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We consider the inertial Kuramoto model of N globally coupled oscillators characterized by both
their phase and angular velocity, in which there is a time delay in the interaction between the
oscillators. Besides the academic interest, we show that the model can be related to a network of
phase-locked loops widely used in electronic circuits for generating a stable frequency at multiples
of an input frequency. We study the model for a generic choice of the natural frequency distribution
of the oscillators, to elucidate how a synchronized phase bifurcates from an incoherent phase as
the coupling constant between the oscillators is tuned. We show that in contrast to the case with
no delay, here the system in the stationary state may exhibit either a subcritical or a supercritical
bifurcation between a synchronized and an incoherent phase, which is dictated by the value of the
delay present in the interaction and the precise value of inertia of the oscillators. Our theoretical
analysis, performed in the limit N →∞, is based on an unstable manifold expansion in the vicinity of
the bifurcation, which we apply to the kinetic equation satisfied by the single-oscillator distribution
function. We check our results by performing direct numerical integration of the dynamics for large
N , and highlight the subtleties arising from having a finite number of oscillators.
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I. INTRODUCTION

A. The model

The Kuramoto model with inertia is representative of complex many-body dynamics involving a set of rotors char-
acterized by their phases and angular velocities that are coupled all-to-all through the sine of their phase differences.
Specifically, the dynamics for a system of N rotors is given by a set of 2N coupled first-order differential equations of
the form [1–3]

θ̇i(t) = vi(t),

(1)

mv̇i(t) = −γvi(t) + γωi +
K

N

N∑
j=1

sin(θj(t)− θi(t)),

where the dot denotes derivative with respect to time, θi ∈ [0, 2π) and vi are the phase and the angular velocity
of the i-th rotor, respectively, whose moment of inertia is m > 0. Here, γ > 0 is the damping constant, K > 0
is the coupling constant, while ωi ∈ [−∞,∞] is the natural frequency of the i-th rotor. The frequencies {ωi}1≤i≤N
constitute a set of independent and quenched disordered random variables distributed according to a given distribution
G(ω), normalized as

∫∞
−∞ dω G(ω) = 1 and with finite mean ω0. During the analysis we will also use the centered

distribution g(ω) ≡ G(ω + ω0). In the limit of overdamping, γ/m → ∞, the rotors are effectively characterized
by their phases alone and are therefore quite rightly referred to as oscillators [35]. In this limit, the dynamics (1)
becomes that of the Kuramoto model [4–10], which over the years has emerged as a paradigmatic minimal framework
to study spontaneous collective synchronization in a group of coupled limit-cycle oscillators, such as that observed in
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groups of fireflies flashing on and off in unison [11], in cardiac pacemaker cells [12], in Josephson junction arrays [13],
in electrochemical [14] and electronic [15] oscillators, etc. The governing equations of the Kuramoto model are N
coupled first-order differential equations of the form

γθ̇i(t) = γωi +
K

N

N∑
j=1

sin(θj(t)− θi(t)). (2)

The mean-field nature of either the dynamics (2) or the dynamics (1) becomes evident on defining the so-called
Kuramoto order parameter R(t) and the global phase Φ(t), as [4]

R(t)eiΦ(t) ≡
∑N
j=1 e

iθj(t)

N
; R,Φ ∈ R, 0 ≤ R ≤ 1, Φ ∈ [0, 2π), (3)

with 0 < R < 1 characterizing a synchronized phase, and R = 0 an incoherent phase. In terms of R(t), the
dynamics (1) may be rewritten as

θ̇i(t) = vi(t),

(4)

mv̇i(t) = −γvi(t) + γωi +KR(t) sin(Φ(t)− θi(t)),

which shows that the evolution of the dynamical variables at time t is governed by the value of the mean-field R(t)eiΦ(t)

set up collectively at time t by all the oscillators.
Both the models (1) and (2) have been extensively studied in the past and a host of results have been derived with

regard to the parameter regimes allowing for the emergence of a synchronized stationary state (see Ref. [10] for a recent
overview). For example, consider a G(ω) that is unimodal, namely, it is symmetric about its mean ω0, and decreases
monotonically and continuously to zero with increasing |ω−ω0|. In this case, it is known that in the stationary state
of the dynamics (2), the system for a given choice of G(ω) may exist in either a synchronized or an incoherent phase
depending on whether the coupling K is respectively above or below a critical value Kc = 2/(πG(ω0)); on tuning K
across Kc from high to low values, one observes a continuous phase transition in Rst, the stationary value of R(t).
Namely, Rst decreases continuously from the value of unity, achieved as K → ∞, to the value zero at K = Kc and
remains zero at smaller K values. One may interpret the transition as the case of a supercritical bifurcation, in which
on tuning K, a synchronized phase bifurcates from the incoherent phase at K = Kc. In particular, a small change of
K across Kc results in only a small change in the value of Rst ∝

√
K −Kc close to and above Kc [4, 16]. For the same

choice of a unimodal G(ω), the inertial dynamics (1) on the other hand show a discontinuous phase transition between
synchronized and incoherent phase, where Rst exhibits an abrupt and big change from zero to a non-zero value on
changing K by a small amount across the phase transition point [17, 18]. Here, the bifurcation of the synchronized
from the incoherent phase is said to be subcritical and leads to hysteresis [19]. Thus, presence of inertia is rather
drastic in that it changes completely the nature of the bifurcation and hence of the underlying stationary state.

