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Starting from nonequilibrium quantum field theory on a closed time path, we derive kinetic
equations for the strong-field regime of quantum electrodynamics (QED) using a systematic expansion
in the gauge coupling e. The strong field regime is characterized by a large photon field of order
O(1/e), which is relevant for the description of, e.g., intense laser fields, the initial stages of off-central
heavy ion collisions, and condensed matter systems with net fermion number. The strong field
enters the dynamical equations via both quantum Vlasov and collision terms, which we derive
to order O(e2). The kinetic equations feature generalized scattering amplitudes that have their
own equation of motion in terms of the fermion spectral function. The description includes single
photon emission, electron-positron pair photoproduction, vacuum (Schwinger) pair production, their
inverse processes, medium effects and contributions from the field, which are not restricted to
the so-called locally-constant crossed field approximation. This extends known kinetic equations
commonly used in strong-field QED of intense laser fields. In particular, we derive an expression
for the asymptotic fermion pair number that includes leading-order collisions and remains valid for
strongly inhomogeneous fields. For the purpose of analytically highlighting limiting cases, we also
consider plane-wave fields for which it is shown how to recover Furry-picture scattering amplitudes
by further assuming negligible occupations. Known on-shell descriptions are recovered in the case of
simply peaked ultrarelativistic fermion occupations. Collisional strong-field equations are necessary
to describe the dynamics to thermal equilibrium starting from strong-field initial conditions.
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I. INTRODUCTION

Present and upcoming laser facilities [1–4] promise un-
precedented insights into the strong-field regime of quan-
tum electrodynamics (QED). Strong dynamical electro-
magnetic fields are also generated during the early stages
in off-central collisions of heavy nuclei at the Large Hadron
Collider (LHC) at CERN or the Relativistic Heavy Ion
Collider (RHIC) at BNL. The presence of strong electro-
magnetic fields and their dynamical decay can lead to a
wealth of intriguing quantum phenomena, such as related
to quantum anomalies which can be probed also in con-
densed matter systems [5]. Strong fields are also essential
for the description of highly charged systems, where the
net fermion charge induces strong field configurations also
in equilibrium [6]. While experiments pioneered by the
Stanford Linear Accelerator Center (SLAC) [7–9] have
since been developed further [10, 11], they are not yet
able to enter the full strong-field QED regime by means
of lasers. Meanwhile, experiments employing crystals
have been found to be a competitor to laser experiments
[12–15].

For the weak QED coupling α = e2/4π ≈ 1/137 (we use
natural units with ~ = c = kB = ε0 = 1), the strong-field
regime may be characterized by a photon field that is
parametrically as large as

Aµ ∼ O(1/e) . (1)

For a laser field [16] that is described by an electric field
amplitude E and frequency ω, the counting rule (1) cor-
responds to a large (Lorentz-invariant) non-linearity pa-
rameter [15–17],

|e|E/(mω) & 1 . (2)

For a macroscopic photon field that varies on the time
scale of the Compton length 1/m, the counting rule (1)
corresponds to electric fields of the order of the critical
field,

E & m2/|e| =: Ec , (3)

which induces electron-positron pair creation from the
vacuum [18–22].

Despite the smallness of the QED coupling, the theo-
retical description of strong field phenomena provides im-
portant challenges. Standard simulation techniques, such
as based on Monte Carlo importance sampling, cannot
be applied to general nonequilibrium problems. Rigor-
ous simulations are difficult even in equilibrium in the
presence of a net fermion charge leading to non-vanishing
fields. As a consequence, the development of suitable
approximate treatments is indispensable.

For instance, the decay times of strong electromagnetic
fields in the medium created by a heavy ion collision and
the role of the fields for the subsequent nonequilibrium
dynamics is still poorly understood. Even the idealized
problem of how an initially supercritical homogeneous

electromagnetic field approaches thermal equilibrium in
QED has not been answered yet. The strong field regime
at early times may be accurately described by classical
statistical field theory techniques [23, 24], while the late
time behavior at high temperature in the absence of a field
is successfully described using standard kinetic theory [25].
In particular, the dynamics of avalanches in which large
amounts of fermions are produced can be captured by a
kinetic approximation of QED [22, 26–43]. However, to
describe in a single approach the evolution all the way
from strong fields to equilibrium, or in the presence of a
net fermion density, involves the interplay of strong fields
and collisions beyond state-of-the-art approximations [44].

As an important step in this direction, we derive in this
work dynamical equations for strong fields in a kinetic
description including collisional processes to order O(e2).
Our ab initio derivation starts from nonequilibrium quan-
tum field theory on a closed time path [45, 46]. We de-
rive coupled equations for the spatio-temporal evolution
of the field expectation value and correlation functions
for commutators and anti-commutators of fields using
two-particle irreducible (2PI) generating functional tech-
niques [47, 48]. The expectation values of field commu-
tators (anti-commutators) for bosons (fermions) describe
the spectral functions of excitations, whereas their anti-
commutators (commutators) characterize their transport
behavior.

Applying a gradient expansion for two-point functions,
we derive a kinetic description where the strong-field scat-
tering kernel couples the transport equations for photons
and fermions to an equation for the fermion spectral func-
tion. The latter includes strong-field off-shell corrections
in a self-consistent way. Our description incorporates the
processes of single photon emission, electron-positron pair
photoproduction, vacuum pair production, their inverse
processes, medium effects and contributions from the field
going beyond the so-called locally-constant crossed field
approximation (LCFA) [16]. In fact, we show that our
approximation order captures already the complete ex-
plicit field-dependence of the problem. To make further
contact with the literature, we also consider plane-wave
fields. Plane-wave degrees of freedom are identified and
it is shown how to recover Furry-picture scattering ampli-
tudes.

Our description extends known kinetic equations com-
monly used in strong-field QED of intense laser fields
and can be applied, in particular, to strongly inhomo-
geneous field configurations. Earlier approaches include
collisionless approximations, e.g. Refs. [20, 49–51], such as
employed to strong-field pair production by a source term
[52, 53]. Collisional descriptions assuming subcritical or
weak fields can be found in Refs. [22, 25, 54–62]. Fermion
spectral dynamics in the presence of a macroscopic field
in the non-relativistic (subcritical) regime have been used
in Refs. [58–60] (see also Refs. [63, 64] for strong fields
in scalar theory). Collisional approaches either based on
the classical statistical approximation [65–67], or by the
use of a field-independent linear (‘relaxation-time’) colli-
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sion term [68] have been given. There are also particle-
in-cell schemes [69], which assume the validity of the
Lorentz equation between collisions and incorporate sev-
eral quantum effects by strong-field scattering amplitudes
[17, 70, 71].

The structure of this paper is the following. We intro-
duce the nonequilibrium equations of motion for one- and
two-point correlation functions in Sec. II. The ingredi-
ents for a kinetic limit of these equations are discussed
in Sec. III. We establish the systematics of counting cou-
plings and gradients in the presence of a strong field
and present general strong-field transport equations in
Sec. IV. In Sec. V, we point out which additional physical
assumptions are necessary to reduce the collision kernels
of our transport equations to various known expressions
and kinetic equations in the literature and how to de-
scribe strong-field pair production in our formalism. We
conclude and give an outlook in Sec. VI.

II. NONEQUILIBRIUM QED

All possible information about the dynamics of quan-
tum fields is contained in their correlation functions. The
latter can be efficiently encoded in terms of a quantum
effective action, which is the generating functional for
time ordered field correlation functions. Here we employ
the two-particle irreducible effective action Γ[A, D,∆],
which is a functional of the macroscopic field expectation
value

Aµ(x) = Tr {ρ(t0)Aµ(x)} =: 〈Aµ(x)〉 (4)

with Heisenberg gauge field operator Aµ(x) for given
density operator ρ(t0) at initial time t0, as well as of the
time-ordered connected two-point correlation functions

Dµν(x, y) = 〈TCAµ(x)Aν(y)〉 − 〈Aµ(x)〉 〈Aν(y)〉 , (5)

∆(x, y) = 〈TCΨ(x)Ψ̄(y)〉 , (6)

for gauge fields and Dirac fermions with fermion field
operators Ψ and Ψ̄ := Ψ†γ0, where we suppress spinor
indices. The expectation value of the fermion field Ψ
vanishes identically for the dynamics considered and plays
no role in the following. The symbol TC denotes contour
time ordering on the closed time path C [46], which starts
at initial time t0 and runs along the time axis and back
as indicated in Fig. 1.

FIG. 1. The closed time path.

Together with a non-thermal, ρ(t0) 6= e−βH , and not time-
translation-invariant, [ρ(t0), H] 6= 0, density matrix the

contour can be used to facilitate a compact formulation
of quantum field theory as an initial value problem that
describes non-equilibrium physics.

It is convenient to write the 2PI effective action as [72–
75]

Γ[A, D,∆] = S[A]− iTr C ln ∆−1 − iTr C∆
−1
0 [A]∆ (7)

+ i
2Tr C lnD−1 + i

2Tr CD
−1
0 D + Γ2[D,∆] ,

where TrCG :=
∫
x,C G(x, x). This identifies the pure

gauge field part of the gauge-fixed classical QED action

S[A] =

∫
x,C

{
− 1

4F
µν(x)Fµν(x)− 1

2ξG
2[A](x)

}
, (8)

with the gauge-invariant field strength tensor

Fµν(x) = ∂µAν(x)− ∂νAµ(x) (9)

and gauge-fixing parameter ξ. We use Lorenz gauge,

G[A] := ∂ · A , (10)

and keep in mind the possibility for residual gauge-fixing.
If computed within the 2PI loop expansion introduced

below without a further kinetic limit, correlation functions
such as (4) depend on the gauge-fixing parameter ξ (see
also Sec. IV E). This gauge-fixing dependence occurs at a
higher perturbative order in the coupling than the actual
approximation order [76–78] and can be absent in the
limit of on-shell photons relevant for kinetic descriptions
[79] (see also Eq. (101)). In the present paper, we discuss
this in the context of Ward identities in the presence
of strong fields in Sec. V E 2, where we show that the
gauge-fixing parameter drops out in limiting cases.

The semi-classical or ‘one-loop’ terms in (7) contain
the classical photon and fermion propagators

iD−1
0,ξ(x, y)µν =

[
ηµν�x − (1− 1

ξ )∂µx∂
ν
x

]
δC(x− y) ,

(11)

i∆−1
0 [A](x, y) =

[
i/∂x − e /A(x)−m

]
δC(x− y) (12)

in the presence of the macroscopic gauge field with
/A := γµAµ etc. Our metric convention is ηµν =
diag(+1,−1,−1,−1).

The benefit of the decomposition identity (7) for the full
quantum effective action Γ[A, D,∆] is that the remaining
functional Γ2[D,∆] exhibits specific properties that are
very useful for the following. For QED, Γ2 is the sum of all
2PI contributions built from the full two-point functions
D and ∆ and there is no explicit dependence on the
macroscopic field A, which is further discussed below. A
diagram is 2PI if it cannot be disconnected by cutting
two propagator lines (see Fig. 2).
The 2PI functional integral approach provides a prescrip-
tion on how to close equations in terms of one- and two-
point correlation functions only. Such a correlation func-
tion based description may be used to initialize the system
for instance with vanishing photon and fermion particle
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FIG. 2. Examples of 2PI and two-particle reducible diagrams.

number, described by connected two-point functions, but
large electromagnetic field or vice versa.

Furthermore, the 2PI formulation is known to facilitate
a derivation of kinetic equations [80, 81] and may be
transformed into other common formulations: Wigner
transformations of 2PI two-point functions allow one to
make contact with the Wigner operator formalism [50,
51, 82–85]. In particular, equal-time Wigner functions
emerge from integration over frequencies [51]. In this way
one is also able to make contact with the equal-time Dirac-
Heisenberg-Wigner (DHW) formalism [20, 86] which has
been applied to the discussion of pair production from
collisionless equations. Such quantum Vlasov equations
[20, 53, 68, 87–90] emerge under the so-called ‘mean-
field’ (or ‘Hartree-Fock’) approximation, Γ2 ≈ 0. In an
operator formulation, this approximation allows one to
close operator equations by treating photon operators
classically, at the cost of losing access to collisions. In
the 2PI formulation, one can easily go beyond this mean-
field order e.g. by means of the 2PI loop expansion as
is discussed below. This way of arriving at a kinetic
description starting from an effective action formulation
has the additional advantage that observables derived
from that effective action also become accessible under
the kinetic approximation.

A. Equations of motion

The equations of motion for the full one- and two-point
functions Aµ(x), Dµν(x, y), ∆(x, y) appearing in the 2PI
effective action (7) are obtained from the stationarity
conditions1

δΓ

δA
= 0 ,

δΓ

δD
= 0 ,

δΓ

δ∆
= 0 . (13)

These are coupled partial integro-differential equations for
the one- and two-point functions on the closed time con-
tour. From them emerge a Maxwell equation, and photon
and electron-positron transport equations respectively.

1 These equations are valid in the absence of external source terms.
Sources encoding initial conditions are stated accordingly together
with the differential equations for the fields and propagators.

In order to discuss the equations of motion, it is conve-
nient to make the time ordering explicit by writing

Dµν(x, y) = Fµν(x, y)− i
2ρ
µν(x, y)sgnC(x

0 − y0) , (14)

∆(x, y) = FΨ(x, y)− i
2ρΨ(x, y)sgnC(x

0 − y0) . (15)

After splitting the equations of motion into equations for
the ‘statistical functions’ (F ) and ‘spectral functions’ (ρ),
the contour C no longer appears and a clear separation
into transport and spectral dynamics is achieved. These
functions have distinct hermiticity properties,

Fµν(x, y) = F νµ(y, x) , (16)

ρµν(x, y) = −ρνµ(y, x) , (17)

FΨ(x, y) = γ0F †Ψ(y, x)γ0 , (18)

ρΨ(x, y) = −γ0ρ†Ψ(y, x)γ0 . (19)

These properties are related to the underlying
(anti-)commutator representations in terms of Heisenberg
field operators:

Fµν(x, y) := 1
2 〈{A

µ(x), Aν(y)}〉 − 〈Aµ(x)〉 〈Aν(y)〉 ,
(20)

ρµν(x, y) := i 〈[Aµ(x), Aν(y)]〉 , (21)

FABΨ (x, y) := 1
2

〈[
ΨA(x), Ψ̄B(y)

]〉
, (22)

ρABΨ (x, y) := i
〈{

ΨA(x), Ψ̄B(y)
}〉

. (23)

In particular, the equal-time (anti-)commutation rules
are encoded in the spectral functions according to

δC(x
0 − y0)ρµν(x, y) = 0 , (24)

δC(x
0 − y0)∂x0ρµν(x, y) = −δC(x− y)ηµν , (25)

δC(x
0 − y0)iγ0ρABΨ (x, y) = −δC(x− y)δAB . (26)

These equal-time conditions imply that spectral functions
are normalized and that their initial conditions are fixed
by the underlying quantum theory.

An important simplification in Abelian theories such
as QED occurs because of the absence of 2PI one-point
function diagrams, such that Γ2[D,∆] does not explicitly
depend on A: The electromagnetic field expectation value
enters the 2PI effective action for QED via the ‘classical
vertex’ term

−ieγµAµ(x)δC(x− y) , (27)

which can be depicted graphically as in Fig. 3.

FIG. 3. The macroscopic field vertex.

Such a contribution cannot be found in the 2PI diagrams
contributing to Γ2 since the two fermion lines emanating
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from the vertex could always be cut, thus making any
such diagram two-particle reducible (see also Fig. 2).

For QED, the macroscopic field therefore enters the
2PI effective action (7) only via the classical fermion
propagator ∆0[A] and the classical action S[A], while Γ2

is field-independent. Since 2PI diagrams are at least two-
loop, this implies that the complete explicit macroscopic
field dependence enters at one-loop order of Γ,

δΓ

δA

∣∣∣
FΨ

= 0⇔ δΓ(1-loop)

δA

∣∣∣
FΨ

= 0 . (28)

Consequently, the field evolution equation always has
a Maxwell-type form, i.e.[

ηµσ�x − (1− 1
ξ )∂µx∂

x
σ

]
Aσ(x) = jµ(x) , (29)

with the fermion current (see appendix B)

jµ(x) = −e tr{γµFΨ(x, x)} , (30)

irrespective of the approximation order for Γ2. This would
not be the case, e.g., in QCD or self-interactring Φ4 scalar
field theory, where the two-particle irreducible part of the
effective action depends explicitly on the field expectation
value, such that the form of the field evolution equation
depends strongly on the order of approximation. Because
Γ2 is field-independent in QED, there are no further terms
coming from higher order corrections. Approximations
to Γ2 affect the field evolution only implicitly via FΨ in
the fermion current (30). Furthermore, that each 2PI
diagram in Γ2 is separately gauge-invariant in QED [91]
remains true in the presence of a macroscopic field due
to the field-independence of Γ2.

Notably, a vanishing field is not in general a self-
consistent solution: if the system is initialized with a finite
net charge density, it will develop a field from fermion
fluctuations in the Maxwell equation. This field is then
necessarily inhomogeneous as dictated by Gauss’s law,
i.e. the 0-component of the Maxwell equation. There-
fore, if the system equilibrates, it has to do so under this
constraint for inhomogeneity.

In the equations of motion for the two-point functions,
explicitly field-independent self-energies are given by

ΣΨ[D,∆](x, y) := −i δΓ2[D,∆]

δ∆(y, x)
, (31)

Σµν [D,∆](x, y) := 2i
δΓ2[D,∆]

δDµν(x, y)
, (32)

and can be decomposed similarly to two-point functions:

Σµν(x, y) = Σ(F )
µν (x, y)− i

2Σ(ρ)
µν (x, y) sgnC(x

0 − y0) ,

(33)

ΣΨ(x, y) = Σ
(F )
Ψ (x, y)− i

2Σ
(ρ)
Ψ (x, y) sgnC(x

0 − y0) . (34)

With these definitions, assuming Gaussian initial condi-
tions, the stationarity conditions for the propagators in

Eq. (13) can be written as2 [93][
ηµσ�x − (1− 1

ξ )∂µx∂
x
σ

]
Fσν(x, y) (35)

=

∫ x0

t0

d4zΣ(ρ)(x, z)µγF (z, y)γ
ν

−
∫ y0

t0

d4zΣ(F )(x, z)µγρ(z, y)γ
ν
,[

ηµσ�x − (1− 1
ξ )∂µx∂

x
σ

]
ρσν(x, y) (36)

=

∫ x0

y0

d4zΣ(ρ)(x, z)µγρ(z, y)γ
ν
,[

i/∂x − e /A(x)−m
]
FΨ(x, y) (37)

=

∫ x0

t0

d4zΣ
(ρ)
Ψ (x, z)FΨ(z, y)

−
∫ y0

t0

d4zΣ
(F )
Ψ (x, z)ρΨ(z, y) ,[

i/∂x − e /A(x)−m
]
ρΨ(x, y) (38)

=

∫ x0

y0

d4zΣ
(ρ)
Ψ (x, z)ρΨ(z, y) ,

with finite-time integrals
∫ x0

t0
d4z =

∫ x0

t0
dz0

∫∞
−∞ d3z.

While the structure of these equations is determined by
causality, details of the underlying theory enter through
the differential operators and self-energies, which couple
all spectral and statistical functions to each other.

The fact that initial conditions for spectral functions are
fixed by the equal-time (anti-)commutation relations (24)
– (26), is reflected by the absence of the initial time t0 in
the memory integrals of their equations. In contrast, the
evolution equations for the statistical functions have to
be supplied by initial conditions. Non-Gaussian quantum
fluctuations are built up dynamically but vanish at initial
time, x0 = y0 = t0, by vanishing of the memory integrals.

All equations are considered to be suitably regularized
and the renormalization of the 2PI effective action for
QED is discussed in detail in Ref. [94]. Since we will
finally arrive at a set of finite equations at the level of
the kinetic approximation, renormalization will not be
further discussed and we refer, e.g., to Refs. [52, 53] for
details concerning dynamics.

The self-energies, encoding collisions, have leading con-
tributions at Σ,ΣΨ ∼ O(e2). While self-energies have
no explicit dependence on the macroscopic field by their
definition in terms of the field-independent Γ2, fermion
two-point functions introduce an implicit field-dependence
when evaluated from their equations of motion. As we

2 For non-Gaussian initial conditions, additional terms involving
non-local interactions at initial time would appear in the equations
of motion [92].
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will demonstrate, strong-field collision kernels are gen-
erated both in photon and fermion kinetic equations in
this way. The macroscopic field enters via the terms
e /A(x), encoding in particular the Vlasov terms of fermion
transport equations, which can be any order depending
on the strength of Aµ(x). By the smallness of the cou-
pling e, these terms are suppressed in a naive power
counting. However, in the presence of a strong field,
Aµ(x) ∼ O(1/e), these terms are effectively of order
eAµ(x) ∼ O(e0) such that the field-vertex (27) has to be
resummed. As the macroscopic field decays [31, 53, 95]
from its strong-field initial conditions, the system passes
through different power counting scenarios that are all
captured by our strong-field counting.

B. 2PI loop expansion

In order to close the equations (35)–(38) one requires
explicit expressions for the self-energies (31) and (32).
This is achieved by employing a 2PI coupling or ‘loop’
expansion, which expresses Γ2 in terms of resummed
propagators Dµν and ∆ and of free vertices. This self-
consistent treatment of propagators selectively resums
perturbative contributions, which helps achieving a non-
secular time evolution with a valid expansion scheme at
all times [93, 96]. In such an expansion, Γ2 can be written
as

Γ2[D,∆] = i
2e

2D∆2V 2
0 + i

4e
4D2∆4V 4

0 +O(e6) , (39)

where we have suppressed all indices and arguments that
are contracted or integrated over. This is diagramatically
depicted in Fig. 4.

FIG. 4. The first two 2PI loop orders, O(e2) and O(e4), of
the effective action.

FIG. 5. The first two 2PI loop orders, O(e2) and O(e4), of
the photon (first line) and fermion (second line) self-energy.

The explicit expressions obey Feynman rules including
symmetry factors. Only the free QED vertex

V µ0,AB(x, y, z) := γµABδC(x− z)δC(z − y) (40)

appears.
Correspondingly, the 2PI loop expansion of the self-

energies (31) and (32) is a series of 1PI diagrams with two
amputated external legs (see Fig. 5). The 1PI property
of the self-energies can also directly be understood from
the definition of Γ2 as the sum of all closed 2PI diagrams,
from which Σ,ΣΨ are obtained by opening one propagator
line, i.e. by Eq. (31), (32).

