Supporting Information

Nickel-Catalyzed Enantioselective Synthesis of Pre-Differentiated Homoallylic syn- or anti-1,2-Diols from Aldehydes and Dienol Ethers

Thomas Q. Davies, John J. Murphy, Maxime Dousset, Alois Fürstner*
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
Email: fuerstner@kofo.mpg.de

1. Experimental S2
1.1 General Considerations S2
1.2 Reaction Optimisation Details S3
1.3 Synthetic Procedures and Characterisation Data S11
1.3.1 Synthesis of Ligands S11
1.3.2 Ni-catalysed Reductive Coupling of Dienes and Aldehydes S35
1.3.2.1 Racemic Scope S35
1.3.2.2 Enantioselective Scope S45
1.3.3 Synthesis of Dienyl Ethers S87
2. NMR Spectra S92
3. References S214

1. Experimental

1.1 General Considerations

Unless stated otherwise, all reactions were carried out under argon atmosphere in flame-dried Schlenk glassware. Solvents were purified by distillation over the indicated drying agents under argon: Toluene (CaH_{2}), THF (Mg/anthracene), $\mathrm{Et}_{2} \mathrm{O}$ (Mg/anthacene), pentane (Na / K), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(\mathrm{CaH}_{2}\right) . \mathrm{MeCN}$ and $\mathrm{Et}_{3} \mathrm{~N}$ were dried by an absorption solvent purification system based on molecular sieves. Flash chromatography: VWR Chemicals silica gel $40-63 \mu \mathrm{~m}$.

NMR spectra were recorded on Bruker DPX 300, AV 400, AV 500 or AV III 600 spectrometers in the solvents indicated; chemical shifts are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}}=77.16 \mathrm{ppm} ; \delta_{H}=7.26 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6}: \delta_{\mathrm{C}}=128.06 \mathrm{ppm} ; \delta_{\mathrm{H}}=7.16 \mathrm{ppm}\right.$; $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{C}}=54.0 \mathrm{ppm} ; \delta_{\mathrm{H}}=5.32 \mathrm{ppm}\right)$. Proton and carbon assignments were established using HSQC, HMBC and NOESY experiments where necessary.

IR: Alpha Platinum ATR (Bruker), wavenumbers ($\mathrm{v}_{\text {) }}$ in cm^{-1}.
MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ3000 (Bruker), Thermo Scientific LTQ-FT, or Thermo Scientific Exactive. HRMS: Bruker APEX III FT-MS (7T magnet), MAT 95 (Finnigan),Thermo Scientific LTQ-FT, or Thermo Scientific Exactive. GC-MS: Shimadzu GCMS-QP2010 Ultra instrument.

HPLC analyses for the determination of enantiomeric excesses were conducted on a Shimadzu LC 2020 instrument equipped with a Shimadzu SPD-M20A UV/VIS detector. Solvents (HPLC grade) were purchased and used as received. The exact conditions are stated separately for each compound.

Optical rotations were measured with an A-Krüss Otronic Model P8000-t polarimeter at a wavelength of 589 nm . The values are given as specific optical rotation with exact temperature, concentration ($\mathrm{c} /(10 \mathrm{mg} / \mathrm{mL})$) and solvent.

Aldehydes were purchased from commercial suppliers and distilled, except for solid aldehydes, which were typically used as received after checking purity by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Unless stated otherwise, all other commercially available compounds (abcr, Acros, TCI, Aldrich, Alfa Aesar, Fluorochem) were used as received.

For compounds L1, $\mathbf{L} \mathbf{L 2},{ }^{2} \mathbf{L 3},{ }^{3} \mathrm{~L} 4,{ }^{4} \mathrm{~L} 10,{ }^{5} \mathrm{~L} 11,{ }^{6} \mathrm{~L} 12,{ }^{7} \mathrm{~L} 13,{ }^{8} \mathrm{~L} 14,{ }^{9} \mathrm{SI}-\mathrm{L} 11,{ }^{4} \mathrm{SI}-\mathrm{L} 14,{ }^{4} \mathrm{SI}-\mathrm{L} 15,{ }^{4} \mathrm{SI}-\mathrm{L} 16,{ }^{4} \mathrm{SI}-$ $\mathbf{L 1 7},{ }^{4}$ and product $\mathbf{9 j},{ }^{10}$ see the cited literature

1.2 Reaction Optimisation Details

The initial optimisation revealed that cyclophosphazanes (particularly L4 and L6) promoted the nickel-catalysed reductive coupling with excellent regio- and diastereoselectivity, but low enantioselectivity (see main paper). A number of these ligands were subsequently prepared and tested in the hope of obtaining useful levels of asymmetric induction. Their structures and results are shown below (note: for each ligand the R group on nitrogen is the same as the substituent on the other nitrogen). Despite varying the 3,3'-substituents on the BINOL scaffold and using amino R-groups with different levels of steric demand, in no case was even moderate enantioselectivity combined with good levels of conversion, and most changes hampered conversion relative to L4 and L6 (Table S1). Unfortunately, there was no clear trend to indicate which structural elements could be exploited to improve the results.

It must also be said here that the synthesis of some related ligands derived from other chiral diols was attempted but failed, likely due to the difficulty of closing the strained medium-sized ring of the cyclophosphazane with either very twisted (SPINOLs SI-1a and SI-1b) or extremely bulky precursors (BINOLs SI-1c and SI-1d, TADDOL SI-1e) shown below. Some of these limitations have previously been reported. ${ }^{4}$ We cannot rule out that it is possible to prepare such structures, but under the standard conditions of refluxing in toluene with the dichlorocyclophosphazane intermediate, we did not observe appreciable amounts of the products.

Scheme S1. Selection of ligand structures that could not be made.

$$
\begin{aligned}
& \text { Cyclophosphazane ligand }
\end{aligned}
$$

Scheme S2. Cyclophosphazane ligands prepared for the initial enantioselective screening.

Table S1. Initial round of ligand screening

Entry	Ligand	Product (9a)		
		GC ratio (\%) (NMR) - (isolated) (\%)	ee anti (\%)	anti / syn dr
1	14	96-(45)	4	98/2
2	L5	20-($\pm 5)$	24	83/17
3	SI-L1	18-(± 5)	(-)47	69 / 31
4	SI-L2	6 - (± 5)	(-)45	77 / 23
5	SI-L3	20-(22) - (8)	40	$92 / 8$
6	L6	99-(80) - (78)	35	93/7
7	SI-L4	99 - (70)	28	$92 / 8$
8	L8	95-(90) - (63)	4	$97 / 3$
9	L9	68-(67) - (40)	26	$94 / 6$
10	SI-L5	$62-(\pm 5)$	35	80/20
11	SI-L6	traces	31	55/45
12	SI-L7	$12-(\pm 5)$	31	$57 / 43$
13	SI-L8	97-(42)	(-)10	93/7
14	SI-L9	0	-	-
15	SI-L10	45-(16)	(-)15	94/6
16	L7	82-(32)	(-)7	93/7
17	SI-L11	12-(7)	12	86/14
18	SI-L12	0	-	-

We then prepared a selection of cyclophosphazanes mainly bearing chiral amine fragments and tested them under similar reaction conditions. Again, no clear trend could be interpreted and low levels of enantioselectivity were obtained in each case. However, it is notable that oxidising one phosphorus atom leads to a reversal of enantioselectivity (compare L4 vs SIL13). Desymmetrisation of the phosphorus atoms may be an interesting strategy to pursue for reactions which use cyclophosphazane ligands. The very high conversion observed with ligands SI-L19 to SI-L21 may make these useful ligands for the racemic reaction. Due to the lack of a promising hit at this stage, the racemic scope was performed using ligand L6 (see manuscript).

63\% yield
L4

SI-L14 $\quad 26 \%$ yield
16% ee

78\% yield
18% ee*

SI-L17 33\% yield*

SI-L20
$>95 \%$ yield
22% ee*

Scheme S3. Cyclophosphazane ligands used in the second round of screening [Note: compounds marked with an asterisk (*) were converted to the 2,4-dinitrobenzoate ester prior to chiral HPLC analysis]

After the scope of the reaction was found to be broad and the exciting discovery was made that the diastereomer of the diol product depended on the configuration of the diene, we resumed our efforts to render the reaction enantioselective. A number of cyclophosphazane ligands based on a rigid and sterically hindered ortho-substituted aniline scaffold were
prepared. Although these led to the highest ee's recorded for the reaction at this stage of the project (63% ee, SI-L26), the dr and conversion were generally poorer than the standard cyclophosphazane ligands L4 and L6. Furthermore, increasing the steric bulk of the ortho-aryl group (SI-L27, SI-L30) or changing to an ortho-alkyl group (SI-L28, SI-L29) only led to worse results. Significantly lower ee's were obtained for the reaction with benzaldehyde instead of hydrocinnamaldehyde with SI-L22 and SI-L26, suggesting that even if the selectivity could be optimised further, the substrate scope may be poor. Bearing in mind that as most of these ortho-aryl-substituted ligands were particularly susceptible to competing formation of the corresponding phosphoramidites ${ }^{4}$ and sensitivity to silica gel, leading to tedious purifications and very low yields, it was clear that this was not a promising scaffold for further optimisation.

Scheme S4. ortho-Aryl-substituted cyclophosphazane ligands used in the third round of screening.

At this point, it seemed highly unlikely that further exploring cyclophosphazane ligands would lead to a useful enantioselective reaction. Considering the moderately promising result obtained with phosphoramidite L2 (see manuscript) and the relative ease of preparing phosphoramidites with different chiral diol backbones (SPINOL, VANOL, VAPOL etc.), we decided to investigate these compounds instead. We focused on the NMe_{2} derivatives as these can be conveniently synthesised from the diol and $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$, allowing us to quickly test a range of diol scaffolds.

Phosphoramidites based on SPINOL, BINOL and H_{8}-BINOL, with and without substitution ortho- to the oxygen functionality, all showed poor reactivity and selectivity (L10-L14). However, we found that VAPOL-NMe2-phosphoramidite L16 promoted the reaction cleanly in 72% ee. Importantly, the reaction with benzaldehyde instead of hydrocinnamaldehyde using this ligand gave very similar results for this ligand.

(R)-SIPhos L10
$<30 \%$ yield, dr 4.5:1, 15\% ee

L11
23% yield, 7:1 dr, 18% ee

(R)-MonoPhos L12
15% yield, $4.5: 1 \mathrm{dr}, 1 \%$ ee

25% yield, 4.5:1 dr, 11% ee

114
30% yield, $2.8: 1 \mathrm{dr}, 30 \%$ ee

L16 52% yield, 7:1 dr, 72\% ee

(R)-SIPhos L10 39% yield, dr 17:1, 21\% ee

L13

L11
43% yield, $>20: 1 \mathrm{dr}, 20 \%$ ee

L14
30% yield, $13: 1 \mathrm{dr}, 4 \%$ ee

42% yield, $>20: 1 \mathrm{dr}, 71 \%$ ee

Scheme S5. Screening of phosphoramidite ligands.

Next, the effect of changing the substituent on nitrogen was explored. Moving to the N, N-diethyl analogue L17 improved the dr and ee of the reaction. L17 also proved to be more stable than the slightly air-sensitive dimethyl analogue L16. However, further increases in bulk (SI-L32, SI-L34), incorporation of a chiral amine (SI-L35) or unsymmetrical amine (SI-L37) did not lead to improved results, and either making the amine extremely bulky (SI-L36) or very flat (SI-L38) significantly eroded selectivity. Although the morpholine analogue SI-L31 gave similar ee's, the diastereoselectivity was marginally worse, the ligand synthesis was lower yielding and it showed slight air instability similar to L16. For these reasons we opted to continue optimisation with VAPhos-NEt 2 L17.

L17
61% yield, 20:1 dr, 74% ee

SI-L31

62\% yield, >20:1 dr, 70\% ee

60% yield, $>20: 1 \mathrm{dr}, 73 \%$ ee

L15
20% yield, $6: 1 \mathrm{dr}, 55 \%$ ee

SI-L32

SI-L33
62% yield, $20: 1 \mathrm{dr}, 71 \%$ ee 55% yield, $20: 1 \mathrm{dr}, 74 \%$ ee

SI-L37
63% yield, $18: 1 \mathrm{dr}, 74 \%$ ee

50% yield, $20: 1 \mathrm{dr}, 40 \%$ ee

L17
44% yield, $>20: 1 \mathrm{dr}, 75 \%$ ee

SI-L34
56% yield, $>20: 1 \mathrm{dr}, 70 \%$ ee

SI-L31 51% yield, $>20: 1 \mathrm{dr}, 78 \%$ ee

SI-L35 66% yield, $>20: 1 \mathrm{dr}, 67 \%$ ee

28% yield, $>20: 1 \mathrm{dr}, 48 \%$ ee

Scheme S6. Screening of VAPOL phosphoramidite ligands with different amino substituents.

Non-polar solvents gave similar results as toluene, while more polar solvents like THF and DMF gave slightly lower enantioselectivity and poor reactivity respectively. Reducing the temperature gave a significant boost in ee but also lowered conversion, despite the use of longer reaction times in these experiments. The conversion could largely be recovered by using 3.0 equivalents of the diene instead of 1.1 equiv and increasing the catalyst loading to $10 \mathrm{~mol} \%$ (see main manuscript). The excess diene seems to help stabilise the nickel catalyst over the course of the reaction.

L17
pentane: 80% conversion, $14: 1 \mathrm{dr}, 74 \%$ ee
$\mathrm{Et}_{2} \mathrm{O}: 85 \%$ conversion, $14: 1 \mathrm{dr}, 74 \%$ ee
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}: 85 \%$ conversion, $14: 1 \mathrm{dr}, 73 \%$ ee
THF: 95% conversion, 10:1 dr, 70% ee
DMF: <10\% conversion
toluene:
rt: 80% conversion, 61% yield, $14: 1 \mathrm{dr}, 74-76 \%$ ee $0^{\circ} \mathrm{C}: 70 \%$ conversion, 51% yield, $14: 1 \mathrm{dr}, 82 \%$ ee $-20^{\circ} \mathrm{C}$: 50% conversion, 27% yield, $14: 1 \mathrm{dr}, 84 \%$ ee

Scheme S7. Effect of solvent and temperature.
We were also encouraged that varying the temperature using a (Z)-configured diene also had a significant effect on enantioselectivity, even giving a high 90% ee with the standard hydrocinnamaldehyde substrate.

$-20^{\circ} \mathrm{C}$: $\mathbf{7 2} \mathrm{h}, \mathbf{5 0 \%}$ conversion, $\mathbf{3 8 \%}$ yield, $\mathbf{1 1 : 1} \mathrm{dr}, \mathbf{9 0 \%}$ ee
$0^{\circ} \mathrm{C}$: $16 \mathrm{~h}, 65 \%$ conversion, 34% yield, $11: 1 \mathrm{dr}, 87 \%$ ee
rt: $16 \mathrm{~h}, 80 \%$ conversion: 69% yield, $12: 1 \mathrm{dr}, 82 \%$ ee
Scheme S8. Results with the (Z)-configured diene.
At this point we began to explore the scope using the excess of diene and $10 \mathrm{~mol} \%$ catalyst loading. It is worth noting that raising the temperature to $0^{\circ} \mathrm{C}$ allows for a lower catalyst loading to be used with only a small drop ($2-3 \%$) in ee, at least for the hydrocinnamaldehyde substrate.

1.3 Synthetic Procedures and Characterisation Data

1.3.1 Synthesis of Ligands

Most of the following cyclophosphazane ligands were prepared using a two-step procedure involving isolation of the intermediate dichlorocyclophosphazane after reaction of the amine with PCl_{3} in the presence of triethylamine, followed by cyclisation with BINOL derivatives. However, difficulties involved in handling and purifying the air- and moisture-sensitive dichlorocyclophosphazane compounds led to often very low yields. The main problem is the necessity of distillation, sublimation or recrystallization to remove hydrochloride salts and sideproducts derived by over-addition of the amine to PCl_{3} which can interfere with the BINOL cyclisation. An improved procedure which avoids isolation of the dichlorocyclophosphazane intermediate is detailed on page S24.