In this work, we study for the first time the effect of a delay in the interaction between the oscillators within the
framework of dynamics (1). The dynamical equations of this modified model are given by

θ̇i(t) = vi(t),

(5)

mv̇i(t) = −γvi(t) + γωi +KR(t− τ) sin(Φ(t− τ)− θi(t)− α),

thereby modeling the time-evolution which is governed by the value of the mean field at an earlier instant t − τ ,
where τ > 0 is the time delay in the interaction between the oscillators. Here, α ∈ (−π/2, π/2) is the so-called phase
frustration parameter, an additional dynamical parameter that is known to affect significantly the behavior of the
Kuramoto model [20]. In the overdamped limit, the model (5) reduces to

γθ̇i(t) = γωi +KR(t− τ) sin(Φ(t− τ)− θi(t)− α), (6)

which in presence of additional Gaussian, white noise has been addressed in Ref. [21]. Note that for the dynamics
in (6), the parameter γ may be scaled out by a redefinition of time, so that the relevant dynamical parameters are
K, τ and α. In a recent work [22], two of the present authors have investigated the dynamics (6), deriving for generic
G(ω) and as a function of the delay exact results for the stability boundary Kc(τ) between the incoherent and the
synchronized phase and the nature in which the latter bifurcates from the former at the phase transition point. Note
that unlike (1), the dynamics (5) is not invariant under the transformation θj(t)→ θj(t)−ω0t, ωj → ωj−ω0 ∀ j that
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views the dynamics in a frame rotating uniformly at frequency ω0 with respect to an inertial frame. From Eq. (5), it
is clear that viewing the dynamics in such a frame is equivalent to replacing α with α′ ≡ α+ ω0τ . Our results imply
that for a given choice of G(ω), the nature of transition (continuous versus discontinuous) between the synchronized
and incoherent phases depends explicitly on the value of τ .

In view of the aforementioned developments, it is evidently of interest to investigate the effects of inertia on the
time-delayed model and thus embark on a detailed analysis of the dynamics (5). Since even without delay, inertia
is known to have nontrivial and interesting consequences as mentioned above, we may already anticipate that an
interplay of the influence of delay and inertia may result in an even richer stationary state for the dynamics (5)
vis-à-vis for dynamics (6). Remarkably, the dynamics in Eq. (5), far from being just a model of academic interest,
emerge naturally in the context of mutually coupled phase-locked loops, as we now demonstrate.

B. Relation to a network of phase-locked loops

FIG. 1: Schematic diagram of a phase-locked loop (PLL). The arrows denote the direction of flow of signals in the loop.

A phase-locked loop (PLL) is an electronic component designed to generate an output signal that has a constant
phase relation (and is thus locked) to the phase of its input reference. Fig. 1 shows a schematic PLL architecture
consisting of a phase detector (PD), a loop filter (LF), and a voltage-controlled oscillator (VCO) acting as a variable-
frequency oscillator, all connected in a feedback loop. The phase-detector output xPD(t) represents the phase relations
of the periodic output signal xout(t), generated by the VCO, with the phase of the periodic input-signal xin(t). The
loop-filtered phase-detector output yields the control signal xC(t) that controls the instantaneous frequency of the
VCO so that its corresponding output approaches the phase and frequency of the input signal. The latter property
enables a PLL to track an input frequency, or, to generate a frequency that is a multiple of the input frequency. PLL’s
find wide use in electronic applications as an effective device to, e.g., recover a signal from a noisy communication
channel, generate a stable frequency at multiples of an input frequency, and to distribute a quartz reference clock
signal via a clocktree architecture.

Let us now consider the setup of N ≥ 2 mutually delay-coupled PLL’s occupying the nodes of a network, in which
the input signals for a given PLL are constituted by the delayed output received from other PLL’s [23–25]. The delay
could be due to transmission signaling-times, and is accounted for in the following by a discrete delay-time τ . We
consider the LF to ideally damp the high-frequency components of the PD signal. Consider the output signal of the
i-th PLL, i = 1, 2, . . . , N , in the network

xi(t) = sig (θi(t)) , (7)

where θi(t) denotes the phase, and sig(θi(t)) is a 2π-periodic function with amplitude one. Depending on the type of
PLL, i.e., analog or digital, the output signal may be sinusoidal or a rectangular function, respectively. The VCO is
operated such that its output frequency θ̇i(t) depends linearly on the control signal xC

i (t):

θ̇i(t) = ωVCO
i,0 +KVCO

i xC
i (t), (8)

where ωVCO
i,0 denotes the natural frequency, and KVCO

i the VCO input sensitivity. The control signal is the output of
the loop-filter:

xC
i (t) =

∫ ∞
0

du p(u)xPD
i (t− u), (9)

where xPD
i (t) denotes the phase-detector signal, and p(u) is the impulse response of the filter. Considering first-order

loop-filters, i.e., p(u; 1, b) being the Γ-distribution with shape parameter a = 1 and scale parameter b, the above
integral equation can be rewritten by using Laplace transforms [24, 26], yielding

ẋC
i (t) = ωc

[
xPD
i (t)− xC

i (t)
]
, (10)
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where ωc denotes the cut-off frequency of the first-order low-pass filter. The initial state of the filter is given by
xC
i (0) = (θ̇i(0)− ωVCO

i,0 )/KVCO
i . The phase-detector signal depends on the type of PLL:

xPD
i (t) = C +

1

2n(i)

N∑
j=1

cijh [θj(t− τ)− θi(t)] , (11)

where C is a PLL type specific offset (C = 1/2 for XOR PD’s, while C = 0 for multiplier PD’s), cij = {0, 1} are the
components of the adjacency matrix, with the value 1 (respectively, 0) denoting whether PLL units i and j are coupled
(respectively, uncoupled), n(i) ≡

∑
j cij the total number of units coupled with unit i, h(x) is a 2π-periodic coupling

function, and we assumed the high-frequency components to be filtered ideally by the LF [23]. Equations (8)-(11)
combined together yield a second-order phase model with delayed-coupling:

1

ωc
θ̈i(t) + θ̇i(t) = ωi +

K̃i

n(i)

N∑
j=1

cijh(θj(t− τ)− θi(t)) . (12)

where we have defined ωi ≡ ωVCO
i,0 + C KVCO

i , and K̃i ≡ KVCO
i /2. The 2π-periodic coupling function h depends on

the type of the PD and the corresponding input signals. Here we consider the case of a cosine coupling function,
h(x) = cos(x), for analog PLL’s and multiplier phase-detectors and a triangular coupling function, and h(x) = ∆(x)
for digital PLL’s with XOR phase-detectors. In the latter case the coupling-function can be approximated as h(x) =
−8/π2 cos(x). The case of a d-flip flop [36] phase detector for digital PLLs, which has a linear coupling-function, will
not be considered in this work. Given these cases, we will use a sinusoidal coupling-function with a phase frustration
parameter α ∈ [−π/2, π/2], that is, with h(x) = sin(x−α), which represents both of the cases mentioned above. We
will also specialize to the case when every PLL unit is coupled to every other, implying cij = 1 ∀ i, j = 1, 2, . . . , N and

n(i) = N . Comparing Eqs. (12) and (5) leads to the correspondence m = ω−1
c = b, γ = 1, as well as K = K̃i, α =

−π/2 for the analog PLL case, and α = π/2, K = 8K̃i/π
2 for the digital PLL approximation.