As long as photon occupations are not too large, i.e. if
the statistical photon two-point function obeys

Fµν � O(1/e2) , (41)

the power counting of e from vertices in a 2PI loop ex-
pansion can be expected to be a valid approximation
scheme and we can truncate by virtue of the smallness
of e. Similar conditions for the spectral functions always
hold since they are normalized by the equal-time commu-
tation relations. Since fermion occupancies are limited by
Fermi-Dirac statistics there are no further corresponding
constraints for the expansion scheme. The condition (41)
is dynamical such that even if the system is initialized with
small occupations, a kinetic description breaks down if
too many photons with the same position and momentum
are produced. Physically, the assumption (41) may be
understood as the requirement for a sufficiently long mean
free path in kinetic descriptions: The loop expansion of
self-energies in the kinetic limit is an expansion in the
number of particles involved in a scattering [97–99]. The
denser the medium, the smaller the mean free path, and
the more likely a collision involving many particles. If the
medium is too dense, collisions between arbitrarily many
particles become equally likely, invalidating a truncation
in an expansion of the number of particles.3

We emphasize that these considerations do not directly
limit the size of the macroscopic field: Because of the
field-independence of Γ2, higher order contributions to
self-energies are negligible also in the presence of strong
fields and processes such as eeγγ or eeee scattering do
not contribute to a leading-order (LO) description (see
also Ref. [101]). As long as (41) is fulfilled, the coupling
remains a valid expansion parameter, no matter how large
the field is at that time. Thus we may employ the leading
order of self-energies to obtain a closed description that
is complete at order O(e2).

The LO of Γ2 ∼ O(e2), is

2iΓ2[D,∆] (42)

= −e2

∫
xy,C

tr{γµ∆(x, y)γν∆(y, x)}Dµν(x, y) +O(e4) .

3 In O(N) scalar theories, a far-from-equilibrium kinetic description
can nevertheless be formulated on the basis of emergent degrees
of freedom in this highly occupied regime [100].
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The corresponding self-energy expressions are

Σµν(x, y) = e2 tr {γµ∆(x, y)γν∆(y, x)}+O(e4) , (43)

ΣΨ(x, y) = −e2γµ∆(x, y)γνD
µν(x, y) +O(e4) , (44)

where the relative sign originates from the fermion loop in
Σµν . The kinetic equations derived in this paper neglect
all higher orders of the 2PI loop expansion.4 In agree-
ment with the coupling counting in perturbation theory,
all possible crossings of eeγ scattering terms emerge from
these O(e2) self-energies. The following sections are dedi-
cated to understanding how effective transport and kinetic
descriptions emerge from this approach.

III. THE KINETIC LIMIT OF
NONEQUILIBRIUM QED

To express the equations of motion in kinetic degrees
of freedom, we change to center and relative space-time
variables

X := 1
2 (x+ y) , s := x− y . (45)

The four-momentum p associated to −i∂s is the momen-
tum that appears in kinetic equations, while X is the
kinetic four-position variable.

The momentum p is introduced by a Wigner transform
with respect to the relative coordinate s. For an evolution
starting at time t0 at which the initial conditions are given,
the Wigner transform of a generic two-point function G
may be written as

Gt0(X, p) :=

2(X0−t0)∫
−2(X0−t0)

ds0

∫
d3s eipsG(X + s

2 , X −
s
2 ) .

(46)

Here t0 appears in the time integral as a lower boundary
for all time variables. Since initially we have X0 = t0,
there are no relative times to integrate in this case, which
preempts a Wigner transformation starting at initial time.
To nevertheless be able to talk about kinetic variables
from the initial time of our kinetic description, we employ
a late-time limit described in the following.

A. Late-time limit

For finite t0 and X0 the integration range for s0 is al-
ways limited. Only if t0 → −∞ the relative time variable

4 We expand Γ2 to O(e2), i.e. to 2PI 2-loop order, where the
leading non-trivial scattering occurs in the presence of a non-
vanishing field. At this order the 2PI approach coincides also
with corresponding two-loop approximations for any higher nPI
effective actions with n > 2 [73].

s0 can be infinite, which is required for a proper introduc-
tion of Fourier frequency modes p0. Of course, sending
formally t0 → −∞ while still initializing the evolution at
some finite time implies that a general system is initially
not accurately described by these late-time equations.
However, for sufficiently large X0 compared to the finite
initialization time, the description is expected to become
accurate [102]. Therefore, instead of Eq. (46) we consider
the late-time Wigner transform

G(X, p) :=

∫
d4s eipsG(X + s

2 , X −
s
2 ) , (47)

which has contributions from all s0 for arbitrary X0.
Equal-point objects such as the fermion current (30) can

be expressed in terms of such late-time Wigner transforms,

jµ(X) = −e
∫
p

tr{γµFΨ(X, p)} . (48)

The notation
∫
p

=
∫∞
−∞ d4p/(2π)4 for momentum inte-

grals is used throughout. The canonical equal-time anti-
commutator (26) in late-time Wigner space is

−iγ0

∫
dp0

(2π)
ρΨ(X, p) = 1 , (49)

such that the late-time vector-zero component
1
4 tr{γ0ρΨ(X, p)} may be interpreted as a density
of states [103].

In the microscopic description, finite-time Wigner trans-
forms (46) produce factors with finite-width energy-peaks
on correspondingly small timescales [104] that reduce to
delta peaks at late times via

2(X0−t0)∫
−2(X0−t0)

ds0 eiP
0s0 t0→−∞−−−−−→ (2π)δ(P 0) . (50)

In this late-time regime, the interactions of QED may be
described by those of kinetic theory in terms of degrees
of freedom that carry a definite amount of energy.

Applying the late-time limit, t0 → −∞, one can write
the equations of motion (35) – (38) as[
ηµσ�x − (1− 1

ξ )∂µx∂
x
σ

]
Fσν(x, y) (51)

=

∫
z

[
ΣµσR (x, z)Fσ

ν(z, y) + Σ(F )(x, z)µσDA(z, y)σ
ν
]
,[

ηµσ�x − (1− 1
ξ )∂µx∂

x
σ

]
ρσν(x, y) (52)

=

∫
z

[
ΣµσR (x, z)ρσ

ν(z, y) + Σ(ρ)(x, z)µσDA(z, y)σ
ν
]
,[

i/∂x − e /A(x)−m
]
FΨ(x, y) (53)

=

∫
z

[
ΣΨ,R(x, z)FΨ(z, y) + Σ

(F )
Ψ (x, z)∆A(z, y)

]
,[

i/∂x − e /A(x)−m
]
ρΨ(x, y) (54)

=

∫
z

[
ΣΨ,R(x, z)ρΨ(z, y) + Σ

(ρ)
Ψ (x, z)∆A(z, y)

]
,
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with
∫
z

=
∫

d4z, where we have introduced the retarded
and advanced functions for photons and fermions (A5) –
(A7) defined in appendix A.

Given the multitude of different nonequilibrium two-
point functions, it is important to remember that there are
only two independent two-point functions per field species:
the statistical and spectral functions. However, this can
be invalidated by approximations, in particular, by the
procedure of sending t0 → −∞ while initializing the
equations at a finite time. Wigner functions that include
small frequencies via (47) may appear independent of each
other because of spurious small frequency contributions
that, in an exact description employing finite-time Wigner
transforms (46), do not yet exist at early times [105, 106].

B. Gradient expansion

As a next step in the derivation of kinetic equations, one
considers an expansion in the Lorentz-invariant and dimen-
sionless parameter (s · ∂X). An expansion in propagator-
gradients is achieved by the late-time identity [102]∫

s

eip·s(Σ ∗G)(X + s
2 , X −

s
2 ) (55)

= exp

{
i

2

(
∂

∂pσ

∂

∂X ′σ
− ∂

∂p′σ

∂

∂Xσ

)}
× Σ(X, p)G(X ′, p′)

∣∣∣
X′=X,p′=p

,

which applies to photon and fermion convolutions

(Σ ∗G)µν(x, y) :=

∫
z

Σµσ(x, z)Gσν(z, y) , (56)

(ΣΨ ∗GΨ)(x, y) :=

∫
z

ΣΨ(x, z)GΨ(z, y) . (57)

Expansion of the exponential in Eq. (55) corresponds
to an expansion in (∂p · ∂X), i.e. a gradient expansion in
Wigner space. While the LO simply replaces the Wigner
transform of convolutions by products of Wigner trans-
forms, an expansion to next-to-leading order (NLO) in
propagator-gradients would involve Poisson brackets,

[Σ, G]PB(X, p) (58)

:=
∂Σ(X, p)

∂pσ

∂G(X, p)

∂Xσ
− ∂Σ(X, p)

∂Xσ

∂G(X, p)

∂pσ
.

The truncated gradient expansion leads to equations that
are irreversible and local in central time X0, as in the
case of kinetic equations. Still, gradient expanded 2PI
equations contain parts of the memory integrals of the
fundamental equations and are non-local in relative time
s0. This allows for access to unconstrained frequency
variables, which are not present in traditional kinetic
descriptions as further discussed in the following sections.

The smallness of the expansion parameter (s·∂X) can be
met in several circumstances.5 Quantum field dynamics
often becomes insensitive to its past, such that correlations
are dominated by small s [107–110]. From the perspective
of the spectral function, this damping of correlations in
time corresponds to the emergence of a particle picture in
momentum space [111, 112]. Furthermore, assuming that
(s · ∂X) is small depends on what the derivative acts on:
In the following, we neglect only gradients of two-point
functions G, by dropping Poisson brackets

[Σ[G], G]PB ∼ O(e2∂p · ∂XG) , (59)

while formally keeping gradients of the gauge-invariant
field strength tensor, (s · ∂X)j eFµν(X) ∼ O(e0(s · ∂X)j),
to all orders. That is, we count field-gradients
as (s · ∂X)Fµν ∼ Fµν and propagator-gradients as
(s · ∂X)G� G. This allows us to treat a large class of
far-from-equilibrium initial conditions of the macroscopic
field. Approximations to field-gradients are then discussed
in Secs. V A and V F 2, where we make contact with the
locally-constant field approximation.

However, field-gradients may be implicit in propagator
solutions (see also Sec. V F 2 for the example of plane-
wave fields): Given an explicit field-dependent solution
for a two-point function, for example of the form

G−1
Ψ [A] ∼ /p− e /A−m, (60)

different gradients may be related via

G−1
Ψ (s · ∂X)GΨ

/A−1
(s · ∂X)/A

∼ −e /A
/p− e /A−m

. (61)

In fact, the separation of field and propagator-gradients
that is possible at the level of the equations of motion
does not ensure that the ratio (61) is small. Nevertheless,
we can observe from Eq. (61) that large fermion momenta
can facilitate such a separation. When solving the kinetic
equations for inhomogeneous fields derived below, the
smallness of the ratio (61) should be be checked.

C. Distribution functions

1. Reduction of tensor structures

An identification of the linearly independent compo-
nents of the fermion or photon correlation functions fol-
lows from their Lorentz transformation properties. For
instance, the statistical fermion correlator can be decom-
posed as

FΨ = FΨ,S + γµF
µ
Ψ,V (62)

+ iγ5FΨ,P − γ5γµFΨ,A + 1
2σµνF

µν
Ψ,T ,

5 In the absence of a temperature far from equilibrium, no single
scale may be associated to s. In this case, the near-equilibrium
counting of dimensionful gradients ∂X ∼ e2T of Ref. [56] may
not be used to argue for the smallness of (s · ∂X).
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in terms of the scalar (FΨ,S), vector (FµΨ,V), pseudo-vector

(FΨ,P), axial-vector (FΨ,A) and tensor (FµνΨ,T) components

FΨ,S := 1
4 tr {1FΨ} , (63)

FµΨ,V := 1
4 tr {γµFΨ} , (64)

iFΨ,P := 1
4 tr
{
γ5FΨ

}
, (65)

FµΨ,A := 1
4 tr
{
γ5γµFΨ

}
, (66)

FµνΨ,T := 1
4 tr {σµνFΨ} , (67)

with respect to the Dirac basis {1, γµ, γ5, γ5γµ, σµν}
where µ < ν and with γ5 := − i

4!εµνρσγ
µγνγργσ and

σµν := i
2 [γµ, γν ]. Below, we often drop the label ‘V’ for

the vector component.

In the presence of chiral symmetry (facilitated by mass-
less fermions or ultrarelativistic momenta), scalar, pseu-
doscalar and tensor components vanish identically [108].
If a description in terms of free particles is valid, the axial
component of the free fermion spectral function would
also vanish.

Similar comments apply to the photon distribution func-
tion and a decomposition of the Lorentz tensor structures
of the photon equations of motion in the presence of a
macroscopic field can be achieved with the basis discussed
in Refs. [113, 114].

With this in mind, one could write without loss of
generality for each component of FΨ(X, p):

FΨ,S(X, p) = −i[ 1
2 − fΨ,S(X, p)]ρΨ,S(X, p) , (68)

FµΨ,V(X, p) = −i[ 1
2 − fΨ,V(X, p)]ρµΨ,V(X, p) , (69)

FΨ,P(X, p) = −i[ 1
2 − fΨ,P(X, p)]ρΨ,P(X, p) , (70)

FµΨ,A(X, p) = −i[ 1
2 − fΨ,A(X, p)]ρµΨ,A(X, p) , (71)

FµνΨ,T(X, p) = −i[ 1
2 − fΨ,T(X, p)]ρµνΨ,T(X, p) . (72)

The change from a description in terms of FΨ,S...T(X, p)
to a formulation in terms of fΨ,S...T(X, p) is convenient
because in characteristic limits fΨ,S...T(X, p) can be in-
terpreted as distribution functions.

In particular, in thermal equilibrium all distribution
functions are time-independent and equal the Fermi-Dirac

distribution, i.e. fΨ,S...T(p0) = 1/(eβp
0

+ 1) (and corre-
spondingly a Bose-Einstein distribution for the photon
case). For a thermal theory this is valid no matter how
strong the interactions are and holds even in the absence
of a dispersion relation between frequency and spatial
momenta, p0 = ω(~p ).

Phenomena such as the chiral magnetic effect [115–
118], chiral kinetic theory [119–123] or spin transport
[124] should become accessible from first principles by
using (68) – (72) in the equations of motion (51) – (54).
However, for our current purposes of strong-field kinetic
equations and to make contact with existing limiting
cases in the literature, we consider a single distribution
function fΨ(X, p) for fermions and f(X, k) for photons

by writing [93, 125]

Fµν(X, k) = −i[ 1
2 + f(X, k)]ρµν(X, k) , (73)

FΨ(X, p) = −i[ 1
2 − fΨ(X, p)]ρΨ(X, p) . (74)

For the fermion distribution function one has Pauli’s
principle [108],

fΨ(X, p) ≤ 1 . (75)

In order to distinguish fermion and anti-fermion distribu-
tion functions, it is convenient to define [126]

fΨ(X, p) =: θ(p0)f−Ψ (X, p) (76)

+ θ(−p0)[1− f+
Ψ (X,−p)] .

In a charge conjugation invariant system, the fermion
distribution function obeys [73, 74]

−[fΨ(X,−p)− 1] = fΨ(X, p) (if CP-invariant) , (77)

such that the system is charge neutral,

f+
Ψ (X, p) = f−Ψ (X, p) (if CP-invariant) . (78)

While the vacuum is CP-invariant, the general initial
conditions which we want to discuss in this paper break
CP-invariance by introducing a net total charge, such
that f+

Ψ 6= f−Ψ . The photon identity analogous to (77)
reads [73, 74]

−[f(X,−k) + 1] = f(X, k) (79)

and does not rely on CP-invariance.

2. On-shell particle picture

In general, the distribution functions introduced in
Eqs. (73) and (74) depend on the off-shell frequency
variable p0 that is not restricted to any dispersion relation,
p0 6= ω(~p ). However, they only appear in combination
with the respective spectral function. As a consequence,
if the physics can be approximately described by free
spectral functions,

ρµν0,ξ(X, k) = i(2π)(ηµν − (1− ξ) 1
k2 k

µkν)sgn(k0)δ(k2) ,

(80)

ρΨ,0(X, p) = i(2π)(/p+m)sgn(p0)δ(p2 −m2) , (81)

then the distribution functions can be restricted to their
on-shell values. Whether an on-shell description is possi-
ble is determined self-consistently by solving the equations
of motion (52) and (54) for the spectral functions. At
initial time, the photon (fermion) spectral functions are
determined by the equal-time (anti)commutation rules
and each subsequent time step is determined by the equa-
tions of motion. If and when on-shell spectral functions
emerge depends on timescales and initial conditions for
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statistical propagators and the macroscopic field. As we
argue in Sec. IV B, the free fermion spectral function (81)
is in fact not complete at order O(e2) in the presence of
general strong fields, Aµ(x) ∼ 1/e, such that a standard
on-shell kinetic description breaks down. Instead, we pro-
pose in this paper a less restrictive ‘transport’ description
that includes off-shell frequencies of fermions (but not of
photons) in terms of the off-shell distribution function
fΨ(X, p). The frequency dependence of this function is
then determined dynamically by the equations of motion
and independently of its momentum dependence ~p. An
electron and positron particle picture is assumed only in
Sec. V B to compute particle production at asymptotic
times when the field has decayed.

With this application in mind, it is instructive to com-
pute the fermion current (48) for the free fermion spectral
function (81), i.e.

j0(X) = −2e

∫
d3p

(2π)3

[
f+

Ψ (X,−~p )− f−Ψ (X, ~p )
]
, (82)

ji(X) = −2e

∫
d3p

(2π)3

pi

ε(~p )

[
1− f+

Ψ (X,−~p )− f−Ψ (X, ~p )
]
,

(83)

with on-shell electron and positron distribution functions,

f−Ψ (X, ~p ) := f−Ψ (X, p) at p0 =
√
|~p |2 +m2 , (84)

f+
Ψ (X,−~p ) := f+

Ψ (X,−p) at p0 = −
√
|~p |2 +m2 .

(85)

The zero-component (82) can be interpreted in terms of
the conserved electric charge

Q(X0) :=

∫
d3Xj0(X) (86)

which then reads on-shell

Q(X0) = 2e

∫
~X,~p

[
f−Ψ (X, ~p )− f+

Ψ (X,−~p )
]
. (87)

Similarly, on-shell, ji gives rise to the fermion pair number
density

nΨ(X) :=

∫
~p

[
f−Ψ (X, ~p ) + f+

Ψ (X,−~p )
]
. (88)

which is related to the total pair number via

NΨ(X0) :=

∫
d3X nΨ(X) . (89)

This expression will serve us to define an asymptotic
particle number of strong-field systems in Sec. V B.

In contrast to the fermion case, the photon spectral
function may be set to its free form also in the presence
of a strong field (see Sec. IV A). We can then identify the
on-shell photon distribution functions of kinetic theory
by integrating over frequency k0, i.e.

f(X,~k) :=

∫ ∞
0

dk0 2k0 f(X, k)δ(k2)

= f(X, k)|k0=|~k| , (90)

as we discuss below. The total number of photons is then

N(X0) :=

∫
~X,~k

f(X,~k ) . (91)

IV. STRONG-FIELD QED TRANSPORT
EQUATIONS

We now apply the procedure of Sec. III to the equa-
tions of motion (51) – (54) for the statistical and spectral
functions and the equation of motion (29) for the macro-
scopic field. To ease the notation, we refer to the left sides
of the two-point function equations as (FLHS)µν(x, y),
(ρLHS)µν(x, y) and (FLHS)Ψ(x, y), (ρLHS)Ψ(x, y) respec-
tively, and similarly to the right hand sides (‘RHS’) or to
entire equations (‘EOM’).

To reveal the ’gain-minus-loss’ structure of collision
terms, we identify the ‘+−/−+’ or ‘Wightman functions’
(defined in appendix A) by making use of the identity

Σ(ρ)(X, k)µσFσ
ν(X, k)− Σ(F )(X, k)µσρσ

ν(X, k)

= −i
(

Σ−+(X, k)µσD+−(X, k)σ
ν

− Σ+−(X, k)µσD−+(X, k)σ
ν
)
, (92)

and an analogous identity for fermions. Then Eqs. (73)
and (74) can be expressed in terms of the Wightman
functions as

D+−(X, k)µν = −i[1 + f(X, k)]ρµν(X, k) , (93)

D−+(X, k)µν = −if(X, k)ρµν(X, k) , (94)

∆+−(X, p) = −i[1− fΨ(X, p)]ρΨ(X, p) , (95)

∆−+(X, p) = ifΨ(X, p)ρΨ(X, p) . (96)

From the ‘+−’ functions, one readily observes the appear-
ance of Bose-enhancement terms (1+f(X, k)) for photons
and Pauli-blocking terms (1− fΨ(X, p)) for fermions. In
collision terms, these emerge attached to outgoing parti-
cles, while ingoing photons and fermions, associated with
‘−+’ functions, are not distinguished in terms of their
statistics.

A. Photon spectral function & gauge-fixing
independent photon drift term

The photon transport equation is related to the evolu-
tion equation of the statistical photon propagator via∫

d4(x− y) eik(x−y) (97)

× 1
4ηµν

[
(FEOM)µν(x, y)− (FEOM)νµ(y, x)

]
,

i.e. by a Wigner transformation of Lorentz-traced differ-
ences. Combined with the change of variables to X and p,
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the Boltzmann derivative operator is recovered from the
d’Alembertian in a Lorentz-invariant way by the identity

�x −�y = 2(∂s · ∂X)↔ −2i(k · ∂X) . (98)

By use of the convolution identity (55) at LO gradient
expansion as well as of symmetry properties of the Wigner
transforms given in appendix A, one finds that Eq. (97)
reads

− i 1
4

[
2(k · ∂X)ηµσ − (1− 1

ξ ) (99)

×
(
kµ

∂

∂Xσ
+ kσ

∂

∂Xµ

)]
Fµσ(X, k)

= −i 1
4

[
Σ−+(X, k)µσD+−(X, k)σµ

− Σ+−(X, k)µσD−+(X, k)σµ

]
+O(e2∂k · ∂XG) .

The tracing over Lorentz indices reduces the ten equations
for the components of Fµν to a single scalar equation.
In combination with the introduction of the distribution
functions (73) and (74), which reduces the amount of
independent tensor structures, (99) is then sufficient to
close the dynamics.

This transport equation (99) is valid to all orders in the
coupling of the 2PI loop expansion. To obtain a leading
order collision term, we neglect terms of order O(e4) to
this equation. There are two types of such higher order
terms: a) terms of order O(e4) in Γ2 discussed in Sec. II B;
b) terms of order O(e2) in equations of motion for spectral
functions contributing to the transport equations only
at order O(e4). Terms of the latter type appear in the
analogous expression (97) for the photon spectral function,
i.e.