Representative procedure for synthesis of dichlorocyclophosphazanes.
 Dichlorocyclophosphazane SI-2. A solution of benzhydrylamine (4.25 g , 23.2 mmol) and triethylamine ($32.0 \mathrm{~mL}, 232.0 \mathrm{mmol}$) in THF (20 mL) was added dropwise to a solution of phosphorus trichloride ($2.0 \mathrm{~mL}, 23.2 \mathrm{mmol}$) in THF (15.0 mL) at $-78^{\circ} \mathrm{C}$. The mixture was slowly warmed to room temperature overnight. The solvent was evaporated in vacuo. The solid material was dissolved in the minimum amount of boiling toluene and the solution gradually cooled to room temperature. The supernatant was removed by filtration, the residue was washed with a small amount of cold toluene and n pentane and dried under high vacuum to yield the dichlorocyclophosphazane as a white solid ($1.3 \mathrm{~g}, 23 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left[\mathrm{D}_{8}\right]-\mathrm{THF}\right) ~ \delta 7.56-7.50(\mathrm{~m}, 8 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.25-7.18$ (m, H4), 5.71 (t, $J=6.20 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, [D8]-THF) ס 140.2, 129.7, 129.3, 129.1, $64.4(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz},\left[\mathrm{D}_{8}\right]-\mathrm{THF}$) $\delta 223.8$ (s). HRMS (ESI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Cl}_{2}: 494.0632[\mathrm{M}]^{+}$, found 494.0635 . Spectroscopic data matched those reported in the literature. ${ }^{4}$

Dichlorocyclophosphazane SI-3. Prepared according to the above procedure using
 di(naphthalen-2-yl)methanamine ($6.0 \mathrm{~g}, 21.0 \mathrm{mmol}$) and triethylamine (29.5 $\mathrm{mL}, 211.0 \mathrm{mmol})$ in THF (30.0 mL) and phosphorus trichloride ($1.85 \mathrm{~mL}, 21.0$ $\mathrm{mmol})$ in THF (20.0 mL). White solid ($0.7 \mathrm{~g}, 9.5 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.12$ (br. s, 4H), 7.90-7.76 (m, 12H), 7.66 (dd, $J=8.5,1.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.54-7.43$ (m, 8H), 6.07 (t, J = $6.3 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) ס 223.2 (s). HRMS (ESI) m/z calcd for $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Cl}_{2}$: 694.1279 [M] ${ }^{+}$, found 694.1256. Spectroscopic data matched those reported in the literature. ${ }^{4}$

Cyclophosphazane L4. To a suspension of the dichlorocyclophosphazane SI-2 ($6.1 \mathrm{~g}, 12.34$
 mmol) in toluene (100 mL) was added (S)-BINOL ($3.35 \mathrm{~g}, 12.36 \mathrm{mmol}$) and triethylamine ($17.2 \mathrm{~mL}, 123.4 \mathrm{mmol}$). The milky suspension was heated to reflux for 16 hours. The reaction was then allowed to cool and filtered to remove the salts. The filtrate was concentrated to a pale yellow mass which was dissolved in toluene and filtered through a pad of silica gel, washing with 400 mL of toluene. The filtrate was concentrated to a colourless foam which was dissolved in minimal boiling ethyl acetate (40 mL). After cooling, the resulting colourless crystals were separated (4.91 g), and the mother liquor was concentrated and dissolved again in boiling ethyl acetate (20 mL) to crystallize a second crop (1.28 g). Colourless blocks ($6.2 \mathrm{~g}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.64$ (dd, $J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52 (d, $J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.09(\mathrm{~m}, 14 \mathrm{H}), 7.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.01-6.94(\mathrm{~m}$, 2H), 6.78-6.70 (m, 2H), $6.62(t, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.49-6.42(\mathrm{~m}, 4 \mathrm{H}), 5.13(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 174.4 \mathrm{ppm}$. Matches known data. ${ }^{4}$

Representative procedure A for cyclophosphazane synthesis from isolated
 dichorophosphazanes. Cyclophosphazane L5. To a solution of the dichlorocyclophosphazane $\mathbf{S l - 2}(63.5 \mathrm{mg}, 0.13 \mathrm{mmol})$ in toluene (3.0 mL) was added a solution of the $(S)-3,3-\mathrm{Ph}_{2} \mathrm{BINOL}(56.2 \mathrm{mg}, 0.13$ $\mathrm{mmol})$ and triethylamine $(0.18 \mathrm{~mL}, 1.3 \mathrm{mmol})$ in toluene $(3.0 \mathrm{~mL})$. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ overnight. After cooling to room temperature, the mixture was filtered and the solvent was removed under reduced pressure. The residue was purified by flash chromatography over silica gel (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=90 / 10$) to give L 5 as a white solid ($58 \mathrm{mg}, 53 \%$). m.p. $=253-254{ }^{\circ} \mathrm{C} . R f=0.65$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=60 / 40$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.99-7.94(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.53$ (ddd, $J=8.2,6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41-7.29 (m, 8H), 7.22-7.12 (m, 8H), 6.97 (tt, J=7.4, 1.3 Hz, 2H), 6.86-6.81 (m, 4H), 6.65-6.59 (m, 4H), 6.19-6.14 (m, 4H), $4.82(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 150.9(\mathrm{t}, J=7.3 \mathrm{~Hz})$, 143.2, 139.3 (t, $J=4.2 \mathrm{~Hz}$), 138.7, 135.5, 134.6, 131.4, 130.8, 130.5, 129.1, 128.7, 128.6, 128.5, 128.0 (br t, J = 1.4 Hz), 127.9, 127.7 (br s), 127.7, 127.5, 127.2, 126.2, 125.6, 63.4 (t, J
 1599, 1493, 1451, 1415, 1354, 1331, 1297, 1262, 1243, 1188, 1184, 1147, 1136, 1091, 1070, 1028, 989, 962, 952, 935, 909, 894, 835, 807, 790, 739, 696, 647, 631, 615, 601, 568, 540, 521, 508, 457, 415. HRMS (ESI) m/z calcd for $\mathrm{C}_{58} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}: 861.2794[\mathrm{M}+\mathrm{H}]^{+}$, found 861.2800.

Cyclophosphazane L6. Prepared according to representative procedure A. Purified by flash chromatography over silica gel (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=90 / 10$) to give L 6 as
 a white solid ($233 \mathrm{mg}, 74 \%$). m.p. $=271-277{ }^{\circ} \mathrm{C} . R f=0.60$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=80 / 20$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.89(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 2 \mathrm{H}), 7.50-7.19(\mathrm{~m}, 14 \mathrm{H}), 7.00-6.87(\mathrm{~m}, 4 \mathrm{H}), 6.71(\mathrm{t}, \mathrm{J}$ $=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.80(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 152.6(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 142.6,138.7(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}), 133.7$, $131.22,131.20,129.8,129.5,129.0,128.1,127.9(t, J=3.5 \mathrm{~Hz}), 127.8,127.6,126.5(b r t, J=$ $1.7 \mathrm{~Hz}), 126.2,126.0,125.3,63.8(\mathrm{t}, \mathrm{J}=13.2 \mathrm{~Hz})$, 19.6. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 174,3$ (s). IR (ATR): $\tilde{v}=3061,3025,1494,1450,1422,1360,1331,1261,1224,1208,1179,1146$, 1098, 1086, 1029, 991, 957, 934, 909, 886, 842, 807, 785, 757, 743, 733, 699, 630, 591, 555, 534, 510, 473, 451, 416. HRMS (ESI) m/z calcd for $\mathrm{C}_{48} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}: 737.2481[\mathrm{M}+\mathrm{H}]^{+}$, found 737.2483. $[\alpha]^{20} \mathrm{D}=+437^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{C}=1.0\right)$.

Cyclophosphazane L8. Prepared according to representative procedure A. Purified by flash
 chromatography over silica gel (hexane/ethyl acetate $=90 / 10$) to give L8 as a white solid ($90 \mathrm{mg}, 64 \%$). m.p. $=114-126^{\circ} \mathrm{C} . R f=0.25$ (hexane/ethyl acetate $=90 / 10) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.45-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.16-$ 7.08 (m, 6H), 7.06 (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.73$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.58-6.50$ ($\mathrm{m}, 4 \mathrm{H}$), $4.89(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.91-2.82(\mathrm{~m}, 4 \mathrm{H})$, 2.35-2.20 (m, 2H), 2.07-1.93 (m, 2H), 1.90$1.70(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 150.9(\mathrm{t}, J=6.9 \mathrm{~Hz}), 142.7,139.3(\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz})$, 137.4, 133.7, 132.2 (t, $J=1.7 \mathrm{~Hz}$), 130.0, 129.9, 128.9 (br s), 128.2 (br s), 128.1 (t, $J=2.7$ Hz), 128.0, 127.9, 121.1, $64.1(\mathrm{t}, J=13.0 \mathrm{~Hz}), 30.1,28.2,23.9,23.6 .{ }^{31} \mathrm{P}$ NMR (161 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 169.3$ (s). IR (ATR): $\tilde{v}=3061,3028,2928,2857,2836,1584,1494,1476,1463$, 1450, 1421, 1264, 1213, 1182, 1155, 1100, 1071, 1057, 1029, 1001, 959, 939, 909, 844, 832,816, 781, 740, 700, 670, 644, 542, 510. HRMS (ESI) m/z calcd for $\mathrm{C}_{46} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$: $717.2794[\mathrm{M}+\mathrm{H}]^{+}$, found 717.2797 .

Cyclophosphazane L9. Prepared according to representative procedure A. Purified by flash
 chromatography over silica gel (hexane/ethyl acetate $=90 / 10$) to give L9 as a white solid ($88 \mathrm{mg}, 36 \%$). $R f=0.60$ (hexane/ethyl acetate $=$ $70 / 30)$. m.p. $=238-239^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.99-7.94(\mathrm{~m}$, 2H), 7.78-7.73 (m, 2H), 7.54-7.45 (m, 4H), 7.42 (s, 2H), 7.40-7.31 (m, $6 \mathrm{H}), 7.12-6.93(\mathrm{~m}, 20 \mathrm{H}), 6.33(\mathrm{br} \mathrm{d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.24(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 151.8,141.97,141.74,141.0,138.4(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}), 133.7,129.4,129.1,128.5$, 127.9, 127.8, 127.6, 127.4, 127.0, 126.9, 126.6, 126.5, 123.9, 122.9 (br s), 63.3 (t, J = 12.8 $\mathrm{Hz}), 53.8,53.6,53.4,53.2,53.0 .{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 180.9$ (s). IR (ATR): $\tilde{v}=3059$, 3027, 1591, 1563, 1488, 1450, 1357, 1329, 1288, 1268, 1188, 1107, 1074, 1055, 1028, 956,

899, 899, 884, 857, 838, 819, 792, 762, 753, 724, 696, 661, 637, 569, 507, 476, 419. HRMS (ESI) m/z calcd for $\mathrm{C}_{58} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$: $861.2793[\mathrm{M}+\mathrm{H}]^{+}$, found 861.2794. Spectroscopic data matched those reported in the literature. ${ }^{4}$

Dichlorophosphazane SI-4. A solution of t-butylamine ($8.6 \mathrm{~mL}, 82.0 \mathrm{mmol}, 1.5$ equiv) in
 toluene (30.0 mL) was added dropwise to a well-stirred solution of phosphorus trichloride ($4.8 \mathrm{~mL}, 55.0 \mathrm{mmol} 1.0$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(11.4 \mathrm{~mL}, 82.0 \mathrm{mmol}, 1.5$ equiv) in toluene (40.0 mL) at $-78^{\circ} \mathrm{C}$. After the completion of the addition, the reaction mixture was allowed to r.t. and then stirred at reflux temperature for a further 4 h . The reaction mixture was then brought to room temperature and filtered to remove the amine hydrochloride. The filtrate was concentrated under reduced pressure to afford the product as a pasty white solid, which was then purified by vacuum distillation to give SI-4 as a light yellow solid ($5.3 \mathrm{~g}, 70.5 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 1.18$ (s, 18H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ $54.32(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}), 30.24(\mathrm{t}, J=6.3 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 204.5$ (s$)$. HRMS (ESI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Cl}_{2}: 274.0324[\mathrm{M}]^{+}$, found 274.0322. Spectroscopic data matched those reported in the literature. ${ }^{4}$

Cyclophosphazane L7. Prepared according to representative procedure A. Purified by flash
 chromatographyover silica gel (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=90 / 10$) to give $\mathbf{L 7}$ as white solid ($23 \mathrm{mg}, 20 \%$). m.p. $=266-267^{\circ} \mathrm{C} . \mathrm{Rf}=0.85$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=$ $80 / 20$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.77$ (br. s, 2H), 7.75-7.72 (m, 2H), 7.27 (ddd, $J=8.1,6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.04 (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.53-6.49 (m, 2H), $2.55(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 151.7(\mathrm{t}, \mathrm{J}=6.9$ Hz), 133.9, 131.7, 130.9, 129.3, 127.2, $126.9(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}), 125.7,124.7,52.7(\mathrm{t}, \mathrm{J}=12.5$
 2959, 2927, 2866, 1622, 1598, 1498, 1459, 1423, 1392, 1363, 1329, 1249, 1224, 1209, 1181, 1151, 1101, 1088, 1045, 1029, 1012, 989, 938, 927, 910, 894, 879, 782, 764, 751, 732, 629, 589, 475. HRMS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}: 517.2168[\mathrm{M}+\mathrm{H}]^{+}$, found 517.2173. Spectroscopic data matched those reported in the literature. ${ }^{4}$

Cyclophosphazane SI-L1. Prepared according to representative procedure A. Purified by
 flash chromatography over silica gel (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=90 / 10$) to give SI-L1 as white solid ($49 \mathrm{mg}, 53 \%$). m.p. $=208-209{ }^{\circ} \mathrm{C} . R f=0.68$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=70 / 30$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.02(\mathrm{~s}, 2 \mathrm{H})$, 7.98-7.93 (m, 2H), 7.67-7.62 (m, 4H), 7.52 (ddd, $J=8.1,6.8,1.2 \mathrm{~Hz}$, 2H), 7.44-7.39 (m, 4H), 7.35 (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22-7.12 (m, 8H), 6.98-6.92 (m, 2H), 6.85-6.80 (m, 4H), 6.66-6.60 (m, 4H), 6.18-6.12 (m, 4H), $4.85(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~s}$, $18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 151.2(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 151.2,143.1,139.3(\mathrm{t}, J=4.4 \mathrm{~Hz})$, 135.7, 135.2, 134.4, 131.4, 130.5, 130.5, 129.2, 128.6, 128.4, 128.0 (br s), 127.9, 127.9 (t, J
$=2.9 \mathrm{~Hz}), 127.7,127.5,127.0,126.2,125.7,125.5,63.1(\mathrm{t}, J=14.6 \mathrm{~Hz}), 34.9,31.5 .{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 175.9$ (s). IR (ATR): $\tilde{\mathrm{v}}=3058,3027,2961,2866,1596,1512,1493,1449$, 1424, 1395, 1360, 1262, 1254, 1189, 1186, 1140, 1092, 1070, 1026, 992, 963, 952, 935, 909, 884, 849, 829, 806, 789, 746, 689, 660, 639, 622, 606, 593, 569, 531, 514, 408. HRMS (ESI) m / z calcd for $\mathrm{C}_{66} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$: $973.4057[\mathrm{M}+\mathrm{H}]^{+}$, found 973.4046.

Cyclophosphazane SI-L2. Prepared according to representative procedure A. Purified by
 flash chromatography over silica gel (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=90 / 10$) to give SI-L2 as white solid ($49 \mathrm{mg}, 53 \%$). m.p. $=183-184{ }^{\circ} \mathrm{C} . R f=0.75$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=70 / 30$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.02(\mathrm{~s}, 2 \mathrm{H})$, 8.00-7.96 (m, 2H), 7.78-7.73 (m, 4H), 7.66-7.61 (m, 8H), 7.54 (ddd, J $=8.1,6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.11(\mathrm{~m}, 8 \mathrm{H}), 7.00-6.94(\mathrm{~m}$, $2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 4 \mathrm{H}), 6.68-6.62(\mathrm{~m}, 4 \mathrm{H}), 6.24-6.19(\mathrm{~m}, 4 \mathrm{H}), 4.87(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 151.0(\mathrm{t}, J=7.1 \mathrm{~Hz}), 143.2,140.8,140.6,139.3(\mathrm{t}, J=4.0 \mathrm{~Hz}), 137.8$, 135.1, 134.6, 131.4, 131.2, 130.5, 129.2, 129.2, 128.7, 128.6, 128.1 (br s), 127.9, 127.8, 127.8, 127.7, 127.5, 127.4, 127.2, 126.2, 125.6, $63.6(\mathrm{t}, \mathrm{J}=14.7 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 177.1 (s). IR (ATR): $\tilde{v}=3057,3026,2962,2922,1599,1487,1450,1422,1395,1262,1243$, $1188,1178,1148,1136,1092,1070,1028,1007,962,951,935,909,884,837,809,789,762$, 749, 738, 695, 677, 638, 624, 602, 573, 536, 515, 415. HRMS (ESI) m/z calcd for $\mathrm{C}_{70} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}: 1013.3411[\mathrm{M}+\mathrm{H}]^{+}$, found 1013.3420.

Cyclophosphazane SI-L3. Prepared according to representative procedure A. Purified by
 flash chromatography over silica gel (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=95 / 5$) to give SIL3 as a light orange solid ($130 \mathrm{mg}, 52 \%$). m.p. $=214-227^{\circ} \mathrm{C} . \mathrm{Rf}=0.80$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=60 / 40$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta \delta 8.52(\mathrm{~s}, 2 \mathrm{H})$, 8.18 (s, 2H), 8.10-7.99 (m, 10H), 7.66-7.58 (m, 4H), 7.48-7.34 (m, 8H), 7.20 (ddd, $J=8.9,6.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-6.93$ (m, 2H), 6.91-6.86 (m, 2H), 6.84-6.78 (m, 4H), 6.51-6.45 (m, 4H), 6.27-6.21 (m, 8H), $4.85(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 151.7(\mathrm{t}, J=7.8 \mathrm{~Hz}), 143.2,139.8(\mathrm{t}, J=4.2 \mathrm{~Hz}), 135.9,133.9$, 132.9, $132.2,131.9,131.6,131.2,130.9,130.1,129.6,128.8,128.7,128.5,128.3,128.2,128.1$, 128.0, 127.7, 127.51, 127.46, 127.4, 127.4, 127.3, 126.5, 126.3, 126.1, 125.7, 125.7, 125.6, 125.1, 63.1 (t, $J=15.7 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 173.1$ (s$)$. IR (ATR): $\tilde{\mathrm{v}}=3051,3025$, 1492, 1444, 1425, 1402, 1316, 1203, 1181, 1145, 1099, 1086, 1068, 1026, 943, 905, 886, 864, 841, 785, 736, 729, 695, 641, 606, 516, 427. HRMS (ESI) m/z calcd for $\mathrm{C}_{74} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$: $1061.3420[\mathrm{M}+\mathrm{H}]^{+}$, found 1061.3428 .

Cyclophosphazane SI-L4. Prepared according to representative procedure A. Purified by
 flash chromatography over silica gel (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=80 / 20$) to give SIL 4 as white solid ($63 \mathrm{mg}, 62 \%$). m.p. $=231-232{ }^{\circ} \mathrm{C} . R f=0.70$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=50 / 50$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.93-7.88(\mathrm{~m}$, $2 \mathrm{H}), 7.78(\mathrm{~s}, 2 \mathrm{H}), 7.47-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 6 \mathrm{H}), 6.97-6.88(\mathrm{~m}$, $4 \mathrm{H}), 6.71-6.64(\mathrm{~m}, 4 \mathrm{H}), 6.20-6.15(\mathrm{~m}, 4 \mathrm{H}), 4.73(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{dq}, J=15.0,7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.51$ (dq, $J=15.0,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 152.4 (t, $J=6.7 \mathrm{~Hz}$), 142.6, 138.7 ($\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}$), 136.6, 133.6, 131.3, 129.5, 129.0, 128.0, 127.8, 127.8, 127.7, 127.3, 126.5 (brt, $J=1.50 \mathrm{~Hz}$), 126.2, 125.9, 125.2, 63.9 ($\mathrm{t}, J=13.1 \mathrm{~Hz}$), 25.9 (brt, $J=1.9 \mathrm{~Hz}$), 13.3. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 174,0$ (s). IR (ATR): $\tilde{\mathrm{V}}=3059,3025$, 2963, 2931, 2873, 1621, 1598, 1493, 1451, 1422, 1374, 1359, 1337, 1207, 1177, 1146, 1097, 1070, 1027, 953, 933, 910, 886, 865, 811, 797, 744, 701, 627, 595, 535, 511, 411. HRMS (ESI) m/z calcd for $\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Na}: 787.2619[\mathrm{M}+\mathrm{Na}]^{+}$, found 787.2613.

