq))

]
(4.1)

where Qq = 2/3 and QS = 5/3 are respectively the electric charges of the up-type quark
and the LQ propagating inside the loop, as shown in Fig. 4.7 Here xq = m2

q/m
2
R2

and

7The last term in Eq. (4.1) appears with a negative sign, as f and f ′ in the Lagrangian have opposite
signs, see Eq. (2.6).
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Figure 4: Chirally-enhanced contribution from the R2 LQ to the muon anomalous mag-
netic moment.

we have ignored terms proportional to m2
`/m

2
R2

in the loop integral. The loop functions
appearing in Eq. (4.1) are:

F2(xq) =
1

6(1− xq)4

(
1− 6xq + 3x2

q + 2x3
q − 6x2

q lnxq
)
, (4.2)

F3(xq) =
1

(1− xq)3

(
1− x2

q + 2xq lnxq
)
, (4.3)

F5(xq) =
1

6(1− xq)4

(
2 + 3xq − 6x2

q + x3
q + 6xq lnxq

)
, (4.4)

F6(xq) =
1

(1− xq)3

(
−3 + 4xq − x2

q − 2 lnxq
)
. (4.5)

Note that the first term in Eq. (4.1) is the LQ contribution to the anomalous magnetic
moment without chiral enhancement, whereas the second term is the chirally-enhanced
one, which in our case will be proportional to the top-quark mass.

4.1 Difficulty with Explaining ∆ae

A discrepancy has also been reported in the anomalous magnetic moment of the electron,
denoted as ∆ae, with a somewhat lower significance of 2.4σ [122]. The signs of ∆ae and ∆aµ
are opposite. We have investigated whether ∆ae can also also explained in our framework,
but found that the model does not admit a simultaneous explanation of both anomalies, as
introducing couplings of the type fαe would lead to a chirally-enhanced contribution to the
decay µ→ eγ, which is highly constrained. One can attempt to explain both anomalies by
simply avoiding chirally-enhanced `i → `jγ decays by adopting a redefinition of V ?f ′ ≡ f ′
in Eq. (2.6). However, one introduces VCKM in the down sector leading to strong constraints
arising from processes such as KL → e±µ∓, KL → `+`−, and K − K̄ mixing.

A logical option to explain ∆ae would be to choose the Yukawa coupling f21 to be of
O(1), and rely on the charm-quark loop (proportional to f21f

′
21), while being consistent

with all the flavor constraints and RD(∗) . However, it turns out that the required values of
the Yukawa couplings in this case have been excluded by the latest LHC dilepton constraints
on LQ Yukawa couplings and masses from the non-resonant t-channel process pp→ `+`−.
These constraints are discussed later in Section 6, and are summarized in Fig. 8. Therefore,
simultaneous explanation of the electron and muon anomalous magnetic moments, together
with RD(?) , is not possible in our setup. Thus, we focus on the parameter space required to
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Figure 5: Feynman diagrams for the LQ contribution to h → µ+µ− (and also τ+τ−) in
our model.

explain ∆aµ, but not ∆ae, as the former is the more persistent and significant discrepancy.
In particular, we set fαe = f ′αe = 0 in Eq. (2.53) to avoid any ∆ae contribution for our
numerical fits discussed in Section 7.

4.2 Modified Higgs Decays to Lepton Pairs

The same R2 LQ interactions that lead to the chirally-enhanced mt/mµ contribution to
the muon g − 2 in Fig. 4 will also induce a loop-level correction to the decay of the SM
Higgs boson h→ µ+µ−. The Feynman diagrams are shown in Fig. 5. In addition to these
diagrams which modify the Yukawa couplings directly, one should also take into account
correction to the muon mass arising from the R2 interactions. The relevant diagram is
obtained from Fig. 5 by removing the Higgs boson line. The significance of the LQ diagrams
in modifying h → µ+µ− decay has been noted recently in Ref. [123]. We have carried out
this calculation independently, and found full agreement with the results of Ref. [123]. It
is sufficient to compute the coefficient of the d = 6 operator (ψµL µR)H(H†H) which is
finite, as any loop correction to the d = 4 operator (ψµL µR)H will only renormalize the
SM operator. The modification to the branching ratio BR(h→ µ+µ−) is found to be

µµ+µ− ≡
BR(h→ µ+µ−)

BR(h→ µ+µ−)SM

=

∣∣∣∣∣1− 3

8π2

mt

mµ

f32(V ?f ′)?32

m2
R2

{
m2
t

8
F
(
m2
h

m2
t

,
m2
t

m2
R2

)
+ v2

(
λHR − λ′HR

)}∣∣∣∣∣
2

. (4.6)

The loop function F(x, y) can be expanded to first order in y = m2
t /m

2
R2

(so that the
coefficient of the d = 6 operator is picked out), and also to the required order in x = m2

h/m
2
t .

Although m2
h/m

2
t ∼ 1, the actual expansion parameter is some factor k times this ratio,

with k ∼ 1/10, leading to a rapidly converging series. The function F(x, y) to third order
in m2

h/m
2
t is found to be

F(x, y) = −8 +
13

3
x− 1

5
x2 − 1

70
x3 + 2(x− 4) log y . (4.7)

For our benchmark fits (see Eqs. (7.3) and (7.4)) withmR2 = 0.9TeV, the model predictions
for µµ+µ− as a function of the quartic coupling combination (λHR−λ′HR) is shown in Fig. 6.
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Collider µµ+µ− µτ+τ−

HL-LHC [127] 9.2% 3.8%
HE-LHC [127] 3.4% 2.2%
ILC (1000) [128] 12.4% 1.1%
CLIC (3000) [129] 11.6% 1.8%

CEPC [130] 17.8% 2.6%
FCC-hh [131] 0.82% 0.88%

Table I: Expected relative precision of the Higgs signal strengths for future colliders. The
numbers shown here are for the kappa-0 scenario of Ref. [126].

These predictions are essentially the same for the two benchmark points, so we present our
results for Fit I (cf. Eq. (7.3)) in Fig. 6.

The coupling λ′HR is responsible for the mass splitting between the ω2/3 and ω5/3

components of the R2 LQ (cf. Eqs. (2.13) and (2.19))), which yields a positive contribution
to the electroweak ρ-parameter:

δρ ' NcGF

8
√

2π2
(∆m)2 , (4.8)

where Nc = 3 for color-triplets like R2. Using the current global-fit result for ρ0 = 1.00038±
0.00020 [1] (with ρ0 = 1 in the SM) and allowing for 3σ uncertainty, we obtain an upper
bound on the mass splitting ∆m ≤ 55.9 GeV (assuming that v∆ ≤ few MeV, adopted in our
collider physics analysis), which yields a corresponding bound on |λ′HR| ≤ 1.66. As discussed
in Section 2.2.2, a necessary condition for the Higgs potential to be bounded from below
(cf. Eq. (2.45)) is that for negative values of (λHR − λ′HR), its magnitude should be below
about 1.33, assuming that the magnitudes of all quartic couplings lie below

√
4π to satisfy

perturbativity. Using the same constraint, we would then have −1.33 ≤ (λHR−λ′HR) ≤ 5.20

as the preferred range, which is what we shall choose for our numerical study.
Our model prediction for µµ+µ− is shown in Fig. 6 by the solid blue line. We see that

the deviation from the SM predictions in this branching is typically at the (2-6)% level.
This is fully consistent with the current LHC measurements: µATLAS

µ+µ− = 1.2 ± 0.6 [124]
and µCMS

µ+µ− = 1.19+0.41
−0.39(stat.)+0.17

−0.16(syst.) [125]. For comparison, we quote in Table I the
future collider sensitivities for µµ+µ− from Ref. [126], and the relevant ones are also shown
in Fig. 6 by the horizontal dotted lines. Thus, our predictions for the modified h→ µ+µ−

signal strength can be tested at the HL-LHC, HE-LHC, as well as at the FCC-hh colliders.
It is also worth pointing out that the Yukawa textures needed to simultaneously explain

B-anomalies, muon g − 2, and neutrino mass require the f33 entry to be nonzero, leading
to a new contribution to h → τ+τ−. This is also shown in Fig. 6 by the solid red line
for our benchmark points. Our predictions for µτ+τ− ≡ BR(h→τ+τ−)

BR(h→τ+τ−)SM
are consistent with

the current LHC measurements: µATLAS
τ+τ− = 1.09+0.18

−0.17(stat.)+0.26
−0.22(syst.)+0.16

−0.11(theory syst.)