− i 1
4

[
2(k · ∂X)ηµν − (1− 1

ξ ) (100)

×
(
kµ

∂

∂Xν
+ kν

∂

∂Xµ

)]
ρµν(X, k) = 0 +O(e2) .

The O(e2) terms of this equation contribute only at order
O(e4) to the transport system, because the self-energies
in Eq. (99) are already of order O(e2) themselves, be-
fore being multiplied with the photon two-point func-
tion containing ρµν . It is therefore sufficient at order
O(e2) to employ the free O(e0) solution of Eq. (100) in
transport equations. In this way, transport equations
self-consistently resum statistical functions, but not spec-
tral functions. The additional ‘collisional broadening’ of
spectral peaks, that does not enter the LO strong-field
transport description explicitly, can then be estimated
from its solutions, e.g. by evaluating spectral self-energies
in terms of distribution functions or computing the decay
rate. The gradient expansion further supports this special
treatment of spectral functions, as we discuss in appendix
C.

Employing the free photon spectral function (81) by
this reasoning, the gauge-fixing dependence of the LHS
of the photon transport equation (99) drops out due to a

cancellation between (Dµν
0,ξ)
−1 and ρµν0,ξ:

− i 1
4

[
2(k · ∂X)ηµσ − (1− 1

ξ ) (101)

×
(
kµ

∂

∂Xσ
+ kσ

∂

∂Xµ

)]
Fµσ(X, k)

= −i(2π)sgn(k0)δ(k2)2(k · ∂X)f(X, k) +O(e2∂p · ∂XG) .

To obtain Boltzmann-type equations, one finally inte-
grates over frequencies k0, leading to the appearance of

the on-shell distribution functions f(X,~k) defined in (90),∫ ∞
0

dk0

(2π)

∫
d4(x− y) eik(x−y) 1

4ηµν (102)

×
[
(FLHS)µν(x, y)− (FLHS)νµ(y, x)

]
= −i

[
∂

∂X0
+

~k

|~k|
· ∂

∂ ~X

]
f(X,~k) +O(e2∂k · ∂XG) ,

where we have made use of (101). This integration explic-
itly reduces the information that is redundant because an
on-shell dispersion relation is valid for photons.

B. Fermion spectral function

Similarly to the photon case discussed around Eq. (100),
terms that are of order O(e2) in

(i/∂x − e /A(x)−m)ρΨ(x, y) = 0 +O(e2) , (103)

contribute only at order O(e4) to the transport RHS
that is already of order O(e2) itself. Crucially, the field-
dependent term in Eq. (103) is of order O(e0) for strong
fields and may thereby not be neglected in the O(e2)
transport description. In particular, this implies that a
simple fermion particle picture may not exist in general
strong-field systems. From a kinetic perspective, this is
the essential way in which strong-field systems differ from
weak-field systems that may still be described by free
fermion spectral functions.

The O(e0) solution ρ̄Ψ[A] of Eq. (103) has a functional
dependence only on the macroscopic field Aµ. This is in
contrast to the exact spectral solution which would be a
functional also of FΨ, Fµν and ρµν . Nevertheless, because
of the field-independence of self-energies, the approximate
spectral equation (103) contains the complete explicit field
dependence. This includes in particular infinite orders of
field-gradients: For instance, the traced LHS reads∫

d4(x− y) eip(x−y) (104)

× 1
4 tr
[
(ρLHS)Ψ(x, y) + γ0(ρLHS)†Ψ(y, x)γ0

]
= i

∂

∂Xµ
ρµΨ,V(X, p)

+ e

∞∑
n=0

1

(2n+ 1)!

1

22n

[
(i∂p · ∂X)2n+1Aµ(X)

]
ρµΨ,V(X, p) .
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In spacetime regions where the field vanishes one recov-
ers from Eq. (103) the free particle description (81), i.e.
ρ̄Ψ[A = 0] = ρΨ,0. Eq. (103) may therefore be understood
as the strong-field generalization of a fermion particle pic-
ture. In particular, since the difference between ρΨ,0 and
ρ̄Ψ[A] is of order O(eA), one would be allowed to ex-
change the two in a leading order description for weak
fields in accordance with a near-equilibrium quasiparticle
picture [127, 128].

Rephrasing the equation of motion for the fermion spec-
tral function into an equation for the retarded propagator,
∆R(x, y) := θ(x0 − y0)ρΨ(x, y), one finds that

[/p−m− ΣR(X, p)]∆R(X, p) (105)

' −1 + e

∫
k

/̄A(X, k)∆R(X, p+ k) +O(e2∂p · ∂XG) ,

with Āµ(x, y) := 1
2 [Aµ(x) +Aµ(y)]. In the zero-field case,

this equation implies that the spectral function has a
peaked shape with a ‘width’ given by the square of the
spectral O(e2) self-energy [129]

−iΣ(ρ)
Ψ (X, p) = e2

∫
q,k

(2π)4δ(k − p+ q) (106)

×
[
1− fΨ(X, q) + f(X, k)

]
γµρΨ(X, q)γνρ

µν(X, k) ,

which is indeed O(e4), as anticipated by our counting of
couplings in the equations of motion. In the strong-field
case, the off-diagonal momentum structure of the field
term in Eq. (105) highlights the absence of a simple peak
structure of general solutions of Eq. (103). Eq. (105)
further shows that the physical reason for this more com-
plex structure is four-momentum exchange between the
retarded fermion propagator and the macroscopic field.

We give an analytical solution of Eq. (103) under the as-
sumption of strong external plane-wave fields in Sec. V D,
which allows us to showcase the appearance of expo-
nentials exp(O(eA)), that resum the field-vertex (27) as
desired. By employing the solution ρ̄Ψ[A] of Eq. (103)
in transport equations, one recovers O(e2) strong-field
scattering amplitudes in limiting cases (see Sec. V E 2).
A particle picture emerges only in special cases and can
change with time (see Sec. V H).

C. Strong-field photon transport equation

1. Collision term

To obtain the O(e2) strong-field photon collision term
from the expression (99) we need the leading order self-

consistent photon self-energies, i.e.

Σ+−
µν (X, k) = e2

∫
p,q

(2π)4δ(k − p+ q) (107)

× [1− fΨ(X, p)]fΨ(X, q)

× tr {γµρΨ(X, p)γνρΨ(X, q)}+O(e4) ,

Σ−+
µν (X, k) = e2

∫
p,q

(2π)4δ(k − p+ q) (108)

× fΨ(X, p)[1− fΨ(X, q)]

× tr {γµρΨ(X, p)γνρΨ(X, q)}+O(e4) .

The structure of the strong-field photon transport equa-
tion is that of Eq. (97) integrated over positive frequencies,∫∞

0
dk0/(2π). Spectral functions are evaluated from their

equations of motion with the reasoning discussed in the
previous paragraphs, i.e.

ρΨ(X, p)→ ρ̄Ψ[A](X, p) , (109)

ρµν(X, k)→ ρµν0,ξ(X, k) , (110)

where ρ̄Ψ[A] denotes the solution of Eq. (103). The O(e2)
photon transport equation then reads[

∂

∂X0
+

~k

|~k|
· ∂

∂ ~X

]
f(X,~k) = C[A](X,~k) (111)

+O(e2∂k · ∂XG) +O(e4) ,

where the O(e2) strong-field photon collision term is

C[A](X,~k) = e2

∫ ∞
0

dk0

∫
p,q

(2π)6δ(k − p+ q)

×
{
fΨ(X, p)[1− fΨ(X, q)][1 + f(X, k)]

− [1− fΨ(X, p)]fΨ(X, q)f(X, k)
}

×
{
P[A](X, p, q, k)− Pξ[A](X, p, q, k)

}
, (112)

with the trace

P := Pµµ , (113)

and the longitudinal projection

Pξ := (1− ξ) 1
k2 kµkνPµν (114)

of the eeγ-collision kernel

Pµν [A](X, p, q, k) = −(2π)−2δ(k2)sgn(k0) (115)

× 1
4 tr{γµiρ̄Ψ[A](X, p)γνiρ̄Ψ[A](X, q)} .

This general expression derived from quantum field the-
ory plays the role of a generalized scattering amplitude
squared that has its own equation of motion [Eq. (103)
or equivalently Eq. (138) below] and is adapted to the
properties of the macroscopic field at each instance of
time. This goes beyond previous approaches that have



13

so far been restricted by additional assumptions on the
macroscopic field. In particular, it provides a prescription
of how to implement an inhomogeneous macroscopic field
in local transport equations. We achieved this by describ-
ing collisions in terms of a dynamical strong-field fermion
spectral function, which includes all leading order effects.
This approach allows for many links to existing literature
as we demonstrate in Sec. V. In particular, the collision
kernel (115) may be reduced to scattering amplitudes
computable from Feynman rules in strong-field QED (see
Sec. V E 2).

The collision term (112) features the factorization
of interaction terms into a collision kernel and a gain-
minus-loss term familiar from traditional kinetic equa-
tions. While the photon distribution functions can be
reduced to on-shell distributions (90) by virtue of the
delta function δ(k2) in Pµν , this is not in general possible
for the fermion distribution function. The off-shell fre-
quency dependence of the latter is computed dynamically
by solving the transport system coupled to the fermion
spectral equation (103). This allows the collision kernel,
to adjust in time to a self-consistent macroscopic field as
the system evolves, while still being local in the kinetic
position variable X without relying on locally constant
fields.

2. Strong-field photon decay rate

By linearizing and integrating the photon transport
equation over position and external momentum, one may
find the field-dependent decay rate γ of a photon with
momentum ki and position Xi at time t := X0,

∂tN(t) ' −
∫
~X,~k

γ[A](X,~k) f(X,~k) , (116)

with the photon number (91). Such a linearization may
be achieved e.g. under the assumption that the system is
close to vacuum (i.e. for small distribution functions, see
Sec. V G) or in linear response theory around equilibrium
[104, 109, 130], f(X, k) = fB(k0) + δf(X, k), fΨ(X, p) =

fF(p0) with fF/B(p0) = 1/(eβp
0±1). In equilibrium, gain-

minus-loss terms vanish by energy conservation, q0 =
p0 − k0,

fF(p0)[1− fF(p0 − k0)][1 + fB(k0)] (117)

− [1− fF(p0)]fF(p0 − k0)fB(k0) ≡ 0 ,

resulting in the photon equilibrium decay rate

γeq[A](X,~k) = e2

∫ ∞
0

dk0

∫
p

{
fF(p0)− fF(p0 − k0)

}
× (2π)2

{
P[A](X, p, p− k, k)− Pξ[A](X, p, p− k, k)

}
.

(118)

D. Strong-field fermion transport equation

Here, we derive the fermion equations that close the
transport system in terms of off-shell fermion and on-shell
photon distribution functions.

1. Gauge-invariant fermion correlation functions

The presence of a macroscopic field complicates the
gauge-invariance of approximations such as the gradient
expansion. This was not an issue in the case of the pho-
ton equations where the field is only implicit via ρ̄Ψ[A]
and the photon self energies are gauge-invariant. In the
following, before repeating the analogous steps for the
fermion transport equation, we express all fermion equa-
tions in terms of the gauge-invariant field strength tensor
Fµν = ∂µAν − ∂νAµ, or equivalently in terms of electric
and magnetic fields,

−F0i =: E i , (119)

−Fij =: εijkBk . (120)

This is necessary, in particular, in order to identify a
gauge-invariant fermion drift term that contains the gauge-
invariant Lorentz force.

One can achieve gauge-invariance (as opposed to co-
variance) by introducing Wilson lines6

WΓ(y, x) := exp

(
ie

∫
Γ

dzµAµ(z)

)
, (121)

with Γ indicating the path of integration from y to x. The
gauge transformation of a Wilson line exactly compensates
the gauge transformation of fermion two-point functions,
such that the quantities

F̂Ψ,Γ(x, y) :=WΓ(y, x)FΨ(x, y) , (122)

ρ̂Ψ,Γ(x, y) :=WΓ(y, x)ρΨ(x, y) (123)

are gauge-invariant (but path-dependent). It is well
known that straight Wilson lines, W :=WΓ=[x,y], facili-
tate a derivation of gauge-invariant transport equations
[50, 56, 82, 83]. Following this approach, we employ

W(y, x) = exp

(
iesµ

∫ 1
2

− 1
2

dλAµ(X + λs)

)
, (124)

and express everything in terms of gauge-invariant late-
time Wigner functions

ĜΨ(X, p) :=

∫
s

eipsW(y, x)GΨ(x, y) . (125)

6 In contrast to the operator Wilson lines e.g. of Refs. [82, 83], the
Wilson line (121) is built only from the one-point function, but
is here employed alongside higher correlations that give rise to
collisions without a mean-field (‘Hartree-Fock’) approximation.
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Invariant and covariant Wigner functions are related by

eiw(X,p)ĜΨ(X, p) = GΨ(X, p) (126)

with the real differential operator

w(X, p) := ie

∫ 1
2

− 1
2

dλ [e−iλ(∂p·∂X)Aµ(X)]
∂

∂pµ
. (127)

By virtue of

w(X, p) = ieAµ(X)∂µp +O(e0∂p · ∂X) (128)

this relation is simple for small field-gradients (which we
discuss in Secs. V A and V F) in which case it becomes
the translation

ĜΨ(X, p) = GΨ(X, p+ eA(X)) +O(e0∂p · ∂X) . (129)

One now has to decide whether to identify fermion
distribution functions in terms of FΨ and ρΨ as in (74)

or in terms of F̂Ψ and ρ̂Ψ, i.e.

F̂Ψ(X, p) = −i[ 1
2 − f̃Ψ(X, p)]ρ̂Ψ(X, p) . (130)

In principle, fΨ and f̃Ψ are arbitrary definitions which
can be translated into each other. In particular for small
field-gradients one would have

f̃Ψ(X, p) = fΨ(X, p+ eA(X)) +O(e0∂p · ∂X) . (131)

In photon equations, the distinction between co- and
invariant fermion functions is redundant. This is because,
by virtue of

W(x, y)W(y, x) ≡ 1 , (132)

one may replace co- and invariant Wigner functions in the
gauge-invariant photon self-energy that features a fermion
loop, i.e.

Σµν(x, y) = e2tr{γµ∆(x, y)γν∆(y, x)}
= e2tr{γµ∆̂(x, y)γν∆̂(y, x)} . (133)

In Wigner space this involves two fermion momentum
integrals and a delta function. In particular, the fact that∫

p,q

δ(k − p+ q) ρΨ(X, p)ρΨ(X, q) (134)

=

∫
d4(x− y)eik(x−y) ρ̂Ψ(x, y)ρ̂Ψ(y, x) ,

implies that one may replace fΨ with f̃Ψ if ρΨ is replaced
with ρ̂Ψ in the photon collision kernel (115). Similarly,
because

lim
s→0
W(X + s

2 , X −
s
2 ) ≡ 1 , (135)

such that

jµ(X) = −e lim
s→0

tr{γµFΨ(X + s
2 , X −

s
2 )}

= −e lim
s→0

tr{γµF̂Ψ(X + s
2 , X −

s
2 )} , (136)

this may also be done for the current (160) in the Maxwell
equation (29). In this way, one obtains a closed set of

equations in terms of fermion distributions of the f̃Ψ-
type to any order of field-gradients. We stress that these
replacements do not work in reverse (going from f̃Ψ to fΨ)
for the fermion equations to be discussed below, such that
a practicable description in terms of fΨ-type distributions
would have to rely on small field-gradients by relying on
Eq. (131).

2. Gauge-invariant equations of motion:
2PI vs. Wigner operator formalism

Having introduced gauge-invariant correlation func-
tions, we can express the gauge-covariant 2PI fermion
equations of motion in a gauge-invariant way. We start
with the equation for the fermion spectral function,∫

d4(x− y) eip(x−y)W(y, x)(ρEOM)Ψ(x, y) , (137)

explicitly at our order of interest,[
i
2
/∇+ /Π−m

]
ρ̂Ψ(X, p) = 0 +O(e2) . (138)

Here we have employed the commuting, real and gauge-
invariant differential operators introduced in Ref. [50],

∇µ :=
∂

∂Xµ
− e

∫ 1
2

− 1
2

dλ [e−i~λ(∂p·∂X)Fµν(X)]
∂

∂pν

(139)

Πµ := pµ − ie
∫ 1

2

− 1
2

dλλ [e−i~λ(∂p·∂X)Fµν(X)]
∂

∂pν
.

(140)

Using anti-hermiticity, Eq. (19), one may verify in partic-
ular that solutions of Eq. (138) satisfy

i∇µρ̂µΨ(X, p) = 0 , (141)

tr{(/Π−m)ρ̂Ψ(X, p)} = 0 . (142)

The second condition, which is satisfied by any strong-
field solution, is much weaker than the on-shell condition
in the absence of a field, (/p−m)ρΨ,0(X, p) = 0.

Eq. (138) is proven as in the Wigner operator formalism
of Refs. [49–51]. While the Wigner operator formalism
has not been able to provide closed collision terms, the
2PI formalism is able to achieve this: Instead of discussing
equations for the normal-ordered product, 〈:Ψ(x)Ψ̄(y):〉,
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resulting in real and imaginary parts with different differ-
ential operators [50, 51], we distinguish real and imaginary
parts of the time-ordered product 〈TCΨ(x)Ψ̄(y)〉 (6), i.e.
statistical and spectral functions. Their 2PI equations of
motion (37) – (38) do not differ by their differential oper-
ators, but by the integral structure of their RHS, which
automatically ensures the correct hermiticity properties
of their solutions, (17) and (19). Because of the absence
of these RHS integrals in the approximated spectral equa-
tion (103), the anti-hermiticity (19) of the approximate
solution has to be prescribed. In fact at 1-loop, i.e. by
neglecting collisions, the equations for FΨ and ρΨ without
(anti)hermiticity constraints are equivalent and the equa-
tion for the fermion statistical function alone is sufficient
to discuss transport phenomena as has been done e.g. in
Ref. [20]. Going to order O(e2), the self-energy terms
of the 2-loop equations for the spectral functions still
do not contribute to the kinetic equations as discussed
in Sec. IV B, but the self-energy terms of the statistical
equations provide collision terms.

3. Quantum Vlasov term

In order to obtain a gauge-invariant fermion transport
equation, we consider∫

d4(x− y) eip(x−y)W(y, x)× (143)

×
[
(FLHS)Ψ(x, y)− γ0(FLHS)†Ψ(y, x)γ0

]
= i

2∇µ{γ
µ, F̂Ψ(X, p)}+ Πµ[γµ, F̂Ψ(X, p)] ,

where (anti-)commutators are taken in Dirac space. By
building differences, the fermion mass drops out of this
expression, but enters again via the spectral equation
(138). By taking the trace of (143) we obtain the all-order
in field-gradients quantum Vlasov term

∇µF̂ µ
Ψ (X, p) = CΨ(X, p) (144)

+O(e2∂p · ∂XG) +O(e4) ,

to which the commutator term with Πµ does not con-
tribute. In (144) we have indicated the fermion collision
term, which we compute to leading order below.

Employing Eq. (141), the fermion transport equation

(144) in terms of f̃Ψ then reads

∇µ[f̃Ψ(X, p)iρ̂µΨ(X, p)] = CΨ(X, p) (145)

+O(e2∂p · ∂XG) +O(e4) .

The off-shell all-gradient drift term of this equation goes
beyond a Lorentz force description, which it contains as
its on-shell contribution (see Secs. V C and V H). The
emergence of this fermion drift term is distinctly different
from the photon case, because fermion derivatives involve
the macroscopic field and are first order already in the
fundamental equations of motion. In particular, the mo-
mentum factor of (p · ∂X), that emerges automatically for

photons via the identity (98), has to be provided by the
vector component of the free fermion spectral function.
Without an on-shell approximation, momentum deriva-
tives of the spectral function in Eq. (145) are physically
regulated by the macroscopic field.

4. Collision term & charge conservation

Having discussed the LHS, we now derive the gauge-
invariant collision term already indicated in Eq. (145).

In general, gauge-invariance of the convolutions on the
fermion spectral and statistical RHS is achieved by writing

W(y, x)

∫
z

ΣΨ(x, z)GΨ(z, y) (146)

=

∫
z

L(x, y, z)Σ̂Ψ(x, z)ĜΨ(z, y) ,

where we have identified the (triangle) Wilson loop

L(x, y, z) :=W(y, x)W(x, z)W(z, y) . (147)

By virtue of Eqs. (55) and (126), the LO of the gradient
expansion of this gauge invariant convolution is [56]∫

d4(x− y) eip(x−y)

∫
z

L(x, y, z)Σ̂Ψ(x, z)ĜΨ(z, y)

= Σ̂Ψ(X, p)ĜΨ(X, p) (148)

− i
2eF

µν(X)
∂Σ̂Ψ(X, p)

∂pµ
∂ĜΨ(X, p)

∂pν
+O

(
e2∂p · ∂XG

)
.

For weak fields near equilibrium the additional term

eFµν(X)
∂Σ̂Ψ(X, p)

∂pµ
∂ĜΨ(X, p)

∂pν
(149)

as compared to the covariant convolution,∫
s
eips(ΣΨ ∗GΨ) = ΣΨ(X, p)GΨ(X, p) +O(e2∂p · ∂XG),

is effectively of order O(e4) and compatible with a kinetic
description [56]. To focus on the part of the fermion RHS
that contains the collision term indicated in Eq. (144),

CΨ(X, p) := − 1
4 tr
[
Σ̂−+

Ψ (X, p)∆̂+−(X, p) (150)

− Σ̂+−
Ψ (X, p)∆̂−+(X, p)

]
,

we drop terms of the type (149) also in the presence of
strong fields. We stress that the validity of dropping these
terms in a far-from-equilibrium system requires further
investigation.7

7 As discussed in Ref. [56] terms of the form (149) have the effect of
accounting for further off-shell corrections and replace the spatial
derivative ∂X → ∂X−eFµν∂νp in Poisson brackets. Alternatively,
one may think of dropping these terms as setting the Wilson
loop to one, L ≈ 1. Because of the group properties (132),
(135) and W(x, z)W(z, y) = W(x, y) if z ∈ [x, y] this is a good
approximation if the dominant contributions in z are sufficiently
close to the straight line [x, y] because L(x, y, z) ≡ 1 if z ∈ [x, y].
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At leading order, the gauge-invariant self-energies in
Eq. (150) may be written as

Σ̂+−
Ψ (X, p) = e2

∫
q,k

(2π)4δ(k − p+ q) (151)

× [1− f̃Ψ(X, q)][1 + f(X, k)]

× γµρ̂Ψ(X, q)γνρµν(X, k) +O(e4) ,

Σ̂−+
Ψ (X, p) = −e2

∫
q,k

(2π)4δ(k − p+ q) (152)

× f̃Ψ(X, q)f(X, k)

× γµρ̂Ψ(X, q)γνρµν(X, k) +O(e4) ,

The strong-field O(e2) fermion collision term then reads

CΨ[A](X, p) = e2

∫
q,k

(2π)7δ(k − p+ q) (153)

×
{
f̃Ψ(X, q)f(X, k)[1− f̃Ψ(X, p)]

− [1− f̃Ψ(X, q)][1 + f(X, k)]f̃Ψ(X, p)
}

×
{
P̃[A](X, p, q, k)− P̃ξ[A](X, p, q, k)

}
+O(e4) ,

where P̃ is obtained from the collision kernel (115) by
exchange of ρΨ → ρ̂Ψ with the solution ρ̂Ψ of Eq. (138),
or at LO in field-gradients via

P̃(X, p, q, k) = P(X, p+ eA(X), q + eA(X), k) (154)

+O(e0∂p · ∂X) .