Cyclophosphazane SI-L5. Prepared according to representative procedure A. Purified by flash chromatography over silica gel (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=95 / 5$) to give
 SI-L5 as a white powder ($66 \mathrm{mg}, 55 \%$). $R f=0.60$ (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $=70 / 30) . \mathrm{m} . \mathrm{p} .=194-195^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.96(\mathrm{~s}$, 2H), 7.89-7.85 (m, 2H), 7.75-7.72 (m, 2H), 7.69-7.65 (m, 4H), 7.647.60 (m, 2H), 7.55 (ddd, $J=8.1,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 4 \mathrm{H})$, 7.42-7.26 (m, 16H), 7.24-7.16 (m, 6H), 6.94 (dd, $J=8.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.75 (br. s, 2H), 6.69$6.65(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 151.4(\mathrm{t}, J=7.2 \mathrm{~Hz}), 140.8,138.7,136.82,136.8(\mathrm{t}, J=4.0 \mathrm{~Hz}), 135.6,134.7,133.4$, 133.2, 133.1, 132.7, 131.5, 130.9, 130.6, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 127.9, 127.5, 127.4, 127.0, 126.5, 126.6, 126.4, 126.2, 126.0, 126.0, 125.9, 125.8, 63.8 (t, $J=14.9 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 179.2$ (s). IR (ATR): $\tilde{\mathrm{v}}=3053,2963,2925$, $1621,1599,1506,1495,1455,1415,1356,1330,1263,1242,1209,1187,1148,1136,1123$, 1078, 1031, 990, 962, 944, 933, 893, 858, 835, 819, 789, 745, 740, 701, 648, 633, 614, 601, 569, 549, 520, 476, 458, 424. HRMS (ESI) m/z calcd for $\mathrm{C}_{74} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}: 1061.3420[\mathrm{M}+\mathrm{H}]^{+}$, found 1061.3439.

Cyclophosphazane SI-L6. Prepared according to representative procedure A. Purified by
 flash chromatography over silica gel (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=95 / 5$) to give SI-L6 as a yellow powder ($77 \mathrm{mg}, 72 \%$). m.p. $=202-203^{\circ} \mathrm{C}$. $R f=0.65$ (hexane/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=70 / 30\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $\delta 7.99(\mathrm{~s}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.66-7.59 (m, 6H), 7.55-7.50 (m, 2H), 7.49-7.43 (m, 4H), 7.407.31 (m, 12H), 7.31-7.27 (m, 2H), 7.22-7.16 (m, 6H), 6.93 (dd, $J=8.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.73$ (br. $\mathrm{s}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{~s}$,
$18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 151.6(\mathrm{t}, J=7.2 \mathrm{~Hz}), 151.2,140.7,136.9(\mathrm{t}, J=4.2 \mathrm{~Hz})$, 135.7, 135.4, 134.6, 133.4, 133.2, 133.1, 132.7, 131.5, 130.5, 128.7, 128.6, 128.4, 128.3, 128.2, 127.9, 127.5, 127.4, 127.3, 127.1, 126.7 (br t, $J=2.2 \mathrm{~Hz}$), 126.5, 126.5, 126.3, 126.2, 125.9, 125.9, 125.8, 125.7, $63.6\left(\mathrm{t}, \mathrm{J}=14.8 \mathrm{~Hz}\right.$), $34.8,31.5 .{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 178.5 (s). IR (ATR): $\tilde{v}=3053,2961,2902,2866,1599,1508,1449,1423,1395,1360,1329$, 1263, 1243, 1187, 1140, 1122, 1080, 1019, 992, 963, 944, 933, 893, 886, 857, 829, 818, 789, 748, 742, 700, 660, 644, 620, 587, 570, 531, 476, 434. HRMS (ESI) m/z calcd for $\mathrm{C}_{82} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$: $1173.4672[\mathrm{M}+\mathrm{H}]^{+}$, found 1173.4669.

Cyclophosphazane SI-L7. Prepared according to representative procedure A. Purified by
 flash chromatography over silica gel (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=95 / 5$) to give SI-L7 as white solid ($46 \mathrm{mg}, 46 \%$). m.p. $=207-208^{\circ} \mathrm{C} . R f=$ 0.70 (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=70 / 30$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ 8.02 (s, 2H), 7.90 (br d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.72$ (br d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.65 (br d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.61-7.17$ (m, 36H), 6.97 (dd, $J=8.5,1.9$ $\mathrm{Hz}, 2 \mathrm{H}), 6.79$ (br. s, 2H), 6.71 (dd, $J=8.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}$), 6.44 (dd, $J=8.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{t}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 151.5(\mathrm{t}, J=7.2 \mathrm{~Hz}), 140.7,140.7,140.6,137.7$, 136.8 (t, $J=4.1 \mathrm{~Hz}$), 135.1, 134.7, 133.4, 133.2, 133.13, 132.7, 131.5, 131.3, 130.5, 129.1, 128.8, 128.6, 128.5, 128.5, 128.2, 127.9, 127.8, 127.5, 127.5, 127.3, 127.3, 127.0, 126.6 (br $\mathrm{t}, J=2.4 \mathrm{~Hz}), 126.5,126.5,126.3,126.2,126.0,125.9(\mathrm{t}, J=3.7 \mathrm{~Hz}), 25.8,63.8(\mathrm{t}, J=14.8$ $\mathrm{Hz}) .{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 179.4$ (s). IR (ATR): $\tilde{v}=3053,3027,1599,1506,1487$, 1451, 1422, 1395, 1358, 1329, 1263, 1243, 1187, 1148, 1137, 1123, 1078, 1007, 990, 963, $944,933,886,857,837,818,789,751,736,696,676,639,622,601,573,514,476,432,426$. HRMS (ESI) m/z calcd for $\mathrm{C}_{86} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$: $1213.4046[\mathrm{M}+\mathrm{H}]^{+}$, found 1213.4055.

Cyclophosphazane SI-L8. Prepared according to representative procedure A. Purified by
 flash chromatography over silica gel (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=95 / 5$) to give SI-L8 as a white powder ($78 \mathrm{mg}, 83 \%$). m.p. $=190-200^{\circ} \mathrm{C}$. $R f=0.30$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=70 / 30$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) б 7.94-7.90 (m, 2H), 7.89-7.83 (m, 4H), 7.82-7.77 (m, 4H), 7.75$7.70(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 8 \mathrm{H}), 7.45(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.34 (dddd, $J=8.1,6.8,2.7,1.3 \mathrm{~Hz}, 4 \mathrm{H}$), $7.23-7.16$ (m, 4H), $7.00(\mathrm{br} \mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78$ (br d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.60 (br. s, 2H), 6.45 (dd, $J=8.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $5.22(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 152.8(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 140.3$, $136.0(\mathrm{t}$, $J=4.1 \mathrm{~Hz}), 133.9,133.8,133.4,133.1,132.8,131.4,131.3,129.8,129.0,128.5,128.4,128.1$, 127.8, 127.57, 127.54, 127.1, 126.8, 126.7 (br t, $J=2.4 \mathrm{~Hz}$), 126.6, 126.4, 126.3, 126.13, 126.09 (br s), 125.5, 64.1 (t, $J=13.4 \mathrm{~Hz}$), 19.7. ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 175.7$ (s). IR (ATR): $\tilde{v}=3050,3023,1630,1598,1505,1460,1422,1359,1331,1270,1224,1206,1177$, 1161, 1145, 1122, 1097, 1085, 1033, 977, 945, 931, 909, 893, 856, 816, 783, 747, 728, 649,

631, 621, 605, 592, 533, 474. HRMS (ESI) m/z calcd for $\mathrm{C}_{64} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}: 937.3115[\mathrm{M}+\mathrm{H}]^{+}$, found 937.3107 .

Cyclophosphazane SI-L9. Prepared according to representative procedure A. Purified by
 flash chromatography over silica gel (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=90 / 10$) to give SIL9 as a yellow solid ($101 \mathrm{mg}, 57 \%$). m.p. $=206-207^{\circ} \mathrm{C} . \operatorname{Rf}=0.75$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=80 / 20$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.93-7.89(\mathrm{~m}$, 2H), $7.86-7.82$ (m, 2H), 7.33 (ddd, $J=8.0,6.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.13$ (ddd, $J=$ 8.3, 6.8, $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.65-6.60(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 152.1$ (t , $J=7.1 \mathrm{~Hz}), 134.9,130.9,129.3,128.0,126.7,126.7(\mathrm{t}, J=2.4 \mathrm{~Hz}), 126.1,125.6,124.9,52.7$ ($\mathrm{t}, J=12.5 \mathrm{~Hz}$), $30.9(\mathrm{t}, J=6.5 \mathrm{~Hz}) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 172.4(\mathrm{~s}) . \operatorname{IR}(\mathrm{ATR}): \tilde{\mathrm{v}}=$ 3061, 2960, 2926, 2901, 2864, 1618, 1595, 1504, 1470, 1426, 1392, 1364, 1323, 1261, 1247, $1202,1153,1142,1071,1045,1013,972,950,883,868,826,783,751,680,653,627,617$, 590, 578, 536, 506, 471, 456. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}: 489.1855[\mathrm{M}+\mathrm{H}]^{+}$, found 489.1856. Spectroscopic data matched those reported in the literature. ${ }^{4}$

Cyclophosphazane SI-L10. Prepared according to representative procedure A. Purified by
 flash chromatography over silica gel (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=95 / 5$) to give SI-L10 as a yellow powder ($38 \mathrm{mg}, 31 \%$). m.p. $=173-178{ }^{\circ} \mathrm{C} . \mathrm{Rf}=0.8$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=80 / 20$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.01$ (br. s, 2 H), 7.89-7.85 (m, 2H), 7.84-7.79 (m, 4H), 7.53-7.48 (m, 4H), 7.35 (ddd, $J=8.1$, $6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.82-6.77(\mathrm{~m}, 2 \mathrm{H})$, $1.40(\mathrm{~s}, 18 \mathrm{H}), 0.75(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 150.7,149.7(\mathrm{t}, J=7.1 \mathrm{~Hz}), 136.4$, $135.9,134.2,131.1,130.5,130.0,128.5(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}), 128.2,126.7,125.6,125.4,125.1,52.6$ (t, $J=12.5 \mathrm{~Hz}$), $34.9,31.6,30.9(\mathrm{t}, J=6.6 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 169.3$ (s). IR (ATR): $\tilde{v}=3052,2962,2903,2866,1619,1594,1514,1461,1449,1424,1393,1365,1261$, 1193, 1139, 1089, 1075, 1042, 1042, 1013, 964, 937, 890, 849, 828, 799, 790, 761, 729, 700, 661, 634, 615, 589, 545, 526. HRMS (ESI) m/z calcd for $\mathrm{C}_{48} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}: 753.3733[\mathrm{M}+\mathrm{H}]^{+}$, found 753.3742 .

Dichlorophosphazane SI-5. A solution of cyclohexylamine ($11.8 \mathrm{~mL}, 103.0 \mathrm{mmol}, 3.0$ equiv)
 in toluene (10.0 mL) was added dropwise to a well-stirred solution of phosphorus trichloride ($3.0 \mathrm{~mL}, 34.4 \mathrm{mmol} 1.0$ equiv) in toluene (20.0 mL) at $-78{ }^{\circ} \mathrm{C}$. After the completion of the addition, the reaction mixture was stirred at this temperature for 4 h and then heated under reflux for a further 4 h . The reaction mixture was then brought to room temperature and filtered to remove the amine hydrochloride. The filtrate was concentrated under reduced pressure to afford the product as a pasty white solid, which was then purified by vacuum distillation. The minor product, $\mathrm{PCl}_{2}(\mathrm{NHCy})$, was distilled out at $70^{\circ} \mathrm{C}(0.3 \mathrm{Torr})$, whereas the expected product distilled out at $128^{\circ} \mathrm{C}(0.3$ Torr)
to give SI-5 as white solid ($0.7 \mathrm{~g}, 9.5 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 1.10-2.16(\mathrm{~m}, 22 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 53.5(\mathrm{t}, J=5.5 \mathrm{~Hz}), 33.4(\mathrm{t}, J=5.9 \mathrm{~Hz}), 25.6,24.9 .{ }^{31} \mathrm{P}$ NMR (121 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 219.9$ (s). HRMS (ESI) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Cl}_{2}: 326.0632[\mathrm{M}]^{+}$, found 326.0635. Spectroscopic data matched those reported in the literature. ${ }^{4}$

Cyclophosphazane SI-L12. Prepared according to representative procedure A. Purified by
 crystallization in 90/10 hexane/ $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\mathrm{SI}-\mathrm{L} 12$ as a white solid (68 $\mathrm{mg}, 61 \%$). m.p. $=161-162{ }^{\circ} \mathrm{C} . R f=0.80$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=80 / 20$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.80-7.75$ ($\mathrm{m}, 4 \mathrm{H}$), 7.32 (ddd, $J=8.2,6.8,1.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.12 (ddd, $J=8.2,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.71(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.24$ (ddt, $J=11.1,7.4,3.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.93-1.82 (m, 2H), 1.68--1.59 (m, 2H), 1.48-1.39 (m, 2H), 1.38$1.01(\mathrm{~m}, 8 \mathrm{H}), 1.00-0.70(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 152.3(\mathrm{t}, J=6.5 \mathrm{~Hz}), 133.3$, 131.1, 130.9, 129.1, 127.3, 126.6 (t, $J=2.3 \mathrm{~Hz}$), 125.8, 125.7, 124.9, 54.6 (t, $J=11.1 \mathrm{~Hz}$), $37.6(\mathrm{t}, J=2.5 \mathrm{~Hz}), 32.9(\mathrm{t}, J=7.3 \mathrm{~Hz}), 25.8,25.7,25.7,19.5(\mathrm{t}, J=1.9 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (161 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 173.0$ (s). IR (ATR): $\tilde{\mathrm{v}}=2923,2852,1623,1599,1486,1461,1447,1424$, $1372,1361,1332,1261,1222,1208,1178,1135,1097,1085,1033,992,939,909,888,863$, $843,783,750,735,703,631,607,590,536,486,432$. HRMS (ES) m/z calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$: 568.2407 [M], found 568.2408.

Cyclophosphazane SI-L13. To a solution of cyclophosphazane L4 ($216 \mathrm{mg}, 0.3 \mathrm{mmol}$) in THF

(2 mL) was added diisopropylazodicarboxylate ($60 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$). The reaction stirred at RT for 16 hours at which point the yellow colour of the DIAD had diminished. The reaction was concentrated to a yellow residue which was purified by flash chromatography (hexane/ethyl acetate 95:5 to 9:1) to give the product as a colourless foam ($215 \mathrm{mg}, 97 \%$). $[\alpha] 0^{30}=+238.8\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.64$ (dd, J $=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.04(\mathrm{~m}$, $5 \mathrm{H}), 7.03-6.87(\mathrm{~m}, 8 \mathrm{H}), 6.85-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.69(\mathrm{p}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.55 (d, $J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.55$ (dd, $J=15.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (dd, $J=9.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, C6D6) $\delta 150.3,150.2,141.5,141.4,139.0,134.8,134.7,131.2,131.1$, $130.5,129.6,128.7,128.7,128.4,128.3,128.3,128.3,128.0,127.8,127.6,127.5,127.3$, 127.1, 127.0, 126.2, 125.3, 125.2, 124.7, 124.6, 124.1, 124.0, 122.6, 122.6, 63.8 ($J=12.4$ $\mathrm{Hz}), 62.8(\mathrm{~d}, J=11.1 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{C} 6 \mathrm{D} 6$) $\delta 100.3(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 6.8(\mathrm{~d}, J=6.0$ Hz). IR (ATR): $\tilde{v}=3062,1620,1596,1495,1471,1453,1428,1359,1325,1279,1210,1153$, 1097, 1073, 1029, 998, 944, 910, 845, 822, 749, 699, 634, 587, 518. HRMS (ESI ${ }^{+}$) m/z calcd. for C46H35N2O2P2: 725.2117, found: 725.2115.

Dichlorophosphazane SI-6. To a solution of $\mathrm{PCl}_{3}(2.52 \mathrm{~mL}, 28.9 \mathrm{mmol})$ in THF (50 mL) was
 added dropwise a solution of $(R)-(+)-1-(2$-naphthyl)ethylamine (4.94 $\mathrm{g}, 28.8 \mathrm{mmol}$) and triethylamine ($40 \mathrm{~mL}, 287 \mathrm{mmol}$) in THF (50 mL) while maintaining an internal temp of $-70^{\circ} \mathrm{C}$. After complete addition (ca. 2.5 hours) the reaction mixture was allowed to warm to rt overnight. The reaction mixture was filtered under argon, washing the solids with an additional portion of THF ($2 \times 50 \mathrm{~mL}$). The filtrate was concentrated to a pale yellow foam. The foam was dissolved in hot toluene (20 mL) and when cooled was filtered again under argon to remove any residual salts, washing with additional toluene ($2 \times 10 \mathrm{~mL}$). The toluene was removed in vacuo at rt until the product had fully precipitated from the mixture and around $10-15 \mathrm{~mL}$ of toluene remained. The suspension was then heated until complete dissolution occurred and was then allowed to cool back to rt. The precipitated crystals were isolated by filtration under argon and washed with a small amount of cold toluene and then pentane to give the product as white needles ($2.15 \mathrm{~g}, 32 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , THF) $\delta 7.92-7.86$ (m, 3H), $7.86-7.78(\mathrm{~m}, 5 \mathrm{H}), 7.56$ (dd, $J=8.5,1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 4 \mathrm{H}), 4.78(\mathrm{~h}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , THF) $\delta 138.4,133.9(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 129.1,128.4,128.4,128.0$, 127.2, 126.6, 126.5, 125.2, 54.8, $21.5 \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{THF}$) $\delta 221.2 \mathrm{ppm}$. Matches known data. ${ }^{4}$

Cyclophosphazane SI-L14. Prepared according to representative procedure A. Purified by
 flash chromatography (hexane/ethyl acetate 99:1 to 95:5) to give the product as a colourless foam ($479 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.89-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.19(\mathrm{~m}, 14 \mathrm{H})$, $6.97-6.84(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ (dtd, $J=11.8$, $6.6,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 151.8(\mathrm{t}, J=7.0 \mathrm{~Hz}), 137.7(\mathrm{~d}, J=4.0 \mathrm{~Hz}) 137.6,134.4,132.8,132.6$, 130.5, 129.6, 127.9, 127.8, 127.4, 127.3, 126.8, 126.6, 125.8, 125.7, $\left.125.5(2 \mathrm{C}), 124.7,123.8,54.4(\mathrm{t}, J=12.9 \mathrm{~Hz}), 23.1(\mathrm{t}, J=4.4 \mathrm{~Hz}) .{ }^{31} \mathrm{P} \mathrm{NMR} \mathrm{(162} \mathrm{MHz} ,\mathrm{CD}{ }_{2} \mathrm{Cl}_{2}\right)$ $\delta 171.3$ ppm. Matches known data. ${ }^{4}$