[132] and µCMS
τ+τ− = 0.85+0.12

−0.11 [133]. For comparison, we quote in Table I the future collider
sensitivities for µτ+τ− from Ref. [126]. Some of these are also shown in Fig. 6 by the
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Figure 6: Branching ratios of Higgs to dimuon (blue) and ditau (red) decays with respect
to the SM predictions in our model as a function of the quartic coupling parameter (λHR−
λ′HR). The horizontal dotted (dot-dashed) lines show the sensitivities of future colliders
for the µ+µ− (τ+τ−) channel. The shaded regions in yellow and blue are excluded by
perturbativity plus electroweak precision data, and by perturbativity plus boundedness of
the potential constraints, respectively.

horizontal dot-dashed lines. Thus, our predictions for the modified h → τ+τ− signal
strength are potentially detectable at future colliders.

As can be seen from Fig. 6, a characteristic feature of the model in the allowed pa-
rameter space accessible to future colliders is that while the shift in the branching ratio
of h → µ+µ− is downward compared to the SM, it is upward for the branching ratio of
h→ τ+τ−.

4.3 Muon and Neutron Electric Dipole Moments

LQ interactions can also lead to electric dipole moments (EDM) of the charged leptons
(as well as quarks). Existing limits from electron and muon EDMs would place strong
constraints on the imaginary part of the Yukawa couplings of the R2 LQ [134, 135]. These
constraints are significant only when the LQ couples to both left- and right-handed charged
leptons, as depicted in Fig. 4. The lepton EDM arising from these diagrams is given by [118]

|d`| =
3e

32π2

∑
q

mq

m2
R2

∣∣Im[−fq`(V ?f ′)?q`] (QqF6(xq) +QSF3(xq))
∣∣ . (4.9)

In particular, the constraint arising from electron couplings is quite stringent due to the
ACME limit |de| ≤ 1.1×10−29 e.cm [136]. However, since our model does not give additional
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contribution to (g−2)e, we can simply avoid the electron EDM limit by setting the relevant
couplings fαe = f ′αe = 0 in Eq. (2.53). Furthermore, the muon EDM arising from the CKM
phase, and from the phases in the matrices P and Q of Eq. (2.4) when varied in their
full range [0, 2π], is found to be at most 3 × 10−22 e-cm, which is well below the current
experimental limit of |dµ| ≤ 1.9 × 10−19 e-cm [137], but may be potentially measurable in
future experiments [19, 138, 139] with high-intensity muon sources [140].

The large Yukawa couplings necessary to explain anomalies in b→ cτν decay can also
lead to EDM of the tau lepton dτ , which is closely related to Im(gτs ) appearing in the RD∗
calculation in Eq. (3.10). It is found to be at most 4.7 × 10−21 e-cm when the phases in
the matrices P and Q of Eq. (2.4) are varied in their full range [0, 2π], which is below the
current experimental limit of |dτ | ≤ 2.5× 10−17 e-cm [141].

Similarly, the same Yukawa couplings that lead to tau EDM can also lead to charm
quark EDM dc proportional to Im(gτs ). The relevant expression is obtained by replacing
mq by mτ , xq by x`, Qq by Q` = −1 and QS by −5/3 in Eq. (4.9). It is found to be at
most 3.1 × 10−22 e-cm. It is below the current experimental limit of |dc| ≤ 1.5 × 10−21

e-cm [142], obtained from the limit on neutron EDM, dn < 3.0 × 10−26 e-cm [143]. There
is also a chromoelectric dipole moment of the charm quark (d̃c), arising from diagrams
where the photon emitted by the leptoquark is replaced by a gluon. This contribution in
the model is obtained from Eq. (4.9) by keeping only the second term, and making the
substitutions mentioned above. We find that d̃c is at most 2.1×10−23gs-cm, which is below
the experimental limit, |d̃c| < 1.0× 10−22 cm [142]. Improving the neutron EDM limit by
one order of magnitude can therefore directly test the leptoquark explanation of the RD∗
anomaly.

5 Low-energy Constraints

This section summarizes the most stringent low-energy flavor constraints that are relevant
for our model.

5.1 `α → `βγ

These LFV radiative decays arising from LQ loops set some of the most stringent constraints
on the couplings of the LQs to µ and τ . As can be seen from Eq. (2.6), the R2 LQ has both
left- and right-handed couplings to charged leptons via the f and f ′ couplings; thus, it can
lead to lepton decays both with and without chiral enhancement. The S3 LQ on the other
hand, only couples to left-handed charged leptons, so it cannot induce `α → `βγ processes
with chiral enhancement.

The decay width for the `α → `βγ mediated by LQ loops is given by [119, 121, 144]

Γ(`α → `βγ) =
αem(m2

`α
−m2

`β
)3

4m3
`α

∑
q

(
|σαβqR |2 + |σαβqL |2

)
. (5.1)

The amplitudes σR,L arising from the exchange of R2 LQ can be written as

σαβqR =
3

32π2m2
R2

{[
m`αfqαf

?
qβ +m`β (V ?f ′)qβ(V ?f ′)?qα

] [
QqF5(xq) +QSF2(xq)

]
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−mqfqi (V ?f ′)?qi

[
QqF6(xq) +QSF3(xq)

]}
, (5.2)

σαβqL =
3

32π2m2
R2

{[
m`α(V ?f ′)qα(V ?f ′)?qβ +m`βfqβf

?
qα

] [
QqF5(xq) +QSF2(xq)

]
−mq(V

?f ′)qi f
?
qi

[
QqF6(xq) +QSF3(xq)

]}
, (5.3)

with the loop functions Fi(xq) defined in Eqs. (4.2)-(4.5). Here we generically denote the
masses of both 2/3 and 5/3 components of R2 as mR2 , assuming them to be degenerate.
Note that the amplitude σqL can be obtained from σqR with the substitution f ↔ V ?f ′. The
last terms in Eqs. (5.2) and (5.3) which are proportional to mq are the chirally-enhanced
contributions. Similarly, one can obtain the S3 LQ contribution by replacing the f couplings
in the first term of Eq. (5.2) by y, assigning proper charges for the quark (Qq) and scalar
LQ (QS), and dropping the f ′ terms in Eq. (5.2).