As anticipated in Sec. IV D 1, while the photon collision
term is gauge-invariant also without this replacement,
the fermion collision term is not. This is because gauge-
invariance requires integration over both fermion momenta
according to (134). Indeed, if we integrate the fermion
transport equation over its external momentum, subtleties
of gauge-invariance are absent and, with∫

p

∂νp F̂Ψ(X, p) = 0 , (155)

and using (136), we can recover the Maxwell current (48)
in the fermion transport equation via

−4e

∫
p

∇µF̂µΨ(X, p) = ∂µj
µ(X) . (156)

As a consequence of the U(1) symmetry of QED, this
current is conserved by the fundamental equations, as
well as by our approximate transport equations, such that
the total electric charge (86) is constant,

∂tQ(t) = −4e

∫
d3X

∫
p

CΨ(X, p) = 0 , (157)

with t := X0. To see this, one may verify that the
relabeling q ↔ p and k → −k leaves both the delta
function and the gain-minus-loss term invariant [by virtue
of (79)], but changes the sign of the collision kernel (also
without tilde), i.e.

P̃µν(X, p, q, k) = −P̃νµ(X, q, p,−k) . (158)

E. Transport Maxwell equation
& gauge-fixing dependence

The free photon propagator Dµν
0,ξ (11) and spectral

function ρµν0,ξ (81) introduce a gauge-fixing dependence.
This ξ-dependence is distributed over several equations
of motion by virtue of Pξ (114) and the solution

Aµξ (x) = −i
∫
y

Dµν
0,ξ(x, y)jν(y) (159)

of the Maxwell equation (29) with the late-time current

jµ(X) = 2e

∫
p

[1− 2f̃Ψ(X, p)]iρ̂µΨ(X, p) . (160)

There are two ways in which ξ-dependence is controlled.
Firstly, starting from the 2PI effective action, a perturba-
tive coupling expansion shows that the total ξ-dependence
of Pξ[Aξ] is always of higher perturbative order in e [76–
78]. Indeed, for a free fermion spectral function ρΨ,0,
leading order collisions are trivially gauge-fixing indepen-
dent,

δ(k − p+ q)Pξ(X, p, q, k)
ρ̄Ψ→ρΨ,0−−−−−−→ 0 . (161)

Secondly, the ξ-dependence can drop out for on-shell
photons [79] (see also Eq. (101)). We demonstrate this
also in the strong-field case by virtue of Ward identities
for scattering amplitudes that emerge in the kinetic ap-
proximation and play the role of redressed 1PI vertices.
We make contact with such strong-field Ward identities
[131–133] in the case of plane-wave fields in Sec. V E 2,
where the ξ-dependence then drops out in a corresponding
limit. A general proof for cancellations between (Dµν

0,ξ)
−1

in Aµξ and ρµν0,ξ in Pξ in the self-consistent strong-field

case Pξ[Aξ] seems highly non-trivial.

A summary of the interconnections among the extended
transport system which we have now arrived at is graph-
ically presented in Fig. 6. The transport equations for

photons [Eq. (111) for f(X,~k)] and fermions [Eq. (145)

for f̃Ψ(X, p)] couple to eachother via the collision terms
(112) and (153). They are supplemented by the Maxwell
equation for the macroscopic field [Eq. (29) or equivalently
Eq. (159) for Aµ(X)] and the equation for the fermion
spectral function [Eq. (138) for ρ̂Ψ(X, p) or equivalently
Eq. (103) for ρΨ], which couples to the Maxwell equation
via the current (160). The macroscopic field enters the
fermion spectral and transport equation explicitly via the
strong-field derivatives (139) and (140), and the photon
and fermion transport equations implicitly via the strong-
field fermion spectral function in the scattering kernel
(115).
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FIG. 6. Structure of the strong-field transport system.

V. STRONG-FIELD QED KINETIC
EQUATIONS

In this section, we investigate ways to further approxi-
mate the transport system of Sec. IV and how to reduce
it to Boltzmann-type equations with scattering ampli-
tudes by considering limiting cases of the collision ker-
nel. To this end, we discuss various common additional
approximations in strong-field QED, namely small field-
gradients (locally constant fields), classical fermion propa-
gation (Lorentz force), external plane-wave fields (Volkov
states), near-vacuum physics (small occupations), as well
as fermion distributions that are peaked at large momenta
(ultrarelativistic limit). In particular, the ultrarelativis-
tic limit finally allows us to make contact with fermion
on-shell descriptions [e.g. Ref. [22]], which are valid if a
long-lived separation of scales exists (see Sec. V H).

A. The case of small field-gradients

So far, our transport equations have been infinite or-
der in gradients of the macroscopic field. In a physical
situation with small field-gradients, one can simplify the
collision kernels and the fermion drift term. We demon-
strate how to do this at the level of the equations for the
fermion spectral and statistical functions in the following.8

For this purpose we assume in this section that

|(s · ∂X)Fµν | � |Fµν | . (162)

This means we only keep LO terms O
(
e0(∂p · ∂X)0

)
and

truncate the NLO O(e0∂p · ∂X) of gauge-invariant field-
gradients (see appendix D for a comparison of approxi-
mations to invariant and covariant field-gradients).

We can simplify the fermion spectral equation of mo-
tion (138) and in turn the collision kernel (115) by using
(162). The exponential derivatives of the differential op-
erators (139) and (140) allow for an expansion in terms

8 A collisionless discussion of field-gradients can be found in
Ref. [20], where it is shown that field-gradients can enhance
pair production rates in particular for low momenta.

of gradients of the field-strength tensor. Thereby one
can explicitly compute the first orders of the λ integrals,
i.e. [50, 51]

∇µ(X, p) =
∂

∂Xµ
− eFµν(X)∂νp (163)

+ 1
24 (∂p · ∂X)2eFµν(X)∂νp

+O
(
(e0∂p · ∂X)4

)
,

Πµ(X, p) = pµ − 1
12 (∂p · ∂X)eFµν(X)∂νp (164)

+O
(
(e0∂p · ∂X)3

)
.

Note in particular, that the leading order of ∇µ,

∇µ(X, p) = Dµ(X, p) +O
(
(e0∂p · ∂X)2

)
, (165)

is the classical Vlasov derivative

Dµ(X, p) :=
∂

∂Xµ
− eFµσ(X)

∂

∂pσ
, (166)

which contains the Lorentz force as its on-shell contribu-
tion (see Sec. V C).

Neglecting gradients of the field-strength tensor, the
gauge-invariant spectral equation (138) becomes[

i
2
/D + /p−m

]
ρ̂Ψ(X, p) = 0 +O(e2) +O(e0∂p · ∂X) .

(167)

Solutions of equation (167) neglect field-gradients, but
are exact in the field strength. This implies in particular
that, even for a constant strong field strength tensor, the
fermion spectral function is not a delta peak and does
not allow for a simple particle picture.9

The fermion transport equation (145) for small field-
gradients then reduces to

iρ̂µΨ(X, p)Dµf̃Ψ(X, p) = CΨ(X, p) (171)

+O(e0∂p · ∂X) +O(e2∂p · ∂XG) +O(e4) ,

9 This is an essential difference to Yukawa theory [134] or scalar
λφ3 theory (which are diagramatically very similar to QED): the
LO equation of motion, e.g. for the scalar spectral function with
a strong constant scalar macroscopic field φ0 ∼ O(1/λ),

[�x +M2]ρ(x, y) = 0 +O(λ) with M2 = m2 + λφ0 , (168)

does have a delta-peaked particle solution

ρ(X, p) = i(2π)sgn(p0)δ(p2 −M2) . (169)

Moreover, the equation for the scalar statistical propagator [102]

2(p · ∂X)F (X, p) +
( ∂

∂Xµ
M2(X)

)( ∂

∂pµ
F (X, p)

)
= 0 +O(λ) +O

(
λ0(∂X · ∂p)2

)
(170)

has a force term, ∂XM
2(X) with M2(X) = m2 + λφ(X), which

is NLO of the gradient expansion and vanishes for constant fields.
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where we have used the fact that in contrast to ∇µ, which
contains higher order derivatives, Dµ satisfies the Leibniz
product rule and that a solution of (167) satisfies

iDµρ̂µΨ(X, p) = 0 . (172)

Plugging the solution of the approximated equation for
the spectral function (167) into the collision kernel (115)
one obtains photon and fermion collision terms for fields
with small gradients. In Sec. V F 2, we demonstrate how
the locally-constant field approximation arises from such
spectral functions in the special case of plane-wave fields.
There, instead of solving the approximated equation (167),
we will first solve the infinite order gradient equation (103)
(or equivalently (138)) and approximate gradients in the
solution in the end.

B. Asymptotic (Schwinger) pair production
from unequal-time correlations

In this section, as an application of the above small field-
gradient approximation, we discuss how pair production
is implemented in the present formalism. We start in the
regime of the collisionless Schwinger pair production yield
per volume V and time-interval T [18],

NΨ(∞) ' V T e2E2

4π3
exp

(
− πEc
E

)
, (173)

i.e. the regime of constant fields at 1-loop, and end this
section with a general collisional expression for inhomo-
geneous fields.

Under the asymptotic assumption

lim
X0→±∞

ρ̂Ψ(X, p) = ρΨ,0(X, p) , (174)

even in the presence of strong fields, one can extract
for asymptotically late times from the fermion transport
equation the fermion pair number (89).

At 1-loop order O(e0) and for small field gradients, Eq.
(144) simply reads

DµF̂µΨ(X, p) = 0 +O(e2) . (175)

In order to extract the fermion pair number (89), we
integrate Eq. (175) over negative and positive energies
separately and subtract the resulting integrals (instead of
summing them, which would instead give the trivial total
charge (157)), i.e.(∫ 0

−∞

dp0

(2π)
−
∫ ∞

0

dp0

(2π)

)∫
X,~p

DµF̂µΨ(X, p) = 0 . (176)

For the momentum derivatives ∂ip of Dµ we exploit (155),

and for its frequency derivative ∂0
p we note that(∫ 0

−∞
dp0 −

∫ ∞
0

dp0
)
∂0
pF̂Ψ(X, p)

= 2

∫
dp0δ(p0) F̂Ψ(X, p). (177)

This term eventually acts as a source term to the asymp-
totic number of fermion pairs. For the position-space
derivative we use∫

d3X∂iX F̂
i

Ψ(X, p) = 0 . (178)

Finally, the time-derivative in Dµ allows us to identify
the pair number (89) in the asymptotic past and future,(∫ 0

−∞

dp0

(2π)
−
∫ ∞

0

dp0

(2π)

)∫
X,~p

∂µF̂
µ
Ψ(X, p)

= 1
2

(
NΨ(∞)−NΨ(−∞)

)
, (179)

where we have employed the asymptotic assumption (174)
and identified the on-shell electron and positron distribu-
tion functions (76), (84) and (85) in the asymptotic past
and future. Applying the above identities to the 1-loop
transport equation (176) gives the result

NΨ(∞)−NΨ(−∞) (180)

=

∫
X,p

[
1− 2f̃Ψ(X, p)

]
2eE i(X) (2π)δ(p0)iρ̂ iΨ(X, p)

+O(e0∂p · ∂X) +O(e2) .

Importantly, this expression relates pair production to
self-consistent spectral and field dynamics. The asymp-
totic assumption (174) only fixes a boundary condition at
X0 → ∞ and interacting spectral dynamics [Eq. (138)]
contribute to (180) at all finite times X0. In particular,
the above expression shows that pair production from
the vacuum occurs off-shell at the time of the creation
event: the fermion yield (180) vanishes for a free (on-shell)
fermion spectral function, because massive fermions can
not have zero energy, i.e.

δ(p0)δ(p2 −m2) ≡ 0 . (181)

It is only the subsequent evolution, that brings these
off-shell contributions from vacuum pairs to the on-shell
regime in the asymptotic future, where a particle number
NΨ(∞) is well-defined. Furthermore, the expression (180)
vanishes for E = 0, even if B 6= 0, in accordance with the
general statement that magnetic fields can not produce
fermion pairs. In our derivation, this is a consequence
of the vanishing of momentum derivatives at infinity,
i.e. Eq. (155). The structure of the expression (180) is
reminiscent of the time-integrated source term of the
quantum Vlasov equation from which particle production
at zero energy is well known [53]. Such a source term
is not manifest in Eqs. (175), (171), or (145),10 but we
have demonstrated here that vacuum pair production is
nevertheless contained in these transport equations by
coupling to the dynamics of the fermion spectral function.

10 This is similar to Ref. [64] which shows (in scalar theory) that a
source term is manifest in equations for disconnected two-point
functions but not for connected two-point functions such as ours.
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To recover Eq. (173) from Eq. (180) one should solve
the fermion spectral equation (103) or equivalently (138)
for E = const, B = 0 [20, 53, 135]. This can be done
analytically [136], but we will not explore it further in
this paper.

Since practicable procedures at 1-loop already exist
in literature, we want to stress that the significance of
Eq. (180) does not stem from its 1-loop practicability
but from the fact that it may be systematically gener-
alized and thereby put in the context of thermalization,
while other procedures have struggled to do so: At 1-loop,
where the equations for spectral and statistical functions
are decoupled, one may compute the asymptotic fermion
particle number by ignoring spectral dynamics and solving
the complete tensorial system for the statistical function.
In literature, this is often done in terms of the equal-time
‘DHW’ function F̂Ψ(t, t, ~x, ~y )γ0, or

∫
dp0F̂Ψ(X, p)γ0 in

Wigner space. In fact, existing transport derivations of
the Schwinger result typically employ such equal-time for-
mulations [20, 51, 86, 137], in which spectral informationn
such as a distinction between on and off shell contribu-
tions is not explicitly accessible due to spectral functions
being constant at equal times [see Eq. (26)]. Equal-time
equations can be closed, e.g. by neglecting collisions, but
how to close an equal-time description for general strong
fields in a controlled approximation is an open problem.
From an unequal-time perspective, the equation for the
fermion statistical function is not self-sufficient at O(e2),
but couples to the fermion spectral function (103), which
is not on-shell for strong fields. The unequal-time ap-
proach closes by including this equation for the spectral
function and is thereby systematically generalizable to
higher loop orders that are essential for the approach to
equilibrium.

Simply by keeping field-gradients and the collision term,
i.e. starting from Eq. (144) instead of Eq. (175), one
obtains

NΨ(∞)−NΨ(−∞) =
(∫ 0

−∞

dp0

(2π)
−
∫ ∞

0

dp0

(2π)

) ∫
X,~p

×

{
e

∫ 1
2

− 1
2

dλ

[
e−iλ(∂p·∂X)E i

]
∂0
p

[
(1− 2f̃Ψ)iρ̂ iΨ

]
+ CΨ

}
+O(e2∂p · ∂XG) +O(e4) . (182)

Due to the presence of higher-order frequency derivatives,
the identity (177) is not sufficient to treat inhomogeneous
fields, which are able to transfer momentum and produce
occupations with finite energy, p0 6= 0. A complete self-
consistent solution of the set of equations in Fig. 6 is
necessary to obtain a numerical result for the asymptotic
pair number in this way. In particular, the collisional
part of (182) contains contributions from 0→ 3 (2-loop
vacuum pair production) and 1 → 2 processes (‘seeded
cascades’), the latter of which dominate over vacuum pair
production in subcritical fields [22, 27, 31]. In contrast to
Eq. (182), the 1-loop result (173) describes the effect of a
constant external electric field with no feedback from the
dynamics of the photon sector.

C. Lorentz force & classical propagation
in isolated systems

The Lorentz force,

Lµ(X, p)/m := e
mF

µν(X)pν , (183)

emerges from the quantum Vlasov term of Eq. (145) in
the case of a free fermion spectral function and small
field-gradients via

∇µ[ρ̂µΨ(X, p)f̃Ψ(X, p)]→ ρµΨ,0Dµf̃Ψ (184)

= i(2π)δ(p2 −m2)sgn(p0)[(p · ∂X) + (L · ∂p)]f̃Ψ ,

where the factor of pµ is provided by the vector component

ρµΨ,0(X, p) = ipµ(2π)δ(p2 −m2) sgn(p0) . (185)

Therefore, on-shell particles may be described by the
Lorentz force. However, the validity of employing a free
spectral function in Eq. (184), i.e. whether on-shell parti-
cles indeed dominate the dynamics, depends on the details
of the strong-field system:

Typical experiments where on-shell particles dominate
the dynamics are, for example, those where an electron
beam or material target is initially in a zero-field region
and then collides with a strong field such as a laser beam
[10, 11]. In such a setting fermion distribution functions
are initialized with occupations only in the on-shell region
and the subsequent deviations from on-shell occupations
induced by the strong field often remain small even when
fermion pairs are produced: This is because these systems
feature a separation of time scales due to the typically very
large values of the parameter ξ = |e|E/(mω) [16], implying
that particles (target or produced) are transported in
momentum space to relativistic energies in much less
than a laser period. Thereby, the fermion distribution
function is typically peaked at an ultrarelaticistic scale
and far away from its equilibrium (Fermi-Dirac) shape.
At such high energies, off-shell effects can be suppressed
[15] and can remain suppressed, if the ultrarelativistic
peak in the fermion distribution function is long-lived (see
Sec. V H).

In the presence of such long-lived peaked distribution
functions, one may then distinguish two kinds of quan-
tum effects [15]: One class is related to the recoil that
a fermion experiences during collisions (i.e., emissions
of photons). This is controlled by the (spacetime and
momentum dependent) parameter [16]

χ := ~
√
−(eFµνpν)2/m3 , (186)

which may be small even for large ξ or vice versa. Sys-
tems that have small χ may be described completely
(both drifting and collisional interactions) in terms of
the classical radiation reaction force [16, 138–140] that
includes collisional corrections to the Lorentz force [22].
The other class of quantum effects is related to how ac-
curate a classical description is between collisions. This
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is commonly discussed in terms of the de Broglie wave-
length ~/p∗, which is then required to be small enough
such that the quasiclassical approximation applies [141],
and smaller than the mean-free-path such that a sepa-
ration between propagation and interaction is possible
[142]. In our context, p∗ is the characteristic momentum
of the fermion distribution function. At higher and higher
energies, the de Broglie wavelength decreases whereas the
parameter χ increases, such that quantum effects remain
important during collisions for ultrarelativistic fermions
and no radiation reaction force description exists [15].
These parameters are not manifest at the level of the
equations of motion, but become accessible by analysis of
its solution (see e.g. Secs. V F 2 and V H). In the absence
of peaked distribution functions, the medium may not be
completely described by a single de Broglie wavelength
and no such separation of scales may be identified.

In fact, a peaked fermion distribution describes a far-
from-equilibrium situation that does not survive indefi-
nitely in an isolated system. Thereby, systems for which
an on-shell Lorentz force description is typically insuffi-
cient are those which are initialized with a supercritical
field, E & Ec, and which are then isolated and left on
their own. In such systems, fermions are produced from
the vacuum – off-shell and at low energies according to
Eq. (180) – and then transported in momentum space
by the gain-minus-loss structure of the collision terms
towards a distribution that is not sharply peaked at any
single scale. To describe the evolution towards such a
distribution, one requires a description that is valid over
a wide range of energies. Thus, the separation of scales
from the case of an external field may not be exploited to
argue for a Lorentz force description of the equilibration
of isolated strong-field systems.

Near equilibrium, a weak field again favors on-shell
descriptions, because the field term e /A in the equation
of motion of the fermion spectral function (103) then
contributes to the transport description only at higher
orders and collisions may be added to the on-shell Vlasov
equation [see Eq. (191) below] perturbatively in the field
vertex (27). However our analysis suggests that for in-
termediate times, at which off-shell contributions from
vacuum pair production equilibrate in the presence of
a depleting field, one requires a description of off-shell
drifting beyond the Lorentz force. The description de-
rived in Sec. IV can capture this evolution of off-shell
contributions in f̃Ψ(X, p) as they move in phase space

towards p0 =
√
|~p |2 +m2 to become on-shell particles in

the asymptotic future.
It is then instructive to follow how the Lorentz force

emerges from the off-shell drift term of Eq. (171), which
contains the frequency derivative term

ρ̂µΨ(X, p)eFµ0(X) ∂0
p f̃Ψ(X, p) . (187)

As we have shown in Sec. V B, in the asymptotic future the
effect of this off-shell frequency derivative is fermion pair
production. In the on-shell regime, where pair production
is forbidden via Eq. (181), this off-shell frequency deriva-

tive is controlled by the dispersion relation, p0 = ε(~p ):
The term

p · L(X, p) = 0⇔ L0 =
~L · ~p
p0

, (188)

then contains the group velocity

∂ε(~p )

∂~p
=

~p

ε(~p )
, (189)

such that, by chain rule, one may replace

L0

p0

∂

∂p0
+
~L

p0
· ∂
∂~p
→

~L

ε(~p )
· ∂
∂~p

(190)

and recover the classical Vlasov equation

sgn(p0)δ(p2 −m2)(p · D)f̃Ψ(X, p) = 0 +O(e2) . (191)

Making use of the fact that

− epµFµσ(X)
∂

∂pσ
= L0 ∂

∂p0
+ ~L · ∂

∂~p
(192)

= e~p · ~E(X)
∂

∂p0
+ e
[
p0~E(X) + ~p× ~B(X)

]
· ∂
∂~p

.

and applying definitions for on-shell electron and positron
distribution functions f̃−Ψ and f̃+

Ψ analogously to Eqs. (76),
(84) and (85), one may then split Eq. (191) into equations
for electrons and positrons by integrating Eq. (191) over
positive or negative frequencies respectively. The positron
equation obtains the opposite sign of charge e→ −e from
the sign ~p→ −~p of the momentum derivative,(

∂

∂X0
+

~p

ε(~p )
· ∂

∂ ~X
± e
[
~E(X) +

~p

ε(~p )
× ~B(X)

]
· ∂
∂~p

)
× f̃∓Ψ (X, ~p ) = 0 +O(e2) . (193)

If we interpret X and p as functions X(λ) and p(λ),

then the curves along which f̃Ψ is constant, i.e. the char-
acteristic curves

d

dλ
f̃Ψ(X(λ), p(λ)) = 0 , (194)

solve the Lorentz equation [50]

dpµ

dλ
= Lµ(X, p) , (195)

pµ =
dXµ

dλ
, (196)

with the Lorentz force (183). Adding collisions that are

non-linear in f̃Ψ makes this method of characteristics
inapplicable and the concept of trajectories breaks down.