Cyclophosphazane SI-L15. Prepared according to representative procedure A. Purified by
 flash chromatography (hexane/ethyl acetate 99:1 to 95:5) to give the product as a colourless foam ($724 \mathrm{mg}, 41 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.00-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.75(\mathrm{~m}$, 2 H), 7.67 ($\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.49-7.39$ (m, 10H), 7.36 (d, $J=8.9 \mathrm{~Hz}$, 2 H), 7.28 (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (dd, $J=8.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.96 (dd, $J=8.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.06 (dtd, $J=11.7,6.7,4.9 \mathrm{~Hz}, 2 \mathrm{H}$), 1.04 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 151.6(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 151.5(\mathrm{~d}, J=12.9$ Hz), 142.0, 134.3, 133.2, 132.7, 130.6, 129.6, 128.1, 127.9, 127.8, 127.4, 126.7, 126.0, 125.9,
125.8, 125.7, 124.8, 124.8, 124.8, 124.6 (d, $J=2.3 \mathrm{~Hz}), 124.6(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 124.3,55.1$ (d, $J=13.1 \mathrm{~Hz}$), $55.0(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 22.1(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 22.0(\mathrm{~d}, J=9.0 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 174.3. Matches known data. ${ }^{4}$

Dichlorophosphazane SI-7. To a solution of $\mathrm{PCl}_{3}(2.3 \mathrm{~mL}, 26.4 \mathrm{mmol})$ in THF (50 mL) was added, dropwise, a solution of ($1 R, 2 R$)-1-amino-2-benzyloxycyclopentane ($5.02 \mathrm{~g}, 26.3 \mathrm{mmol}$)

 and triethylamine ($37 \mathrm{~mL}, 266 \mathrm{mmol}$) in THF (50 mL) while maintaining an internal temp of $-70^{\circ} \mathrm{C}$. After complete addition (ca. 2.5 hours) the thick beige reaction mixture was allowed to come to RT overnight. The reaction mixture was filtered under argon, washing the solids with an additional portion of THF ($2 \times 50 \mathrm{~mL}$). The filtrate was concentrated to a brown solid. The solid was dissolved in hot toluene (20 mL) and when cooled was filtered again under argon to remove any residual salts and washing with additional toluene ($2 \times 10 \mathrm{~mL}$). The toluene was removed at RT until the product had fully precipitated from the mixture and around 10 mL of toluene remained. Pentane (20 mL) was added to fully precipitate the product. The brown solid was isolated by filtration and washed with pentane. Light brown solid ($733 \mathrm{mg}, 11 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{THF}) \delta 7.40-7.14(\mathrm{~m}, 10 \mathrm{H}), 4.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.06-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{td}, J=6.8$, $5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.71(\mathrm{~m}, 7 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 2 \mathrm{H}) .{ }^{31} \mathrm{P} \mathrm{NMR}(162 \mathrm{MHz}$, THF) $\delta 220.3$ ppm. Matches known data. ${ }^{4}$

Cyclophosphazane SI-L17. Prepared according to representative procedure A. Purified by
 flash chromatography (hexane/ethyl acetate 99:1 to 95:5) to give the product as a colourless foam ($71 \mathrm{mg}, 17 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.94-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.36$ (ddd, $\left.J=8.1,6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.33-$ 7.21 (m, 12H), 7.17 (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.84 (dd, $J=8.5$, $1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.15-4.04(\mathrm{~m}, 4 \mathrm{H}), 3.02(\mathrm{dt}, J=15.8,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.72$ (dq, $J=12.8,6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 1.46 (ddd, $J=15.8,7.9,6.5 \mathrm{~Hz}, 4 \mathrm{H}$), 1.41-1.30 (m, 2H), 1.14-1.07 (m, 4H). ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 151.8(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 138.9,134.1,130.5,129.3,128.1,127.7,127.7,127.3$, $126.5,125.7,124.6,124.2,86.5,71.5,60.8(\mathrm{t}, \mathrm{J}=11.5 \mathrm{~Hz}), 49.0,28.8,28.1(\mathrm{t}, J=7.3 \mathrm{~Hz})$, $20.0 \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 174.4 \mathrm{ppm}$. Matches known data. ${ }^{4}$

Cyclophosphazane SI-L18. Prepared according to representative procedure A. Purified by
 flash chromatography (hexane/ethyl acetate 99:1 to 95:5) to give the product as a colourless foam ($109 \mathrm{mg}, 19 \%$). $[\alpha] 0^{20}=+182.8$ ($\mathrm{c}=0.99$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.90(\mathrm{dd}, \mathrm{J}=9.0,0.8 \mathrm{~Hz}$, 2H), 7.83 (dt, $J=8.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37-7.30 (m, 4H), 7.29-7.14 (m, 8 H), $7.05-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.84$ (dd, $J=8.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.96$ (d, AB $J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87$ (d, AB $J=11.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.66 ($\mathrm{qd}, J=4.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.74-2.66 (m, 2H), 1.89-1.73 (m, 4H), $1.68-1.41(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 151.8(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 138.4,134.3,130.5$,
129.6, 128.0 (2C), 127.8, 127.5, 127.2, 126.6, 125.6, 124.7, 123.9, 83.9 (t, J=7.1 Hz), 70.5, $59.7(\mathrm{t}, J=9.3 \mathrm{~Hz}), 31.4(\mathrm{t}, J=5.2 \mathrm{~Hz}), 29.8,21.2 \mathrm{ppm} .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 176.4$. IR (ATR): $\tilde{v}=3061,2957,2871,1620,1594,1505,1469,1454,1428,1358,1327,1209,1118$, 1071, 1028, 966, 952, 886, 867, 821, 783, 750, 697, 640, 616, 584, 511. MS (ESlpos) m/z (\%): 916 (3), 743.3 (100), 725.3 (42), 706.5 (2), 673.2 (2), 612.2 (7), 578.3 (8). HRMS (ESI ${ }^{+}$) m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2}$: 725.2693, found: 725.2695.

Dichlorophosphazane SI-8. To a solution of 2-(naphthalen-2-yl)propan-2-amine ($2.1 \mathrm{~g}, 11.4$
 $\mathrm{mmol})$ in diethyl ether (50 mL) at $-78^{\circ} \mathrm{C}$ was added n-BuLi $(8 \mathrm{~mL}, 1.51 \mathrm{~m}$ in hexanes, 12.1 mmol) dropwise. Once the addition was complete the yellow suspension was allowed to reach RT and stirred for 10 minutes. The reaction was then re-cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{TMSCI}(1.6 \mathrm{~mL}, 12.6 \mathrm{mmol})$ was added dropwise and the reaction mixture was allowed to come to rt. Once the consistency of the precipitate had lightened and the colour faded from yellow to off-white, the volatiles were removed and the resulting oily suspension was flash distilled under high vacuum to give the TMS protected amine as a colourless oil ($557 \mathrm{mg}, 19 \%$).

The oil was dissolved in diethyl ether (5 mL) and $n \mathrm{BuLi}(1.5 \mathrm{~mL}, 2.27 \mathrm{mmol}$) was added in a steady stream at $0^{\circ} \mathrm{C}$ forming an orange solution. After stirring for 5 mins at it the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and transferred via cannula to a solution of $\mathrm{PCl}_{3}(0.188 \mathrm{~mL}, 2.14$ $\mathrm{mmol})$ in diethyl ether $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. During the addition the colour of the solution remained very pale yellow and essentially homogenous. After addition was complete the solution was warmed to rt. During warming a colourless precipitate formed, and the solution remained pale yellow. The reaction was stirred at it for 1 hour before the volatiles were removed and the residue was suspended in hexane (35 mL) and filtered, washing with hexane ($2 \times 5 \mathrm{~mL}$). The filtrate was concentrated until crystallization began and was then cooled to $-78^{\circ} \mathrm{C}$ and the liquid was removed using a syringe. Pale yellow solid ($157 \mathrm{mg}, 29 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , THF) $\delta 7.96(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.80(\mathrm{~m}, 6 \mathrm{H}), 7.71$ ($\mathrm{dd}, J=8.7,2.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 4 \mathrm{H}), 1.89(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , THF) $\delta 142.45(\mathrm{t}$, $J=2.7 \mathrm{~Hz}), 133.8,133.4,128.8,128.7,127.7,126.6,126.5,124.9(\mathrm{t}, J=1.6 \mathrm{~Hz}), 124.6(\mathrm{t}, J=$ $2.1 \mathrm{~Hz}), 59.4(\mathrm{t}, J=7.9 \mathrm{~Hz}), 29.2(\mathrm{t}, J=6.3 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (162 MHz , THF) $\delta 206.7 \mathrm{ppm} . \mathrm{MS}$ (EI) m/z (\%): 498 (17), 315 (4), 234 (5), 193 (4), 169 (100), 141 (12), 41 (3). HRMS (EI): m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Cl}_{2}: 498.0948$, found: 498.0947 .

Cyclophosphazane SI-L19. Prepared according to representative procedure A. Purified by
 flash chromatography (hexane/ethyl acetate 99:1 to 95:5) to give the product as a colourless solid ($93 \mathrm{mg}, 47 \%$). $[\alpha] \mathrm{b}^{\circ}=-313.7$ ($\mathrm{c}=1.05$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.92(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.70(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.17(\mathrm{~m}, 16 \mathrm{H}), 7.01-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.75 ($\mathrm{s}, 6 \mathrm{H}$), 1.13 ($\mathrm{s}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 151.8$ (t, $J=7.5 \mathrm{~Hz}$), $144.1(\mathrm{t}, J=2.4 \mathrm{~Hz}), 134.9,132.8,132.2,130.7,129.2$, 128.0, 127.9, 127.4, 127.1, 126.6, 126.3, 126.0, 125.7, 125.7, 125.4, 124.8, 124.7, 124.3, 57.9 ($\mathrm{t}, \mathrm{J}=14.8 \mathrm{~Hz}$), $30.5\left(\mathrm{t}, J=6.8 \mathrm{~Hz}\right.$), $29.2(\mathrm{t}, J=5.2 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 173.2$ ppm. IR (ATR): $\tilde{v}=3056,2967,1619,1595,1505,1469,1426,1366,1323,1264,1200,1158$, 1132, 1071, 999, 974, 952, 936, 879, 859, 821, 788, 748, 688, 680, 648, 632, 582, 509, 477. HRMS (ESI ${ }^{+}$m/z calcd. for $\mathrm{C}_{46} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}: 713.2481$, found: 713.2482.

Cyclophosphazane SI-L20. Prepared according to representative procedure A. Purified by flash chromatography (hexane/ethyl acetate 99:1 to 95:5) to give the product as a colourless solid ($81 \mathrm{mg}, 37 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.96-7.79(\mathrm{~m}, 5 \mathrm{H}), 7.72(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.54-7.15$ (m, 14H), 7.06 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (dd, $J=13.5$, $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}$, $3 \mathrm{H}), 1.11$ (s, 3H), $1.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 151.7$ (d, $J=11.0 \mathrm{~Hz}), 151.6(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 144.6,143.7,134.9,133.8,132.8,132.8,132.3$, 132.2, 131.6, 130.8, 130.7, 129.3, 129.1, 128.1, 127.8, 127.5, 127.4, 127.2, 126.6, 125.9, 125.8, 125.8, 125.2, 125.0, 124.8, 124.7, 124.6, 124.3, 124.1, 57.9 (d, J= 11.9 Hz), 57.7 (d, J $=11.7 \mathrm{~Hz}$), $30.2(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{C})$, 29.1, 28.8, $19.0 \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ $172.5(\mathrm{~d}, J=24.6 \mathrm{~Hz}), 171.9(\mathrm{~d}, J=24.6 \mathrm{~Hz})$. IR (ATR): $\tilde{\mathrm{v}}=3056$, 2968, 1712, 1620, 1597, $1505,1465,1416,1360,1274,1260,1230,1201,1164,1134,1095,1000,959,941,889$, 859, 820, 792, 747, 650, 477. HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{47} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}: 727.2638$, found: 727.2641 .

Cyclophosphazane SI-L21. Prepared according to representative procedure A. Purified by
 flash chromatography (hexane/ethyl acetate 99:1 to 95:5) to give the product as a colourless solid ($101 \mathrm{mg}, 45 \%$).
$[\alpha] \mathrm{B}^{0}=-247.9\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.84(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}$, 2H), $7.46-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.97$ (dd, $J=8.7,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}$, $6 \mathrm{H}), 1.63(\mathrm{~s}, 6 \mathrm{H}), 1.09(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 151.5(\mathrm{t}, J=7.1 \mathrm{~Hz}), 144.2(\mathrm{t}$,
$J=2.5 \mathrm{~Hz}), 133.8,132.8,132.3,131.4,130.7,129.2,128.1,127.4,127.1,127.1,126.5(\mathrm{t}, J=$ $2.1 \mathrm{~Hz}), 125.8,125.6,124.8,124.7,124.0,57.7(\mathrm{t}, J=14.6 \mathrm{~Hz}), 30.0(\mathrm{t}, J=6.7 \mathrm{~Hz}), 29.0(\mathrm{t}$, $J=5.3 \mathrm{~Hz}$), $18.9 \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 171.7 \mathrm{ppm}$. IR (ATR): $\tilde{v}=3056,2968$, 1712, 1599, 1503, 1460, 1423, 1361, 1329, 1263, 1230, 1203, 1179, 1133, 1101, 1089, 1031, 999, 942, 911, 885, 859, 817, 768, 748, 703, 631, 592, 538, 477. HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{48} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$: 741.2794, found: 741.2801.

Representative Procedure B for ortho-Substituted Aniline-derived Cyclodiphosphazanes

Note: This procedure, based on a report by Schulz, ${ }^{11}$ reacts a deprotonated silylamine with PCl_{3} to form the intermediate dichlorocyclophosphazane, eliminating TMSCI (which can be removed in vacuo) and lithium chloride, which does not interfere in the subsequent cyclisation with the chiral diol. It is recommended over the procedure described on page S11, which requires purification of the sensitive dichlorocyclophosphazane. An isolated silylamine is used in the original synthesis. However, we found that the procedure also works well for these ortho-substituted anilines if the silylamine is simply made in situ by deprotonation with n-BuLi and reaction with TMSCI, avoiding purification of this often moisture-sensitive compound.

Cyclophosphazane SI-L22. 2-Phenylaniline ($1.75 \mathrm{~g}, 10.0 \mathrm{mmol}$) was dissolved in THF (50
 mL) and the solution cooled to $-78{ }^{\circ} \mathrm{C}$. n-Butyllithium ($7.0 \mathrm{~mL}, 10.2 \mathrm{mmol}$, 1.6 M in hexanes) was added and the solution was stirred at the same temperature for 20 min . TMSCI ($1.3 \mathrm{~mL}, 10.5 \mathrm{mmol}$) was added and the solution was stirred for 30 min . n-Butyllithium ($7.0 \mathrm{~mL}, 10.2 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added and the solution was stirred for a further 20 min . In a separate Schlenk flask, $\mathrm{PCl}_{3}(0.87 \mathrm{~mL}, 10.0 \mathrm{mmol})$ was dissolved in THF (25 mL) and the solution was cooled to $-78^{\circ} \mathrm{C}$. The cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of lithium silylamide was transferred rapidly by cannula to the PCl_{3} solution. The resulting orange solution was stirred at the same temperature for 5 min , then allowed to warm to rt and stirred for 1 hour, typically turning light yellow over time. The solvent and volatiles were removed in vacuo using a low vacuum pump attached to the Schlenk flask through a liquid nitrogen trap. Following evaporation to dryness, (R) - $\mathrm{BINOL}(1.43 \mathrm{~g}, 5.0 \mathrm{mmol})$ was added to the flask. Toluene $(70 \mathrm{~mL})$ and triethylamine (7.0 $\mathrm{mL}, 50 \mathrm{mmol}$) were added, the flask was transferred to a pre-heated oil bath at $130^{\circ} \mathrm{C}$ and the mixture refluxed overnight. The reaction was allowed to cool to rt and filtered through SiO_{2} (washed with toluene). The solvent was evaporated under reduced pressure to give a fluffy light yellow solid. Purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $98: 2$ to 96:4) gave a fluffy off-white solid (1.39 g). Re-purification by flash chromatography (SiO_{2}, hexane/dichloromethane 9:2 to to $3: 1$) gave the product as a white solid ($633 \mathrm{mg}, 19 \%$ yield). $[\alpha] 0^{30}=-248\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=7.77(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.32(\mathrm{~m}$,

10H), 7.31-7.26 (m, 4H), 7.26-7.21 (m, 2H), 7.09 (dd, $J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.96 (td, $J=7.5$, $1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.93-6.90 (m, 2H), 6.73 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.58$ (td, $J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.93$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=151.9(\mathrm{t}, J=6.5 \mathrm{~Hz}), 139.7,138.3(\mathrm{t}, J=8.5 \mathrm{~Hz})$, $134.8,134.4,131.1,130.8,130.3(t, J=3.0 \mathrm{~Hz})$, 129.2, 129.0, 128.4, 128.2, 128.1, 126.9, $126.0,125.2,125.09(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}), 123.9,123.7,121.1(\mathrm{t}, J=6.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $\delta=175.0$ (s); IR (ATR): $\tilde{v}=3053,3019,1592,1477,1434,1269,1205,1191,1070,950,903$, 818, 782, 749, 697, 685, 641, 598, 491; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{44} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}\right]^{+}$ 681.18602, found 681.18553.

Notes:

1. Cyclophosphazanes in general are acid-sensitive, often streaking on TLC plates and decomposing in CDCl_{3}. For this reason $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ or $\mathrm{C}_{6} \mathrm{D}_{6}$ were usually used as NMR solvents.
2. None of the cyclophosphazanes prepared for this project were air-sensitive.
3. The ortho-substituted aniline-derived BINOL cyclodiphosphazanes proved sensitive to silica and this instability increased with larger o-aryl substituents such as 2 -naphthyl and 2,6-dimethylphenyl, though the octahydro-BINOL analogues were more stable. This class of cyclophosphazanes typically required two flash columns to obtain pure and the low yields reflect loss of material and their propensity to form phosphoramidites as a side-product during the cyclisation step, ${ }^{4}$ rather than the method of dichlorophosphazane synthesis, which typically achieved $>95 \%$ purity as described below.
4. The purity of the intermediate dichlorocyclophosphazanes was checked by ${ }^{31} \mathrm{P}$ NMR spectroscopy in degassed, anhydrous d_{8} THF. It is pivotal that this intermediate is obtained in high purity, otherwise the subsequent cyclisation will likely fail. Though the ortho-aryl-derived dichloro intermediates were fairly stable, likely due to steric shielding, others were found to be air-sensitive and in some cases pyrophoric. Care should therefore be taken when handling them.