In the limit m`β → 0, which is a very good approximation for both µ→ eγ and τ → `γ

(with ` = e, µ), and taking into account the ucT feω5/3, uT (V ?f ′)ecω−5/3, and dT yeρ4/3

terms in Eq. (2.6), the full expression for `α → `βγ in our model can be written as

Γ =
9m5

ααem

16(16π2)2

 ∑
q=u,c,t


∣∣∣∣∣fqβf?qα2m2

R2

+

(
(V ?f ′)qαf

?
qβ + fqα(V ?f ′)?qβ
3m2

R2

)
mq

mα
(1 + 4 log xq)

∣∣∣∣∣
2

+

∣∣∣∣∣(V ?f ′)qβ(V ?f ′)?qα
2m2

R2

+

(
(V ?f ′)qαf

?
qβ + fqα(V ?f ′)?qβ
3m2

R2

)
mq

mα
(1 + 4 log xq)

∣∣∣∣∣
2


+
∑

q′=d,s,b

∣∣∣∣∣yq′βy?q′α3m2
S3

∣∣∣∣∣
2
 . (5.4)

Here we have not included the S3 contribution from the ūcLeLρ
1/3 term, because it is sup-

pressed compared to the dTLyeLρ
4/3 contribution because of smaller electric charge, as well

as due to a CKM-suppression factor and by a Clebsch factor of 2, as can be seen from
Eq. (2.6). Similarly, the ω2/3 component of the R2 LQ gives sub-dominant contribution
proportional to m2

b/m
2
R2

compared to the ω5/3 component, owing to a GIM-like cancella-
tion [64]; so we have not included it in Eq. (5.4). We have displayed the constraint on the
Yukawa coupling f from this process in Table II.

5.2 µ− e Conversion
µ − e conversion in nuclei provides a stringent constraint on the product of the Yukawa
couplings in our model. The couplings of the S3 LQ, in conjunction with CKM rotation, is
subject to the LFV process from coherent µ− e conversion in nuclei. The branching ratio
for this conversion, normalized to muon capture rate, is given by. [16, 64, 147]:

BR(µN → eN) '
|~pe|Eem3

µα
3
emZ

4
eff F

2
p

64π2ZΓN
(2A− Z)2

∣∣∣∣∣(V ?y)11(y?V )12

2m2
S3

∣∣∣∣∣
2

(5.5)
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Process Experimental limit Constraint

µ→ eγ BR< 4.2× 10−13 [145] |fq1f?q2| < 4.82× 10−4
(
mR2
TeV

)2

τ → eγ BR< 3.3× 10−8 [146] |fq1f?q3| < 0.32
(
mR2
TeV

)2

τ → µγ BR< 4.4× 10−8 [146] |fq2f?q3| < 0.37
(
mR2
TeV

)2

Table II: Constraints on the Yukawa couplings as a function of LQ mass from `α → `βγ

decay. Constraints on f ′ couplings are obtained by replacing f with (V ?f ′) for the ω5/3

LQ. Constraints on the S3 Yukawa coupling y (V ?y) arising from d̄cLeLρ
4/3 (ūcLeLρ

1/3)
are weaker by a factor of 3/2 (6) in comparison to those shown here for the f couplings,
suppressed by smaller electric charge and Clebsch factor of 2, as can be seen from Eq. (2.6).

where ΓN is the muon capture rate of the nucleus, ~pe and Ee are respectively the momentum
and energy of the outgoing electron, A, Z, and Zeff are atomic number, mass number and
effective atomic number of the nucleus, whereas Fp is the nuclear matrix element. The
experimental limit from gold nucleus provides the most stringent bound [148] of BR <

7.0× 10−13 leading to a constraint on the Yukawa coupling:∣∣∣(V ?y)11(y?V )12

∣∣∣ < 8.58× 10−6
(mS3

TeV

)2
. (5.6)

5.3 Z → ττ Decay

Modifications of Z−boson decays to fermion pairs through one-loop radiative corrections
mediated by LQs provide another important constraint on the Yukawa couplings of the LQ
fields in the model. We focus our study on the leptonic Z boson couplings as they are the
most precisely determined by experiments [1, 149]. Within our model, we require the f ′33

coupling to be of O(1) to explain the RD(?) anomaly. Thus we focus on the Z → ττ decay
which provides a constraint of f ′33. The shift in the coupling of τR with the Z boson arising
through loop corrections involving the R2 LQ is given by [150]

Re[δgττR ] =
3|f ′33|2
16π2

[
1

2
xt(1 + log xt)−

xz
12

{
log xt (2 + 8/3 sin2 θW ) + (4 + 10/3 sin2 θW )

}
+

xz
108

{
(−3 + 4 sin2 θW ) + log xz(18 + 12 sin2 θW )

}]
. (5.7)

Here we have used the definitions xt =
m2
t

m2
R2

and xz =
m2
Z

m2
R2

, and kept terms only to linear

orders in these parameters. Using the experimental results on the effective coupling obtained
by the LEP collaboration [149], Re[δgττR ] ≤ 6.2× 10−4, we obtain the 1σ (2σ) limit on the
Yukawa coupling as

|f ′33| ≤ 0.835 (1.18) (5.8)

for the LQ mass of 900 GeV. Within the context of our model and to find a good fit to RD(?) ,
we allow this coupling to be in the 2σ range. A similar constraint on f ′32 can be derived,
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|f ′23| ≤ 1.7 from Z → µ+µ− decay, which is however much weaker than the constraint that
one would obtain from τ → µγ, which requires |f ′23f

′
33| ≤ 0.3.

5.4 Rare D-meson Decays

Rare meson decays also put important constraints on the model parameters. The relevant
decays are D0 → µ+µ− and D+ → π+µ+µ−.8. For effective Lagrangian for these decays
mediated by the R2 and S3 LQs is given by (cf. Eq. (2.6))

LY ⊃ uT (V ?f ′)ecω−5/3 + uT (V ?y)e
ρ1/3

√
2

+ H.c. (5.9)

There is also a contribution from the f Yukawa, but it does not come with VCKM rotation,
so we do not need to consider this contribution for our choice of f1α = 0, while deriving the
partial decay width for the decay D0 → µµ. The decay width for D0 → µµ proportional
to the Yukawa couplings f ′ and y is given by

ΓD0→µµ =
|VusV ?

cs|2m2
µf

2
DmD

128π

(
|f ′22|4
m4
R2

+
|y22|4
4m4

S3

)(
1−

4m2
µ

m2
D

)1/2

. (5.10)

From Eq. (5.10), one can obtain the constraint on f ′22 using the experimental limit BR(D0 →
µ+µ−) < 6.2× 10−9 [1]:

|f ′22| < 0.564
(mR2

TeV

)
. (5.11)

The semileptonic decayD+ → π+µµ is mediated by the same term as shown in Eq. (5.9)
and we implement the calculation of Ref. [16] to obtain the following decay rate:

ΓD+→π+µµ =

(
|f ′22|4
m4
R2

+
|y22|4
4m4

S3

)[
fD
fπ
gD?Dπ|VusV ?

cs|
]2

1

64π3mD
F , (5.12)

where the function F is defined as

F =
m2
D?

12m2
D

[
−2m6

D + 9m4
Dm

2
D? − 6m2

Dm
4
D? − 6

(
m2
D? −m2

D

)2
m2
D? log

(
m2
D? −m2

D

m2
D?

)]
.