We reiterate that, for general strong fields and fermion
distribution functions, the limit of classical propagation
(184) is not controlled by an expansion in a small param-
eter and a combination of the Lorentz force term with
the O(e2) collision term (153) is not in general complete
to leading order O(e2). To be complete in a general situ-
ation, the Lorentz force term should be replaced by the
quantum Vlasov term of Eq. (145) (or that of Eq. (171)
for small field-gradients).
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D. The case of strong external plane-wave fields

We assume in the following that the macroscopic field
is of the one-dimensional ‘plane-wave’ form

Aµ(x) ' Aµv(n · x) , with n2 = 0 , (197)

as originally employed by Volkov [143].11 We drop the
label ‘v’ where the context is clear. Assuming (197) means
we suppress the parts of the dynamics of the macroscopic
field that deviate from a plane-wave field form. The
plane-wave approximation is widely used in studying the
interaction of laser fields with matter and is valid if the
laser beam is not tightly focused in space such that the
wave front is approximately flat. Even under such a rela-
tively controlled setup, but especially in isolated systems,
one has to take into account that the validity of the plane-
wave approximation can be limited in time. The validity
time-scale then depends on the back reaction [53, 68] of
the matter on the field via Maxwell’s equation (29). A
simple parametric estimate suggests a large range of valid-
ity up to times of tv ∼ O(1/e2). However it is well known
[15] that strong macroscopic fields can further decrease
this timescale. Below, we assume that the plane-wave
approximation is valid for the times under consideration.

Although this assumption significantly simplifies the
equations, we stress that it does not restrict the discussion
of a multitude of common experimental field configura-
tions, such as (linearly or elliptically) polarized fields,
(long or short) pulses, monochromatic or polychromatic
fields, and (constant or strongly varying) crossed fields.

The field strength tensor of plane-wave fields can be
written as

Fµνv (n · x) = nµȦνv(n · x)− nνȦµv(n · x) , (198)

where a dot stands for a derivative with respect to the
argument. From this it follows that plane-wave fields
necessarily satisfy

− 1
2ηµρηνσF

µν
v Fρσv = |~E|2 − | ~B|2 = 0 , (199)

− 1
8εµνρσF

µν
v Fρσv = ~E · ~B = 0 . (200)

Therefore, the magnetic field ~B is always perpendicular

to and of equal absolute value of the electric field ~E , such
that it is sufficient to only talk about electric fields in the
context of plane-waves. In particular, the topological term
(200) associated with CP violation [144, 145] vanishes
identically. This has the implication that the pseudoscalar
component of the spectral function (which we introduce
in Sec. V D 1, see also appendix F 3) vanishes.

11 Other integrable cases include external fields such as the Coulomb
potential (leading to hydrogen levels), homogeneous magnetic
fields (leading to Landau levels), constant crossed fields (leading
to Airy functions) and constant non-crossed electric fields (leading
to Weber parabolic cylinder functions).

Plane-wave systems are most conveniently described
using lightcone coordinates that use the special direction
nµ of the field,

x− := x0 − x3 = n · x , (201)

x+ := 1
2 (x0 + x3) , (202)

~x⊥ := (x1, x2, 0) . (203)

Lightcone coordinates have metric tensor η+− = η−+ =
η+− = η−+ = 1, η++ = η−− = η++ = η−− = 0 such that
x+ = x−, x− = x+ and p · s = p+s− + p−s+ − ~p⊥ · ~s⊥.

We work in Lorenz gauge [∂ · A(x) = 0] and use the
residual gauge freedom to also fix temporal axial gauge
[A0(x) = 0]. In lightcone coordinates that use the physical
direction nµ of the field, this is equivalent (for vanishing
asymptotic boundary conditions) to so-called lightfront
gauge [146], i.e.

A−v (x−) = 0 , (204)

A+
v (x−) = 0 , (205)

which is conveniently formulated in a frame in which

nµ = (1, 0, 0, 1) . (206)

In this frame and gauge, the electric field is simply

~E(x−) = − ~̇A⊥(x−) . (207)

In particular, this allows for a simple form of the (sym-
metric) energy momentum tensor

Tµνv := Fµv σFσνv = nµnν |~E|2 (208)

from which the energy density of the plane-wave field

T 00
v = 1

2 (|~E|2 + | ~B|2) = |~E|2 (209)

can be read off. A peculiarity of the plane-wave field is
that the classical quantity (208) coincides with the exact
vacuum expectation value of the energy momentum tensor
up to fermionic contributions [18].

For any function K(X, s−) of n · s =: s−, one has∫
s

ei(p−q)sK(X, s−) = (2π)3δ(p− − q−)δ(~p⊥ − ~q⊥)

×
∫

ds− ei(p
+−q+)s−K(X, s−) . (210)

This is can be written compactly as∫
s

ei(p−q)sK(X, s−) (211)

=

∫
dl

(2π)
(2π)4δ(p− q − ln)K(X, l) ,

with the one-dimensional Wigner transform

K(X, l) :=

∫
ds−eils

−
K(X, s−) . (212)
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1. Spectral function & plane-wave d.o.f.

A solution of the equation for the fermion spectral
function (103) for plane-wave fields is12

ρΨ,v(x, y) = i(2π)

∫
q

δ(q2 −m2)sgn(q0) (213)

×Rq(x)(/q +m)R̄q(y) .

The field dependence enters via the Ritus matrices Rq,
R̄q [17, 149, 150] which are defined as13

RABp (x) :=

[
1 +

e

2

/n/Av(n · x)

(n · p)

]
ABeiSp(x) , (214)

Sp(x) (215)

:= −p · x− 1

2(n · p)

∫ (n·x)

−∞
dλ
[
2Av(λ) · p− e2A2

v(λ)
]
,

R̄p(x) := γ0R†p(x)γ0 . (216)

The essential property of the Ritus matrices is that they
translate the strong field Dirac operator in position-space
into the free Dirac operator in momentum space, i.e.

(i/∂x − e /Av(n · x)−m)Rp(x) = Rp(x)(/p−m) . (217)

The plane-wave spectral function contains the strong-field
dressed mass [148, 153] (see Sec. V F 1) and recovers the
Airy-type scattering amplitudes for small field-gradients
(see Sec. V F 2). For the proof that (213) solves (103),
and satisfies the symmetry constraint (19), as well as for
the computation of its Dirac components, we refer to the
appendices E and F.

The non-perturbative nature of the plane-wave spectral
function can be observed from the exponential eiSp : The
field-dependent part of the exponent is small for not too
strong fields and an expansion in powers of e could be
truncated in that case [corresponding to perturbation
theory with the vertex (27)]. However for strong fields,
A ∼ O(1/e), the exponent is O(e0) and all orders in e,
have to be taken into account as depicted in Fig. 7.

FIG. 7. Resummation of the macroscopic field vertex.

12 This plane-wave spectral function ρΨ,v is the antisymmetric part
of the time ordered ‘Volkov propagator’ [17, 147, 148] (see ap-
pendix E). By plugging ρΨ,v into our transport equations we
resum the symmetric part of the fermion propagator to self-
consistent 2-loop order.

13 Sp[X(λ)] is the classical action for the trajectory Xµ(λ) of a test
particle in a plane-wave field [151]. This fact gives rise to an
interpretation of plane-wave scattering probabilities in terms of a
stationary phase principle [132, 152].

For the application to our transport equations we need
the late-time Wigner transform

ρΨ,v(X, p) = i(2π)

∫
q

δ(q2 −m2)sgn(q0) (218)

×
∫
s

eipsRq(X + s
2 )(/q +m)R̄q(X − s

2 ) .

From this expression we can observe that the plane-wave
spectral function captures off-shell effects: the external
momentum p is not restricted to on-shell values but be-
comes on-shell in the limit Av → 0, which recovers the
free spectral function via

RABp (x)
Av→0−−−−→ δABe−ipx , (219)

R̄ABp (x)
Av→0−−−−→ δABeipx . (220)

With the identity (211) we can discuss the emergence
of plane-wave fermion degrees of freedom in strong fields
by writing

ρΨ,v(X, p) = i

∫
dlK(X, l; p− ln) (221)

× δ(p2 −m2 − 2l(n · p)) sgn(p0 − ln0)

with the field-dependent Dirac matrix

K(X, l; q) :=

∫
ds−eils

−
e−iNq(X

−,s−) (222)

×
[
1 +

e

2

/n/Av(X + s
2 )

(n · q)

]
(/q +m)

[
1− e

2

/n/Av(X − s
2 )

(n · q)

]
and the field-dependent phase factor

Nq(n ·X,n · s) (223)

:=

∫ n·s
2

−n·s2

dλ

(
eA(n ·X + λ) · q

n · q
− e2A2(n ·X + λ)

2(n · q)

)
.

While the phase in terms of Sq fully depends on xµ and
yµ, the phase Nq only depends on n ·X and n · s via

Sq(x)− Sq(y) = −q · s−Nq(n ·X,n · s) . (224)

From (221) we observe that, by the integration over l, the
on-shell condition for free fermions (l = 0) is modified to
the condition (with l unconstrained)

p0 = l ± εl(~p )⇔ p+ =
|~p⊥|2 +m2

2p−
+ l , (225)

where we have defined the plane-wave relation

εl(~p ) := (ε2(~p ) + l2 − 2lpz)
1/2 (226)

= (|~p⊥|2 +m2 + (pz − l)2)1/2 .

This expression depends explicitly on the z-component
pz := p3 in which the plane-wave field varies, is positive
and satisfies

εl(~p ) = ε−l(−~p ) . (227)
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From the context of plane-wave collision terms one fur-
ther observes in Sec. V E that the parameter l corre-
sponds to the energy exchanged between fermions and
the macroscopic field during quantum processes. Since l
is integrated over, the relation εl(~p ) does not on its own
restrict the external momentum of the fermion spectral
function. Its interpretation as a dispersion relation is
thereby not straightforward. Depending on the details
of the macroscopic field, the integration over l may have
different effects such as broadening the peak structure
or adding more peaks. The plane-wave spectral func-
tion thereby describes interactions with different l-modes
of the macroscopic field, where the lowest mode, l = 0,
describes freely propagating particles via

εl(~p )
l→0−−→ ε(~p ) . (228)

In particular, if the macroscopic field is periodic in s−

with frequency ω, K(X, l; q) has support only for l = jω
with j ∈ Z and a countable peak structure emerges via∫

dl

(2π)
→ ω

∞∑
j=−∞

, (229)

(see also Ref. [70] for a similar discussion at the level of

amplitudes). If l is continuous, the infinitely many delta
peaks may merge to form a function with finite-width
peaks, such as the function computed in Ref. [49].

As we will see in Sec. V E, the l-modes can be kept track
of as individual degrees of freedom by defining appropriate
distribution functions that are summed or integrated over
in the collision terms. A traditional on-shell description
in terms of only the l = 0-mode is then favored as long as
a separation of scales in terms of ultrarelativistic fermions
exists, as we discuss in Sec. V H.

2. Collision kernel

Plugging the plane-wave spectral function (218) into
(115) we obtain the strong-field plane-wave collision kernel

Pµνv (X, p, q, k) (230)

= δ(k2)sgn(k0)

∫
s1,s2

eips1eiqs2
∫
p′,q′
e−ip

′s1e−iq
′s2

× δ(p′2 −m2)sgn(p′0)δ(q′2 −m2)sgn(q′0)

× T µνp′q′(X, s1, s2) e−i[Np′ (X,s1)+Nq′ (X,s2)] ,

where we have defined the pre-exponential

− 4T µνp′q′(X, s
−
1 , s
−
2 ) (231)

:= tr

{
γµ
[
1 +

e/n/Av(X + s1
2 )

2(n · p′)

]
(/p
′ +m)

[
1−

e/n/Av(X − s1
2 )

2(n · p′)

]
γν
[
1 +

e/n/Av(X + s2
2 )

2(n · q′)

]
(/q
′ +m)

[
1−

e/n/Av(X − s2
2 )

2(n · q′)

]}
,

such that, together with the phase (223), the trace over the Ritus matrices becomes

1
4 tr{γµRp′(X + s1

2 )(/p
′ +m)R̄p′(X − s1

2 )γνRq′(X + s2
2 )(/q

′ +m)R̄q′(X − s2
2 )} (232)

= T µνp′q′(X, s1, s2) e−ip
′s1e−iq

′s2e−i[Np′ (X,s1)+Nq′ (X,s2)] .

We discuss the familiar case of s1 + s2 = 0 that emerges in the absence of a medium in Sec. V E 2. For zero field, the
phase Np vanishes and the pre-exponential becomes the on-shell amplitude squared∫

s1,s2

ei(p−p
′)s1 ei(q−q

′)s2 ηµνT µνp′q′(X, s1, s2)
Av→0−−−−→ −(2π)4δ(p− p′)(2π)4δ(q − q′)

[
− 2(p · q) + 4m2

]
, (233)

such that p′ → p and q′ → q as Av → 0. In the presence
of a field, the plus-components of p′ and p, and q′ and q
do not coincide and p+ and q+ are not on-shell.

3. Off-shell vs. on-shell kinematics

Classically, particle motion in a plane-wave field [de-
scribed by the classical Vlasov equation (191)] is char-
acterized by the conservation of the two transverse and
the minus-component of the canonical momentum. The

plus-component, that is conserved for free particles, is
no longer conserved in the presence of a plane-wave field
that exchanges energy with particles in this longitudinal
direction.

We can derive this interpretation of the field as an
energy reservoir from our plane-wave collision kernel also
in the off-shell quantum case. By applying identity (211),
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we may write

Pµνv (X, p, q, k) = δ(k2)sgn(k0)

∫
dl1

(2π)

∫
dl2

(2π)
(234)

×
∫
p′,q′

δ(p′2 −m2)sgn(p′0)δ(q′2 −m2)sgn(q′0)(2π)8

× δ(p− p′ − l1n)δ(q − q′ − l2n)Qµν(X, l1, l2; p′, q′)

with the remaining kernel

Qµν(X, l1, l2; p′, q′) :=

∫
ds−1 e

il1s
−
1

∫
ds−2 e

il2s
−
2

× T µνp′q′(X, s
−
1 , s
−
2 ) e−i[Np′ (X,s

−
1 )+Nq′ (X,s

−
2 )] . (235)

The collision terms therefore contain delta functions
enforcing the kinematic conditions

k − p+ q = 0 , (236)

p− p′ − l1n = 0 , (237)

q − q′ − l2n = 0 , (238)

p′2 −m2 = 0 , (239)

q′2 −m2 = 0 , (240)

k2 = 0 , (241)

where l1 is the Fourier conjugate to (n · s1) and l2 to
(n · s2). An equivalent set of equations is

k − p′ + q′ = (l1 − l2)n , (242)

p− p′ = l1n , (243)

q − q′ = l2n , (244)

p2 −m2 = 2l1(n · p) , (245)

q2 −m2 = 2l2(n · q) , (246)

(p′ − q′)2 = −2(l1 − l2)(n · k) . (247)

Equations (245) and (246) make explicit that the physical
momenta p, q (carried by the fermion distribution func-
tions) contribute with arbitrary off-shell values, where
the ‘off-shellness’ 2l1(n · p′) and 2l2(n · q′) is integrated
over in the collision terms. In this way, the macroscopic
field provides the momenta l1n

µ and l2n
µ, preventing

the collision terms from vanishing kinematically. Further-
more, the auxiliary momenta p′, q′ are not conserved and
k − p′ + q′ is not always zero, but corresponds to the
energy exchanged with the field, (l1 − l2)n.

In comparison, the zero-field kinematic conditions are

k − p+ q = 0 , (248)

p2 −m2 = 0 , (249)

q2 −m2 = 0 , (250)

k2 = 0 , (251)

which are ‘forbidden’ because

(k + q)2 !
= p2 ⇔ (k · q) !

= 0 (on-shell) , (252)

(p− k)2 !
= q2 ⇔ (k · p) !

= 0 (on-shell) (253)

for massive fermions can only be fulfilled for the trivial

case of ~k = 0, while otherwise

k · p = |~k|ε(~p )− ~k · ~p > 0 (on-shell) . (254)

Thereby, for vanishing macroscopic field, the delta func-
tions have vanishing overlap and zero-field collision terms
vanish at leading order O(e2).

E. Plane-wave photon kinetic equation

1. Collision term

Employing the plane-wave collision kernel (234), the
photon transport equation (111) obtains the following
collision term:

Cv(X,~k) = e2

∫ ∞
0

dk0δ(k2)

∫
dl1

(2π)

∫
dl2

(2π)

∫
p,q

(2π)6δ(k − p+ q)Q(X, l1, l2, p− l1n, q − l2n) (255)

× δ(p2 −m2 − 2l1(n · p)) sgn(p0 − l1n0)δ(q2 −m2 − 2l2(n · q)) sgn(q0 − l2n0)

×
{
fΨ(X, p)[1− fΨ(X, q)][1 + f(X, k)]− [1− fΨ(X, p)]fΨ(X, q)f(X, k)

}
.

We can identify the crossings of eeγ scattering depicted in Fig. 8 by taking the frequency integrals over

δ(p2 −m2 − 2l(n · p)) =
1

2εl(~p )

[
δ(p0 − l − ε~p (l)) + δ(p0 − l + ε~p (l))

]
. (256)

Identifying plane-wave degrees of freedom in terms of the plane-wave fermion and anti-fermion distribution functions

f−Ψ (X, l, ~p ) := fΨ(X, p) at p0 = l + εl(~p ) , (257)

f+
Ψ (X,−l,−~p ) := 1− fΨ(X, p) at p0 = l − εl(~p ) (258)
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and making use of Eq. (227), the plane-wave photon collision term may equivalently be written as

Cv(X,~k) = e2 1

2|~k|

∫
dl1

(2π)

∫
d3p

(2π)3

1

2εl1(~p )

∫
dl2

(2π)

∫
d3q

(2π)3

1

2εl2(~q )
(2π)4 (259)

×
[
δ(~k + ~p− ~q ) δ(|~k|+ εl1(~p )− εl2(~q ) + l1 − l2)Qe

+→e+γ(X, l1, l2, ~p, ~q )

×
{

[1− f+
Ψ (X, l1, ~p )]f+

Ψ (X, l2, ~q )[1 + f(X,~k)]− f+
Ψ (X, l1, ~p )[1− f+

Ψ (X, l2, ~q )]f(X,~k)
}

+ δ(~k − ~p+ ~q ) δ(|~k| − εl1(~p ) + εl2(~q )− l1 + l2)Qe
−→e−γ(X, l1, l2, ~p, ~q )

×
{
f−Ψ (X, l1, ~p )[1− f−Ψ (X, l2, ~q )][1 + f(X,~k)]− [1− f−Ψ (X, l1, ~p )]f−Ψ (X, l2, ~q )f(X,~k)

}
+ δ(~k − ~p− ~q ) δ(|~k| − εl1(~p )− εl2(~q )− l1 − l2)Qγ→e

+e−(X, l1, l2, ~p, ~q )

×
{
f−Ψ (X, l1, ~p )f+

Ψ (X, l2, ~q )[1 + f(X,~k)]− [1− f−Ψ (X, l1, ~p )][1− f+
Ψ (X, l2, ~q )]f(X,~k)

}
+ δ(~k + ~p+ ~q ) δ(|~k|+ εl1(~p ) + εl2(~q ) + l1 + l2)Q0→e+e−γ(X, l1, l2, ~p, ~q )

×
{

[1− f+
Ψ (X, l1, ~p )][1− f−Ψ (X, l2, ~q )][1 + f(X,~k)]− f+

Ψ (X, l1, ~p )f−Ψ (X, l2, ~q )f(X,~k)
}]

,

FIG. 8. Diagrammatic photon, electron and positron collision terms; labeled are the respective external momenta.

with the collision kernels for the different crossings of eeγ scattering14

Qe
+→e+γ(X,−l1,−l2,−~p,−~q ) := Qµµ(X, l1, l2, p− l1n, q − l2n) at p0 = l1 − εl1(~p ), q0 = l2 − εl2(~q ) , (260)

Qe
−→e−γ(X, l1, l2, ~p, ~q ) := Qµµ(X, l1, l2, p− l1n, q − l2n) at p0 = l1 + εl1(~p ), q0 = l2 + εl2(~q ) , (261)

−Qγ→e
+e−(X, l1,−l2, ~p,−~q ) := Qµµ(X, l1, l2, p− l1n, q − l2n) at p0 = l1 + εl1(~p ), q0 = l2 − εl2(~q ) , (262)

−Q0→e+e−γ(X,−l1, l2,−~p, ~q ) := Qµµ(X, l1, l2, p− l1n, q − l2n) at p0 = l1 − εl1(~p ), q0 = l2 + εl2(~q ) . (263)

14 The sign in the kernels involving one positron recovers the positron
term (/p−m) from the electron term (/p+m) = −(−/p−m) after
the change of sign p→ −p (see also Ref. [154]).

As anticipated in our discussion of the plane-wave spec-
tral function (221), we can observe from the energy con-
serving delta functions in the collision term (259) that
the Wigner variables li correspond to the energy that
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is exchanged with the macroscopic field by degrees of
freedom with energy εli(~pi). By means of the changes
of variables pz → pz − l1 and qz → qz − l2, this energy
exchange can be written in the Lorentz covariant form

k − p+ q − (l1 − l2)n = 0 , (264)

which clearly relates four-momentum conservation to the
structure of the plane-wave field.

From the delta functions of the 0 → 3 and 3 → 0
processes in Eq. (259), we observe that they are forbidden
for plane-wave fields, since the combination of energy and
momentum conditions,

|~k|+ εl1(~p ) + εl2(~q ) + l1 + l2 = 0 , (265)

~k + ~p+ ~q = 0 , (266)

can not be fulfilled. In the absence of a macroscopic field,
such processes are already forbidden by energy conser-
vation alone. For an arbitrary macroscopic field such a
0→ 3 term would act as a source term for vacuum pair
production since it does not come with any distribution
function and therefore would not vanish for f+

Ψ = f−Ψ = 0.
The fact that this contribution vanishes for plane-wave
fields is in agreement with the general statement that
plane waves are not able to produce pairs from the vac-
uum [18, 155]. In general, such 0 → 3 terms contribute
to vacuum pair production at 2-loop order via Eq. (182).