Cyclophosphazane SI-L23. Prepared according to representative procedure B. Purification
 by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/dichloromethane $6: 1$ to $\left.4: 1\right)$ gave product SI-L23 as a white solid ($47 \mathrm{mg}, 5 \%$ yield). $[\alpha] \mathrm{E}^{20}=-151$ ($\mathrm{C}=0.1$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 8 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 4 \mathrm{H})$, 7.01-6.96 (m, 2H), 6.94-6.89 (m, 2H), $6.85(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33-6.26(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ Note: due to the complexity of the spectrum, a simple list of peaks without couplings is given. $\delta=151.9,151.8,151.1,150.9,138.7(0), 138.6(7), 138.6(4), 138.6(1), 137.8,137.7,137.6$,
137.5, 136.4, 136.3, 136.2, 136.1, 135.7(9), 135.7(6), 133.5, 133.1(8), 133.1(5), 132.4, 130.1, $130.0,129.8(7), 129.8(5), 129.5,129.4,129.2(4), 129.2(0), 128.7(9), 128.7(7), 128.4,128.2$, $127.8,127.7,127.5,127.3,126.9,126.7,126.2,125.7,125.3,125.2,125.1,124.6,124.5$, 124.4(1), 124.3(8), 124.1, 123.8, 123.8, 123.3(7), 123.3(2), 123.2(8), 122.6, 122.2, 119.1(1), 119.0(7), 119.0(2), 118.9(9), 17.7(2), 17.6(8); ${ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=179.9(\mathrm{~d}, J=36.0 \mathrm{~Hz})$, 177.0 (d, J=36.0 Hz); IR (ATR): $\tilde{v}=3053,3016,1592,1476,1433,1268,1233,1197,1091$, 957, 904, 746, 698, 643, 597, 492; HRMS (ESI ${ }^{+}$, m/z) calculated for $\left[\mathrm{C}_{45} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}\right]^{+}$ 695.20120, found 695.20118.

Cyclophosphazane SI-L24. Prepared according to representative procedure B. Purification
 by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/dichloromethane $\left.8: 1\right)$ then (SiO_{2}, hexane/ethyl acetate 96:4) gave product $\mathrm{SI}-\mathrm{L} 24$ as a white solid $\left(31 \mathrm{mg}, 3 \%\right.$ yield). $[\alpha] \mathrm{D}^{20}=-246\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $\delta=7.72-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 8 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30$ (app. br. s, 2H), 7.18-7.13 (m, 4H), 7.00 (td, $J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{td}, J=7.7$,
 $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=152.7(\mathrm{t}, J=6.3 \mathrm{~Hz}), 139.8,137.2(\mathrm{t}, J=4.3 \mathrm{~Hz}), 136.1,133.2,131.3,131.0,130.7$, 130.2, 129.1, 128.9, 128.3, 128.0, 127.4, 126.0, 125.8, 125.4 (t, $J=1.7 \mathrm{~Hz}$), 125.2, 125.0, $123.54(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}), 19.0 ;{ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=180.9(\mathrm{~s}) ; \mathrm{IR}(\mathrm{ATR}): \tilde{\mathrm{v}}=3053,3017$, 2921, 1594, 1477, 1432, 1266, 1231, 1207, 1097, 942, 905, 765, 744, 698, 592, 493; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{46} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}\right]^{+} 709.21722$, found 709.21683 .

Cyclophosphazane SI-L25. Prepared according to representative procedure B. Purification
 by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $98: 2$ to $96: 4$ to 92:8) and subsequent trituration with ethyl acetate gave product $\mathbf{S I}$-L25 as a white solid ($50 \mathrm{mg}, 3 \%$ yield). $[\alpha] \mathrm{B}^{0}=-245\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H})$, 7.28-7.19 (m, 9H), 7.18-7.10 (m, 3H), 6.95-6.90 (m, 4H), $6.72(\mathrm{~d}, ~ J=$ $3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.07$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.96$ (dd, $J=8.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}(101 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=156.7,152.6(\mathrm{t}, J=6.5 \mathrm{~Hz}), 140.0,136.7,134.8,131.6(\mathrm{t}, J=9.0 \mathrm{~Hz}), 131.2,130.2$, 129.2, 128.9, 128.1, 127.1, 126.5, 125.6, 125.1, 124.3, $123.5(t, J=5.5 \mathrm{~Hz}), 116.1,113.9$,
 1205, 1039, 949, 898, 850, 815, 781, 751, 679, 616; LRMS m/z (EI $)$ [M] ${ }^{+} 740 ;$ HRMS (EI+, m / z) calculated for $\left[\mathrm{C}_{46} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2}\right]^{+} 740.19866$, found 740.19939 .

Cyclophosphazane SI-L26. Prepared according to representative procedure B. Purification
 by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $98: 2$ to $96: 4$ to 92:8) gave product SI-L26 as an off-white solid ($250 \mathrm{mg}, 16 \%$ yield). $[\alpha] \mathrm{b}^{0}=-377\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.54(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.51 (d, J $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.42$ (dd, $J=8.5,3.0 \mathrm{~Hz}, 4 \mathrm{H})$, 6.32 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.28 (s, 6H), 2.54-2.42 (m, 6H), 2.11-2.03 (m, 2H), 1.54-1.45 (m, 8H); ${ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=156.7,151.0(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 140.3$, 136.9, 136.5, 133.1, 132.0 (t, $J=8.5 \mathrm{~Hz}$), 131.1, 130.2 (t, $J=2.5 \mathrm{~Hz}$), 129.2, 129.0, 123.7 (t, $J=4.5$ Hz), 121.4, 115.5, 113.9, 55.1, 30.0, 28.2, 23.7, 23.3; ${ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=174.7$ (s); IR (ATR): $\tilde{v}=3056,3025,2931,2832,1597,1481,1466,1268,1205,1038,949,897,849,815$, 781, 756, 679, 616; LRMS m/z (EI+) [M] ${ }^{+} 748$; HRMS (EI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{46} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2}\right]^{+}$ 748.26127 , found 748.26199 .

Cyclophosphazane SI-L27. Prepared according to representative procedure B. Purification
 by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $95: 5$ to $9: 1$ to $\left.4: 1\right)$ then $\left(\mathrm{SiO}_{2}\right.$, hexane/toluene $4: 1$ to $3: 1$ to $2: 1$) gave product $\mathrm{SI}-\mathrm{L} 27$ as an off-white solid ($67 \mathrm{mg}, 7 \%$ yield). $[\alpha] \mathrm{b}^{0}=-353\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}(400$ $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=7.89-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.74(\mathrm{dd}, 2 \mathrm{H}, J=7.5,2.0 \mathrm{~Hz}), 7.69$ (dd, 2H, $J=8.0,1.5 \mathrm{~Hz}$), 7.64 (dd, $2 \mathrm{H}, J=8.5,1.5 \mathrm{~Hz}$), $7.33-7.25(\mathrm{~m}$, $4 \mathrm{H}), 7.07$ (dd, 2H, $J=7.5,1.5 \mathrm{~Hz}$), 6.80 (td, 2H, $J=7.5,1.5 \mathrm{~Hz}), 6.68$ (td, $2 \mathrm{H}, J=7.5,1.5 \mathrm{~Hz}), 6.46(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.42(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $6.36(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 2.50-2.38(\mathrm{~m}, 6 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=149.4(\mathrm{t}, J=6.3 \mathrm{~Hz}), 137.9(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}), 136.6,135.2,133.3,133.2,132.2$, 131.9, 129.7, 129.6 (t, $J=2.0 \mathrm{~Hz}$), 128.2, 127.7, 127.4, 127.2, 126.9, 126.7, 125.3, 125.2, 122.1, 119.8, 119.7(4), 119.6(8), 28.7, 26.9, 22.5, 22.1; ${ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=171.7$ (s); IR (ATR): $\tilde{v}=3052,2962,2918,2855,1589,1489,1464,1442,1261,1214,1054,1024,937$, 892, 811, 783, 750; HRMS (ESI ${ }^{+}$, m/z) calculated for $\left[\mathrm{C}_{52} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}\right]^{+} 789.27943$, found 789.27916 .

Note: synthesis of the related BINOL derivative was attempted but the product could not be isolated.

Cyclophosphazane SI-L28. Prepared according to representative procedure B. Purification
 by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/dichloromethane 4:1) then $\left(\mathrm{SiO}_{2}\right.$, hexane/dichloromethane 6:1) gave product $\mathbf{S I - L 2 8}$ as an off-white solid ($82 \mathrm{mg}, 6 \%$ yield). $[\alpha] \mathrm{b}^{0}=-307\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=$ $7.50(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.20-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.02$ (d, 2H, J=8.0 Hz), 6.93-6.82 (m, 6H), 6.79 (d, 2H, J = 8.0 Hz), 6.65-6.59
(m, 2H), 3.28-3.16 (m, 2H), 1.22 (d, 6H, J=6.5 Hz), 0.71 (d, 2H, J=6.5 Hz); ${ }^{13} \mathrm{C}(101 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=152.3(\mathrm{t}, J=7.0 \mathrm{~Hz}), 141.5,138.7(\mathrm{t}, J=9.5 \mathrm{~Hz}), 134.7,131.3,129.7,128.2,127.1$, 126.7, 126.6, 126.5, 125.8, 125.2, 124.7, 124.0, 122.7 (t, $J=9.0 \mathrm{~Hz}), 28.1(\mathrm{t}, J=5.5 \mathrm{~Hz}), 25.6$ ($\mathrm{t}, J=3.5 \mathrm{~Hz}$), 23.2; ${ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=175.3(\mathrm{~s}) ; \operatorname{IR}(\mathrm{ATR}): \tilde{\mathrm{v}}=3057,2923,2856,1593$, 1442, 1240, 1210, 949, 897, 815, 788, 747; LRMS m/z (EI+) [M] ${ }^{+} 612 ;$ HRMS (EI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}\right]^{+} 612.20913$, found 612.20956.

Cyclophosphazane SI-L29. Prepared according to representative procedure B. Purification
 by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/dichloromethane 9:1 to 6:1) gave product SI-L29 as an off-white solid ($165 \mathrm{mg}, 13 \%$ yield). $[\alpha] \mathrm{B}^{0}=-181$ ($\mathrm{C}=$ $\left.0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.09(\mathrm{dd}, 2 \mathrm{H}, J=7.5,1.5 \mathrm{~Hz}), 6.96-$ $6.88(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{td}, 2 \mathrm{H}, J=7.5,1.5 \mathrm{~Hz}), 6.47(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.36$ (d, 2H, J= 8.5 Hz), 3.46-3.34 (m, 2H), 2.52-2.40 (m, 6H), 2.15-2.04 (m, 2H), 1.60-1.43 (m, 8H), $1.31(\mathrm{~d}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.09(\mathrm{~d}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=150.9(\mathrm{t}, J=7.0$ $\mathrm{Hz}), 141.2,139.2(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}), 136.7,133.4,131.2,129.6,126.5,126.4,124.4,122.5(\mathrm{t}, \mathrm{J}=$ $9.0 \mathrm{~Hz}), 121.3,29.8,28.4(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 28.3,25.2(\mathrm{t}, \mathrm{J}=3.0 \mathrm{~Hz}), 23.9,23.7,23.3 ;{ }^{31} \mathrm{P}(162$ $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=172.1$ (s); IR (ATR): $\tilde{v}=3022,2924,2857,1596,1487,1443,1240,1213$, 938, 894, 785, 748, 657; HRMS (ESI', m/z) calculated for $\left[\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}\right]^{+}$621.2791, found 621.2794.

Cyclophosphazane SI-L30. Prepared according to representative procedure B. Purification
 by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $98: 2$ to $\left.96: 4\right)$ then (SiO_{2}, hexane/dichloromethane 6:1) gave product $\mathrm{SI}-\mathrm{L} 30$ as an off-white solid ($60 \mathrm{mg}, 7 \%$ yield). $[\alpha] \mathrm{b}^{20}=-304$ ($\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ $\delta=7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.81$ (app. pent. d, 7.5, 2.0 $\mathrm{Hz}, 4 \mathrm{H}), 6.73(\mathrm{dd}, J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, ~ J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.52-2.39(\mathrm{~m}, 6 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 8 \mathrm{H}), 1.78(\mathrm{~s}, 6 \mathrm{H})$, $1.56-1.44(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=150.8(\mathrm{t}, J=7.0 \mathrm{~Hz}), 139.7(\mathrm{t}, J=9.0 \mathrm{~Hz}), 138.5$, 137.8 (t, $J=3.0 \mathrm{~Hz}$), 137.6, 136.5, 133.3, 132.4, 131.2, 130.6, 129.2, 127.7, 127.5, 123.5, 121.3, $120.4(\mathrm{t}, J=7.3 \mathrm{~Hz}), 29.8,28.2,23.7,23.3,21.6(\mathrm{t}, J=3.0 \mathrm{~Hz}), 21.0(\mathrm{t}, J=2.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ ($162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta=172.2$ (s); IR (ATR): $\tilde{v}=3018,2921,2855,1590,1462,1440,1244,1214$, 1056, 937, 894, 749;LRMS m/z (EI+) [M] ${ }^{+} 744$; HRMS (El ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{48} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}\right]^{+}$ 744.30325 , found 744.30346 .

Note: synthesis of the related BINOL derivative was attempted but the product could not be isolated.

Synthesis of Phosphoramidite Ligands

(\boldsymbol{R})-VAPhos-NEt ${ }_{2}$ L17. (R)-VAPOL ($470 \mathrm{mg}, 0.873 \mathrm{mmol}$) was added to an oven-dried
 reaction tube under argon and dissolved in toluene (4.2 mL). Tris(diethylamino)phosphine ($0.24 \mathrm{~mL}, 0.873 \mathrm{mmol}$) was added and the tube was sealed and stirred at $110^{\circ} \mathrm{C}$ for 16 h . After cooling to room temperature, the solution was concentrated in vacuo to give an orange oil. Purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 98:2) gave phosphoramidite $\mathbf{L 1 7}$ as a white solid (559 mg , quant.). $[\alpha] \mathrm{b}^{\circ}=-580$ ($\mathrm{c}=0.1$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=10.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.69$ ($\mathrm{m}, 2 \mathrm{H}$), 7.65-7.60 (m, 1H), 7.56-7.38 (m, 9H), 6.93-6.87 (m, 2H), 6.84-6.80 (m, 2H), 6.79-6.73 (m, 6H), 2.89 (ddq, $J=14.0,9.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.73-2.59(\mathrm{~m}, 2 \mathrm{H}), 0.66(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) Note: due to the complexity of the spectrum, a simple list of peaks without couplings (except for the alkyl signals) is given. $\delta=150.9,150.8(1), 150.7(6), 142.0(2)$, $142.0(0), 141.9,140.8,140.7,135.0,134.8,134.0,133.6,130.7,130.5,130.0(3), 130.0(2)$, 129.4(7), 129.4(2), 129.3(5), 128.8(9), 128.8(4), 128.7, 128.2, 127.9, 127.7, 127.5, 127.3, 127.2, 127.1, 126.9, 126.8, 126.7(2), 126.6(7), 126.2, 122.8(1), 122.7(9), 122.7, 39.6 (d, J= $22.3 \mathrm{~Hz}), 14.8(\mathrm{~d}, J=3.4 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=143.3(\mathrm{~s}) ;$ IR (ATR): $\tilde{v}=3051,2967$, 1594, 1556, 1369, 1327, 1173, 1124, 1016, 974, 874, 812, 741, 696, 497; LRMS m/z (EI+) [M] ${ }^{+}$ 639; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{44} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{P}\right]^{+}$640.23942, found 640.23999.

Notes:

1. L17 has not shown evidence of air-instability but is stored in the freezer at $-20^{\circ} \mathrm{C}$ as a precaution since the related N, N-dimethyl derivative $\mathbf{L 1 6}$ appears to be slightly airsensitive. Furthermore, rotary evaporation was performed at $30^{\circ} \mathrm{C}$ for this and similar VAPOL/VANOL phosphoramidites.
2. (R)-VAPOL (CAS 147702-16-7) was typically bought from Sigma-Aldrich and determined as 99.8% ee by chiral HPLC.
3. The reaction was performed in a crimp-capped vial as this was more convenient on small scale. However, very similar reactions on BINOL derivatives have been performed under reflux and it can be expected that this would also work well for this substrate.
4. Once it solidifies after purification and evaporation of the solvent, L17 cannot readily be dissolved in hexane or ethyl acetate. If the isolated solid needs to be re-dissolved, toluene is more appropriate as it is well-soluble in this solvent.

Phosphoramidite L15. (S)-VANOL ($30 \mathrm{mg}, 0.068 \mathrm{mmol}$) was added to an oven-dried reaction
 tube under argon and dissolved in toluene (0.40 mL). Tris(diethylamino)phosphine ($19 \mu \mathrm{~L}, 0.068 \mathrm{mmol}$) was added and the tube was sealed and stirred at $110^{\circ} \mathrm{C}$ for 16 h . After cooling to room temperature, the solution was concentrated in vacuo. Purification by flash chromatography (SiO_{2}, hexane/ethyl acetate 97:3) gave phosphoramidite $\mathrm{L15}$ as a white solid (42 mg , quant.). $[\alpha]^{30}=289\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=8.64(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.56 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.40-$ 7.24 (m, 5H), 6.92-6.86 (m, 2H), 6.76-6.65 (m, 8H), 3.15 (ddt, J=16.0, 14.0, 7.0 Hz, 2H), 2.66 (ddt, $J=18.5,14.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ Note: due to the complexity of the spectrum, a simple list of peaks without couplings (except for the alkyl signals) is given $\delta=149.0,148.9,148.5(7), 148.5(6), 141.4(2), 141.4(1), 141.2(4), 141.2(3)$, 141.1(2), 141.0(9), 134.9, 134.6, 129.7, 129.6, 128.4, 128.2, 127.9, 127.6(2), 127.6(0), 127.5, 127.2, 127.1, 126.7, 126.6, 126.5, 126.2, 126.1, 125.7(4), 125.7(0), 125.0, 124.3(3), 124.3(1), 123.7, 122.8, $39.1(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 14.9(\mathrm{~d}, J=3.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=152.0(\mathrm{~s})$; IR (ATR): $\tilde{v}=3051,2967,2928,2869,1563,1487,1360,1174,1086,1018,884,819,748$, 719, 696, 496; LRMS m/z (EI+) [M] ${ }^{+}$539; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{P}\right]^{+}$ 540.20855 , found 540.20869.

Note: synthesis of the related dimethyl derivative was attempted, but it proved too air-sensitive to be isolated using column chromatography. It was not further pursued due to the moderate ee obtained in the nickel-catalysed reductive coupling using L15.