(5.13)
The numerical value of the function F ' 2.98 GeV. Using fD = 212 MeV, fπ = 130 MeV,
gD?Dπ = 0.59 and the experimental upper limits on the corresponding branching ratio
BR(D+ → π+µµ) < 7.3× 10−8, we obtain bounds on the f ′ coupling as

|f ′22| < 0.293
(mR2

TeV

)
. (5.14)

Similarly, one can find the constraints on Yukawa coupling y22, which is weaker by a factor
of
√

2 in comparison to f ′22 shown in Eqs. (5.11) and (5.14), owing to a Clebsch factor.
8In general, the decays B → Kνν and K → πνν would provide more stringent constraint on the LQ

Yukawa couplings [48, 151]. However, these bounds are avoided in our model by the choice of Yukawa
coupling matrices
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5.5 D0 − D̄0 Mixing

Both R2 and S3 LQs can give rise to D0−D̄0 mixing via box diagrams. Explicit calculation
of the box diagram involving R2 LQ gives [152]

∆mD =
2

3
B1(µ)mDf

2
DC
′
1 , (5.15)

where fD ' 212 MeV is the D meson decay constant, and C ′1 is the Wilson coefficient given
by

C ′1 (µ = 1 TeV) =
1

128π2

(f1αf
?
2α)2

m2
R2

. (5.16)

Here α is the lepton flavor that runs in the box diagrams, which is summed. The renor-
malized Wilson coefficients C ′1 [153–155] and the bag factor B1 [156], evaluated at µR = 3

GeV scale, are given by

C ′1 (µR = 3 GeV) ≈ 0.8C ′1(µR = 1 TeV) , B1(µR = 3 GeV) = 0.75 . (5.17)

From the experimental value |∆mD| = 0.95+0.41
−0.44 × 1010 s−1 [1, 157], we obtain the limit

|f1αf
?
2α| < 0.0187

(mR2

TeV

)
. (5.18)

The same constraint applies to the f ′ coupling as well. However, in addition to the limit
quoted in Eq. (5.18), the Yukawa f ′ is also supplemented by Cabbibo rotation, as seen from
Eq. (2.6). Thus, for any nonzero entry in the up-sector f ′1α or charm-sector f ′2α, a nonzero
D0 − D̄0 mixing will be induced by the (V ?f ′) term in Eq. (2.6). Consequently, we get a
bound on the individual couplings:

|f ′1α|, |f ′2α| < 0.305
(mR2

TeV

)1/2
. (5.19)

Similarly, one can obtain a limit on the individual Yukawa y as well, since a nonzero y1α

(or y2α) would result in a box diagram contribution to D0− D̄0 mixing, owing to the CKM
mixing. This has contributions from u− ν term in addition to the u− e term in Eq. (2.6).
Thus for any nonzero entry in the up-sector or charm-sector in the Yukawa matrix y, the
bound is slightly stronger than that shown in Eq. (5.19):

|y1α|, |y2α| < 0.288
(mS3

TeV

)1/2
. (5.20)

It is worth mentioning that the Yukawa couplings y3α and f ′3α also contribute to D-meson
mixing. However, these contributions can be safely ignored in the context of our model as
they are strongly suppressed by CKM mixing angles by Vcb and Vub.

6 LHC Constraints on Leptoquarks

At the LHC, the R2 and S3 LQs can be pair-produced through gg and qq̄ fusion processes,
or can be singly produced in association with charged leptons via s- and t- channel quark-
gluon fusion processes. The pair production of the LQs at the LHC is solely dictated by
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the LQ mass, irrespective of their Yukawa couplings, whereas the single production rate
depends on both mass and the Yukawa coupling of the LQ. Therefore, the single-production
limits are relevant only for larger Yukawa couplings ∼ O(1) [16, 158] to the first and second-
generation quarks. For the benchmark points studied in Section 7, the Yukawa couplings
to the first and second generation quarks are not too large (< 1), hence the collider bounds
from single-production are not so significant compared to the limits from QCD-driven LQ
pair-production. However, we will show in Section 6.2 that there are stringent limits on the
Yukawa couplings of the LQ from the the dilepton processes pp→ `+i `

−
j .

6.1 Pair-production Bounds

Once pair-produced at the LHC, each LQ will decay into a quark and a lepton, and the
collider limits on these LQ masses depend on the branching ratios to different decay modes.
To impose the bound on the LQ masses, we use the upper limits on the cross-sections
from dedicated searches for pair production of first [159, 160], second [160–162] and third
generation [162–164] LQs at the LHC and recast them in the context of our model, following
the analysis in Ref. [16]. For this purpose, we first implement our model file in FeynRules
package [165] and then analyze the signal cross sections using MadGraph5aMC@NLO [166],
which is then compared with the experimental upper limits on the cross section times the
branching ratio, assuming that the cut efficiencies are similar in both cases. Our results
for the R2 LQ are shown in Fig. 7, where the black, red, green, blue, cyan, purple, orange,
gray, and brown solid colored lines respectively represent the current bounds from the je,
jµ, bτ , tτ , tν, jν, ce, cµ, and jτ decay mode of the LQ. Here the branching ratio of each
decay mode is varied from 0 to 1 individually without specifying the other decay modes,
which compensate for the missing branching ratios to add up to one. As expected, the
bounds on the first and second-generation LQs are much more stringent, as compared to
the third-generation case. We will use this information to our advantage while choosing our
benchmark points in Section 7.

In particular, for the Yukawa ansatz of Eqs. (2.53), the dominant decay modes of the
R2 LQ are:

ω2/3 f−→ cν̄µ, cν̄τ , tν̄µ, tν̄τ ,

ω2/3 f ′−→ bτ+, bµ+ ,

ω5/3 f−→ cµ+, cτ+, tµ+, tτ+ ,

ω5/3 f ′−→ tτ+, tµ+ .

(6.1)

The branching ratios for these decay modes corresponding to the fits presented in Eqs. (7.3)
and (7.4) are shown in Table. III. As we can see, the ω2/3 component of the R2 LQ domi-
nantly decays to jν and bτ final states, whereas the ω5/3 component mostly decays to tτ ,
and jτ final states. Note that the mass of the ω2/3 component cannot be very different
from that of the ω5/3 component due to the electroweak precision constraints, and hence,
we consider them to be almost degenerate in our analysis. Given the branching ratios in
Table. III, the bb̄τ+τ− final state gives the most stringent constraint on the R2 LQ mass,
which is required to be larger than 859 GeV, as can be seen from Fig. 7.
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Figure 7: Summary of the updated direct limits from LQ pair-production searches at the
LHC for different quark-lepton decay channels of the R2 LQ. The branching ratio for a
specific decay channel of the LQ as indicated in the figure is varied from 0 to 1, while the
other decay channels not specified compensate for the missing branching ratios to add up
to one. These limits are independent of the LQ Yukawa coupling.

Model Fit
Branching ratio

ω2/3 ω5/3

νj bτ bµ νt tτ µj τj tµ

Fit I 41.8% 54.1% 4% 0.04% 54.1% 4% 37.8% 4%

Fit II 41.3% 54% 4% 0.04% 54.1% 4% 37.8% 4%

Table III: Branching ratios for different decay modes of the R2 LQ corresponding to the
fits presented in Eqs. (7.3) and (7.4).

As for the S3 LQ relevant for RK(?) anomaly, it can in principle decay to all quark and
lepton flavors, due to the CKM-rotations involved in Eq. (2.6). However, the dominant
decay modes of the S3 LQ corresponding to the Yukawa ansatz in Eqs. (7.3) and (7.4) are

ρ4/3 → s̄µ+ ,

ρ1/3 → c̄µ+, s̄ν̄ ,

ρ−2/3 → c̄ν̄ .