2. Emergence of a gauge-invariant vertex and gauge-fixing
independent amplitude in plane-wave vacuum

Electromagnetic interactions are often described in
terms of probabilities for scattering events built from

S-matrix amplitudes, which are computed in terms of
Feynman rules with free on-shell asymptotic states in vac-
uum, i.e. vanishing or single mode distribution functions.
Such an S-matrix based formulation is not able to resolve
real-time dynamics between in-medium states, for which
the interaction is not adiabatically switched off. In this
section, we follow the emergence of such amplitudes and
thereby highlight limitations to their ability to capture
collective dynamics of strong-field systems.

General considerations about the trace T , Eq. (231),
can be found e.g. in the reviews [16, 17, 156, 157] (see
also Ref. [71]) for the special case of s1 + s2 = 0 and with
X integrated over, which is needed for the computation
of probabilities. In this section we identify a scattering
amplitude that is local in X and demonstrate that the
reduction in terms of relative variables s1 and s2 is re-
lated to vanishing or single mode plane-wave fermion
distribution functions,

f±Ψ (X, l, ~p )→ 0 , (267)

which we refer to as the ‘plane-wave vacuum’. Impor-
tantly, such vacuum approximations to distribution func-
tions may only be applied once the relevant degrees of
freedom are separated from quantum vacuum fluctuations,
because general off-shell distribution functions contain
the ‘quantum half’ which can never physically vanish [see
e.g. the constant terms in Eqs. (77) and (79)].

We start in-medium, i.e. without the assumption (267),
where the collision kernel (234), may be factorized in
terms of Volkov spinors,

Upσ(x) := Rp(x)upσ , (268)

Ūpσ(x) := U†pσγ
0 = ūpσR̄p(x) , (269)

and written as a ‘spin sum’

Pµνv (X, p, q, k) = −δ(k2)sgn(k0)

∫
p′,q′

δ(p′2 −m2)sgn(p′0)δ(q′2 −m2)sgn(q′0) (270)

× 1
4

∑
σσ′

∫
s1,s2

eips1eiqs2
[
Ūq′σ′(X − s2

2 )γµUp′σ(X + s1
2 )
][
Ūp′σ(X − s1

2 )γνUq′σ′(X + s2
2 )
]
,

by introducing spin labels σ and σ′ via

δ(p2 −m2)
∑
σ

upσūpσ = δ(p2 −m2)(/p+m) . (271)

By amputating the free Dirac spinors ūpσ, upσ of

Ūqσ′(X − s2
2 )γµUp′σ(X + s1

2 ) (272)

=: ūqσ′ V
µ
qp(X, s2, s1)upσ ,

in Eq. (270), we may identify the vertex

V µpq(X, s1, s2) = R̄p(X − s1
2 )γµRq(X + s2

2 ) . (273)

This expression differs from the well-known local and
gauge-invariant plane-wave vertex [17, 158],

Γµpq(x) := R̄p(x)γµRq(x) = V µpq(X,−s, s) , (274)

by its spacetime structure. This difference arises because
the local vertex Γµpq is constructed from the time-ordered
Volkov propagator (see appendix E), which is a vacuum
object, i.e. assumes the absence of a medium by vanishing
distribution functions, while our vertex V µpq is constructed
in the presence of distribution functions from the anti-
symmetric part of the Volkov propagator alone. The
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additional s-dependence of V µpq, which is integrated over
in the collision kernel thus implements the fact that the
effective interaction in a strong-field medium is non-local.

While Γµpq is gauge-invariant, V µpq is not.15 We stress
that our collision term is nevertheless gauge-invariant,
such that this is not a flaw of our description, but simply
exhibits the physical limitations of the concept of scat-
tering probabilities. Electromagnetic interactions in the
presence of a medium, i.e. arbitrary distribution functions,
can not in general be described by assigning probabilities
to individual events. While the photon collision term
(259) is gauge-invariant by virtue of additional momen-
tum integrals, the collision kernel and the vertex (273)
are not gauge-invariant on their own. Without further
assumptions, we can not identify scattering probabilities
from them. As we now demonstrate, gauge-invariant
amplitudes can be defined in plane-wave vacuum.

First, we investigate how V µpq reduces to Γµpq. For this
we need to put the vertex back into the context of the
collision term: In general, the photon collision term is of
the form∫

p,q

δ(k − p+ q) g(X, p, q, k)Pµν(X, p, q, k) , (275)

with the gain-minus-loss term g. If we now assume the
absence of a medium, i.e. Eq. (267), there are no other
objects carrying fermion momentum dependence other
than the kernel itself. We may then write∫
p,q

δ(k − p+ q)Pµνv (X, p, q, k) (276)

=

∫
p,q,l

δ(p2 −m2)sgn(p0)δ(q2 −m2)sgn(q0)δ(k2)sgn(k0)

× δ(k − p+ q − ln)Qµνvac(X, l, p, q) ,

with the gauge-invariant vacuum kernel

Qµνvac(X, l, p, q) (277)

:=

∫
ds− eils

−
T µνpq (X, s,−s) e−i[Np(X,s)+Nq(X,−s)] .

Here, the underlying structure that is simplified by
the vacuum assumption is the product of Wigner
space fermion spectral functions ρΨ(X, p)ρΨ(X, q), that
can in general not be factorized in real-space via
ρΨ(x, y)ρΨ(y, x) = ρ̂Ψ(x, y)ρ̂Ψ(y, x) in the presence of
fermion distribution functions, e.g. as in expression (275).
However, in the vacuum case, Eq. (276) contains such a
factorization, where the δ(k−p+q) has been expressed in
real space to invert the Wigner transforms of the spectral
functions as in Eq. (134). Eq. (276) then allows us to iden-
tify the auxiliary momentum labels p′, q′ of the collision

15 The Volkov spinors transform as Upσ(x) → eiα(x)Upσ(x) and
Ūpσ(x)→ Ūpσ(x)e−iα(x) with a U(1) group element eiα(x).

kernel with the physical fermion momenta p, q in the vac-
uum case. The emerging vacuum collision kernel is gauge-
invariant on its own, and has contributions only from
values of s1 and s2 satisfying the condition s1 + s2 = 0.
The momentum labels p and q of the scattering kernel
are now on-shell, but there are no fermion distribution
functions left. Correspondingly, k − p + q 6= 0 because
momentum is exchanged with the macroscopic field as the
amplitude would otherwise vanish kinematically as in the
zero-field case. In case of fermion distribution functions
that vanish almost everywhere, except e.g. a few ultra-
relativistic modes, the dominant contributions from the
collision kernel still come from the region of s1 + s2 = 0.
By taking the collision kernel out of the context of the
transport equation in this way, medium effects from more
complex fermion distribution functions such as the non-
local interaction via Eq. (273), and the difference between
the on-shell labels p′, q′ and the off-shell labels p, q are
missed.

We can now make contact with the language of am-
plitudes by writing the vacuum collision kernel (277) in
terms of the local vertex (274),∫

p,q

δ(k − p+ q)Pv(X, p, q, k) = −δ(k2)sgn(k0) (278)

×
∫
p,q

δ(p2 −m2)sgn(p0)δ(q2 −m2)sgn(q0) 1
4ηµν

∑
σσ′

×
∫
s

eiks
[
ūpσΓµpq(X + s

2 )uqσ′
][
ūqσ′Γ

ν
qp(X − s

2 )upσ

]
.

From this we may read off the local amplitude

M̃µ
σσ′(X, p, q, k) =

∫
s

eiks ūpσ Γµpq(X + s
2 )uqσ′ ,

(279)

[M̃µ
σσ′(X, p, q, k)]∗ =

∫
s

eiks ūqσ′ Γ
µ
qp(X − s

2 )upσ .

It is tempting to go one step further and identify the
square of the well-known global amplitude [17],

Mµ
σσ′(p, q, k) =

∫
x

eikx ūpσ Γµpq(x)uqσ′ , (280)

by integrating over all X and returning to microscopic
position variables via∫

d4X

∫
s

eiks =

∫
d4xeikx

∫
d4ye−iky . (281)

However, it is important to note that such an integration
over all times X0 generally includes late times outside of
the range of validity of both the plane-wave field and the
plane-wave vacuum approximation. Even if one makes
assumptions such as (197) and (267) at initial time, the
macroscopic field does not remain a plane wave and distri-
bution functions do not in general remain negligible, but
backreact on the field, such that a self-consistent descrip-
tion of both becomes essential to describe equilibration.
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What type of interactions take place in a strong-field sys-
tem depends also on the details of distribution functions
and is a time (and space) dependent questions. To deter-
mine this time dependence, one has to solve the transport
system including the dynamics of distribution functions
away from the plane-wave vacuum. Instead, a common
approach in literature is to rely on the S-matrix in the
Furry picture [147], which takes amplitudes out of the
context of in-medium evolution equations. To then ex-
tract local probabilities from this S-matrix, the LCFA is
a necessary approximation, as otherwise what is supposed
to be the local probability density may turn out to be
negative (see e.g. Ref. [71]). This problem occurs because
the probability that a scattering will take place in an
external field and in the absence of a medium at any time
is not a self-consistent concept in general. The gauge-
invariant amplitudes such as (280) are not observable and
probabilities for individual scattering processes need not
exist to compute statistical observables such as electrical
conductivity [79] or pressure [78]. No further approxima-
tions such as the plane-wave vacuum or locally constant
fields are necessary to compute also e.g. the photon decay
rate (116) from the equations discussed in Sec. IV.

While the physical interpretation of the strong-field
amplitude (280) is problematic, that object is very useful
to understand the ξ-dependence of our equations. The
amplitude (280) is known to obey the modified Ward
identity [131–133]

k · Mσσ′ = ūpσ/nuqσ′

∫
l

(2π)4 δ(k − p+ q − ln)

×
∫

d(n · x)
∂
(
eiΦ(n·x)

)
∂(n · x)

, (282)

with the phase

Φ(n · x) := l n · x+

∫ n·x

−∞
dλ
(eA(λ) · q

n · q
− e2A2(λ)

2(n · q)

)
−
∫ n·x

−∞
dλ
(eA(λ) · p

n · p
− e2A2(λ)

2(n · p)

)
, (283)

relating gauge-fixing to boundary terms at n · x = ±∞.
Vanishing boundary terms then lead to gauge-fixing inde-
pendence, Pξ ≡ 0.

F. Plane-wave fermion kinetic equation

Because the fermion collision term (153) relies on the
gauge-invariant fermion spectral function ρ̂Ψ (as opposed
to the covariant function ρΨ), we start this section by
investigating this function for plane-wave fields. The well-
known plane-wave momentum and dressed mass emerge
automatically in this function. These gauge-invariant
expressions then serve us to approximate field-gradients

in a gauge-invariant manner, equivalently to Sec. V A,
but at the level of the solution rather than the equation
of motion.

1. Gauge-invariant spectral function:
plane-wave momentum & dressed mass

The covariant plane-wave spectral function (221) trans-
forms as any other fermion two-point function. The ambi-
guity [50, 56, 82] for the choice of the path of integration
in the Wilson line is not present in the plane-wave case
because there is only one path in one dimension from n ·x
to n · y. Thereby, the Wilson line automatically emerges
with a straight path of integration,

Wv(y, x) = exp

(
ie
sµ

s−

∫ s−

2

− s
−

2

dλAµ(X− + λ)

)
, (284)

despite the 3 + 1 dimensional nature of the underlying
theory. Defining the phase-average

〈a〉 (X−, s−) :=
1

(n · s)

∫ n·s
2

−n·s2

dλ a(n ·X + λ) (285)

(not to be confused with the ensemble average (4)) for
any plane-wave function a(n · x), we can make the gauge-
invariance of ρ̂Ψ,v manifest. By employing Eq. (285), the
plane-wave Wilson line (284) can be written as

Wv(y, x) = eies
µ〈Aµ〉(X,s) . (286)

The Lorentz equation for plane-wave fields is solved
by the gauge-invariant momentum of an electron in a
plane-wave [151]

πµq (n ·X) (287)

:= qµ − eAµ(X) + nµ

(
eA(X) · q

(n · q)
− e2A2(X)

2(n · q)

)
,

which is related to the Lorentz action (215) via

(i∂µx − eAµv(n · x)) eiSq(x) = πµq (n · x) eiSq(x) . (288)

The plane-wave momentum obeys

π2
q = q2 and n · πq = n · q (289)

and is related to the free mass m and the gauge-invariant
dressed mass [148, 153]

m̃2(X, s−) := m2 − e2

(n · s)

∫ n·s
2

−n·s2

dλA2(n ·X + λ)

+
e2

(n · s)2

[ ∫ n·s
2

−n·s2

dλA(n ·X + λ)
]2

(290)
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via [148]

〈π2
q 〉 = m2 and 〈πq〉2 = m̃2 (291)

for any q with q2 = m2 (which in our context is ensured
by the delta function under the integral e.g. in Eq. (293)).

We can identify this plane-wave momentum in the
exponent of the gauge-invariant spectral function via

q · s− esµ 〈Aµ〉+Nq = 〈πµq 〉 sµ , (292)

such that an exact solution of Eq. (138) in the plane-wave
case may be written as

ρ̂Ψ,v(X, p) = i(2π)

∫
q

δ(q2 −m2)sgn(q0) (293)

×
∫
s

ei(p−〈πq〉(X,s))s K̃q(X, s) ,

with the gauge-invariant Dirac matrix

K̃q(X, s) (294)

:=

[
1 +

e

2

/n/Av(X + s
2 )

(n · q)

]
(/q +m)

[
1− e

2

/n/Av(X − s
2 )

(n · q)

]
.

While the covariant spectral function (221) makes mani-
fest the energy exchange with the field and facilitates a
formulation in the plane-wave degrees of freedom (257)
and (258), the invariant function (293) makes manifest
the solution of the Lorentz equation (287).

The scalar and pseudoscalar components of K̃q are

1
4 tr{K̃q(X, s)} = m, (295)

1
4 tr{γ5K̃q(X, s)} = 0 . (296)

The vanishing of the pseudoscalar component is a direct
consequence of the crossed nature of plane-wave fields,
i.e. Eq. (200). The vector component, which plays a
crucial role in the quantum Vlasov term, contains the
plane-wave momentum also in the pre-exponential and
is given in Sec. V F 3. The axial and tensor components
can be found in the appendix F. The tensor and scalar
components vanish for massless fermions in agreement
with chiral symmetry.

Similarly to the identity (211) one has∫
s

ei(p−〈πq〉(X,s
−))s K̃(X, s−) =

∫
ds−(2π)3 (297)

× δ
(
p− − q−

)
δ
(
~p⊥ − 〈~π⊥,q〉 (X, s−)

)
× ei

[
p+−〈π+

q 〉(X,s
−)
]
s− K̃(X, s−) .

Computation of the scalar component (see appendix
F 1) results in

ρ̂Ψ,v,S(X, p) = im
1

2p−
(298)

×
∫

ds− exp

{
i
(
p+ − |~p⊥|

2 + m̃2(X, s−)

2p−

)
s−

}
.

The corresponding symmetric component has been com-
puted in Ref. [49] (see also Ref. [21]) for various choices
of plane-wave fields, in the context of scalar QED.

2. Plane-wave fields with small gradients

In this section, we investigate the gauge-invariant ap-
proximation of field-gradients using the example of the
scalar spectral component (298).

For plane-wave fields, the gradient expansion becomes
an expansion in longitudinal gradients via

(s · ∂X)jAµ(n ·X) = (n · s)j A(j)
µ (n ·X) , (299)

where A(j)
µ is the jth derivative with respect to n ·X.

In the scalar component (298), field-gradients are car-
ried only by the gauge-invariant mass

m̃2(X, s−) = m2 − e2 1
12 (n · s)2Ȧ2(X)− e2 1

720 (n · s)4

×
[
3A(3)(X) · Ȧ(X) + Ä2(X)

]
+O

(
(e0s · ∂X)5

)
, (300)

whose expansion is gauge-invariant order by order [148].

Similar to the fact that the equation of motion (167)
has contributions from constant gauge-invariant fields,
the second term of the dressed mass is also non-trivial
for constant electric fields and generally not small com-
pared to unity. In fact, introducing the dimensionless and
Lorentz-invariant quantities

ξ0 :=
m

ω

F0

Ec
, (301)

χ0(p) :=
n · p
m

F0

Ec
, (302)

ϕ := ω(n · s) , (303)

with the Schwinger critical field Ec = m2/|e| and a charac-
teristic field amplitude F0 and frequency ω, we can write
the constant-field contribution from this exponent as

−e2 1

12

Ȧ2(X)

2(n · p)
(n · s)3 =

1

24

ξ3
0

χ0

E2(X)

F2
0

ϕ3 , (304)

with the notation E(X) := |~E(X)|. Equation (304) re-
veals the significance of ξ3

0/χ0 for locally constant fields,
which is well known in laser physics [159–161]. All higher
order gradient contributions to the exponent of the gauge-
invariant spectral function from the dressed mass, e.g. the
next order terms

e2 1

720

1

2(n · p)

[
3 ~̈E(X) · ~E(X) + Ė2(X)

]
(n · s)5 , (305)

are suppressed by gauge-invariant gradients. Similarly,
one may explicitly verify that under this locally-constant
field approximation, the Wilson line can be approximated
in such a way that the relation between covariant and
invariant fermion two-point functions, Eq. (129), and the

relation between fΨ- and f̃Ψ-type fermion distribution
functions, Eq. (131), indeed holds.
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Keeping the LO of the dressed mass, we find the gauge-
invariant LO scalar component

ρ̂Ψ,v,S(X, p) = im
1

2p−
(306)

×
∫

dϕ

ω
exp

{
i
(
p+ − |~p⊥|

2 +m2

2p−

)ϕ
ω
− i 1

24

ξ3
0

χ0

E2(X)

F2
0

ϕ3

}
+O(e0∂p · ∂X) .

The ϕ integral leads to the Airy function16

ρ̂Ψ,v,S(X, p) (307)

=
im

m2χ2/3(X, p)
Ai

(
− p2 −m2

m2χ2/3(X, p)

)
+O(e0∂p · ∂X) ,

where the local parameter χ defined in (186) amounts to
χ0 with F0 replaced by E(X) for plane-wave fields (for
the computation of Eq. (307) see appendix F 1).

The LCFA strong-field scattering probabilities [149,
150] that are used as input in the kinetic equations e.g.
of Ref. [22] also feature such Airy functions. As antic-
ipated in Sec. V C, these functions may be further re-
duced to on-shell delta-peaks by virtue of the identity
limχ→0

1
χAi(x/χ) = δ(x), consistent with a classical radi-

ation reaction regime.

3. Quantum Vlasov term

To discuss the quantum Vlasov term for small field-
gradients of Eq. (171) for plane-wave fields it is useful to
switch to lightcone coordinates,

ρ̂µΨDµf̃Ψ = (ρ̂+
ΨD
− + ρ̂−ΨD

+ − ρ̂ iΨ,⊥D i
⊥) f̃Ψ . (308)

For plane-wave fields, the lightcone components of the
Vlasov derivative simplify to

D−v = ∂− =
∂

∂X+
, (309)

D+
v =

∂

∂X−
+ eE i⊥(X)

∂

∂p i⊥
, (310)

Di⊥,v =
∂

∂X⊥,i
− eE i⊥(X)

∂

∂p+
, (311)

with ∂/∂X− = (∂/∂X0 − ∂/∂X3)/2 and
∂/∂X+ = ∂/∂X0 + ∂/∂X3, and analogous defini-
tions for momentum derivatives. A p− derivative is
absent as it comes with Fµνnν , which vanishes for
plane-wave fields.

The all-order in field-gradients plane-wave spectral vec-
tor component is

ρ̂µΨ,v(X, p) (312)

= i(2π)

∫
q

δ(q2 −m2)sgn(q0)

∫
s

ei(p−〈πq〉(X,s))s

×

[
π̄µq (X, s)− nµ 1

8

(n · s)2e2 〈E〉2(X, s)

(n · q)

]
,

where π̄q is the plane-wave momentum in the field
1
2 [Aµ(x) +Aµ(y)] explicitly stated by Eq. (F17) in the
appendix. The computation of the pre-exponential makes
use of the fact that

Aµ(X + s
2 )−Aµ(X − s

2 ) = (n · s) 〈Ȧµ〉 (X, s) (313)

and can also be found in the appendix F 2, alongside
the leading order in field-gradients. These are all the
ingredients one needs for the quantum Vlasov term for
locally constant plane-wave fields. In principle, with
Eq. (312) available, the drift term of the all-order field-
gradient equation (145) is also accessible.

The lightcone components of the vector spectral func-
tion (312) obey

ρ̂−Ψ(X, p) =
n · p
m

ρ̂Ψ,S(X, p) , (314)

ρ̂ iΨ,⊥(X, p) =
p i⊥
m

ρ̂Ψ,S(X, p) +O(e0∂p · ∂X) . (315)

These identities are particularly useful in the classical
radiation reaction regime (χ→ 0), to recover the on-shell
Lorentz force drift term of the classical Vlasov equation
(191) by expressing the vector component in terms of
the scalar component and then using limχ→0

1
χAi(x/χ) =

δ(x). In systems with a long-lived separation of scales in
terms of ultrarelativistic fermions, it is possible to reduce
Eq. (308) to a Lorentz force term also without sending
χ→ 0 (see Secs. V C and V H).

4. Electron and positron collision terms

Inserting the plane-wave collision kernel (234) into the
fermion collision term (153) and making use of identities
(131) and (154) we may write the fermion collision term
for small field-gradients as

16 The Airy function Ai(x) := 1
2π

∫
du exp(i(xu+ u3/3)) solves the

differential equation Ai′′(x)− xAi(x) = 0.
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CΨ,v(X, p) = e2

∫
dl1

(2π)

∫
dl2

(2π)

∫
q,k

(2π)7δ(k − p+ q)Q(X, l1, l2, p+ eA− l1n, q + eA− l2n) (316)

× δ(k2)sgn(k0) δ((p+ eA)2 −m2 − 2l1(n · p))sgn(p0 − l1n0) δ((q + eA)2 −m2 − 2l2(n · q))sgn(q0 − l2n0)

×
{
f̃Ψ(X, q)f(X, k)[1− f̃Ψ(X, p)]− [1− f̃Ψ(X, q)][1 + f(X, k)]f̃Ψ(X, p)

}
.