Phosphoramidite L16. (S)-VAPOL ($25 \mathrm{mg}, 0.046 \mathrm{mmol}$) was added to an oven-dried reaction
 tube under argon and dissolved in toluene (0.27 mL). Tris(dimethylamino)phosphine ($8.5 \mu \mathrm{~L}, 0.046 \mathrm{mmol}$) was added and the tube was sealed and stirred at $110^{\circ} \mathrm{C}$ for 15 h . After cooling to room temperature, the solution was concentrated in vacuo. Purification by flash chromatography (SiO_{2}, hexane/ethyl acetate $97: 3$) gave phosphoramidite L 16 as a white solid ($28 \mathrm{mg}, 99 \%$ yield). $[\alpha]^{30}=566\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=10.18-10.14$ ($\mathrm{m}, 2 \mathrm{H}$), 7.69 (dd, 2H, J = 8.0, 1.5 Hz), 7.62-7.56 (m, 1H), 7.53-7.35 (m, 9H), 6.96-6.86 (m, $2 \mathrm{H}), 6.83-6.72(\mathrm{~m}, 8 \mathrm{H}), 2.09(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) Note: due to the complexity of the spectrum, a simple list of peaks without couplings (except for the Me signals) is given. $\delta=150.6,150.5(3), 150.5(0)$, 141.9(5), 141.9(3), 141.8, 140.8, 140.7, 135.1, 135.0, 134.0, 133.6, 130.5, 130.4, 130.0(3), 129.9(9), 129.5, 129.4, 129.3, 129.0, 128.9, 128.8, 128.7, 128.6, 127.6, 127.4, 127.1, 126.9, 126.8, 126.7(4), 126.6(8), 126.4, 122.8(9), 122.8(6), 122.6, $35.4(\mathrm{~d}, J=21.1 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=143.0(\mathrm{~s}) ; \operatorname{IR}(\mathrm{ATR}): \tilde{\mathrm{v}}=3051,2924,2844,1595$,

1556, 1485, 1383, 1327, 1231, 1126, 1018, 974, 875, 812, 741, 695, 496; LRMS m/z (EI+) [M] ${ }^{+}$ 611; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{42} \mathrm{H}_{3} \mathrm{NO}_{2} \mathrm{P}\right]^{+}$612.20866, found 612.20869.

Representative Procedure C for Phosphoramidite Synthesis from PCl_{3} and Amines

Phosphoramidite SI-L31. $\mathrm{PCl}_{3}(8 \mu \mathrm{~L}, 0.093 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ was added to a flame-
 dried Schlenk flask under argon. The resulting solution was cooled to $0^{\circ} \mathrm{C}$ and triethylamine ($65 \mu \mathrm{~L}, 0.464 \mathrm{mmol}$) was added. The cloudy solution was stirred for 30 min and then morpholine ($8 \mu \mathrm{~L}, 0.093 \mathrm{mmol}$) was added. The resulting mixture was stirred at it for $4 \mathrm{~h} .(R)$-VAPOL ($50 \mathrm{mg}, 0.093 \mathrm{mmol}$) was then added and the resulting suspension was stirred for 15 h at rt , then filtered through silica (washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvent was evaporated in vacuo to give a yellow solid. Purification by chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $95: 5$ to $9: 1$ gave phosphoramidite SI-L31 as a yellow solid ($44 \mathrm{mg}, 73 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=$ 10.18-10.11 (m, 2H), 7.74-7.67 (m, 2H), 7.66-7.60 (m, 1H), 7.54-7.39 (m, 9H), 6.93-6.86 (m, 2 H), 6.79-6.73 (m, 8H), 3.11-3.03 (m, 2H), 2.96-2.82 (m, 4H), 2.54 (app. br. s, 2H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) Note: due to the complexity of the spectrum, a simple list of peaks without couplings (except for the alkyl signals) is given. $\delta=150.4,150.2,150.1,142.0(0), 141.9(9)$, 141.7, 140.7, 140.5, 135.1, 134.9, 134.0, 133.6, 130.5, 130.4, 130.0, 129.9, 129.4, 129.2, 129.0, 128.9, 128.1(8), 128.1(6), 127.9(1), 127.8(8), 127.6, 127.4(2), 127.3(8), 127.3(4), 127.2, 126.9(9), 126.9(6), 126.8, 126.7, 126.5, 122.8(0), 122.7(8), 122.5, 67.6 (d, $J=5.0 \mathrm{~Hz}$), 44.9 (d, $J=18.0 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=143.4$ (s); IR (ATR): $\tilde{\mathrm{v}}=3052,2965,2846,1592$, 1557, 1438, 1371, 1328, 1231, 1125, 1016, 961, 874, 812, 742, 696, 497; LRMS m/z (EI+) [M] ${ }^{+}$ 653; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{44} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{P}\right]^{+} 654.21945$, found 654.21926 .

Phosphoramidite SI-L32. Prepared according to representative procedure C. Purification by
 flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 98:2) gave phosphoramidite SI-L32 as an off-white solid ($61 \mathrm{mg}, 94 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=10.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.73-7.67 (m, 3H), 7.55-7.39 (m, 9H), 6.92-6.87 (m, 2H), 6.84-6.80 (m, 2H), 6.79-6.73 (m, 6H), 2.55 (ddd, $J=14.0,9.5,8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.39 (app. br. s, 2H), 1.60 (app. hept., $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 0.86 (d, $J=6.5 \mathrm{~Hz}, 6 \mathrm{H}$), 0.66 (d, $J=6.5 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) Note: due to the complexity of the spectrum, a simple list of peaks without couplings is given for the aryl and methyl carbons. $\delta=152.2(2), 151.1$ (8), 150.6, 141.9, 140.8, 140.6, 135.0(2), 134.9(9), 133.9, 133.6, 130.6, 130.5, 130.1, 130.0, 129.7, 129.6, 129.3, 129.0, 128.8, 128.6(4), 128.6(2), 127.9, 127.6, 127.4(0), 127.3(8), 127.1(1), 127.0(9), 126.9, 126.8(3), 126.7(5), 126.6(9), 126.0, 122.8(2), 122.8(1), 56.4 (d, $J=16.0 \mathrm{~Hz}), 28.1$ (d, $J=5.0$ $\mathrm{Hz})$, 20.6(3), 20.6(2); ${ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=147.4(\mathrm{~s}) ; \operatorname{IR}(\mathrm{ATR}): \tilde{\mathrm{v}}=3052,2956,2868,1595$,

1556, 1371, 1233, 1011, 874, 813, 748, 696, 497; LRMS m/z (EI+) [M] ${ }^{+}$695; HRMS (ESI ${ }^{+}$, m/z) calculated for $\left[\mathrm{C}_{48} \mathrm{H}_{43} \mathrm{NO}_{2} \mathrm{P}\right]^{+}$696.30223, found 696.30259.

Phosphoramidite SI-L33. Prepared according to representative procedure C. Purification by
 flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 98:2) gave phosphoramidite SI-L33 as an off-white solid ($30 \mathrm{mg}, 49 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta=10.09-10.02(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.44$ $(\mathrm{m}, 1 \mathrm{H}), 7.37-7.20(\mathrm{~m}, 9 \mathrm{H}), 6.73-6.67(\mathrm{~m}, 2 \mathrm{H})$, 6.62-6.53 (m, 8H), 2.732.61 (m, 2H), 2.53 (app. br. s, 2H), 1.24-1.14 (m, 2H), 1.14-1.07 (m, 4H), 1.04-0.93 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) Note: due to the complexity of the spectrum, a simple list of peaks without couplings is given except for alkyl carbons. $\delta=$ $149.9,149.8,149.7,140.8(5), 140.8(3), 140.7,139.7,139.5,133.8,133.7,132.8,132.4,129.5$, 129.3, 128.8(2), 128.8(0), 128.3(1), 128.2(5), 128.1, 127.8, 127.6, 127.5, 127.3, 127.2, 127.0, 126.7, 126.5, 126.4, 126.1, 125.9, 125.7, 125.6, 125.5, 125.1, 121.6(4), 121.6(1), 121.5, 46.0 (d, $J=20.5 \mathrm{~Hz}$), $29.9(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 25.7 ;{ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=143.7(\mathrm{~s}) ;$ IR (ATR): $\tilde{v}=$ 3052, 2955, 2866, 1595, 1556, 1371, 1327, 1232, 1047, 1012, 887, 812, 748, 696, 496; LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{El}{ }^{+}\right)[\mathrm{M}]^{+}$665; HRMS (ESI, m / z) calculated for $\left[\mathrm{C}_{46} \mathrm{H}_{36} \mathrm{NO}_{2} \mathrm{PNa}\right]^{+} 688.23759$, found 688.23759.

Phosphoramidite SI-L34. Prepared according to representative procedure C. Purification by
 flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 98:2) gave phosphoramidite SI-L34 as a light yellow solid ($61 \mathrm{mg}, 98 \%$ yield). $[\alpha]^{30}=$ $-804\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) Note: isopropyl signals were very broad, likely due to restricted rotation. $\delta=10.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 10.22$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62-7.57$ (m, 1H), 7.56-7.38 (m, 9H), 6.92-6.81 (m, 4H), 6.78-6.71 (m, 6H), 3.26 (br. s, 2 H), 1.24 (br. s, 12 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) Note: due to the complexity of the spectrum, a simple list of peaks without couplings is given. The isopropyl carbon peaks were unusually very broad. $\delta=151.4,151.2,151.1,141.9(9), 141.9(8), 140.9,140.7,135.0,134.7,133.9$, $133.4,131.0,130.6,130.1,130.0,129.6,129.5,129.4,129.3,128.7(3), 128.7(1), 128.6$, 128.4(9), 128.4(7), 128.2, 127.9, 127.7, 127.6(2), 127.6(0), 127.5, 127.2, 127.1, 127.0, 126.9, 126.7, 126.6, 125.8, 122.7(3), 122.7(1), 122.6, 45.6 (br. s), 25.8 (br. s); ${ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $=146.3$ (s); IR (ATR): $\tilde{v}=3052,2967,2930,1592,1563,1487,1364,1173,1122,1023,975$, 876, 748, 696, 496; LRMS m/z (EI+) [M] ${ }^{+} 667$; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{46} \mathrm{H}_{38} \mathrm{NO}_{2} \mathrm{P}\right]^{+}$ 668.27158 , found 668.27129 .

Phosphoramidite SI-L35. Prepared according to representative procedure C. Purification by
 flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 98:2) gave phosphoramidite SI-L35 as a white solid ($70 \mathrm{mg}, 95 \%$ yield). $[\alpha] \mathrm{b}^{0}=-281$ ($\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) Note: \square-methylbenzylamine peaks were very broad, likely due to restricted rotation. $\delta=10.18$ (d, $J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.63$ $(\mathrm{m}, 2 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.00-$ 6.61 (m, 20H), 4.44 (br. s, 2H), 1.68 (br. s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) Note: due to the complexity of the spectrum, a simple list of peaks without couplings is given. $\delta=150.9,150.8$, 142.2, 142.1, 141.9(7), 141.9(6), 140.8, 140.6, 135.0, 134.6(9), 134.6(8), 133.9, 133.5, 130.9, $130.4,130.3,130.0,129.4,128.9,128.8,128.7,128.6,128.5(3)$, 128.5(0), 128.4(8), 127.8, 127.7, 127.5, 127.3, 127.1, 127.0, 126.9, 126.8, 126.7(0), 126.6(6), 126.6(3), 126.5, 125.6, 122.6(3), 122.6(1), 55.5, 55.4; ${ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=148.7$ (s); IR (ATR): $\tilde{\mathrm{v}}=3052,2965$, 2929, 1595, 1556, 1488, 1422, 1371, 1232, 1125, 1017, 875, 812, 742, 695, 497; LRMS m/z (El+) [M] ${ }^{+}$791; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{56} \mathrm{H}_{43} \mathrm{NO}_{2} \mathrm{P}\right]^{+} 792.3023$, found 792.3026 .

Note: use of the opposite (S, S)-amine enantiomer with (R)-VAPOL was attempted twice using this procedure but failed to give any product.

Phosphoramidite SI-L36. 2,2,6,6-Tetramethylpiperidine ($19.5 \mu \mathrm{~L}, 0.116 \mathrm{mmol}$) was added to
 a Schlenk flask under argon. THF (0.58 mL) was added and the solution was cooled to $0^{\circ} \mathrm{C} . n$-Butyllithium ($70 \mu \mathrm{~L}, 0.116 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added dropwise and stirred for 30 mins. $\mathrm{PCl}_{3}(30 \mu \mathrm{~L}, 0.35 \mathrm{mmol})$ in THF (0.3 mL) was added in one portion and the reaction mixture was stirred at rt for 1 hour. Excess PCl_{3} was removed in vacuo at room temperature using a low vacuum pump attached to the Schlenk flask through an intermediate liquid nitrogen trap. Dry THF (0.87 mL) was added to the residue and stirred for 10 min at rt . The mixture was cooled to $0^{\circ} \mathrm{C}$. A solution of (R)-VAPOL ($50 \mathrm{mg}, 0.093 \mathrm{mmol}$) and triethylamine ($40 \mu \mathrm{~L}, 0.283$ mmol) in dry THF (1 mL) was added. The reaction was then warmed to rt and stirred overnight. The reaction mixture was filtered through Celite (washed with toluene) and the solvent was evaporated. Purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 98:2) gave phosphoramidite SI-L36 as a white solid ($60 \mathrm{mg}, 91 \%$ yield). $[\alpha] \mathrm{D}^{0}=-618\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta=10.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.72(\mathrm{~m}$, $2 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.39(\mathrm{~m}, 8 \mathrm{H}), 6.91-6.84(\mathrm{~m}, 4 \mathrm{H}), 6.79-6.71(\mathrm{~m}, 6 \mathrm{H}), 1.91(\mathrm{~d}, \mathrm{~J}=$ $5.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.63$ (d, J = $8.0 \mathrm{~Hz}, 6 \mathrm{H}$), 1.53-1.34 (m, 3H), 1.13-1.05 (m, 1H), 0.96 (s, 3H), 0.91$0.84(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) Note: due to the complexity of the spectrum, a simple list of peaks without couplings is given. $\delta=152.5,152.4,151.3,151.2,141.4(2), 141.4(0)$,
141.2(6), 141.2(5), 140.0, 139.6, 133.8(8), 133.8(7), 133.6(2), 133.6(1), 132.7, 132.5, 129.8, 129.6, 129.5, 129.2, 129.1, 129.0, 128.4, 128.1, 127.7, 127.6(1), 127.5(9), 127.5(0), 127.4(7), 126.6, 126.5, 125.8, 125.7, 125.5(3), 125.5(1), 125.4(9), 125.4(7), 124.0, 121.7(3), 121.7(0), $121.6(7), 56.4,56.0,55.8,55.6,41.2,40.9,40.8,35.1,34.6,31.4,31.3,31.2,28.7,16.2 ;{ }^{31} \mathrm{P}$ ($162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta=155.9$ (s); IR (ATR): $\tilde{\mathrm{v}}=3051,2962,2927,1595,1565,1422,1369,1328$, 1231, 1126, 1018, 874, 811, 747, 695, 496; LRMS m/z (El+) [M] ${ }^{+}$707; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{49} \mathrm{H}_{43} \mathrm{NO}_{2} \mathrm{P}\right]^{+} 708.30294$, found 708.30259 .

Phosphoramidite SI-L37. Prepared according to representative procedure C. Purification by
 flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $\left.98: 2\right)$ gave phosphoramidite SI-L37 as an off-white solid ($31 \mathrm{mg}, 49 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta=10.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 10.25(\mathrm{dd}, J=8.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.54$ (dd, $J=9.0,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-$ $7.42(\mathrm{~m}, 7 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 2 \mathrm{H})$, 6.80-6.73 (m, 8H), 3.92 (app. br. s, 1H), 3.73 (app. br. s, 1H), 2.05 (d, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) Note: due to the complexity of the spectrum, a simple list of peaks without couplings is given. $\delta=150.6,150.5,150.4,142.0(1), 142.0(0)$, $141.9,140.7,140.6,138.5,138.4,135.1,135.0,134.0,133.7,130.5(3), 130.4(6), 130.0(3)$, 129.9(7), 129.4, 129.1, 128.9, 128.7, 128.5(1), 128.4(9), 128.2, 127.9, 127.6(4), 127.5(6), 127.5(1), 127.4, 127.3, 127.2, 127.0, 126.9, 126.7, 126.6, 122.9, 122.8, 122.6, 52.4, 31.8; ${ }^{31} \mathrm{P}$ ($162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta=141.1$ (s); IR (ATR): $\tilde{v}=3052,2956,2868,1595,1556,1466,1371,1232$, 1012, 874, 813, 748, 696, 498; LRMS m/z (EI+) [M] ${ }^{+}$687; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{48} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{P}\right]^{+} 688.24008$, found 688.23999 .

Phosphoramidite SI-L38. Prepared according to representative procedure C , except PCl_{3}
 was added to a solution of the amine and triethylamine with subsequent stirring for 3 h at $0{ }^{\circ} \mathrm{C}$. Purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 97:3 to 95:5) gave phosphoramidite SI-L38 as an off-white solid ($69 \mathrm{mg}, 96 \%$ yield). $[\alpha] \mathrm{D}^{30}=-600\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=10.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.15(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.82-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34$ $(\mathrm{m}, 3 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 6.93-6.78(\mathrm{~m}, 6 \mathrm{H}), 6.77-6.66(\mathrm{~m}, 7 \mathrm{H}), 6.63-6.57(\mathrm{~m}, 3 \mathrm{H}), 6.52-6.47(\mathrm{~m}$, $2 \mathrm{H}), 5.88(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ Note: due to the complexity of the spectrum, a simple list of peaks without couplings is given. $\delta=149.9,149.8,143.0,142.9$, 142.0, 141.9(7), 141.9(5), 141.9(3), 141.9(2), 141.9(1), 140.7, 140.5, 136.6(8), 136.6(5), $135.9(9)$, 135.9(8), 134.9, 134.6(7), 134.6(6), 133.9, 133.6, 131.4, 130.8, 130.7, 130.2, $130.0(9), 130.0(6), 130.0(1), 129.6,129.5,129.4(1), 129.3(7), 129.3,129.1,128.9,128.8(1)$, 128.7(9), 128.7(5), 128.7(1),128.6(5), 128.5(9), 128.4, 128.2, 127.9, 127.7, 127.6, 127.4(2), 127.3(8), 127.2, 127.1, 127.0, 126.8(2), 126.7(7), 126.7, 126.6, 126.5, 125.9, 122.6, 122.5(6),
122.5(4); ${ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=134.7$ (s); IR (ATR): $\tilde{v}=3051,1595,1555,1485,1372$, 1232, 1125, 1107, 1017, 876, 742, 695, 496; LRMS m/z (EI+) [M] ${ }^{+} 759$; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{54} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{P}\right]^{+} 760.2392$, found 760.2400 .