Before moving on to an analysis of the dynamics (5), it is pertinent that we give here a summary of our results
obtained in this paper and the techniques employed in achieving them. We here obtain exact analytical relations for
the critical point Kc(τ) beyond which the incoherent phase of the dynamics (5) becomes unstable, and furthermore,
the nature in which the synchronized phase bifurcates from the incoherent phase as K is increased beyond Kc(τ). An
illustration of our results for a unimodal Lorentzian distribution is shown in Fig. 2 for two representative values of the
inertia, which displays both Kc(τ) and s(τ) whose sign determines the nature of the bifurcation of the order parameter
R, Eq. (3): a positive (respectively, a negative) sign implies a subcritical bifurcation and hence, a discontinuous
transition (respective, a supercritical bifurcation and hence a continuous transition). As may be seen from the Fig. 2,
Kc and s both have an essential dependence on τ and m, while our analysis (see Eq. (61)) suggests that the effects
of changing τ at a fixed α are the same as those from changing τ at a fixed α keeping α+ ω0τ constant.

We now summarize our method of analysis in obtaining the aforementioned results. We start off with considering
the dynamics (5) in the limit N → ∞, when it may be effectively characterized by a single-oscillator probability
density F (θ, v, ω, t), which gives at time t and for each ω the fraction of oscillators with phase θ and angular velocity
v. The time evolution of F (θ, v, ω, t) follows a kinetic equation, of which the incoherent state f0(θ, v, ω) (associated
with Rst = 0) represents a stationary solution. We rewrite the kinetic equation in the form of a delay differential
equation (DDE) [27, 28] for perturbations ft(ϕ) ≡ F (θ, v, ω, t+φ); −τ ≤ φ < 0 around f0(θ, v, ω). The DDE involves
a linear evolution operator D and a nonlinear one, F . We obtain the eigenvalues and the eigenvectors of D and of the
corresponding adjoint operator D†. As is well known [19], the knowledge of the eigenvalues allows to locate the critical
value Kc of the coupling K above which the incoherent state f0(θ, v, ω) becomes linearly unstable. We then build for
K > Kc the unstable manifold expansion of the perturbation ft(φ) along the two complex conjugated eigenvectors
associated with the instability. Using a convenient Fourier expansion of the relevant quantities and working at K
slightly greater than Kc, we thus obtain the amplitude dynamics describing the evolution of perturbations ft(ϕ) in
the regime of weak linear instability, K → K+

c . The nature of the amplitude dynamics at once dictates the nature of
bifurcation occurring as soon as K is increased beyond Kc: The amplitude dynamics has a leading linear term and a
nonlinear (cubic) term, and as is well known from the theory of bifurcation [19], the sign of the real part of this cubic
term (denoted s in Fig. 2) dictates the nature of the bifurcation, with positive and negative signs leading respectively
to subcritical and supercritical bifurcation.

The paper is organized as follows. Section II forms the core of the paper, in which we derive our main results,
Eqs. (35) and (61). We illustrate our analytical results with the representative example of a unimodal Lorentzian
distribution. In Section III, we make a detailed comparison of our analytical results obtained in the limit N → ∞
with numerical results for finite N obtained by performing numerical integration of the equations of motion. Here, in
particular, we discuss the subtleties involved in making such a comparison whose origin may be traced to finite-size
effects prevalent for finite N . The paper ends with conclusions.
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II. EXACT ANALYSIS IN THE LIMIT N →∞

We now turn to a derivation of our results for the system (5). To simplify matters, we work in the rotating frame
θj(t)→ θj(t)−ω0t, ωj → ωj −ω0 ∀ j, so that the distribution G(ω)→ g(ω) is now centered in 0. Moreover, consider
the system in the limit N →∞, when the dynamics may be effectively characterized in terms of the single-oscillator
probability density F (θ, v, ω, t) defined above. This density is 2π-periodic in θ, and obeys the normalization∫ 2π

0

dθ

∫ ∞
−∞

dv F (θ, v, ω, t) = g(ω) ∀ ω, t. (13)

The time evolution of F (t) ≡ F (θ, v, ω, t) may be derived by following the procedure given in Ref. [7]. One obtains
the evolution equation

∂F

∂t
(t) + v

∂F

∂ω
(t) +

K

2im

(
R1[F ](t− τ)e−i(θ+α+ω0τ )−R−1[F ](t− τ)ei(θ+α+ω0τ )

) ∂F
∂v

(t)− γ

m

∂

∂v
((v − ω)F (t)) = 0,

(14)

where we have defined as functionals of F the quantity

Rk[F ] ≡
∫ 2π

0

dθ

∫ ∞
−∞

dv

∫
dω eikθF (θ, v, ω, t); k = 0,±1,±2, . . . . (15)

In particular, R1 coincides with the N → ∞ limit of the Kuramoto complex order parameter R(t)eiΦ(t) in Eq. (3),
and hence |R−1| = |R1| = R.