Here, we have relied on small field-gradients to write
the invariant spectral function of the fermion collision
term (153) in terms of the plane-wave delta function of
the covariant specrtal function (221),

ρ̂Ψ,v(X, p) = ρΨ,v(X, p+ eA) +O(e0∂p · ∂X) . (317)

Defining electron and positron collision terms,

1
2C
−
Ψ,v(X, ~p ) :=

∫ ∞
0

dp0

(2π)
CΨ,v(X, p) , (318)

− 1
2C

+
Ψ,v(X,−~p ) :=

∫ 0

−∞

dp0

(2π)
CΨ,v(X, p) , (319)

the frequency delta functions in Eq. (316) then allow for
explicit computation of the frequency integrals and to
recover the structure in terms of the strong-field scattering
processes depicted in Fig. 8.

The sign in the definition (319) accounts for a sign that
arises when substituting ~p→ −~p. The factors of 1

2 account
for the absence of a factor 2 in the identity for the first-
order derivatives of fermions i(/∂x+/∂y) = i/∂X as compared
to the identity for the second-order d’Alembertians for
photons (98).

The appearance of p+eA in Q is resolved in the vacuum
limit, where scattering kernels become gauge-invariant on
their own as discussed in Sec. V E 2. Since the fermion
self-energy is not gauge-invariant, the emergence of gauge-
invariant scattering amplitudes with no Wilson lines is
far from obvious. However, in the vacuum case, a gauge-
invariant fermion loop emerges from the product of the
fermion self-energy and the fermion propagator under
an additional momentum integral. The ultrarelativistic
limit discussed below in Sec. V H then resolves any re-

maining obstructions to a description in terms of on-shell
distribution functions.

G. The case of small occupations

The complexity of collisional kinetic equations is largely
due to the nonlinearity in distribution functions of colli-
sion terms. However, many physical situations allow for
an assumption of small distribution functions, i.e.

f±Ψ (X, l, ~p )� 1 and f(X,~k)� 1 , (320)

implicit for example in the kinetic equations of Refs. [22,
43]. For such settings close to vacuum, one may drop
2→ 1 and 3→ 0 processes entirely, since they contain no
linear terms and are therefore suppressed17 by

f±Ψ f
±
Ψ f, f

±
Ψ f
±
Ψ , f

±
Ψ f � f±Ψ , f . (321)

Thereby, strong-field systems with small occupations sin-
gle out a direction in time – the direction of energy trans-
port from the macroscopic field to the particle sector by
1 → 2 and 0 → 3 processes – even if the corresponding
scattering matrix elements and the fundamental equations
of motion are symmetric under time reversal. Similarly,
one may simplify all Bose-enhancement or Pauli-blocking

terms in 1→ 2 and 0→ 3 processes via 1 + f(X,~k) ≈ 1
and 1− f±Ψ (X, l, ~p ) ≈ 1. In this way, small distribution
functions lead to a linearization of collision terms. In
contrast to a linearization around equilibrium [104] which
keeps thermal distributions as in Eq. (118), collision terms
linearized by small occupations violate detailed balance
and are thereby no longer able to describe the approach
to thermal distribution functions. Charge conservation
[Eq. (157)] is still exact.

The linearized near-vacuum plane-wave photon collision
term (259) then reads [after a substition to recover covari-
ant energy conservation as described around Eq. (264)],

17 See also ‘phase space suppression’ arguments in terms of integral
measures and kinematic restrictions from the field, e.g. in Ref. [69].
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Cv(X,~k) = e2 1

2|~k|

∫
dl1

(2π)

∫
d3p

(2π)3

1

2ε(~p )

∫
dl2

(2π)

∫
d3q

(2π)3

1

2ε(~q )
(2π)4 (322)

×
[
δ(k − p+ q − (l1 − l2)n)Qe

+→e+γ(X, l2, l1, ~q + l2~n, ~p+ l1~n ) f+
Ψ (X, l1, ~p+ l1~n )

+ δ(k − p+ q − (l1 − l2)n)Qe
−→e−γ(X, l1, l2, ~p+ l1~n, ~q + l2~n ) f−Ψ (X, l1, ~p+ l1~n )

− δ(k − p− q − (l1 + l2)n)Qe
+e−→γ(X, l1, l2, ~p+ l1~n, ~q + l2~n ) f(X,~k)

]
.

The electron collision term (318) under the same approx-
imation reduces to the three 1→ 2 scattering processes,
e− → e−γ with ingoing momentum ~p , e− → e−γ with
outgoing momentum ~p , and γ → e−e+. Analogously,
the linearized positron collision term (319) contains the
processes e+ → e+γ and γ → e+e−. In all near-vacuum
collision terms, each process is weighted linearly by the
distribution function of the ingoing particle as in the
equations of Ref. [22].

We emphasize that for general macroscopic fields, these
near-vacuum collision terms would all additionally contain
0 → e+e−γ source terms with no distribution function,
contributing to vacuum pair production at 2-loop O(e2)
precision.

H. The case of ultrarelativistic fermions
& on-shell strong-field descriptions

Many of the approximations discussed in previous sec-
tions are tied together in an ultrarelativistic setting:
strong macroscopic fields accelerate fermions to ultra-
relativistic energies within small regions of space. Once
accelerated, any macroscopic field appears like a plane-
wave field in the Lorentz rest frame of an ultrarelativis-
tic fermion [162]. Therefore, plane-wave fields represent
generic qualities of strong fields in an ultrarelativistic
setting. Furthermore, ultrarelativistic fermions facilitate
chiral symmetry, which in turn leads to a reduction of
tensor structures, which is assumed by our definition of
the fermion distribution function as discussed in Sec. III C.
Additionally, large fermion momenta can facilitate that
field-gradients are numerically separated from propagator-
gradients as we have seen in Eq. (61). Moreover, ultra-
relativistic fermions have a small de Broglie wavelength
facilitating classical propagation in-between quantum pro-
cesses like the emission of photons. From an analysis
of the classical propagation of fermions one then finds
that ultrarelativistic fermions emit radiation along their
instantaneous velocity, within a cone of angular aperture
∼ m/ε(~p ) [15, 138]. If the particle is ultrarelativistic and
its energy is the largest scale in the system, its motion has
a pronounced directionality. In strong-field vacuum, i.e.
for vanishing occupations, and if the transverse momenta
are much larger than m, one can then show that only
small patches of their trajectory contribute to scatter-

ing amplitudes [15, 152] (which is the assumption of the
LCFA).

There are several notions of ultrarelativistic limits for
fermions in literature. They range from assumptions
on kinematic restrictions [22] to expansions in terms of
~p⊥/(n · p) [162] or 1/γ = m/ε(~p ) [15]. In the language of
the present paper, an ultrarelativistic system is defined
by a fermion distribution function that is peaked at an ul-
trarelativistic scale p∗. Such a distribution function then
gives meaning to single particle concepts such as the de-
Broglie wavelength ~/p∗ also in many-body systems. In
particular, the structure of the fermion spectral function
of such a system only matters for characteristic momenta
as it always appears in a product with the fermion distri-
bution function which approximately vanishes away from
the characteristic scale.

We now assume that the characteristic scale p∗ of
fermion distribution functions is well separated from the
characteristic scale l∗ of the strong-field spectral kernel
(222), i.e.

|p∗z| � |l∗| . (323)

In such a situation, the strong-field spectral function only
contributes with on-shell values, because

εl∗(~p
∗) '

√
|~p ∗|2 +m2 (324)

becomes the on-shell dispersion, independent of l∗. As
anticipated by our discussion in Sec. V C, this implies
that ultrarelativistic fermions may indeed be described
by on-shell particles whose energy ε(~p ∗) then satisfies

|l∗|/ε(~p ∗)� 1 . (325)

The ultrarelativistic limit (324) leaves the strong-field
properties of the spectral function intact, simplifies kine-
matic restrictions, and favors a description in terms of
free distribution functions.

However, in general, there is no mechanism that dy-
namically controls this approximation, i.e. it may become
invalid during the evolution of the system even if it is
valid at initial time. An important effect that explicitly
breaks the validity of an ultrarelativistic approximation
is vacuum pair production, which generates off-shell con-
tributions to f̃Ψ(X, p) at zero frequency according to
Eq. (180).
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Indeed, a kinetic description in terms of only on-shell
distribution functions is suggested in Ref. [22] for ultra-
relativistic fermions in strong (but subcritical E � Ec)
fields with small gradients. Our off-shell transport de-
scription of Sec. IV reduces to that description under the
following approximations: a) an approximation of field-
gradients (see Sec. V A); b) an approximation of collision
terms for small occupations to neglect medium effects
(see Secs. V E 2 and V G); c) an assumption of ultrarela-
tivistic simply peaked fermion distribution functions and
subcritical fields to replace the quantum Vlasov term with
the Lorentz force term of the classical Vlasov equation
(193) (see also Sec. V C) and to justify the on-shell limit
of collision terms,∫

dl1

∫
dl2 g(l1, l2)Q(l1, l2) (326)

' g(0, 0)

∫
dl1

∫
dl2Q(l1, l2) ,

where g indicates the gain-minus-loss terms and Q in-
cludes the delta-functions such that energy conservation
is treated exactly. Together with the Lorentz force term,
this closes the strong-field description in terms of the tra-
ditional on-shell particle distribution functions (84) and
(85) which emerge from plane-wave distribution functions
via

f±Ψ (X, l, ~p )
l→0−−→ f±Ψ (X, ~p ) . (327)

With all these approximations combined, also subtleties
regarding gauge-invariance both of the scattering kernels
and the distribution functions are resolved: The scattering
kernels become gauge-invariant objects in the vacuum
limit (274) and a distinction between the f̃Ψ- and fΨ-type
fermion distribution functions is not important after the
ultrarelativistic limit (327) for distribution functions that
are always only occupied in terms of a few on-shell particle
modes for which gauge-invariance is assured.

Dropping all these assumptions is possible by employ-
ing the gauge-invariant off-shell equations discussed in
Sec. IV. Starting from this off-shell description, it would
be interesting to investigate whether collisional or inho-
mogeneous contributions to the particle yield (182) can
invalidate an on-shell description also for subcritical fields
on some significant time scale on the way to equilibrium.

VI. CONCLUSIONS & OUTLOOK

Our work demonstrates how to systematically derive
transport and kinetic equations including collisions for
general supercritical fields. The equations to order O(e2)
include local scattering kernels for strong fields that can
also be inhomogeneous. This is achieved by off-shell trans-
port equations that include non-local relative times and
all field-gradients in the fermion spectral function, while
retaining the gain-minus-loss structure of traditional ki-
netic equations. To investigate our equations analytically

and to make contact to limiting cases in the literature,
we have also considered plane-wave fields.

We have shown that the inclusion of fermion spectral
dynamics is essential to describe collisions and fermion
drifting in the presence of general strong fields. Exist-
ing derivations of strong-field Wigner descriptions in the
literature have neglected spectral dynamics by limiting
themselves to the collisionless regime, in which equations
for spectral functions decouple from transport equations.
In general, however, the macroscopic field enters the colli-
sion kernel (115) via the fermion spectral function (103).
This resums infinitely high perturbative orders of the
coupling that all become relevant for sufficiently large
macroscopic fields. The macroscopic field itself is gov-
erned by a Maxwell equation in the presence of a fermion
current involving the quantum corrections. The general
form of this Maxwell equation turns out to be valid to
arbitrary loop and gradient order in our framework. Our
approach paves the way for investigations of the thermal-
ization process starting from strong field initial conditions,
which requires to go beyond collisionless approximations.

We have pointed out a connection between asymptotic
pair production and spectral dynamics. While 1-loop
results such as the Schwinger pair production rate (173)
assume the macroscopic field to be external and constant
in time, our 1-loop result (180) is fully dynamical and
generalizable to the expression (182), which in princi-
ple includes collisions to 2-loop order and all orders in
field-gradients. Our description in terms of distribution
functions does not rely on asymptotic expressions, such
as total particle numbers or total probabilities in order to
compute time-dependent observables such as the strong-
field photon decay rate (118).

We solved the LO equation for the fermion spectral
function for the special case of an external plane-wave
macroscopic field, Aµ(x) ' Aµv(n · x) with a null vector
n2 = 0. This reduces the transport description to only
two equations for the off-shell fermion and the on-shell
photon distribution function. The plane-wave spectral
function is the antisymmetric part of the well-known time-
ordered Volkov fermion propagator. By employing only
its antisymmetric part in the O(e2) transport equations,
we self-consistently resum quantum fluctuations to 2-loop
order. Thereby, a solution of our equation goes beyond
the statistical component of the 1-loop Volkov propagator
that implicitly assumes vanishing distribution functions.

Employing the all-order field-gradient plane-wave spec-
tral function in the collision kernel reproduces expressions
which are similar to the Furry picture, but have the advan-
tage of being automatically local in the kinetic position
variable X while containing contributions from inhomoge-
neous fields not limited to the vicinity of X. In particular,
we have demonstrated that plane-wave scattering kernels
emerge with a space-time structure that is more general
than the one of local scattering amplitudes that are known
from laser applications. The more general scattering ker-
nels reduce to known expressions only if relative times
are restricted to certain values. We have recognized this
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condition as the implicit assumption that the system is in
plane-wave vacuum, i.e. that fermion plane-wave distribu-
tion functions are negligible or have only single occupied
modes. This means that medium effects are missed if a
strong-field scattering kernel is obtained from Feynman
rules for the Furry picture S-matrix. For negligible distri-
bution functions, known gauge-invariant global scattering
amplitudes emerge by integrating over all X. To employ
external-field vacuum amplitudes in an isolated dynamical
setting is typically inconsistent because it includes times
outside the range of validity of external field and vacuum
approximations as non-negligible distribution functions
develop dynamically and backreact on the field. Never-
theless, these emergent amplitudes allowed us to highlight
connections to Ward identities, which remove the gauge-
fixing dependence of the 2PI formulation of QED in the
corresponding limit.

Furthermore, the plane-wave fermion spectral function
allowed us to use the energy exchange with the macro-
scopic field as a parameter l to label strong-field degrees
of freedom with energy εl(~p ), which enable a continuous
connection to the free particle degrees of freedom of an
on-shell description: When this spectral function is multi-
plied by a fermion distribution function that is peaked on
an ultrarelativistic scale p∗ that is well separated from the
characteristic value of l, its dispersion relation becomes
independent of l and reduces to that of free fermions,
εl(~p

∗) '
√
|~p ∗|2 +m2. This facilitates an on-shell de-

scription despite the presence of strong fields. Thereby,
strong-field systems in which such a clearly separated
scale p∗ exists for long times may be accurately captured
by on-shell descriptions that combine collisions with clas-
sical Lorentz force drifting. Since any field appears as a
plane wave in the rest frame of a single ultrarelativistic
fermion, we expect that most statements that we arrived
at under the assumption of an external plane-wave field
also hold for more general fields, as long as fermion distri-
bution functions are dominated by a few ultrarelativistic
particle-modes.

In contrast, in isolated systems with supercritical fields,
initial characteristic scales are dynamically affected by
pair production (which occurs off-shell and is largest at
zero frequency) and by the transport of fermion occupa-
tions towards an equilibrium distribution (which has its
maximum at low energies and is not sharply peaked). For
such isolated systems, we argued that an initial ultrarel-
ativistic separation of scales is not long-lived, such that
an on-shell Lorentz force description introduces an error
larger than our desired accuracy of O(e2). In the absence
of a long-lived separation of scales, one needs instead a de-
scription that remains valid over a wide range of energies
to describe the evolution of off-shell contributions induced
by vacuum pair production towards the on-shell regime
of the asymptotic future. The gauge-invariant fermion
transport equation Eq. (145) with its all-gradient off-shell
drift and collision term constitutes such a description
by coupling to the fermion spectral equation, the photon
transport equation and the Maxwell equation summarized

in Fig. 6.
Outlook. The leading order equations may give insight

into the largely unexplored late-time behaviour of isolated
QED systems with finite net charge. If such a system
equilibrates, its late-time state can not be the traditional
homogeneous thermal equilibrium, because the Gauss
constraint for finite net charge prevents the initial field
both from decaying completely and from becoming fully
homogeneous. The possible approach to such a charged
time-translation invariant state may be completely de-
scribed by our equations, if the equilibrium field induced
by the net charge turns out to be sufficiently large.

Such a numerical computation, in particular of the
self-consistent strong-field fermion spectral function, will
also allow for a more detailed study of the collision kernel
and the spectral peak structure. This would, e.g., enable
an analysis of spectral widths and to establish under
what circumstances they are small. To obtain insight
into specific controlled experimental settings, one may
employ other external fields in such a computation, as we
have done for the plane-wave spectral function with laser
fields in mind. Possible other choices of external fields
include non-crossed constant electric fields, homogeneous
magnetic fields and Coulomb fields.

In the future, dropping our assumption of reduced
tensor structures (74) with the help of Ref. [50] could clar-
ify the significance of chiral dynamics [115–118] and spin
transport [124], and extend chiral kinetic theory [119–123]
to the collisional regime. To access the transport dynam-
ics of the axial current jµ5 (X) = −etr{γ5γµFΨ(X,X)},
an interacting spectral function that has a non-vanishing
axial component such as the strong-field spectral function
employed in this paper is required (see the expression
for plane-wave fields in appendix F 4). A leading-order
collisional description including all tensor structures in
the presence of a macroscopic field is now in reach and
would open up diverse applications on chiral dynamics
reaching from astrophysics [163, 164] to semiconductors
[165, 166].
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Appendix A: Identities for QED two-point functions

The following hermiticity properties of photon and
fermion two-point functions are used in the main text:
The photon two-point functions have the properties

[ρµν(x, y)]∗ = ρµν(x, y) , (A1)

ρµν(x, y) = −ρνµ(y, x) , (A2)

[Fµν(x, y)]∗ = Fµν(x, y) , (A3)

Fµν(x, y) = F νµ(y, x) , (A4)

i.e. ρµν(x, y) is real and antisymmetric and Fµν(x, y) is
real and symmetric. The definitions for the advanced and
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retarded propagators used in Sec. III are

Dµν
R (x, y) := θ(x0 − y0)ρµν(x, y) , (A5)

Dµν
A (x, y) := −θ(y0 − x0)ρµν(x, y) , (A6)

∆R(x, y) := θ(x0 − y0)ρΨ(x, y) , (A7)

∆A(x, y) := −θ(y0 − x0)ρΨ(x, y) , (A8)

and the same for the self-energies. These functions obey

Dµν
A (x, y) = Dνµ

R (y, x) , (A9)

∆A(x, y) = γ0∆†R(y, x)γ0 . (A10)

They are related to the spectral functions via

ρµν(x, y) = Dµν
R (x, y)−Dµν

A (x, y) , (A11)

ρΨ(x, y) = ∆R(x, y)−∆A(x, y) . (A12)

The definitions for the Wightman functions employed in
Sec. IV A are

D+−(x, y)µν := Fµν(x, y)− i
2ρ
µν(x, y) , (A13)

D−+(x, y)µν := Fµν(x, y) + i
2ρ
µν(x, y) , (A14)

∆+−(x, y) := FΨ(x, y)− i
2ρΨ(x, y) , (A15)

∆−+(x, y) := FΨ(x, y) + i
2ρΨ(x, y) , (A16)

and the same for the self-energies. These Wightman
functions are sometimes denoted as G−+ = G< and
G+− = G> in literature. The superscripts indicate on
which part of the Keldysh contour their arguments lie
and can be obtained from the general functions (14), (15)
and (33), (34) by explicit use of the sign functions sgnC .
Similarly to the retarded and advanced functions they
obey

ρµν(x, y) = i
(
D+−
µν (x, y)−D−+

µν (x, y)
)
, (A17)

ρΨ(x, y) = i
(

∆+−(x, y)−∆−+(x, y)
)
. (A18)

In Wigner space, one may alternatively exploit the Wigner
transform of the Heaviside function,

θ(x0 − y0) = lim
ε→0

∫
dω

(2π)
e−iωs

0 i

ω + iε
, (A19)

to obtain a Källén-Lehmann representation

Dµν
R (X, k) = lim

ε→0

∫
dω

(2π)

iρµν(X,ω,~k )

k0 − ω + iε
, (A20)

∆R(X, p) = lim
ε→0

∫
dω

(2π)

iρΨ(X,ω, ~p )

p0 − ω + iε
(A21)

and similarly for the advanced functions with

θ(y0 − x0) = lim
ε→0

∫
dω

(2π)
e−iωs

0 −i
ω − iε

. (A22)

The self-energies obey completely analogous identities.
We stress that any singularity associated to the ε-
prescription does not arise in an exact (early-time) de-
scription that employs Wigner transforms (46) instead
of the late-time Wigner transforms (47) (see also Refs.
[105, 106]).

The photon Wigner functions have the properties

Fµν(X, k) = F νµ(X,−k) , (A23)

ρµν(X, k) = −ρνµ(X,−k) , (A24)

Dµν
A (X, k) = Dνµ

R (X,−k) . (A25)

Similarly, fermion Wigner functions obey

FΨ(X, p) = γ0F †Ψ(X, p)γ0 , (A26)

ρΨ(X, p) = −γ0ρ†Ψ(X, p)γ0 , (A27)

∆A(X, p) = γ0∆†R(X, p)γ0 . (A28)

Given all this, it should be remembered that there are
only two independent two-point functions per field species
(see also our comment at the end of Sec. III A).