1.3.2 Ni-catalysed Reductive Coupling of Dienes and Aldehydes

1.3.2.1 Racemic Scope

Representative Procedure D for Virtually Racemic Diol Synthesis with L6. Ni(cod) ${ }_{2}$ (6.9 $\mathrm{mg}, 0.025 \mathrm{mmol})$ and cyclodiphosphazane ligand $\mathbf{L 6}(8.8 \mathrm{mg}, 0.012 \mathrm{mmol})$ were added to a flame-dried Schlenk flask under argon and dissolved in toluene 1.0 mL). Diene 7 ($265 \mathrm{mg}, 1.10$ mmol) was added and the mixture stirred for 5 mins. Hydrocinnamaldehyde ($134 \mathrm{mg}, 1.0$ mmol) and triethylborane ($1.2 \mathrm{~mL}, 1 \mathrm{M}$ in hexanes, 1.2 mmol) were added, the flask was sealed and the reaction stirred for 24 h at rt . The reaction mixture was quenched with sat. aq. NaHCO_{3} solution (0.5 mL) and stirred for 15 min at rt . The mixture was diluted with methyl tert-butyl ether, the organic phase was separated and the aqueous layer was extracted with methyl tertbutyl ether twice. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. Purification by flash chromatography (SiO_{2}, hexane/tert-butyl methyl ether 100:0 to 95:5) gave the diol 9a as a colourless oil ($353 \mathrm{mg}, 93 \%$ yield, $96: 4 \mathrm{dr}$).

For detailed notes and troubleshooting, please see the procedure for the enantioselective reaction (page S44).
anti-6-Methyl-1-phenyl-4-((triisopropylsilyl)oxy)hept-6-en-3-ol 9a. $R f=0.60$ (hexane/tert-
 butyl methyl ether $=95 / 5) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H})$, $7.22-7.15(\mathrm{~m}, 3 \mathrm{H}), 4.76(\mathrm{q}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dq}, J=2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.07 (ddd, $J=7.4,6.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (dt, $J=9.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.93 (ddd, $J=14.3,9.3,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.68$ (ddd, $J=13.7,9.1,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.23-2.22 (m, 2H), 1.83-1.74 (m, 2H), 1.72 (br. $\mathrm{s}, 3 \mathrm{H}), 1.07-1.04(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.4,142.2,128.6,128.5,125.9$, 113.4, 74.1, 73.8, 41.3, 32.9, 32.5, 22.9, 18.32, 18.30, 12.9. IR (ATR): $\tilde{v}=3580,3027,2942$, 2893, 2865, 1649, 1604, 1496, 1455, 1381, 1333, 1280, 1247, 1212, 1115, 1086, 1065, 1031, 1013, 998, 967, 920, 882, 805, 744, 698, 677, 583, 559, 535, 497, 467, 441, 412. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{SiNa} 399.2690[\mathrm{M}+\mathrm{Na}]^{+}$, found 399.2689.
trans-4-((tert-Butyldimethylsilyl)oxy)-6-methyl-1-phenylhept-6-en-3-ol 9b. Prepared
 according to representative procedure D . The residue was purified by flash chromatography over silica gel (hexane/tert-butyl methyl ether $=100: 0$ to 95:5) to give $\mathbf{9 b}$ as a colorless oil ($86 \mathrm{mg}, 68 \%, 95: 5 \mathrm{dr}$). $R f=0.65$ (hexane/ tert -butyl methyl ether $=95 / 5) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 4.78(\mathrm{dq}, \mathrm{J}$ $=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dq}, J=2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{ddd}, J=7.7,5.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-$
3.57 (m, 1H), 2.88 (ddd, $J=13.8,9.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.26$ (ddd, $J=13.7,7.8$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.15 (ddd, $J=13.8,5.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.78-1.72 (m, 2H), 1,72 (br. s, 3H), 1.88 (s, 9 H), 0.04 (s, 6 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.4,142.3,128.6,128.5,125.9,113.6,74.1$, 73.9, 40.4, 33.4, 32.6, 26.0, 22.9, 18.2, -4.3, -4.5. IR (ATR): $\tilde{v}=3575,3476,3064,3027,2952$, 2929, 2894, 2856, 1649, 1604, 1471, 1455, 1376, 1361, 1253, 1070, 1032, 1004, 981, 931, 889, 933, 810, 774, 745, 698, 672, 536, 468, 450. HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiNa}$: $357.2220[\mathrm{M}+\mathrm{Na}]^{+}$, found 357.2220 .
trans-6-Methyl-1-phenyl-4-((triethylsilyl)oxy)hept-6-en-3-ol 9c. Prepared according to
 representative procedure D. The residue was purified by flash chromatography over silica gel (hexane/tert-butyl methyl ether $=100: 0$ to 95:5) to give 9 c as a colorless liquid ($82 \mathrm{mg}, 65 \%, 95: 5 \mathrm{dr}$). $R f=0.55$ (hexane tert-butyl methyl ether $=95 / 5) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 4.78(\mathrm{dt}, \mathrm{J}=$ $3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.73-4.70(m,1H), 3.84 (ddd, $J=7.5,5.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.56(\mathrm{~m}, 1 \mathrm{H})$, 2.92 (ddd, $J=14.5,9.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (ddd, $J=13.7,9.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.25 (ddd, $J=13.8$, $7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (ddd, $J=13.8,5.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.73$ (br. s, 3H), 0.96 ($\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}$), $0.61(\mathrm{q}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.5,142.3,128.6$, $128.5,125.9,113.3,74.2,73.9,40.5,33.4,32.5,23.0,7.0,5.2$. IR (ATR): $\tilde{v}=3569,3472$, 3064, 3027, 2953, 2912, 2876, 1649, 1604, 1585, 1496, 1455, 1414, 1377, 1333, 1292, 1238, 1113, 1071, 1031, 1004, 979, 926, 889, 850, 810, 766, 738, 725, 698, 589, 567, 536, 501, 468, 453, 437.HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiNa}$ 357.2220 [M+Na] ${ }^{+}$, found 357.2220.
trans-2-Methyl-4-((triisopropylsilyl)oxy)non-1-en-5-ol 9d. Prepared according to
 representative procedure D. The residue was purified by flash chromatography over silica gel (hexane/tert-butyl methyl ether $=100: 0$ to 95:5) to give 9d as a colorless oil ($102 \mathrm{mg}, 82 \%, 98: 2 \mathrm{dr}$). $R f=0.55$ (hexane/tert-butyl methyl ether $=95 / 5) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.80-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.77-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{td}, \mathrm{J}=$ 6.7, $2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.65-3.99 (m, 1H), $2.28(\mathrm{br} \mathrm{d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{t}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-$ $1.27(\mathrm{~m}, 6 \mathrm{H}), 1.10-1.06(\mathrm{~m}, 21 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.5$, 113.3, 74.8, 74.1, 41.0, 30.9, 28.5, 23.0, 22.9, 18.3, 18.3, 14.20, 12.91. IR (ATR): $\tilde{v}=3583$, 3491, 3076, 2942, 2894, 2866, 1649, 1463, 1379, 1257, 1202, 1050, 1035, 1010, 997, 952, 919, 882, 791, 749, 676, 685, 554, 507, 463.HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{SiNa}$: $351.2689[\mathrm{M}+\mathrm{Na}]^{+}$, found 351.2689 .
trans-2,6-Dimethyl-4-((triisopropylsilyl)oxy)hept-6-en-3-ol 9e. Prepared according to
 representative procedure D. The residue was purified by flash chromatography over silica gel (hexane/tert-butyl methyl ether $=100: 0$ to $95: 5$) to give 9 e as a colorless oil ($83 \mathrm{mg}, 70 \%, 99: 1 \mathrm{dr}$). $R \mathrm{Rf}=0.45$ (hexane/tert-butyl methyl ether $=95 / 5$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.82-4.78(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{ddd}, J=6.9,5.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=8.4$,
$3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.41 (br. s, 1H), 2.26-2.25 (m, 1H), 2.25-2.23 (m, 1H), 1.79-1.78 (m, 3H), 1.78$1.69(\mathrm{~m}, 1 \mathrm{H}), 1.09-1.07(\mathrm{~m}, 21 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.6,113.6,80.6,72.4,39.5,29.8,23.2,19.7,18.9,18.3,12.9$. IR (ATR): $\tilde{v}=3581,3076,2936,2944,2867,1649,1463,1383,1366,1333,1307,1246,1119,1085$, 1057, 982, 999, 950, 927, 882, 802, 745, 675, 651, 563, 533, 507, 462, 407. HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{SiNa}$: $337.2533[\mathrm{M}+\mathrm{Na}]^{+}$, found 337.2533.
trans-1-Cyclopropyl-4-methyl-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 9f. Prepared
 according to representative procedure D. The residue was purified by flash chromatography over silica gel (hexane/tert-butyl methyl ether = 100:0 to 95:5) to give 9 as a colorless oil ($75 \mathrm{mg}, 64 \%, 99: 1 \mathrm{dr}$). $R f=0.45$ (hexane/tert-butyl methyl ether $=$ 90/10). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.80-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.20$ (ddd, $J=8.0,5.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 (dd, $J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57 (br dd, $J=14.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{br} \mathrm{dd}, J=14.5,5.5 \mathrm{~Hz}$, 1 H), $2.22($ br. s, 1 H$), 1.78-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.10-1.06(\mathrm{~m}, 21 \mathrm{H}), 1.06-0.97(\mathrm{~m}, 1 \mathrm{H}), 0.58-0.45(\mathrm{~m}$, $2 \mathrm{H}), 0.37-0.30(\mathrm{~m}, 1 \mathrm{H}), 0.28-0.21(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.6,113.0,79.4$, 73.9, 41.1, 23.1, 18.3, 18.3, 12.9, 12.0, 2.8, 2.7. IR (ATR): $\tilde{v}=3569,3482,3079,3006,2943$, 2893, 2866, 1648, 1463, 1381, 1309, 1246, 1195, 1108, 1061, 1013, 917, 882, 823, 786, 744, 675, 653, 564, 461. HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{SiNa}: 335.2380[\mathrm{M}+\mathrm{Na}]^{+}$, found 335.2377.
trans-2,2,6-Trimethyl-4-((triisopropylsilyl)oxy)hept-6-en-3-ol 9g. Prepared according to
 representative procedure D. The residue was purified by flash chromatography over silica gel (hexane/tert-butyl methyl ether $=100: 0$ to $95: 5$) to give 9 g as a colorless liquid ($49 \mathrm{mg}, 40 \%$, $99: 1 \mathrm{dr}$). $R f=0.50$ (hexane/tert-butyl methyl ether $=95 / 5$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.82-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{ddd}, J=8.6,3.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.34 (br dd, $J=14.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27 (br. s, 1H), 2.26 (ddd, $J=14.6,8.6,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.77-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.08-1.06(\mathrm{~m}, 21 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 142.9, 113.1, 83.1, 72.7, 40.2, 33.8, 27.4, 23.5, 18.4, 13.1. IR (ATR): $\tilde{v}=3584,3077,2944$, 2893, 2867, 1650, 1464, 1378, 1364, 1326, 1294, 1259, 1239, 1206, 1177, 1143, 1080, 1058, 1025, 1014, 997, 958, 947, 932, 882, 845, 804, 727, 675, 651, 567, 548, 530, 517, 496, 465, 445. HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{SiNa}: 351.2689[\mathrm{M}+\mathrm{Na}]^{+}$, found 351.2689 .
trans-2,7,11-Trimethyl-4-((triisopropylsilyl)oxy)dodeca-1,10-dien-5-ol 9h. Prepared

according to representative procedure D, except stirred for 30 h. The residue was purified by flash chromatography over silica gel (hexane/tert-butyl methyl ether = 100:0 to 95:5) to give 9 h as a colorless oil ($121 \mathrm{mg}, 81 \%, 65: 35 \mathrm{dr}$). $R f=0.60$ (hexane/tert-butyl methyl ether $=95 / 5$). Traces of pure both diastereoisomers have been isolated by preparative HPLC. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (major) 5.14 (tdt, $J=5.7,2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 4.81-4.77 (m, 1H, H16b), 4.77-
4.73 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 16 \mathrm{a}$), 4.07 (td, $J=6.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 11$), 3.74 (dt, $J=10.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 9$), 2.29 (br d, J=6.8 Hz, 2H, H12), 2.06-1.89 (m, 3H, H10, H4), 1.76 (br. s, 3H, H14), 1.73-1.64 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 6$), 1.68 (br d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 1 \mathrm{a}$), 1.60 (br. s, 3H, H1b), 1.57 (ddd, $J=14.0,10.3$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8 \mathrm{a}), 1.37-1.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5), 1.15-1.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 8 \mathrm{~b}), 1.10-1.06(\mathrm{~m}, 21 \mathrm{H}), 0.89(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 7$). (minor) 5.12 (tdt, $J=7.0,2.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3), 4.81-4.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 16 \mathrm{~b})$, 4.77-4.74 (m, 1H, H16a), 4.05 (td, $J=6.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 11$), 3.75 (ddd, $J=7.4,5.6,2.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 9$), 2.27 (br d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 12$), 2.07-1.87 (m, 3H, H10, H4), 1.76 (br. s, 3H, H14), 1.68 (br d, J = $1.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 1 \mathrm{a}$), 1.68-1.60 (m, 1H, H6), 1.60 (br. s, 3H, H1b), 1.45-1.38 (m, 1H, H5a), 1.38-1.33 (m, 2H, H8), 1.15-1.08 (m, 1H, H5b), 1.10-1.06 (m, 21H), 0.96 (d, J = 6.7 $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{H} 7$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (major) 142.3 (C15), 131.2 (C2), 125.0 (C3), 113.3 (C15), 74.5 (C11), 72.3 (C9), 41.4 (C12), 38.4 (C5), 38.0 (C8), 29.0 (C6), 25.9 (C1a), 25.8 (C4), 22.9 (C14), 19.2 (C7), 18.35 (CH_{3}-TIPS), 18.33 (CH_{3}-TIPS), 17.8 (C1b), 12.9 (CH -TIPS). (minor) 142.4 (C15), 131.3 (C2), 125.0 (C3), 113.4 (C15), 74.2 (C11), 72.9 (C9), 40.9 (C12), 38.5 (C8), 36.6 (C5), 29.5 (C6), 25.9 (C1a), 25.5 (C4), 23.0 (C14), 20.8 (C7), 18.35 ($\mathrm{CH}_{3}{ }^{-}$ TIPS), 18.34 (CH_{3}-TIPS), 17.8 (C1b), 12.9 (CH-TIPS). IR (ATR): $\tilde{v}=3583,3076,2943,2948$, 2866, 1649, 1462, 1377, 1291, 1256, 1247, 1083, 1075, 1064, 1013, 997, 920, 883, 770, 748, 677, 688, 549, 504, 463, 440. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{SiNa}: 419.3314[\mathrm{M}+\mathrm{Na}]^{+}$, found 419.3316.
trans-1-Phenyl-4-((triisopropylsilyl)oxy)hept-6-en-3-ol 9i. Prepared according to
 representative procedure D. Purified by flash chromatography over silica gel (hexane/tert-butyl methyl ether $=100 / 0$ to $95 / 5$) to give 9 i as a colorless oil ($104 \mathrm{mg}, 76 \%, 87: 13 \mathrm{dr}$). $R f=0.55$ (hexane/tert-butyl methyl ether $=95 / 5$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}) δ (major) $7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 5.88$ (ddt, $J=17.2,10.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.08 (br ddt, $J=17.1,3.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.03 (ddt, $J=10.2,2.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88 (td, $J=6.1$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dt}, J=9.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ (ddd, $J=14.4,9.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (ddd, $J=$ 13.8, 9.3, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39-2.25 (m, 2H), 2.20 (br. s, 1H), 1.85-1.66 (m, 2H), 1.10-1.07 (m, 3 H), 1.06-1.04 (m, 18H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (major) 142.2, 135.2, 128.6, 128.5, 125.9, 117.1, 75.4, 73.9, 36.9, 33.4, 32.6, 18.3, 12.7. IR (ATR): $\tilde{v}=3581,3478,3106,3076$, 3064, 3027, 2942, 2892, 2866, 1641, 1604, 1496, 1462, 1414, 1384, 1368, 1331, 1287, 1248, 1208, 1086, 1065, 1032, 1013, 996, 913, 881, 820, 744, 689, 677, 586, 566, 505, 469, 446. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{SiNa}: 385.2535[\mathrm{M}+\mathrm{Na}]^{+}$, found 385.2533.
anti-4-((tert-Butyldimethylsilyl)oxy)undec-1-en-5-ol 9j. To a blood red solution of $\mathrm{Ni}(\mathrm{COD})_{2}$
 ($7.4 \mathrm{mg}, 0.027 \mathrm{mmol}$) and $\mathbf{L 4}(19 \mathrm{mg}, 0.027 \mathrm{mmol})$ in toluene $(2.15 \mathrm{~mL})$ was added the dienolsilane 115 ($218 \mathrm{mg}, 1.18 \mathrm{mmol}$) causing a darkening of the solution to a brown/red colour. Triethylborane ($1.6 \mathrm{~mL}, 1 \mathrm{~m}$ in hexanes, 1.6 mmol) was added followed by heptanal ($0.15 \mathrm{~mL}, 1.08 \mathrm{mmol}$). The red reaction mixture was stirred at it for 16 hours. The reaction was quenched with the addition of NaHCO_{3} solution and
stirred for 30 minutes before the organic phase was separated, and the aqueous phase was extracted with tert-butyl methyl ether ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a cloudy yellow oil. The residue was purified by flash chromatography (hexane/ethyl acetate $95: 5$ to $9: 1$) to give 9 j as a colourless oil ($150 \mathrm{mg}, 46 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.83$ (ddt, $J=17.2$, $10.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{ddd}, J=7.5,4.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.53(\mathrm{~m}, 1 \mathrm{H})$, $2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.19$ (dddt, $J=14.3,7.3,4.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.41$ (dd, $J=13.4,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 6 \mathrm{H}), 0.94-0.82(\mathrm{~m}, 13 \mathrm{H}), 0.07$ (s, 6H). ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.6,116.8,75.1,74.6,35.9,31.9,31.8,29.4,26.1,25.8$ (2C), 22.6, 18.1, 14.1, -4.3, -4.6 ppm. Matches known data for anti-4-((tert-butyldimethylsilyl)oxy)undec-1-en-$5-\mathrm{ol} .{ }^{10}$

Procedure for the reaction with octenal ($9 \mathbf{k}$ and iso-9k). To a blood red solution of $\mathrm{Ni}(\mathrm{COD})_{2}$ ($8 \mathrm{mg}, 0.03 \mathrm{mmol}$) and $\mathbf{L 4}(21 \mathrm{mg}, 0.03 \mathrm{mmol})$ in toluene (1.83 mL) was added the dienolsilane S13 ($430 \mathrm{mg}, 2.33 \mathrm{mmol}$) causing a darkening of the solution to a brown/red colour. Triethylborane ($1.75 \mathrm{~mL}, 1 \mathrm{~m}$ in hexanes, 1.75 mmol) was added followed by dropwise addition of trans-2-octenal ($0.174 \mathrm{~mL}, 1.17 \mathrm{mmol}$) in toluene (0.5 mL) over 16 hours. Stirring was continued for a total of 106 hours at rt. The reaction was quenched with the addition of NaHCO_{3} solution and the mixture stirred for 30 minutes before the organic phase was separated, and the aqueous phase was extracted with tert-butyl methyl ether ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a cloudy yellow oil. The residue was purified by flash chromatography (hexane/ethyl acetate 95:5 to 9:1) to give the product $9 \mathbf{k}$ as a colourless oil ($167 \mathrm{mg}, 46 \%$) and the regiosomer iso-9k as a colourless oil ($40 \mathrm{mg}, 11 \%$).
(anti,E)-4-((tert-Butyldimethylsilyl)oxy)dodeca-1,6-dien-5-ol 9k. ${ }^{1} \mathrm{H}$ NMR (400 MHz,
 $\mathrm{Hz}, 1 \mathrm{H}), 2.34-2.17$ (m, 2H), 2.15 (br d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.20(\mathrm{~m}, 6 \mathrm{H})$, $0.94-0.80(\mathrm{~m}, 12 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 135.2,134.0$, 128.0, 116.9, 75.4, 75.3, 36.9, 32.4, 31.4, 28.7, 25.8, 22.5, 18.1, 14.0, -4.3, -4.6 ppm . IR (ATR): $\tilde{v}=3460,2955,2927,2856,1463,1361,1253,1087,1004,972,912,825,760,676$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}: 311.2412$, found: 311.2416 .