From Eq. (14), one may check that the incoherent state

f0(θ, v, ω) = g(ω)
δ(v − ω)

2π
(16)

solves the equation in the stationary state and thus represents an incoherent stationary state. To examine how in
the stationary state the incoherent stable becomes unstable as K is tuned above a critical value Kc, we employ an
unstable manifold expansion of perturbations about the incoherent state in the vicinity of the bifurcation. To perform
the analysis, we write F = f0 + f , with f being the perturbation. Next, we note that the time evolution of the
function F (t) according to a nonlinear operator with delay M [F (t)] (obtained from Eq. (14)) can be rewritten in term
of a delay variable ϕ such that the time-evolution operator is given by

(A Ft)(ϕ) =


d

dϕ
Ft(ϕ), −τ ≤ ϕ ≤ 0,

M [Ft], ϕ = 0,
(17)

with Ft(φ) ≡ F (t+φ). Employing the expansion F = f0 + f , we define the linear and nonlinear operators D and F ,
according to

(A ft)(ϕ) = (Dft + F [ft])(ϕ) =


d

dϕ
ft(ϕ)

L ft(ϕ)
+

{
0, − τ ≤ ϕ < 0,

N [ft], ϕ = 0.
(18)

We decompose the linear operator into two parts, L = L +R, namely, a part L that does not contain any delay term
and a part R that has all the delay terms. Rewriting Eq. (14) according to the above formalism yields

∂ft
∂t

= Dft + F [ft], (19)

with

L f = −v∂θf +
1

m̃
∂v ((v − ω)f) , (20)

R f = − K̃

2im̃

(
R1[f ]e−iθe−i(α+ω0τ) −R−1[f ]eiθei(α+ω0τ)

)
∂vf

0, (21)

N [ft] = − K̃

2im̃

(
R1[ft](−τ)e−iθe−i(α+ω0τ) −R−1[ft](−τ)eiθei(α+ω0τ)

)
∂vf(0), (22)
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where we use the shorthand ∂v ≡ ∂/∂v for derivatives and use from now on the transformation m̃ = m/γ and

K̃ = K/γ.
In the functional space of delayed functions, there is no L2 canonical inner product. However, Ref. [27] defines a

bilinear form acting as the inner product on this space. In our problem with a discrete delay, the scalar product is

(q, p)τ ≡ (q(0), p(0)) +

∫ 0

−τ
dξ (q(ξ + τ),R p(ξ)) , (23)

where (q(0), p(0)) denotes the usual scalar product on L2(T×R×R) (phase, angular velocity and natural frequency)

(h, f) =

∫
T×R×R

h∗(θ, v, ω)f(θ, v, ω) dω dv dθ, with q(0) = h(θ, v, ω), p(0) = f(θ, v, ω) (24)

and the integral term contains the delay contribution. The adjoint of the linear operator D , obtained by using the
equality (q(ϕ),Dp(ϕ))τ = (D†q(ϕ), p(ϕ))τ , is defined in the dual space, and is given by

(D†qt)(ϑ) =

−
d

dϑ
qt(ϑ), 0 < ϑ ≤ τ,

L †qt(ϑ), ϑ = 0.
(25)

We also decompose L † = L†+R†, with

L† q = v∂θq −
1

m̃
(v − ω)∂vq, (26)

R† q =
K̃

2im̃

(
ei(α+ω0τ)e−iθR1[q∂vf

0]− e−i(α+ω0τ)eiθR−1[q∂vf
0]
)
. (27)

Starting with Eq. (19), the unstable manifold expansion involves a linear and a weakly nonlinear analysis, and
requires combining two formalisms: i) the one developed in Ref. [18] for the case of the Kuramoto model with inertia
but with no delay, ii) the delay formalism [27–29], as done in Ref. [22]. In the following subsections, we go over
one-by-one the various steps, which culminate in our main equation, Eq. (60).

A. Linear stability analysis of f0

The linear stanility analysis of the stationary state f0 consists in solving the eigenvalue problem

(DP )(ϕ) = λP (ϕ) (28)

for −τ ≤ ϕ < 0; we get for ϕ 6= 0, P (ϕ) = Ψeλϕ for arbitrary Ψ. We expand in a Fourier series in θ, as P (ϕ) =
(2π)−1

∑∞
k=−∞ pk(ϕ)eikθ and Ψ(θ, ω) = (2π)−1

∑∞
k=−∞ ψk(ω)eikθ. Using Eq. (28) for ϕ = 0 and k = ±1 in the

Fourier expansion, we get

p1(ϕ) = ψ1(ω, v)eλϕ. (29)

In the following, we will omit subscripts while referring to ψ1 and p1. For ϕ = 0, we look for a solution of the
eigenvalue problem in the form

ψ = U0(ω)δ(v − ω) + U1(ω)δ′(v − ω), (30)

where the Dirac delta function and its derivatives are to be understood in the distribution sense. Imposing the
normalization R1[Ψ] = R−1[Ψ] =

∫
dv dω ψ = 1, one finds

U0 =
K̃

2m̃
ei(α+ω0τ)e−λτ

g(ω)

(λ+ iω)(λ+ 1/m̃+ iω)
, (31)

U1 =
K̃

2im̃
ei(α+ω0τ)e−λτ

g(ω)

λ+ 1/m̃+ iω
. (32)

Expliciting the normalization condition yields the dispersion relation:

Λ(λ) = 1− K̃

2m̃
ei(α+ω0τ)e−λτ

∫
dω

g(ω)

(λ+ iω)(λ+ 1/m̃+ iω)
= 0. (33)
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We can see that p∗(ϕ) gives another eigenfunction of D with eigenvalues λ∗, so that Λ(λ) = Λ∗(λ∗) = 0. For k 6= ±1,
one has only a continuous spectrum occupying the imaginary axis.