(6.2)

In addition, for mR2 ,m∆ < mS3 , the S3 LQ can decay to the R2 LQ and the quadruplet
scalar ∆, mediated by the trilinear coupling µ in Eq. (2.7) that is responsible for neutrino
mass in our model. For our numerical analysis, we focus on the scenario with the R2 (S3)
LQ mass around ∼ 1 TeV (2 TeV) and the quadruplet mass also around 1 TeV. In this case,
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the S3 → R2 + ∆ decay is the dominant one with ∼ 100% branching ratio. In this case,
the various components of S3 decay as follows:

ρ4/3 → ω−2/3∆++ , ω−5/3∆+++ ,

ρ1/3 → ω−2/3∆+ , ω−5/3∆++ ,

ρ−2/3 → ω−5/3∆+ , ω−2/3∆0 .

(6.3)

As a consequence, limits on the S3 LQ mass from the standard LHC searches are not
applicable to our scenario. See Section 8 for more details on the S3 decay signatures at the
LHC. For this decay to occur, S3 mass should exceed that of R2 LQ.

6.2 Dilepton Bounds

Apart from the direct LHC limits from LQ pair-production, there also exist indirect limits
from the cross section measurements on the dilepton process pp → `+i `

−
j , which could

get significantly modified due to a t−channel LQ exchange for large Yukawa couplings.
Ref. [47] had derived indirect limits on the LQ mass and Yukawa couplings involving the τ
lepton using the previous resonant dilepton searches at the LHC. Meanwhile, a dedicated
search [167] for the non-resonant signals in dielectron and dimuon final states has been
performed at the

√
s = 13 TeV LHC with integrated luminosity 139 fb−1, which is more

appropriate for the t-channel LQ search. Therefore, we use this recent non-resonant dilepton
study to derive new indirect limits on the LQ mass and Yukawa couplings. For this analysis,
we first implement our model file in FeynRules package [165], then analyze the cross section
for pp → `+i `

−
j signal using MadGraph5aMC@NLO [166] and compare the quoted observed

limits [167] on the cross-section to derive the limits on the Yukawa coupling for a given
LQ mass. Our results are shown in Fig. 8 for different Yukawa couplings fiα and f ′jα (with
i = 1, 2; j = 1, 2, 3; α = 1, 2) of the R2 LQ. Similar bounds can also be derived for the
S3 LQ. There are no bounds on the f31 and f32 couplings quoted in Fig. 8, because they
involve top-quark initial states, whereas the bounds on f ′31 and f ′32 come from bottom-
quark-initiated processes (cf. Eq. (2.6)). Similarly, we do not report any bounds on the
Yukawa couplings involving τ -flavor, as there is no corresponding non-resonant dilepton
analysis involving taus available so far. Based on the previous analysis [47], we anyway
expect the tau-flavor limits to be weaker than the ones quoted here. Note that the bounds
derived in Fig. 8 are independent of the LQ branch ratios, unlike the direct limits shown in
Fig. 7. As can be seen from Fig. 8, the flavor-dependent upper limits on the LQ Yukawa
couplings for 1 TeV R2 LQ mass to the first two family leptons and quarks are in the range
(0.15−0.36), which get slightly relaxed to (0.15−0.45) if we include the bottom-quark. This
precludes a solution of RD(?) with R2-mediated decays of the B-meson involving νe or νµ
final states. Therefore, we only focus on the scenario with ντ final state in our benchmark
points for the explanation of RD(?) .

7 Numerical Fit

In this section, we present our numerical results for the model parameter space that explains
the anomalies in RD(?) , RK(?) , and ∆aµ within their 1σ measured values, while being
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Figure 8: Summary of the new indirect constraints on the Yukawa couplings of the R2

LQ as a function of its mass from a recent non-resonant dilepton search at the LHC.

consistent with all the low-energy and LHC constraints discussed above. It is beyond the
scope of this work to explore the entire parameter space of the theory; instead we implement
all the constraints and find a few benchmark points to explain the anomalies. First of all,
we fix the R2 LQ mass at 900 GeV to satisfy the LHC bound obtained from pair-produced
ω2/3 decaying to bb̄τ+τ− (cf. Fig. 7 and Table III). Note that mR2 needs to be around
1 TeV to explain RD(?) ; making it larger would require larger f ′33 and f23 coupling values
beyond O(1). For example, with f ′33 = Imf23 = 1.5 and f22 = 0.45 (to be consistent with
the flavor constraints), the maximum mR2 we can have is 1.4 TeV. We also fix the S3 LQ
mass at 2 TeV for our RK(?) analysis, but it can be scaled up to much higher values without
requiring either of the Yukawa couplings y22 or y32 in Eq. (3.25) to exceed O(1) values.

7.1 Fit to RD(?)

In Fig. 9, we show the allowed parameter space to explain RD(?) at 1σ (orange shaded) and
2σ (light blue shaded) CL in the most relevant Yukawa coupling plane Im(f23)−|f ′33| for a
fixed R2 LQ mass at 900 GeV. We have also fixed f22 = 0.29, which is the maximum allowed
value from the dilepton constraint (see Fig. 8). Note that a nonzero f22 is required by the
neutrino oscillation fit for the textures we have (see Section 7.2), and a larger f22 helps
widen the RD(?) region. In our numerical analysis to generate Fig. 9, we have made use of
the Flavio package [103]. As already noted in Section 3.1 (cf. Fig. 3), the f23 coupling
needs to be complex to get a good fit to RD(?) . Thus, while doing the minimization to get
neutrino oscillation fit, we choose the f23 coupling purely imaginary, as shown in Fig. 9.

The dark purple shaded area highlighted in Fig. 9 represents the allowed region that is
consistent with all the constraints in our model. The rest of the colored regions are excluded
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Figure 9: 1σ (light red) and 2σ (light blue) allowed range for RD(?) in the relevant
Yukawa coupling plane, with the R2 LQ mass at 900 GeV and with a fixed f22 = 0.29.
The horizontal purple band is from the Z → ττ constraint. The curved green band and
cyan bands respectively represent exclusion from LQ pair production in pp → bbττ and
pp → jjνν channels at LHC. The vertical yellow band corresponds to the exclusion from
LFV decay τ → µγ. The dark purple shaded box represents the 1σ allowed region for
RD(?) that is consistent with all the constraints in this model.

by various constraints discussed in the previous sections. The horizontal purple band is from
Z → ττ constraint (cf. Eq. 5.8). The green and cyan shaded regions respectively represent
LHC exclusion from LQ pair-production in bτ and jν decay modes (cf. Fig. 7). The vertical
yellow shaded region corresponds to the exclusion from LFV decay τ → µγ (cf. Table II). In
the next subsection, we will choose both f ′33 and f23 values from within the allowed region
shown in Fig. 9. Similarly, Fig. 10 shows experimental averages for RD and RD∗ taking
correlation into account between the two observables, along with benchmark fits within the
model corresponding to the parameters shown in Eq. (7.3) and Eq. (7.4).

We note that Yukawa couplings to the third generation lepton required to explain
anomalies in RD(∗) can induce C``9 and C``10 operators via penguin diagram [42, 168], with
renormalization group equation running down to the B-meson mass scale. For instance,
in scenarios with vector LQ, the same Yukawa couplings that explain RD(∗) induce such
one-loop photon penguin diagrams [169]. Similarly, with scalar LQs, similar log enhanced
contribution can be realized [170]. However, within our model, although such contributions
exist, the flavor structure we have adopted in Eq. (7.3) and Eq. (7.4) with f ′23 = 0 (y33 = 0

or y33 � 1) results in these contributions being negligible.
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Figure 10: 1σ (dark red) and 3σ (light red) contours for experimental averages from
Ref. [171] for the LFUV observables RD and RD∗ observables. Individual 1σ regions from
Belle, BarBar, and LHCb are respectively shown by the dotted green, gray, and purple
contours. Black error bar represent the SM prediction, whereas black and brown marker
corresponds to the two model Fit I and Fit II given by Eq. (7.3) and Eq. (7.4).