The LO O(e2) 2PI loop expansion of the Wightman
self-energies is

Σ+−
µν (x, y) = e2 tr

{
γµ∆+−(x, y)γν∆−+(y, x)

}
, (A29)

Σ−+
µν (x, y) = e2 tr

{
γµ∆−+(x, y)γν∆+−(y, x)

}
, (A30)

Σ+−
Ψ (x, y) = −e2γµ∆+−(x, y)γνD+−

µν (x, y) , (A31)

Σ−+
Ψ (x, y) = −e2γµ∆−+(x, y)γνD−+

µν (x, y) . (A32)

Appendix B: 2PI field equation of motion

As discussed around Eq. (27), the only objects in
Γ[A, D,∆] that depend on A are the classical action S[A]
and its second derivative i∆−1

0 [A] such that

0
!
=
δΓ[A, D,∆]

δAµ
=

δ

δAµ
(
S[A]− iTr ∆−1

0 ∆
)

(B1)

These two terms are the variation of the classical action
(where boundary terms are dropped as initial conditions)

δ

δAµ(x)
S[A] =

[
ηµσ�x − (1− 1

ξ )∂µ∂σ

]
Aσ(x) , (B2)

and the 1-loop term
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−iTr ∆−1
0 [A]∆ = −i

∫
C,yz

tr
{

(i/∂y − e /A(y)−m)δC(y, z)∆(z, y)
}

(B3)

= −
∫
C,yz

tr
{

(i/∂y − e /A(y)−m)δC(y, z)
(
θC(z, y)∆+−(z, y) + θC(y, z)∆

−+(z, y)
)}

= −
∫ ∞
t0

d4y tr
{

(i/∂y − e /A(y)−m)FΨ(y, y)
}

where we used that θ(x− y) + θ(y − x) = 1 and that on the backward branch of the contour, x, y ∈ C−, δC(x, y) =
− 1

2δ(x − y), which results in in the fact that only the statistical function FΨ(x, y) = 1
2 (∆+−(x, y) + ∆−+(x, y))

contributes to this term (see also Ref. [65]). The variation of this term then gives the Maxwell current

δ

δAµ(x)

(
− iTr ∆−1

0 [A]∆
)

= e tr {γµFΨ(x, x)} . (B4)

Appendix C: On the gradient expansion of spectral equations of motion

To NLO in propagator-gradients, the RHS of the tensorial equation for the fermion spectral function consists of
commutators in Dirac space and Poisson-brackets,∫

d4(x− y) eip(x−y)
[
(ρRHS)Ψ(x, y) + γ0(ρRHS)†Ψ(y, x)γ0

]
(C1)

= 1
2 [Σ

(Ω)
Ψ , ρΨ](X, p) + 1

2 [Σ
(ρ)
Ψ ,ΩΨ](X, p) + i

2 [Σ
(Ω)
Ψ , ρΨ]PB(X, p) + i

2 [Σ
(ρ)
Ψ ,ΩΨ]PB(X, p) +O

(
e2(∂p · ∂X)2G

)
.

Here we introduced the hermitian, i.e. in the sense of γ0Ω†Ψ(X, p)γ0 = ΩΨ(X, p), parts of retarded components

Σ
(Ω)
Ψ (X, p) := ΣΨ,R(X, p) + ΣΨ,A(X, p) (C2)

ΩΨ(X, p) := ∆R(X, p) + ∆A(X, p) . (C3)

An analogous expression is true for the RHS of the photon spectral equation of motion, where commutators in Dirac
space are replaced by [A,B]

µν := AµσBσ
ν −BµσAσν and likewise for Poisson-brackets.

Kinetic equations describe physics for which occupations evolve decoupled from the spectrum of the theory. Eq. (C1)
shows that this happens to all orders of the coupling for small propagator-gradients and sufficiently simple tensor
structures, i.e. vanishing commutators: The Poisson brackets are NLO in propagator-gradients, O(e2∂k · ∂XG),
and the Dirac commutators can vanish for simple tensor structures such as those that reduce dynamics to a single
distribution function as discussed in Sec. III C 1. The interaction terms in the trace of Eq. (C2) are always suppressed
by propagator-gradients, such that the traced equation coincides with the free equation of motion. In fact, the RHS of
the traced Eq. (100) is strictly O(e2(∂p · ∂X)G) [and not just O(e2)]. The same thing does not happen in the traced
equations of motion for statistical functions, e.g. Eq. (99), whose leading order in propagator-gradients does not vanish,
but provides the collision terms.

Appendix D: Covariant vs. invariant expansion in field-gradients

Simply expanding the gauge-non-invariant one-point function in its gradients via

Aµ(X + s
2 )−Aµ(X − s

2 ) =

∞∑
n=0

1

(2n+ 1)!

1

22n
(s · ∂X)2n+1Aµ(X) , (D1)

Aµ(X + s
2 ) +Aµ(X − s

2 ) =

∞∑
n=0

1

(2n)!

1

22n−1
(s · ∂X)2nAµ(X) (D2)

to NLO gives the following left hand side of the covariant fermion transport equation,∫
d4(x− y) eip(x−y) 1

4 tr
[
(FLHS)Ψ(x, y)− γ0(FLHS)†Ψ(y, x)γ0

]
(D3)

= i

[
∂

∂Xµ
+ e

( ∂

∂Xσ
Aµ(X)

) ∂

∂pσ

]
FµΨ(X, p) +O

(
(e0∂p · ∂X)3

)
.
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We now change to the gauge-invariant statistical propagator by introducing Wilson lines. For small fields with small
gradients, we may expand the straight Wilson exponent via∫ x

y

dzµAµ(z) = sµ
∞∑
n=0

1

(2n+ 1)!

1

22n
(s · ∂X)2nAµ(X) . (D4)

The leading order of straight Wilson lines, W(x, y) = e−ies·A(X) +O
(
(e0s · ∂X)2

)
(first order vanishes), is O(e0) for

strong fields and produces the missing term

W(X − s
2 , X + s

2 )
∂

∂Xµ
W(X + s

2 , X −
s
2 ) = −iesσ

∂

∂Xµ
Aσ(X) +O

(
(e0s · ∂X)2

)
, (D5)

that is necessary to identify the gauge-invariant field strength tensor. Changing the prescription (D3) how to derive
fermion kinetic equations to include a Wilson line, we recover the Vlasov term via∫

d4(x− y) eip(x−y)W(y, x) 1
4 tr
[
(FLHS)Ψ(x, y)− γ0(FLHS)†Ψ(y, x)γ0

]
(D6)

= i

[
∂

∂Xµ
− eFµσ(X)

∂

∂pσ

]
F̂µΨ(X, p) +O

(
(e0∂p · ∂X)3

)
.

Appendix E: Symmetric and antisymmetric parts of the Volkov propagator

By virtue of Eq. (217), (i/∂x−e /Av(x)−m)Eq(x)(/q+m)Ēq(y) = Eq(x)(q2−m2)Ēq(y), such that indeed the plane-wave
spectral function solves

(i/∂x − e /Av(x)−m)ρΨ,v(x, y) = i(2π)

∫
q

δ(q2 −m2)sgn(q0)(i/∂x − e /Av(x)−m)Eq(x)(/q +m)Ēq(y) = 0 . (E1)

The Volkov spectral function is antisymmetric because

γ0ρΨ,v(x, y)†γ0 = −i(2π)

∫
q

δ(q2 −m2)sgn(q0)γ0Ē†q (y)(/q +m)†E†q (x)γ0 = −ρΨ,v(y, x) . (E2)

We may put this spectral function into the context of canonical quantization in the Furry picture [147], which is
achieved for plane-wave fields by means of the Volkov states [148]

Ψv(x) =
∑
s

∫
d3p

(2π)3

1√
2ε(~p )

[
cs(~p )Up,s(x) + d†s(~p )Vp,s(x)

]
, (E3)

Ψ̄v(x) =
∑
s

∫
d3p

(2π)3

1√
2ε(~p )

[
ds(~p )V̄p,s(x) + c†s(~p )Ūp,s(x)

]
, (E4)

via the canonical commutation relations{
cr(~p ), c†s(~q )

}
=
{
dr(~p ), d†s(~q )

}
= δrs(2π)3δ(~p− ~q ) (E5)

for the ladder operators with cs(~p ) |0v〉 = 0: The plane-wave spectral function can be written as the expectation value
of the anticommutator of Volkov states with respect to the strong field vacuum |0v〉, such that

ρΨ,v(x, y) = i
〈{

Ψv(x), Ψ̄v(y)
}〉

= i(2π)

∫
d4q

(2π)4
δ(q2 −m2)

[
θ(q0)− θ(−q0)

]
Rq(x)(/q +m)R̄q(y) . (E6)

The symmetric part of the Volkov propagator (that has been discussed e.g. in Ref. [49]) is the commutator

FΨ,v(x, y) = 1
2

〈[
Ψv(x), Ψ̄v(y)

]〉
= π

∫
d4q

(2π)4
δ(q2 −m2)

[
θ(q0) + θ(−q0)

]
Rq(x)(/q +m)R̄q(y) . (E7)

The Volkov propagator [148] is then built via the standard asymptotic state identity

∆v(x, y) = ρΨ,v(x, y)− i
2FΨ,v(x, y) sgn(x0 − y0) =

〈
0v

∣∣ T Ψv(x)Ψ̄v(y)
∣∣ 0v

〉
, (E8)
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where T denotes ordinary time-ordering.
Appendix F: Computation of plane-wave spectral components in lightcone gauge

1. Computation of the scalar component and the dressed mass phase factor

We compute the scalar component by first computing the the traces

1
4 tr{(/q +m)} = m, (F1)

1
4 tr{/n/A(X + s

2 )(/q +m)} = 1
4 tr{(/q +m)/A(X − s

2 )/n} = 1
4 tr{/n/A(X + s

2 )(/q +m)/A(X − s
2 )/n} = 0 , (F2)

where we have used that n · A = 0. The scalar component of the plane-wave spectral function is therefore

ρS,v(X, p) = mi(2π)

∫
q

δ(q2 −m2)sgn(q0)

∫
s

ei(p−q)se−iNq(X,s) (F3)

with Nq defined by Eq. (223). Next we compute the integrals. The exponent in lightcone gauge, A+ = A− = 0, is

Sq(X + s
2 )− Sq(X − s

2 ) = −q · s−Nq(X, s)

= −q+s− − q−s+ + ~q⊥ · ~s⊥ −
1

2q−

∫ n·s
2

−n·s2

dλ
[
− 2e ~A⊥(n ·X + λ) · ~q⊥ + e2| ~A⊥(n ·X + λ)|2

]
.

Since this expression is under the integral with

δ(q2 −m2) =
1

|2q−|
δ
(
q+ − |~q⊥|

2 +m2

2q−

)
, (F4)

we can set q+ = (|~q⊥|2 +m2)/2q−, such that under the integral∫
dq+[q · s+Nq(X, s)]δ

(
q+ − |~q⊥|

2 +m2

2q−

)
=
m2s−

2q−
+ q−s+ − ~q⊥ · ~s⊥ +

s−

2q−

{
|~q⊥|2 − 2e

~q⊥
s−
·
∫ n·s

2

−n·s2

dλ
[
~A⊥(n ·X + λ)

]
+
e2

s−

∫ n·s
2

−n·s2

dλ
[
| ~A⊥(n ·X + λ)|2

]}
.

Next we complete the square via

|~q⊥|2 − 2e
~q⊥
s−
·
∫ s−

2

−
s−
2

dλ ~A⊥(n ·X + λ) =
[
~q⊥ −

e

s−

∫ s−
2

−
s−
2

dλ ~A⊥(n ·X + λ)
]2
− e2

(s−)2

[ ∫ s−
2

−
s−
2

dλ ~A⊥(n ·X + λ)
]2
.

Since ~q⊥ is also under the integral, we can simply substitute

~q⊥ → ~q⊥ +
e

(n · s)

∫ n·s
2

−n·s2

dλ ~A⊥(n ·X + λ) (F5)

without changing the d4q measure or boundaries, such that∫
dq+[q · s+Nq(X, s)]δ

(
q+ − |~q⊥|

2 +m2

2q−

)
= q−s+ −

(
~q⊥ +

e

s−

∫ s−
2

−
s−
2

dλ ~A⊥(n ·X + λ)
)
· ~s⊥ +

|~q⊥|2s−

2q−
+

+
s−

2q−

(
m2 +

e2

s−

∫ n·s
2

−n·s2

dλ
[
| ~A⊥(n ·X + λ)|

]2
− e2

(s−)2

[ ∫ s−
2

−
s−
2

dλ ~A⊥(n ·X + λ)
]2)

= q−s+ − ~q⊥ · ~s⊥ + e

∫ X+
s
2

X− s2

dzµAµ(n · z) +
|~q⊥|2 + m̃2(X, s)

2q−
s− ,

where we have identified the dressed mass (290) and the exponent of the Wilson line (284). The substitution (F5),
together with taking the q+ integral over the delta function, changes the argument of the sign function to

sgn(q0)→ sgn
(
q̃0(X, s)

)
= sgn(q−) , with q̃0(X, s) :=

(∣∣∣~q⊥ +
e

(n · s)

∫ n·s
2

−n·s2

dλ ~A⊥(n ·X + λ)
∣∣∣2 +m2

)
/2q− + 1

2q
− .
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Since here the field appears only under the absolute value, this is simply the sign function sgn(q−) familiar from
lightcone quantization and compensates the absolute value in the identity (F4). The exact scalar plane-wave spectral
function in position-space thereby is

ρΨ,v,S(X + s
2 , X −

s
2 ) = im (2π)

∫
q

δ(q2 −m2)sgn(p0) e−i[q·s+Nq(X,s)] (F6)

= imW(X + s
2 , X −

s
2 )

∫
dq−

(2π)

1

2q−

∫
d2q⊥
(2π)2

exp

{
− i

(
|~q⊥|2 + m̃2(X, s)

2q−
s− + q−s+ − ~q⊥ · ~s⊥

)}
.

With this we can immediately identify the gauge-invariant part via ρΨ(x, y) = W(x, y)ρ̂Ψ(x, y). Without gradient
expansion, the Wilson line is exactly canceled and no additional substitution of p→ p+ eA is necessary. The Wigner
transform can easily be computed up to the s− integral via

ρ̂Ψ,v,S(X, p) = im

∫
dq−

(2π)

1

2q−

∫
d2q⊥
(2π)2

∫
ds−eip

+s−exp

{
− i

(
|~q⊥|2 + m̃2(X, s)

2q−
s−

)}
(2π)δ(p− − q−)(2π)2δ(~p⊥ − ~q⊥) ,

where we have used that m̃ only depends on s− not on s+, ~s⊥. The result (298) mentioned in the main text, follows
after taking the trivial integrals over the delta functions. Next we prove that the leading order in gauge-invariant
field-gradients of the function (306) is equivalent to the Airy expressions (307). For this purpose we make use of∫

dϕeiaϕ−bϕ
3

= (3b)−1/3Ai
(
− a(3b)−1/3

)
. (F7)

We may apply this identity to Eq. (306) with

a =
1

ω

(
p+ − |~p⊥|

2 +m2

2p−

)
=

1

ω

p2 −m2

2(n · p)
, b =

1

24

ξ3
0

χ0(p)

E2(X)

F0
(F8)

such that the prefactor and argument of the result (307) are obtained via

im

ω

(3b)−1/3

2(n · p)
= im

(
(n · p)eE(X)

)−2/3

, −a(3b)−1/3 = −(p2 −m2)
(

(n · p)eE(X)
)−2/3

. (F9)

The free scalar component is obtained for E = 0 via

1

2p−

∫
dϕ

ω
exp

{
i
(
p+ − |~p⊥|

2 +m2

2p−

)ϕ
ω

}
= (2π)δ(p2 −m2)sgn(p0) . (F10)

2. Computation of the vector component

We compute the vector component by first computing the traces

1
4 tr{γµ(/q +m)} = qµ , (F11)

1
4 tr{γµ/n/A(X + s

2 )(/q +m)} = nµA(X + s
2 ) · q −Aµ(X + s

2 )(n · q) , (F12)
1
4 tr{γµ(/q +m)/A(X − s

2 )/n} = nµA(X − s
2 ) · q −Aµ(X − s

2 )(n · q) , (F13)

1
4 tr{γλ/n/A(X + s

2 )(/q +m)/A(X − s
2 )/n} = −2nλA(X + s

2 ) · A(X − s
2 )(n · q) . (F14)

The vector component of the plane-wave spectral function therefore is

ρµΨ,v,V(X, p) = i(2π)

∫
q

δ(q2 −m2)sgn(q0)

∫
s

ei(p−q)se−iNq(X,s) (F15)

×
{
qµ − e

2
[Aµ(X + s

2 ) +Aµ(X − s
2 )] + nµ

1

2(n · q)
e[A(X + s

2 ) +A(X − s
2 )] · q − nµ 1

2(n · q)
e2A(X + s

2 ) · A(X − s
2 )
}

The last term involves a product of two fields which we can write as

A(X + s
2 ) · A(X − s

2 ) = 1
4

[
A(X + s

2 ) +A(X − s
2 )
]2 − 1

4

[
A(X + s

2 )−A(X − s
2 )
]2
, (F16)



40

such that we can identify the plane-wave momentum (287) at the field 1
2 [Aµ(X + s

2 ) +Aµ(X − s
2 )],

π̄µq (X, s) := qµ − e 1
2 [Aµ(X + s

2 ) +Aµ(X − s
2 )] + nµ

(
e 1

2 [A(X + s
2 ) +A(X − s

2 )] · q
(n · q)

−
e2 1

4 [A(X + s
2 ) +A(X − s

2 )]2

2(n · q)

)
(F17)

in the pre-exponential and make use of Eq. (313) to write

1
4 tr{γµK(X, l, p− ln)} =

∫
ds−eils

−
e−iNp(X,s−)

[
π̄µp (X, s)− lnµ − nµ 1

8

(n · s)2e2 〈E〉2(X, s)

(n · p)

]
, (F18)

from which the gauge-invariant vector spectral component (312) used in the main text follows. To leading order in
field gradients, we may drop the gauge-invariant higher orders of

1
2 [Aµ(X + s

2 ) +Aµ(X − s
2 )] = Aµ(X) + 1

8 (n · s)2Äµ(X) +O
(
e0(s · ∂X)3

)
, (F19)

Aµ(X + s
2 )−Aµ(X − s

2 ) = (n · s)Ȧµ(X) + 1
24 (n · s)3Aµ,(3)(X) +O

(
e0(s · ∂X)4

)
, (F20)

such that π̄q(X, s) = πq(X) +O(e0s · ∂X) and

1
4 tr{γµK̃q(X, s)} = πµq (X)− nµ 1

8

(n · s)2e2E2(X)

(n · q)
+O(e0s · ∂X) . (F21)

3. Computation of the pseudoscalar component

We compute the pseudoscalar component by first computing the traces

1
4 tr{γ5(/q +m)} = 1

4 tr{γ5/n/A(X + s
2 )(/q +m)} = 1

4 tr{γ5(/q +m)/A(X − s
2 )/n} = 0 , (F22)

1
4 tr{γ5/n/A(X + s

2 )(/q +m)/A(X − s
2 )/n} = −iεµνσρnµAν(X + s

2 )Aσ(X − s
2 )nρ = 0 . (F23)

The pseudoscalar component therefore vanishes identically, ρΨ,v,P(X, p) ≡ 0 because εµνσρn
µnρ = 0.

4. Computation of the axial component

We compute the axial component by first computing the traces

1
4 tr{γ5γµ(/q +m)} = 0 , (F24)

1
4 tr{γ5γµ/n/A(X + s

2 )(/q +m)} = −inρAσ(X + s
2 )qνεµρσν , (F25)

1
4 tr{γ5γµ(/q +m)/A(X − s

2 )/n} = −inρAσ(X − s
2 )qνεµνσρ , (F26)

1
4 tr{γ5γµ/n/A(X + s

2 )(/q +m)/A(X − s
2 )/n} = 2inµnλAν(X + s

2 )qρAσ(X − s
2 )ελνρσ . (F27)

The axial component of the plane-wave spectral function is therefore

ρµΨ,v,A(X, p) = (2π)

∫
q

δ(q2 −m2)sgn(q0)

∫
s

ei(p−q)s e−iNq(X,s) (F28)

×

{
e

2

1

n · q
εµνρσn

ρqν
[
Aσ(X + s

2 )−Aσ(X − s
2 )
]
− e2

4

1

(n · q)2
2nµnλAν(X + s

2 )qρAσ(X − s
2 )ελνρσ

}
.

5. Computation of the tensor component

We compute the tensor component by first computing the traces

1
4 tr{σµν/n/A(X + s

2 )(/q +m)/A(X − s
2 )/n} = 1

4 tr{σµν(/q +m)} = 0 , (F29)

1
4 tr{σµν/n/A(X + s

2 )(/q +m)} = im
[
nνAµ(X + 2

2 )− nµAν(X + s
2 )
]
, (F30)

1
4 tr{σµν(/q +m)/A(X − s

2 )/n} = −im
[
nνAµ(X − 2

2 )− nµAν(X − s
2 )
]
. (F31)
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The tensor component of the plane-wave spectral function is therefore

ρµνΨ,v,T(X, p) = m (2π)

∫
q

δ(q2 −m2)sgn(q0)

∫
s

ei(p−q)se−iNq(X,s) (F32)

× 1

2(n · q)
e
{
nµ
[
Aν(X + s

2 )−Aν(X − s
2 )
]
− nν

[
Aµ(X + s

2 )−Aµ(X − s
2 )
]}

To leading order in field gradients, the gauge-invariant tensor component is

ρ̂µνΨ,v,T(X, p) = meFµν(X)
1

(2p−)2

∫
dϕ

ω

ϕ

ω
exp

{
i
(
p+ − |~p⊥|

2 +m2

2p−

)ϕ
ω
− i 1

24

ξ3
0

χ0

|~E(X)|2

F2
0

ϕ3

}
+O(e0∂p · ∂X) .

(F33)

Appendix G: Maxwell current for plane-wave fields

For the case of an external plane-wave field, the Maxwell current (160) can be written solely in terms of the
plane-wave degrees of freedom (257) and (258):

jµ(X) = −4e

∫
dl

(2π)

∫
d3p

(2π)3

1

2ε~p (l)
(G1)

×
{

1
2

[
K−µ (X, l, ~p ) +K+

µ (X, l, ~p )
]

+K−µ (X, l, ~p )f−Ψ (X, l, ~p ) +K+
µ (X, l, ~p )f+

Ψ (X, l, ~p )
}

with the fermion and anti-fermion drift kernels

K−µ (X, l, ~p ) := 1
4 tr{γµK(X, l, p− ln)} at p0 = l + εl(~p ) , (G2)

K+
µ (X,−l,−~p ) := 1

4 tr{γµK(X, l, p− ln)} at p0 = l − εl(~p ) . (G3)

The zero-field current (82) of Sec. III C may be obtained as the special case of

K∓µ (X, l, ~p )
Av→0−−−−→ ±(2π)δ(l) pµ at p0 = ε(~p ) . (G4)
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tin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot,
F. Mathieu, and P. Audebert High Power Laser Sci.
Eng., vol. 4, p. e34, 2016.

[2] “Extreme Light Infrastructure (ELI).” https://

eli-laser.eu/.
[3] “Center for Relativistic Laser Science (CoReLS).” https:

//www.ibs.re.kr/eng/sub02_03_05.do.
[4] “Exawatt Center for Extreme Light Studies (XCELS).”

http://www.xcels.iapras.ru/.
[5] D. E. Kharzeev, “The Chiral Magnetic Effect and

Anomaly-Induced Transport,” Prog. Part. Nucl. Phys.,
vol. 75, pp. 133–151, 2014.
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