The adjoint eigenvector has the form Q(ϑ) = Ψ̃e−λ
∗ϑ = ψ̃eiθe−λ

∗ϑ, where ψ̃ solves

(λ∗ − iv)ψ̃ +
1

m̃
(v − ω)∂vψ̃ =

K̃

2im̃
e−i(α+ω0τ)e−λ

?τ

∫
dω g(ω)∂vψ̃(ω, ω). (34)

Full solution of the above equation is not straightforward to obtain, but thankfully we just need to know ψ̃(ω, ω) and

the derivative ψ̃(n)(ω) = ∂nv ψ̃(ω, ω), which may be obtained by successive differentiation of Eq. (34).
Summarizing, the linear stability analysis yields the dispersion relation

Λ(λ) ≡ 1− K

2m
ei(α+ω0τ)e−λτ

∫
G(ω + ω0)

(λ+ iω)(λ+ γ/m+ iω)
dω = 0, (35)

which has its roots giving the eigenvalues associated with the linear operator D . In particular, for K ≥ Kc, the
stationary state f0 becomes unstable, with associated unstable eigenvalues λ satisfying Re(λ) ≥ 0. Note that for
K < Kc, the incoherent state is neutrally stable, i.e., there is no discrete eigenvalue but only a continuous spectrum;
in this case, perturbations f0 are damped in time via a mechanism similar to the Landau damping [30].

B. Weakly nonlinear analysis and the unstable manifold expansion

The weakly nonlinear analysis describes the type of bifurcation as K → K+
c and hence as Re(λ)→ 0+. The analysis

involves decomposing the perturbation into a contribution along the unstable eigenvectors P (φ), P ∗(φ) associated
with the unstable eigenvalues λ, λ∗ and a contribution St(φ) in the perpendicular direction, as

ft(φ) = (A(t)P (φ) + c.c.) + St(φ), (36)

where c.c. stands for complex conjugation, A(t) = (Q, ft)τ is the amplitude of the unstable mode, and (Q,St)τ = 0.
Here, we have introduced the eigenvector Q of the adjoint operator D† and the scalar product (·, ·)τ . The unstable
manifold approach consists in expanding the perpendicular component St in terms of the small amplitude A, St(φ) ≡
St(θ, v, ω, φ) = H[A,A∗](θ, v, ω, φ) and computing H perturbatively. We now follow the nonlinear study based on
ideas developed in Refs. [18, 22], and detail our analysis. The starting point is the expansion

ft(ϕ) = A(t)P (ϕ) +A∗(t)P ∗(ϕ) +H[A,A∗](ϕ), (37)

with A(t) = (Q, ft)τ , (Q,P ∗) = 0 and (Q,H) = 0. We assume that H is at least of order (A,A∗)2. For small A (that
is, in the close vicinity of Kc), it can be shown that R(t) = A∗(t) +O(|A|2A∗(t)), so that studying the bifurcation of
A is equivalent to that of the order parameter R. Let us define the following Fourier expansions needed for further
analysis:

ft =
1

2π

∞∑
k=−∞

(ft)ke
ikθ, (38)

{L ft,N [ft]} =
1

2π

∞∑
k=−∞

{L k(ft)k,Nk[ft]}eikθ, (39)

H [A,A∗] =
1

2π
|A|2w0

[
|A|2

]
+

1

2π

∞∑
k=1

(
Akwk

[
|A|2

]
eikθ + (A∗)kw−k

[
|A|2

]
e−ikθ

)
, (40)

where the dependence on A of the Fourier coefficients of H is imposed by rotational symmetry [31]. To proceed with
the analysis, we will need to expand the coefficients wk in powers of |A|2, wk =

∑∞
j=0 |A|2jwk,j . To be consistent with

the assumption of the unstable manifold being at least of order (A,A∗)2, we need to have w±1,0 = 0.
The Fourier coefficients of the nonlinear operator (22) are

N k[ft] =
iK̃

2m̃

(
e−i(α+ω0τ)R1[ft](−τ)∂v(ft)k+1(0)− ei(α+ω0τ)R−1[ft](−τ)∂v(ft)k−1(0)

)
. (41)

Note that contrary to the case with no inertia, m = 0, where L 0 = N 0 = 0 so that (ft)0 = constant = 0, it is not
so in the present case so that (ft)0 6= 0 and w0 6= 0. This difference will have major consequences for the reduction,
giving a 1/λ divergence in the c3 coefficient.
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For ϕ 6= 0, we find w0(ϕ) = h0,0e
2λrϕ + O(|A|2), w2,0(ϕ) = h2,0e

2λϕ + O(|A|2), and with the boundary equation
ϕ = 0:

(2λr −L 0) · h0,0 = i
K̃

2m̃
e−i(α+ω0τ)e−λ

∗τ∂vψ + c.c., (42)

(2λ−L 2) · h2,0 = −i K̃
2m̃

ei(α+ω0τ)e−λτ∂vψ, (43)

where we used the decomposition, Eq. (37), and the orthogonal projection with respect to the eigenvectors (19) −
(Q, (19))P − (Q∗, (19))P ∗ on the Fourier modes k = 0 and 2 while only keeping the quadratic orders O((A,A∗)2).
Solving these equation will give us h0,0 and h2,0 needed in the following. Projection of the dynamics along the unstable
mode using (Q, (19))τ yields the equation for the amplitude A(t) to be

Ȧ = λA+ c3A|A|2 + O
(
A|A|4

)
, (44)

c3 =
K̃

2im̃

(
ei(α+ω0τ)e−λτ

∫
dω ψ̃∗∂vh0,0 − e−i(α+ω0τ)e−λ

∗τ

∫
dω ψ̃∗∂vh2,0

)
, (45)

where we used Eq. (41) for k = 1 keeping only the leading order. To determine the nature of the bifurcation, we
must compute explicitly the coefficient c3. To do that, we must first compute the Fourier component of the unstable
manifold.