7.2 Neutrino Fit

In this section, we explicitly show that the neutrino oscillation data can be explained in our
model, while being consistent with the B-anomalies and (g−2)µ, as well as satisfying all the
experimental constraints given in Sections 5 and 6. We have performed a detailed numerical
study to find the minimal texture for the Yukawa couplings to fit all the observables. We
show our results for two different textures, namely, Fit I and Fit II as given in Eqs. (2.53)
and (2.54). For this analysis, we fix the R2 and S3 LQ masses at 900 GeV and 2 TeV
respectively. Furthermore, the masses of the up-type quarks entering the neutrino mass
matrix (cf. Eq. (2.49)) are fixed at [1, 100, 173]

mu(2 GeV) = 2.16MeV, mc(mc) = 1.27GeV, mt(mt) = 160GeV. (7.1)

We have used these input values of the running up-type quarks given in Eq. (7.1) and
then extrapolate them to the LQ mass scale at 1 TeV in doing the numerical fit for the
neutrino oscillation data. We obtain mu(1 TeV) = 1.10 MeV, mc(1 TeV) = 0.532 GeV,
and mt(1 TeV) = 150.7 GeV [100, 174]. The neutrino mass matrix given by Eq. (2.49) is
diagonalized by a unitary transformation

UTPMNSMνUPNMS = M̂ν , (7.2)

where M̂ν is the diagonal mass matrix and UPMNS is the 3×3 PMNS lepton mixing matrix.
We numerically diagonalize Eq. (7.2) by scanning over the input parameters with two
different textures as shown in Eqs. (2.53) and (2.54). For ease of finding the fits to oscillation
data, we factor out mt into the overall factor and define m0 = mtκ1, where κ1 is given
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Oscillation 3 σ allowed range Model Model
parameters from NuFit5.0 [172] Fit I Fit II

sin2 θ12 0.269 – 0.343 0.290 0.324
sin2 θ13 0.02032 – 0.02410 0.0235 0.0210
sin2 θ23 0.415 – 0.616 0.472 0.430

∆m2
21 (10−5 eV2) 6.82 – 8.04 7.39 7.45

∆m2
23 (10−3 eV2) 2.435 – 2.598 2.54 2.49
δ (degree) 107 – 403 329.6 322.7

Observable 1σ allowed range

RD 0.310 – 0.367 [38] 0.348 0.343
RD? 0.281 – 0.308 [38] 0.288 0.284

C9 = −C10 [−0.61,−0.45] [42] −0.52 −0.51

(g − 2)µ (10−10) 27.4± 7.3 [20] 29.7 34.4

Table IV: Fits to the the neutrino oscillation parameters in the model with normal hierar-
chy, along with the B-anomalies, and muon g− 2 for two benchmark fits given in Eq. (7.3)
and Eq. (7.4). For comparison, the 3σ allowed range for the oscillation parameters and the
1σ range for the other observables are also given. Note that correlation between RD and
RD∗ is not taken into account here (see Fig. 10 to see such correlation).

in Eq. (2.50). Furthermore, we perform constrained minimization in which the neutrino
observables are restricted to lie within 3σ of their experimental measured values, for which
we use the recent NuFit5.0 values (with SK atmospheric data included) [172].

Our fit results for the two textures given in Eqs. (2.53) and (2.54) are shown below:

Fit I: With m0 = 9.9 eV,

f ′ =

 0 0 0

0 0 0

0 0.29 −1.15

 , f =

 0 0 0

0 0.29 0.886i

0 0.0059 0.0226

 , y =

 0 0 0

0 0.124 0.064

−0.016 0.028 0

 .

(7.3)

Fit II: With m0 = 15.1 eV,

f ′ =

 0 0 0

0 0 0

0 0.29 −1.10

 , f =

 0 0 0

0 0.29 0.887i

0 0.0061 0.0215

 , y =

 0 0 0

0 0.22 0

0.026 0.0155 −0.035

 .

(7.4)
For each of these Yukawa textures, the corresponding fit results for the neutrino oscilla-

tion parameters are shown in Table IV. It is clear that both fits are in excellent agreement
with the observed experimental values. The f33 entry in the benchmark texture shown
above is required for fine-tuning at the level of 7% the τ → µγ amplitude arising from top
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quark loop with a chiral enhancement (cf. Section 5.1). Note that the input parameter
f23 in both Fit I and Fit IIa is purely complex, which is required to get RD(?) correct
(cf. Fig. 9). Furthermore, the same coupling leads to a significant Dirac CP phase, as can
be seen from Table IV, consistent with the recent T2K result [175].

We note that the structures of f and f ′ do not change significantly from Fit-I to Fit-II.
This happens due to the various flavor violating constraints. In this sense, the parameter
space is rather limited for f and f ′. However, the structure of y is different for Fits-I and
II, and there is also some freedom in the overall scale of y, as illustrated in Eqs. (7.3) and
(7.4).

We shown in Table IV the fit results for RD, RD(?) , RK(?) and (g − 2)µ, all of which
are within 1σ of the experimentally allowed range.

7.3 Non-standard Neutrino Interactions

The LQs ω2/3 from R2 and ρ−2/3, ρ1/3 from S3 have couplings with neutrinos and quarks
(cf. Eq. (2.6)). These couplings can induce charged-current NSI at tree-level [16]. Using the
effective dimension-6 operators for NSI introduced in Ref. [176], the effective NSI parameters
in our model are given by

εαβ =
3

4
√

2GF

(
f?1αf1β

m2
ω2/3

+
(V y?)1α(V ?y)1β

m2
ρ−2/3

+
y?1αy1β

2m2
ρ1/3

)
. (7.5)

Any non zero entry in the up-sector f1α and y1α, relevant for generating tree-level NSI, does
not affect the neutrino oscillation fit, as it is suppressed by the up-quark mass. However,
Yukawa couplings to the electron and muon sector f1α and y1α (α = 1, 2) are highly
constrained by the non-resonant dilepton searches at the LHC. The limit on f11 and f12

are 0.19 and 0.16, respectively, for 1 TeV LQ mass (cf. Fig. 8). Also, the limit on y11 and
y12 are 0.16 and 0.15. Thus ε11 and ε22 are sub-percent level, and far beyond the reach
of forthcoming neutrino experiments. Furthermore, any nonzero y1α is in conjunction to
Cabibbo rotation and induces (V ?y)2α leading to D0 − D̄0 mixing with a constraint given
in Eq. (5.20).

As noted in Section 6.2, the LHC limits on the LQ Yukawa couplings in the tau sector
are weaker, and in principle, one can allow O(1) Yukawa coupling for f13 and generate a
ε33 which can be as large as 5.6%. However, we require f23 to be nonzero and O(1) to
explain RD(?) , and the constraint on the product of Yukawa couplings f13f23 is severe due
to the D0− D̄0 bound, see Eq. (5.18). Thus the induced NSI will again be at a sub-percent
level. For simplicity, we choose f1α = y1α = 0 for all α = 1, 2, 3 (cf. Eq. (2.54)) in both the
numerical fits discussed in Section 7.2.