1. Computation of h0,0

We start with Eq. (42). We have h0,0 = h+ c.c., where h is the solution of

(2λr −L 0) · h = i
2πK̃

2m̃
e−i(α+ω0τ)e−λ

∗τ∂vψ. (46)

Equation (46) reads

2λrh−
1

m̃
∂v[(v − ω)h] =

K̃2

4im̃2
e−2λrτ

(
− g(ω)δ′(v − ω)

(λ+ iω)(λ+ iω + 1/m̃)
+ i

g(ω)δ′′(v − ω)

(λ+ iω + 1/m̃)

)
. (47)

We introduce the ansatz

h = W0(ω)δ(v − ω) +W1(ω)δ′(v − ω) +W2(ω)δ′′(v − ω), (48)

to get

W0(ω) = 0, (49)

W1(ω) = i
(K̃/2m̃)2e−2λrτg(ω)

(2λr + 1/m̃)(λ+ iω)(λ+ 1/m̃+ iω)
, (50)

W2(ω) =
(K̃/2m̃)2e−2λrτg(ω)

2(λr + 1/m̃)(λ+ 1/m̃+ iω)
. (51)

2. Computation of h2,0

A similar computation starting from Eq. (43) yields h2,0. We have to solve

(2λ−L 2) · h2,0 = −i K̃
2m̃

ei(α+ω0τ)e−λτ∂vψ. (52)

Using the ansatz

h2,0 = X0δ(v − ω) +X1δ
′(v − ω) +X2δ

′′(v − ω), (53)
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we obtain

X0(ω) =
iX1(ω)

(λ+ iω)
, (54)

X1(ω) =
−i(K̃ei(α+ω0τ)e−λτ/2m̃)U0(ω)

(2λ+ 2iω + 1/m̃)
+

4iX2(ω)

(2λ+ 2iω + 1/m̃)
, (55)

X2(ω) =
−i(K̃ei(α+ω0τ)e−λτ/2m̃)U1(ω)

2(λ+ iω + 1/m̃)
. (56)

3. Putting everything together

One can ascertain that the only diverging term will come from
∫
ψ̃(2)∗W ∗1 dω; thus, the leading term is∫

dω ψ̃(2)∗W ∗1 ∼ i
K̃2

2m̃2

e−2λrτ

(1/m̃)4

1

Λ′(iλi)

π

2

g(−λi)

λr
. (57)

These types of singularities are called “pinching singularities;” they arise when two poles approach the real axis, each

on one side in an integral. Indeed, with Eq. (34) and the notation ψ̃(ω, ω) = ψ̃(n)(ω), we find that

(ψ̃(n))∗(ω) =
(−i)nn!

Λ′(λ)

1∏n
l=0(λ+ iω + l/m)

. (58)

The (λ+ iω)−1 factor paired with the (λ∗− iω)−1 term appearing only in W ∗1 gives a “pinching singularity” resulting
in the 1/λr divergence. We conclude that the leading behavior of c3 for m̃ > 0 is given by

c3 ∼
πm̃K̃3

8

ei(α+(ω0−λi)τ)

Λ′(iλi)

g(−λi)

λr
. (59)

In particular, the sign of s(τ) ≡ Re
(
K
2m

ei(α+(ω0−λi)τ)

Λ′(iλi)

)
determines the type (sub- or super-critical) of the bifurcation.

Summarizing the analysis of this subsection, we find the following reduced equation for the order parameter:

Ȧ = λA+ c3(λ)|A|2A+O(|A|4A), (60)

c3(λ) ∼ πm
K3

8γ4

ei(α+(ω0−λi)τ)

Λ′(iλi)

G(ω0 − λi)

λr
, λr → 0+, (61)

where the unstable eigenvalue λ is decomposed into its real and imaginary parts: λ = λr + iλi. A few remarks are
in order: a) The coefficient c3 diverges as λr → 0, which is the regime where the reduction is valid. This singular
behavior is typical of this type of systems [16, 18, 31], and stems from the existence of the continuous eigenspectrum
that cannot be described by the finite dimensional equation (60). b) However, we still expect the behavior of c3
to determine the type of bifurcation. For Re(c3) > 0, we expect a subcritical (discontinuous) bifurcation, while for
Re(c3) < 0, we expect a supercritical bifurcation. In the latter case, the scaling of the stationary amplitude is Ast ∝ λr,
which differs from the usual Kuramoto model where it goes as

√
λr. c) In the case with no inertia, that is, with m = 0,

we expect the coefficient c3 to be quantitatively relevant in giving the exact amplitude Ast of the stationary branch
close to the bifurcation; here, because of the singularity, only the sign and scaling of c3(λ) can be used heuristically
to get qualitative information. Heuristically, the unstable manifold procedure will describe the linear growth of the
instability until the nonlinear effects, governed by c3, kick in, and then the simple one-dimensional reduced model,
Eqs. (60,61), cannot capture the full saturation dynamic. However, even if the diverging term in Eq. (57) is always the
dominating contribution in c3(λ) for m 6= 0, one can intuitively guess that away from the bifurcation point K & Kc,
this term proportional to m will become ‘very quickly’ small compared to other terms contributing to c3(λ) when
m is small. Hence, one can expect that other very different bifurcations take place closely after the bifurcation. In
practice, this is what we observe for smaller m in numerical simulations, see Fig. 4.



10

FIG. 2: Stability region of the incoherent state for Lorentzian GL(ω) = σ/[π((ω−ω0)2 +σ2)] with σ = 0.1 radHz, ω0 = 3 radHz,
γ = 1 and α = 0. We show here as a function of τ the quantities Kc(τ) and s(τ) for m = 0.1 s/rad and m = 3 s/rad. The sign
of s(τ), satisfying sign(Re(c3)(τ)) = sign(s(τ)), determines the super- or subcritical nature of the bifurcation.

C. Application to a Lorentzian distribution

To assess the effects of inertia in a delay system, we consider a Lorentzian distribution of the natural frequencies:
GL(ω) = σ/[π((ω − ω0)2 + σ2)]. The dispersion relation (35) at criticality gives K = Kc and λ = 0+ + iλi,c:

Kc

2
=
(
γσ +mσ2 −mλ2

i,c

)
sec((λi,c−ω0

)τ), (62)

λi,c(γ + 2σm)

γσ +mσ2 −mλ2
i,c

= − tan((λi,c−ω0
)τ), (63)

where for simplicity, we chose α = 0 for this application. Solving this system gives us Kc(τ) and λi,c(τ). Then the
sign of the cubic coefficient Re(c3)(τ) is given by

s(τ) = Re

(
(σ + iλi,c)2(γ +m(σ + iλi,c))2

m(γ + (σ + iλi,c)(γτ +m(iλi,cτ + στ + 2)))

)
, (64)

where we used Eq. (61) with G = GL. We plot in Fig. 2 the quantities Kc and s as a function of the delay for
two different inertia values m = 0.1 s/rad and m = 3 s/rad for a Lorentzian distribution. For τ → 0, we recover the
no-delay results showing a positive Re(c3) and hence a subcritical bifurcation [7]. Moreover, as in the case with no
inertia [22], m = 0, the delay induces “oscillations” in the sign of Re(c3). We observe that different nonzero values of
m do not change much the behavior of the bifurcation.