8 Collider Implications

This model provides an avenue to test a unified description of B-anomalies, muon anoma-
lous magnetic moment and neutrino masses at the LHC through a new decay channel of the
S3 LQ. The presence of the two scalar LQs R2 and S3 and the isospin-3/2 scalar multiplet ∆

(especially its triply- and doubly-charged components) give rise to a rich phenomenology for
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Figure 11: Feynman diagram for the pair-production of the ρ4/3 component of the S3

LQ (pp → ρ4/3ρ−4/3), followed by ρ decay to the ω2/3 component of the R2 LQ and the
doubly-charged component of the ∆ quadruplet (ρ∓4/3 → ω±2/3∆∓∓). The ω2/3 component
can then decay to bτ (or jν) final state, while the doubly-charged scalar mostly decays
to same-sign lepton pair (for small v∆). This leads to the striking signal of this model:
pp→ `+`+`−`− + τ+τ− + bb̄ (where ` = e or µ).

the LHC. In this section, we analyze the production and decay of the doubly-charged com-
ponent of the scalar multiplet at the LHC and prospective smoking gun signals correlated
with the B-anomalies.

8.1 Production of Doubly-charged Scalars via LQ Decay

Being part of the SU(2)L-quadruplet, the charged scalars (∆±±±,∆±±,∆±) can be pair-
produced at the LHC by standard DY processes mediated by s-channel Z/γ exchange. In
addition, s-channelW exchange can lead to associated production of ∆±±±∆∓∓ (∆±±∆∓).
It is important to note that being s-channel processes, the DY pair production cross-
sections are highly suppressed for large ∆±±± (∆±±) masses (similar to the doubly-charged
scalar production in the type-II seesaw [177–179]). The collider phenomenology of SU(2)L-
quadruplet scalars with DY production and the same-sign dilepton (trilepton) signals from
doubly (triply)-charged scalars has been studied extensively in different contexts [69–72,
180, 181].

Here we propose a unique production mechanism for the doubly-charged scalars at the
LHC via the gluon fusion process, as shown in Fig. 11. In the gluon-gluon fusion process,
the S3 LQ can be pair-produced copiously. Once produced, the various components of
the S3 LQ would decay dominantly to the components of the R2 LQ and ∆ quadruplet, if
kinematically allowed (cf. Eq. (6.3)). Here we will mainly focus on the ρ∓4/3 → ω±2/3∆∓∓

decay channel, as ρ4/3 and ω2/3 are respectively the components responsible for the RK(?)

and RD(?) anomalies in our model. Therefore, the signal shown in Fig. 11 provides a direct
test of the RK(?) and RD(?) explanations at the high-energy LHC.
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Figure 12: Comparison of the NLO pair-production cross-sections for the doubly-charged
scalars in the DY channel (pp → ∆++∆−−) versus the LQ channel (pp → ∆++∆−− +

ω2/3ω−2/3) as a function of the doubly-charged scalar mass at
√
s = 14, 27 and 100 TeV.

Another reason we consider the ∆±± production via S3 decay is that the LQ-induced
charged-scalar pair-production rate is not as highly suppressed as the DY rate for higher
masses. In addition, there will be an enhancement factor for gluon luminosity compared
to the quark luminosity, which becomes even more pronounced at higher center-of-mass
energies. This can be seen from Fig. 12, where we compare the doubly-charged scalar pair-
production cross-sections at NLO in the DY mode pp→ ∆++∆−− and in the new LQ mode
pp→ ∆++∆−−+ω2/3ω−2/3 (in Fig. 12, ω2/3ω−2/3 is collectively denoted as X) for center-
of-mass energies

√
s =14, 27 and 100 TeV. Note that for the LQ mode, the cross section only

depends on the ρ4/3 LQ mass; however, to make a direct comparison with the DY mode,
we have fixed the ω2/3 mass at 900 GeV (the preferred value for R(?)

D explanation), and for
a given ∆±± mass in Fig. 12, have chosen the ρ4/3 mass such that the ρ∓4/3 → ω±2/3∆∓∓

decay branching ratio is ∼ 50% (with the other 50% going to ω±5/3∆∓∓∓). From Fig. 12,
we infer that the production cross-sections for the doubly-charged scalar in the LQ mode
are sizable up to the multi-TeV mass range, and the collider reach in the inclusive mode
pp → ∆++∆−− + X can be significantly enhanced, compared to the pure DY mode (see
Section 8.4 for more details).

8.2 Decay of Doubly-Charged Scalars

Now we turn to the decay modes of the quadruplet scalar ∆. The doubly charged scalar
∆±± can decay to `±`± via the leptonic coupling given by Eq. (2.52). In addition, being
a part of the SU(2)L-quadruplet, the covariant derivative term leads to bosonic decay
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modes (W±W±) of ∆±±. On the other hand, when the mass-splitting between consecutive
members of the quadruplet are nonzero, cascade decays also open up. One should note
that depending on the quartic coupling λ′H∆, there could be two different hierarchies: (a)
when λ′H∆ > 0, we have m∆±±± < m∆±± < m∆± < m∆0 and (b) when λ′H∆ < 0, we
have m∆±±± > m∆±± > m∆± < m∆0 (cf. Eq. (2.52)). Therefore, due to mass-splitting, it
can decay in cascades via ∆±±±X∓ or ∆±X± (where X = π,W ?) depending on whether
∆m > 0 or ∆m < 0. For simplicity, we consider ∆±±± to be the lightest member of the ∆

multiplet throughout our analysis. The partial decay widths for different decay modes of
∆±± can be written as [71, 72]:

Γ
(

∆±± → `±i `
±
j

)
=

m∆±± (mν)2
ij

6π (1 + δij) v2
∆

(
1− m2

i

m2
∆±±

−
m2
j

m2
∆±±

)[
λ

(
m2
i

m2
∆±±

,
m2
j

m2
∆±±

)]1/2

,

(8.1)
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)
=

3g4v2
∆m

3
∆±±

16πm4
W

(
3m4

W

m4
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+
m2
W

m2
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+
1

4

)
β

(
m2
W

m2
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)
, (8.2)

Γ
(
∆±± → ∆±±±π∓

)
=

g4 |Vud|2 (∆m)3f2
π

8πm4
W

, (8.3)

Γ
(
∆±± → ∆±±±`∓ν`

)
=

g4(∆m)5

120π3m4
W

, (8.4)

Γ
(
∆±± → ∆±±±qq̄′

)
= 3Γ

(
∆±± → ∆±±±`∓ν`

)
, (8.5)

Γ
(
∆±± →W±W±?

)
=

9g6m∆±±

512π3

v2
∆

m2
W

F

(
m2
W

m2
∆±±

)
, (8.6)

where the kinematic functions are given by [72]

λ(x, y) = 1 + x2 + y2 − 2xy − 2x− 2z , (8.7)

β(x) =
√

1− 4x , (8.8)

F (x) = −|1− x|
(

47

2
x− 13

2
+

1

x

)
+ 3

(
1− 6x+ 4x2

)
| log
√
x|

+
3
(
1− 8x+ 20x2

)
√

4x− 1
cos−1

(
3x− 1

2x3/2

)
. (8.9)

If ∆±± decay to ∆±X± is allowed, the corresponding partial widths will be the same as in
Eqs. (8.3)-(8.5). The different scaling factor due to the Clebsch-Gordon coefficient for the
quadruplet scalar is taken into account properly for the partial decay width formulae of the
doubly charged Higgs given above. For example, the leptonic decay width given in Eq. (8.1)
is suppressed by a factor of 2/3, compared to the type-II seesaw scenario [182, 183]. On
the other hand, the bosonic and cascade decay modes are enhanced by a factor 3/2 in the
quadruplet case compared to the triplet scenario [182–184].

In Fig. 13, we show the generic decay phase diagram for ∆±± in our model, with
m∆±± = 1 TeV. The dotted, dot-dashed, dashed and thick solid contours correspond to
99%, 90%, 50% and 10% branching ratios into the leptonic, bosonic or cascade decay
modes. The decay phase diagram clearly depicts that the branching ratio to leptonic decay
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Figure 13: Generic decay phase diagram for ∆±± in our model, with m∆±± = 1TeV. The
dotted, dot-dashed, dashed and thick solid contours correspond to 99%, 90%, 50% and 10%

branching ratios respectively for the leptonic, bosonic or cascade decays, whereas ∆m is
the mass splitting between the ∆++ and the next lightest scalar component.

modes of ∆±± decreases with v∆, whereas the branching ratio to gauge boson decay mode
increases with v∆. The cross-over happens at v∆ = 10−4 GeV with ∆m ∼ 0, similar to the
type-II seesaw case [182, 183]. As soon as the mass splitting is set to ≥ 10 GeV, cascade
decays open up and start dominating depending on the exact value of v∆. Note that the
mass splitting |∆m| between any two components of ∆ cannot be larger than ∼ 50 GeV
due to stringent constraints from electroweak precision data [72].

8.3 Comment on 4-body Decay of ∆

In addition to the two-body decays given in Eqs. (8.1)-(8.6), there will also be four-body
decay modes of the doubly-charged scalar via the virtual exchange of R2 and S3 LQs
proportional to the µ term in Eq. (2.7): ∆±± → (ω±2/3)?(ρ±4/3)?, with each LQ decaying to
two fermions. These decays will depend on the same parameters that lead to ∆±± → `±`±

decays. The phase space for these decays would appear to be comparable to the two-body
decays, since the latter has a suppression of a loop factor, 1/(16π2)2. We have evaluated
these four-body decays of ∆++ semi-analytically following the procedure outline in Ref.
[185], as well as numerically. The two methods gave very similar results. As an example,
for a benchmark values of m∆++ = 800 GeV, mR2 = 1 TeV, mS3 = 2 TeV, µ = 246 GeV,
v∆ = 10−4 GeV, and the values of the Yukawa couplings given in Fit I (cf. Eq. (7.3)),
the four-body decay width is 2.3 × 10−15 GeV, which turns out to be much smaller than
that for the dileptonic decay, which is 2 × 10−9 GeV. As v∆ is increased, the four-body
decay may compete with the dileptonic decay; however, in this case ∆++ →W+W+ decay
would dominate. Consequently, the four-body decay of ∆++ can be safely ignored in our
discussions.
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Production ∆±± mass reach for L = 3 ab−1

Channel
√
s = 14 TeV

√
s = 27 TeV

√
s = 100 TeV

LQ-mode 1.1 TeV 2.0 TeV 6.2 TeV
DY-mode 0.9 TeV 1.3 TeV 2.9 TeV

Table V: Comparison of the doubly-charged scalar mass reach in the LQ and DY modes
(with same-sign di-muon pair final states only) for 3 ab−1 integrated luminosity.

8.4 Signal Sensitivity

We focus on the small v∆ region which gives same-sign dilepton final states from the ∆±±

decay, because charged leptons with large transverse momenta can be cleanly identified with
good resolution and the charge of the leptons can be identified with fairly good accuracy
at hadron colliders. For the benchmark fits given in Section 7.2 with normal hierarchy, the
dilepton branching ratios of the ∆±± → `i`j for different flavors are as follows:

BR(ee) = 0 , BR(µµ) = 0.22 , BR(ττ) = 0.23 ,

BR(eµ) = 0.01 , BR(µτ) = 0.39 , BR(eτ) = 0.16 . (8.10)

For simplicity, we focus on the µµ final states and consider the signal pp→ ∆++∆−−+X →
µ+µ+µ−µ− + X to derive the sensitivity at future hadron colliders. The relevant SM
background is mainly from the multi-top and multi-gauge boson production [186, 187].
However, there are several discriminating characteristics of our signal: (a) the invariant
mass distributions for same-sign lepton pair from the ∆±± decay would peak at a mass
value much higher than the SM Z boson mass; and (b) the outgoing leptons will be more
energetic compared to the ones produced in the decay of SM gauge bosons, since these
leptons are produced from heavy particle ∆±± decay. To derive the signal sensitivity, we
first implement our model file in FeynRules package [165], then analyze the cross section
for the signal using MadGraph5aMC@NLO [166], simulating the hadronization effects with
Pythia8 [188] and detector effects with the Delphes3 package [189]. In order to optimize
the signal efficiency over the SM background, we impose the following basic acceptance
criteria: p`T > 15 GeV for each lepton, pseudorapidity |η`| < 2.5 and a veto on any opposite
sign dilepton pair invariant mass being close to the Z boson mass |M(`+`−) −mZ | > 15

GeV. In addition, events are selected such that the invariant mass for same-sign muon pair
is higher than 500 GeV. After passing through all these acceptance criteria, we estimate
the required luminosities to observe at least 25 events at different center-of-mass energies
(
√
s=14, 27, 100 TeV). Our results are shown in Fig. 14. It is clear that for a given

luminosity and a given
√
s, the doubly-charged scalar mass reach in the LQ mode is higher

than that in the DY mode. The mass reach for 3 ab−1 integrated luminosity is summarized
in Table V for different center-of-mass energies.

Once we identify the doubly-charged scalar from the multi-lepton signal, the next step
is to distinguish the underlying model. In order to identify whether the ∆±±’s come from
the S3 LQ decay, accompanied by the ω2/3 LQs, we can consider the decay chain given in
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Fig. 11, i.e.

pp → ρ4/3ρ−4/3 → ω−2/3∆++ω2/3∆−− → `+`+`−`− + τ+τ− + bb̄ . (8.11)

In this case, the right combination of the bτ invariant mass peaks at the ω2/3 LQ mass, if
it is produced on-shell from the ∆ decay. Considering the fact that the benchmark fits in
our model give 54% branching ratio of ω2/3 to bτ (cf. Table III), and taking into account
the b-tagging and τ -identification efficiencies of ∼ 70% each, we find that at least 25 signal
events in the channel given by Eq. (8.11) can be obtained with 3 ab−1 luminosity for the
S3 LQ masses up to 1.5, 2.4 and 5.5 TeV respectively at

√
s = 14, 27 and 100 TeV. Hence,

it is possible to independently test the unified description of B-anomalies, muon g − 2 and
neutrino masses in our model at future colliders.

9 Conclusion

We have presented a radiative neutrino mass model involving TeV-scale scalar leptoquarks
R2 and S3, which can simultaneously explain the RD(?) , RK(?) , as well as muon g − 2

anomalies, all within 1σ CL, while being consistent with neutrino oscillation data, as well
as all flavor and LHC constraints. The R2 LQ is responsible for the RD(?) and (g − 2)µ,
while the S3 LQ explains the RK(?) anomaly. The model also features a scalar quadruplet
∆, which is required for the radiative neutrino mass generation. The same trilinear ∆?R2S3

coupling that is responsible for neutrino mass also leads to interesting collider signatures in
the S3 and ∆ decays that can be probed in the forthcoming run of the LHC. Similarly, the
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same Yukawa couplings responsible for the chirally-enhanced contribution to ∆aµ give rise
to new contributions to the SM Higgs decays to muon and tau pairs, with the modifications
to the corresponding branching ratios being at 2-6% level, which could be tested at future
hadron colliders, such as HL-LHC and FCC-hh.
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