III. NUMERICAL RESULTS

A. Method

In the preceding section, we provided an analytic characterization of the stability properties of the incoherent state
in the Kuramoto model with delayed coupling and inertia in the limit N →∞. Here we present results from numerical
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integration of the dynamics (5) with Lorentzian-distributed natural frequencies with location parameter ω0 = 3 radHz
and scale parameter σ = 0.1 radHz. For all-to-all coupling, Eq. (5) can be rewritten in terms of the Kuramoto order
parameter: Using Rx(t− τ) = 1/N

∑
j cos(θj(t− τ)) and Ry(t− τ) = 1/N

∑
j sin(θj(t− τ)), we rewrite the equations

of motion as

θ̇i(t) = vi(t),

(65)

mv̇i(t) + γvi(t) = γωi +K [Ry(t− τ) cos(θi(t))−Rx(t− τ) sin(θi(t))] .

We set α = 0 for the numerical experiments. Hence, for γ = 1, we have the set of equations

θ̇i(t) = ωi +K xC
i (t), (66)

ẋC
i (t) =

1

m

(
xPD
i (t)− xC

i (t)
)
, (67)

xPD
i (t) = Ry(t− τ) cos(θi(t))−Rx(t− τ) sin(θi(t)), (68)

which we integrate numerically using an Euler iteration-method, given the initial phases θi(0) independently and
identically distributed in [0, 2π), and the initial states of the filters xC

i (0). Rx(thist) and Ry(thist) with thist ∈ [−τ, 0]
given by the history of the network of oscillators, which we obtain by evolving each oscillator independently according
to its own natural frequency, i.e., as if they were uncoupled. The code is written in python and compiled with cython
for fast execution and can be found on the Gitlab repository here [32].

Our objective behind performing the numerics is to verify our theoretical results obtained in the limit N → ∞
for the critical coupling constant Kc above which the incoherent state becomes unstable. Furthermore, we want to
confirm the type of bifurcation as predicted by our theoretical results that can be observed as the coupling constant
K is tuned across Kc. To this end, we integrate numerically the dynamics of large networks of all-to-all delay-coupled
Kuramoto oscillators in the vicinity of the theoretically-predicted Kc, see Fig. 2.

We proceed with our numerical work as follows. For a given set of parameters (N, τ,m, γ = 1, α = 0), a set of
discrete coupling constants K(n) = {Kon, Kon + ∆K, . . . , Kend − ∆K, Kend}; ∆K > 0 and a set of Lorentzian-
distributed natural frequencies {ωi}, each oscillator is evolved independently with its own natural frequency for a time
τ to obtain the dynamical history for N oscillators in the interval [−τ, 0]. In the next step, we turn on the coupling
between the oscillators at an initial coupling constant Kon that is close to but smaller than the critical coupling
constant predicted by our theoretical results. Subsequently, the delay-coupled system of all-to-all coupled oscillators
is evolved with the coupling constant kept fixed at Kon for time Tnum that is long compared to the mean period of
the independent oscillators, in order to ensure that the system settles into a stationary state at the fixed value of the
coupling. Then, using the phases of the final interval [Tnum − τ, Tnum] as the history, we evolve the system of coupled
oscillators for the next larger value in K(n) for time Tnum, and so on, until the final value Kend is reached. In the
final part of this procedure, we follow the exact reverse protocol, namely, repeating the above steps while decreasing
the value of the coupling from Kend until the initial value Kon < Kc is reached. In numerics, we track the value of
the Kuramoto order parameter in time, and save for each value of the coupling in the set K(n) the final value of the
order parameter obtained at the end of run for time Tnum as well as its average and variance computed over a time
taverage equal to 50 times the time period corresponding to ω0, i.e., taverage = 50× 2π/ω0.

B. Results

We present in Figs. 3 and 4 (a)-(f) results for transmission delays τ = {0.2, 1.0, 2.0, 3.0, 4.2, 5.25} s and moments
of inertia m = {3.0, 0.1} s/rad, obtained for a system of N = 105 all-to-all coupled oscillators. In both the figures, the
left panels (respectively, right panels) show the cases for which the theory predicts Re(c3) > 0 and hence a subcritical
bifurcation and presence of a hysteresis loop (respectively, Re(c3) < 0 and hence a supercritical bifurcation with no
hysteresis). The plots show the Kuramoto order parameter averaged over a time equal to 50 times the time period
corresponding to the frequency frequency ω0 and plotted as a function of the coupling constant K.

In our simulations, we find the bifurcations that were predicted by the theoretical results. We denote by Ktheory
c ≡ K

the theoretical critical coupling predicted by Eqs. (62,63) in the Lorentzian case G(ω) = GL(ω). As the coupling
constant K increases, it crosses a critical coupling constant Knum

c as found in our finite-size simulation, and we observe
a subcritical (discontinuous) transition and hysteresis for Re(c3) > 0. Knum

c denotes the value of the coupling strength
in the numerical calculations at which the incoherent state becomes unstable. For Re(c3) < 0, on the other hand,
we find a supercritical (continuous) transition with a linearly growing order parameter and no hysteresis as K grows
larger than Knum

c . We observe that for the case of m = 0.1 s/rad, the hysteresis seems to be weaker than in the case
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FIG. 3: Numerical integration results for the average Kuramoto order-parameter R̄(t) as a function of the coupling con-
stant K in the vicinity of the critical coupling constant Kc. Plots show the cases with inertia m = 3.0 s/rad and
τ = {0.2, 1.0, 2.0, 3.0, 4.2, 5.25} s in order from (a) to (f). For each value of K, the system of N = 105 oscillators was
integrated for at least Tnum = 200 s, and the K-values are separated by ∆K = (2.5 × 10−4)/(2π) Hz, see text. The horizon-

tal black lines at R̄ = 1/
√
N denote the order parameter fluctuations expected for a finite system with N unsynchronized

oscillators.

with m = 3 s/rad. The obtained results are in good agreement with our theoretical predictions for Kc and the type
of bifurcation.
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FIG. 4: Numerical integration results as in Fig. 3 but for m = 0.1 s/rad.

C. Discussion of numerical results

Numerical validation of our analytical N →∞-limit results obtained is not trivial and comes with a few difficulties
that we will discuss here. Since we do not know the critical system size Ncrit of oscillators below which strong finite-size
effects will come into play nor the number Nthermo above which the behavior coincides with that in the thermodynamic
limit, we decided to go for as large a system size as is practicable. This however becomes very resource intensive,
since for systems with time delays, a memory of the states of all oscillators for a time period [t− τ, t] has to be stored
in order to perform dynamical evolution. For the mean-field coupling case, we have the advantage that it is sufficient
to store only the history of the order parameter variables Rx(t− τ) and Ry(t− τ).
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FIG. 5: Plot (a) addresses the difficulties in showing the supercritical bifurcation arising due to subsequent bifurcations close
to the critical coupling strength for the case m = 0.1 s/rad and τ = 1 s. Plot (b) addresses the issue of finite-size effects in our
simulations, and we show results for different numbers N of oscillators for the case m = 3 s/rad and τ = 4.2 s The arrows in
the legend denote whether K is being increased or decreased.

It is known from the literature [33] that for the Kuramoto model in absence of delay and inertia, when the number
of oscillators is finite, we may expect to find Knum

c ≤ Ktheory
c , depending on the number N of oscillators considered.

This difference is even stronger when considering the inertial model and subcritical bifurcation, where the convergence
Ktheory
c −Knum

c (N) ∼ N−0.22 [17] is very slow with N (compared with Ktheory
c −Knum

c (N) ∼ N−0.4 without inertia
[33]). Note that the prediction Ktheory

c > Knum
c was obtained for systems without delay, thus observing Ktheory

c ≈
Knum
c in Fig. 3 and Fig. 4 at τ = 2 s does not contradict the results in [17, 33] and raises an interesting issue for future

investigation as to how the difference between Knum
c and Ktheory

c scales with N . However, in cases with supercritical
bifurcation, the numerically observed value of the critical coupling seems more different from the theoretical value
than in cases with subcritical bifurcation (which could be another indicator of the type of transition). We thus have no
prior knowledge of the exact value Knum

c (N) at which to expect the transition, see right plot in Fig. 5. Furthermore,
the multistability present in the system due to the delayed interaction results in a number of step-like transitions that
follow once the incoherent state becomes unstable. As a consequence, validation of a linear and continuous transition
for K > Kc becomes hard to resolve when increasing K further than the regime of the continuous transition, see left
plot in Fig. 5. In that case, R̄ does not return through the same values since the first bifurcation has already been
followed by one or more other bifurcations.

For smaller values of the inertia, the discontinuous transitions and hysteresis regimes also become much smaller, and
it becomes difficult to resolve them even with, e.g., N = 105 oscillators. Furthermore, there are no a priori conditions
to guide our choice of the discretization ∆K with which we change the coupling strength and the time Tnum for which
the coupling strength is kept constant. The tests required in estimating feasible values for the dynamical parameters
are computationally expensive and require long computation times.

Note that the cases in which the predicted discontinuous transitions appear continuous in numerics (e.g. Fig.4 left
panel, third row) are only due to the simulation time being too short in the bifurcation region for the instability to
grow enough and yield a large value of the order parameter.

IV. CONCLUSIONS

In this work, we have studied the effect of time delay in the interaction between oscillators within the framework of
the inertial Kuramoto model of globally coupled oscillators. For a generic choice of the natural frequency distribution
of the oscillators, we obtain exact analytical results that imply that in contrast to the case with no delay, the system
in the stationary state may exhibit either a subcritical or a supercritical bifurcation between a synchronized and an
incoherent phase. The precise nature of bifurcation has an essential dependence on the amount of delay present in
the interaction as also on the value of inertia of the oscillators. Our theoretical analysis, performed in the limit of
an infinite number of oscillators, is carried out by employing an unstable manifold expansion in the vicinity of the
bifurcation, which we apply to the kinetic equation satisfied by the single-oscillator distribution function, Eq. (14).
The one-dimensional reduction, Eq. (60), of the dynamics for the order parameter is plagued by singularities that are
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reminiscent of an infinite dimensional bifurcation and, thus, gives at best qualitative information on the bifurcation
nature, a fact that our numerical results fully support. We notice, however, that the unstable manifold method is very
robust in the context of kinetic equations with continuous spectrum, since it is, to the best of the authors’ knowledge,
the only one giving analytic predictions for the Kuramoto model both with inertia m 6= 0 and delay τ 6= 0, while
other methods, like the Ott-Antonsen ansatz [34], work only for m = 0, while self-consistent methods e.g. [1] have
been applied only for the case with no delay, τ = 0. Direct numerical integration of the dynamics allows to highlight
the subtleties one is confronted with when checking the analytical results against those obtained numerically for a
finite number of oscillators. For systems of delay-coupled PLLs with heterogeneous natural frequencies, our results
allow to predict the minimal coupling sensitivity of the voltage-controlled oscillators necessary to enable the network
to become synchronized. Moreover, such PLL networks generally seem to exit the incoherent state at smaller coupling
sensitivity if the transition happens through a subcritical bifurcation, Re(c3) > 0, and close to integer multiples of the
mean natural period of the oscillators, where we find the local minima of Kc, see Fig. 2. It may be noted that with
increasing transmission delay, the onset of synchronization can generally be achieved at smaller values of Kc. Hence,
larger values of the transmission delay seem to decrease the stability of the incoherent state.
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