Regioisomer iso-9k. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.24$ (dt, $J=11.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.63 (dtd, J
 $=15.3,6.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.44$ (ddt, $J=15.4,7.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (dt, $J=11.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.99(\mathrm{~m}$, $2 \mathrm{H}), 1.95$ (qd, $J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.21(\mathrm{~m}, 6 \mathrm{H})$, $0.95-0.81(\mathrm{~m}, 12 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.5,132.8,132.3,110.8$,
$72.5,37.9,32.1,31.4,28.9,25.7,23.4,22.5,18.3,14.0,-5.2$. IR (ATR): $\tilde{v}=3352,2956,2928$, 2857, 1663, 1463, 1253, 1159, 1058, 1005, 970, 923, 825, 780, 671. HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{SiNa}$: 335.2377, found: 335.2374.
anti-4-Methyl-1-phenyl-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 91. To a solution of $\mathrm{Ni}(\mathrm{cod})_{2}$

($2.6 \mathrm{mg}, 0.0094 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$) and $\mathbf{L} 6$ ($3.33 \mathrm{mg}, 0.0045 \mathrm{mmol}, 1.25 \mathrm{~mol} \%$) in toluene (0.5 mL), was added the diene 7 ($99.7 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.1$ equiv), benzaldehyde ($39.9 \mathrm{mg}, 0.38 \mathrm{mmol}$, 1.0 equiv) and $\mathrm{Et}_{3} B$ solution ($0.45 \mathrm{~mL}, 1 \mathrm{~m}$ in hexanes, $0.45 \mathrm{mmol}, 1.2$ equiv). After work up as described above, the residue was purified by flash chromatography over silica gel (hexane/tert-butyl methyl ether $=100 / 0$ to $95 / 5$) to give 9 l as a colorless oil ($131 \mathrm{mg}, 96 \%$, $99: 1 \mathrm{dr}$). $R f=0.40$ (hexane/tert-butyl methyl ether $=95 / 5$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.28-.722(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-.4 .69$ (m, 1H), 4.64-4.60 (m, 1H), 4.33 (ddd, $J=6.9,5.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74 (br. s, 1H), 2.24 (ddd, J $=14.3,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{ddd}, J=14.3,5.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{t}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13-$ $1.09(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.3,140.2,128.2,127.4,126.7,113.3,76.8$, 75.1, 39.9, 22.9, 18.38, 18.35, 12.9. IR (ATR): $\tilde{v}=3565,3480,3082,2943,2892,2866,1650$, 1495, 1462, 1453, 1385, 1324, 1279, 1256, 1246, 1193, 1174, 1088, 1063, 1028, 1013, 999, 939, 919, 882, 798, 756, 744, 699, 674, 653, 622, 560, 541, 402, 466, 441. HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{SiNa}: 371.2378[\mathrm{M}+\mathrm{Na}]^{+}$, found 371.2376.
anti-2-((tert-Butyldimethylsilyl)oxy)-4-methyl-1-phenylpent-4-en-1-ol 9m. [Note: not run

using the optimised conditions]. To a solution of $\mathrm{Ni}(\mathrm{cod})_{2}(3.0 \mathrm{mg}, 0.01 \mathrm{mmol}$, $10 \mathrm{~mol} \%$) and $\mathbf{L 6}(4.0 \mathrm{mg}, 0.006 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$ in toluene (0.4 mL), was added the diene $\mathbf{S} 9$ ($24.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.1$ equiv), benzaldehyde (11.6 mg , $0.1 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Et}_{3} B$ solution ($0.26 \mathrm{~mL}, 1 \mathrm{~m}$ in hexanes, $0.26 \mathrm{mmol}, 2.4$ equiv). After work up as described above, the residue was purified by flash chromatography over silica gel (hexane/tert-butyl methyl ether $=100 / 0$ to $95 / 5$) to give 9 m as a colorless oil ($23 \mathrm{mg}, 70 \%, 97: 3$ dr). $R f=0.45$ (hexane/tert-butyl methyl ether $=95 / 5$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.30$ $(\mathrm{m}, 4 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 4.80-4.73(\mathrm{~m}, 2 \mathrm{H}), 4.70-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{dt}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.62 (br. s, 1 H), 2.24 (ddd, $J=14.0,8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ (dd, $J=13.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.65$ (br. $\mathrm{s}, 3 \mathrm{H}), 0.91-0.89(\mathrm{~m}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.5$, $140.5,128.3,127.5,126.7,113.5,76.9,75.0,39.7,26.0,23.0,18.2,-4.4,-4.6 . \operatorname{IR}(A T R): \tilde{v}=$ $3458,3073,3030,2952,2928,2886,2856,1469,1494,1471,1453,1389,1361,1327,1254$, 1193, 1083, 1047, 1026, 1001, 939, 890, 831, 808, 770, 755, 698, 674, 670, 616, 598, 578, 535, 444. HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiNa}$ 329.1909 [M+Na] ${ }^{+}$, found 329.1907.

Methyl 4-(anti-2-((tert-butyldimethylsilyl)oxy)-1-hydroxypent-4-en-1-yl)benzoate 9n.

Prepared according to representative procedure D (using $5 \mathrm{~mol} \% \mathrm{L4}$ and $\left.5 \mathrm{~mol} \% \mathrm{Ni}(\operatorname{cod})_{2}\right)$. Purified by flash chromatography over silica gel (hexane/ethyl acetate $=91: 9$) to give 9 n as a colourless oil ($153 \mathrm{mg}, 86 \%,>20: 1 \mathrm{dr}$). ${ }^{1} \mathrm{H}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.02-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 5.73$ (dddd, $J=17.0,10.5,7.5,7.0 \mathrm{~Hz}$, 1 H), 5.02-4.93 (m, 2H), 4.77 (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (s, 3H), 2.27 (app. dtt, $J=14.5,7.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.96 (app. dddt, $J=14.5,7.5,4.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $0.90-0.87(\mathrm{~m}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}),-0.04$ (s, 3H); ${ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=167.1,145.9,135.0,129.6,129.4,126.7,117.5,76.3,75.9$, 52.2, 36.0, 26.0, 18.2, -4.3, -4.7; IR (ATR): $\tilde{v}=3491,3076,2953,2929,2887,2857,1724$, 1612, 1462, 1436, 1276, 1252, 1099, 912, 831, 772, 710; LRMS m/z (ESI+) [M+Na] ${ }^{+}$373; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SiNa}^{+} 373.1810\right.$, found 373.1806.

4-(anti-2-((tert-Butyldimethylsilyl)oxy)-1-hydroxypent-4-en-1-yl)benzonitrile

Prepared according to representative procedure D (using $5 \mathrm{~mol} \% \mathbf{L 4}$ and 5 $\left.\mathrm{mol} \% \mathrm{Ni}(\operatorname{cod})_{2}\right)$. Purified by flash chromatography over silica gel (hexane/ethyl acetate $=9: 1$) to give 90 as a colourless oil ($141 \mathrm{mg}, 87 \%$, $>20: 1 \mathrm{dr}) .{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 5.78-5.67(\mathrm{~m}, 1 \mathrm{H})$, 5.04-4.95 (m, 2H), $4.75(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dt}, J=7.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{br} . \mathrm{s}, 1 \mathrm{H},-\mathrm{OH})$, 2.34-2.22 (m, 1H), 1.96 (dddt, $J=11.5,8.0,4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.89-0.87(\mathrm{~m}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$, $-0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=146.2,134.6,132.1,127.6,119.0,117.7,111.4,76.0$, $75.7,36.2,25.9,18.2,-4.3,-4.8$; IR (ATR): $\tilde{v}=3489,3076,2954,2929,2866,2857,2229$, 1610, 1471, 1411, 1252, 1091, 914, 827, 774, 567; LRMS m/z (ESI+) [M+Na] ${ }^{+}$340; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{NSiNa}\right]^{+} 340.1707$, found 340.1703.

1-(3-(anti-2-((tert-Butyldimethylsilyl)oxy)-1-hydroxypent-4-en-1-yl)phenyl)ethan-1-one

9p. Prepared according to representative procedure D (using 5 mol\% L4 and $\left.5 \mathrm{~mol} \% \mathrm{Ni}(\operatorname{cod})_{2}\right)$. Purified by flash chromatography over silica gel (hexane/ethyl acetate $=9: 1$) to give 9 p as a colourless oil ($146 \mathrm{mg}, 86 \%,>20: 1 \mathrm{dr}$). ${ }^{1} \mathrm{H}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.94-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{dt}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.75 (dddd, $J=17.0,10.5,7.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.76$ (d, J=4.5 $\mathrm{Hz}, 1 \mathrm{H}), 3.91(\mathrm{dt}, J=7.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{dddt}, J=14.5$, $7.0,4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.89-0.86(\mathrm{~m}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 198.3, 141.5, 137.1, 134.9, 131.6, 128.6, 127.7, 126.7, 117.5, 76.2, 75.9, 36.3, 26.8, 25.9, 18.2, -4.3, -4.7; IR (ATR): $\tilde{v}=3429,3075,2953,2929,2887,2856,1681,1602,1586,1471$, 1434, 1359, 1255, 911, 830, 774, 697, 589; LRMS m/z (ESI+) [M+Na]+ 357; HRMS (ESI', m/z) calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}\right]^{-333.1892, ~ f o u n d ~ 333.1891 . ~}$
anti-1-(Furan-2-yl)-4-methyl-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 9q. Prepared
 according to representative procedure D. Purified by flash chromatography over silica gel (hexane/tert-butyl methyl ether $=100 / 0$ to $95 / 5$) to give 9 q as a light yellow liquid ($113 \mathrm{mg}, 88.5 \%$, $99: 1 \mathrm{dr}$). $R f=0.35$ (hexane/tert-butyl methyl ether $=95 / 5$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 7.36-7.35 (m, 1H), 6.35-6.32 (m, 2H), 4.77-4.74 (m, 2H), 4.64 (dq, $J=2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.41 (ddd, $J=8.1,5.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 (br. s, 1H), 2.33 (br dd, $J=$ $14.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ (ddd, $J=14.1,8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{t}, \mathrm{J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-1.08(\mathrm{~m}$, $21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,141.7,141.6,113.5,110.3,107.4,73.6,71.2,41.7$, 23.0, 18.3, 18.3, 12.9. IR (ATR): $\tilde{v}=3569,3481,2943,2893,2866,1649,1504,1463,1382$, 1370, 1334, 1317, 1245, 1208, 1167, 1145, 1107, 1066, 1035, 1000, 950, 932, 882, 804, 731, $676,652,598,530,503,443$. HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}: 361.2175[\mathrm{M}+\mathrm{Na}]^{+}$, found 361.2169 .
anti-4-Methyl-1-(thiophen-2-yl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 9r. Prepared
 according to representative procedure D. Purified by flash chromatography over silica gel (hexane/tert-butyl methyl ether $=100 / 0$ to $95 / 5$) to give 9 r as a light yellow oil ($32 \mathrm{mg}, 24 \%, 99: 1 \mathrm{dr}$). $\mathrm{Rf}=0.50$ (hexane/tert-butyl methyl ether $=90 / 10$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{br} \mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{ddd}, J=3.4,1.2,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.98 (dd, $J=5.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.96 (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.77$ (br. s, 1H), 4.63-4.59 (m, 1H), 4.42 (ddd, $J=9.0,5.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ (br. s, 1H), 2.31 (br dd, $J=14.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (ddd, J $=14.0,8.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (br. s, 3H), 1.16-1.11 (m, 21H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $142.4,141.5,126.4,126.1,125.9,113.7,74.3,72.7,41.8,22.9,18.39,18.37,12.9$. IR (ATR): $\tilde{v}=3569,3444,3075,2942,2893,2866,1650,1462,1382,1329,1244,1201,1164,1102$, 1066, 1043, 1011, 998, 967, 935, 918, 882, 857, 827, 799, 670, 676, 689, 566, 538, 505, 457, 443. HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SSiNa}: 377.1945[\mathrm{M}+\mathrm{Na}]^{+}$, found 377.1941 .
syn-4-((tert-Butyldimethylsilyl)oxy)-1-phenylhept-6-en-3-ol 11a. To a blood red solution of
 $\mathrm{Ni}(C O D)_{2}(8.5 \mathrm{mg}, 0.031 \mathrm{mmol})$ and $\mathbf{L 4}(21.9 \mathrm{mg}, 0.031 \mathrm{mmol})$ in toluene (2.5 mL) was added the diene $\mathbf{S 1 7}$ ($251 \mathrm{mg}, 1.36 \mathrm{mmol}$). Triethylborane (1.9 mL , 1 m in hexanes, 1.9 mmol) was added followed by hydrocinnamaldehyde ($0.165 \mathrm{~mL}, 1.24$ $\mathrm{mmol})$. The red reaction mixture was stirred at rt for 16 hours. The reaction was quenched with the addition of NaHCO_{3} solution and stirred for 30 minutes before organic phase was separated, and the aqueous phase was extracted with tert-butyl methyl ether $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a cloudy yellow oil. The residue was purified by flash chromatography (hexane/ethyl acetate 95:5 to 9:1) to give product 11a as a colourless oil ($318 \mathrm{mg}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dt}, J=8.1,2.1 \mathrm{~Hz}, 3 \mathrm{H}$), 5.77 (ddt, $J=17.3$, $10.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.59$ (ddd, $J=7.0,4.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (tdd, $J=8.4$, $5.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, J=13.8,8.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.37(\mathrm{~m}, 1 \mathrm{H})$,
2.27-2.13 (m, 2H), 1.81-1.70 (m, 2H), $0.91(\mathrm{~s}, 8 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.2,134.2,128.4,128.3,125.7,117.6,74.7,71.9,38.6,35.7,32.2,25.9$, 18.1, -4.1, - 4.6 ppm. IR (ATR): $\tilde{v}=3461,2929,2857,1641,1604,1496,1471,1390,1361$, 1254, 1074, 1004, 912, 833, 810, 774, 746, 698, 678. HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}$: 343.2063, found: 343.2065.
syn-2-((tert-Butyldimethylsilyl)oxy)-1-phenylpent-4-en-1-ol 11b. To a blood red solution of OH $\mathrm{OH}(C O D)_{2}(6.9 \mathrm{mg}, 0.025 \mathrm{mmol})$ and $\mathbf{L 4}(18 \mathrm{mg}, 0.025 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added the diene $\mathbf{S 1 7}$ ($185 \mathrm{mg}, 1 \mathrm{mmol}$). Triethylborane ($1.5 \mathrm{~mL}, 1 \mathrm{M}$ in hexanes, 1.5 mmol) was added followed by benzaldehyde ($0.1 \mathrm{~mL}, 1 \mathrm{mmol}$). The red reaction mixture was stirred at rt for 16 hours. The reaction was quenched with the addition of NaHCO_{3} solution and stirred for 30 minutes before the organic phase was separated, and the aqueous phase was extracted with tert-butyl methyl ether ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a cloudy yellow oil. The residue was purified by flash chromatography (hexane/ethyl acetate 95:5 to $9: 1$) to give the product $\mathbf{1 1 b}$ as a mixture of diastereomers ($8: 1$ syn/anti) as a colourless oil ($157 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.24$ (m, 5H), 5.86 (dddd, $J=17.1,10.5$, $7.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.15-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dt}, J=7.0,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.42 (dtt, $J=14.0,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16$ (dddt, $J=14.3,7.5,4.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 0.87$ (s, 9H), $-0.01(\mathrm{~s}, 3 \mathrm{H}),-0.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 142.0,134.0,128.1,127.4,126.5$, 117.9, 76.8, 74.7, 38.4, 25.8, -4.4, -5.2 ppm. IR (ATR): $\tilde{v}=3460,2953,2929,2886,2857$, 1641, 1494, 1472, 1389, 1361, 1253, 1195, 1076, 1058, 1026, 1002, 913, 851, 807, 774, 746, 610, 568. HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}: 315.1751$, found: 315.1753.
anti-5-Methyl-1-phenyl-4-((triisopropylsilyl)oxy)hept-6-en-3-ol 13. Prepared according to $\underbrace{\mathrm{OH}}$ representative procedure D. Purified by flash chromatography over silica gel TIPsṑ (hexane/tert-butyl methyl ether $=100 / 0$ to $95 / 5$) to give 13 as colorless oil ($129 \mathrm{mg}, 91 \%$, $94: 6 \mathrm{dr}$). $R f=0.50$ (hexane/tert-butyl methyl ether $=90 / 10$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}) $\delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.93$ (ddd, $\left.J=17.6,10.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.01-$ 4.93 (m, 2H), 3.76 (dd, $J=4.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (dt, $J=9.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91 (ddd, $J=14.2$, $9.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (ddd, $J=13.7,9.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.07$ (br. s, 1H), 1.89$1.72(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-1.06(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.3$, 142.2, 128.6, 128.5, 125.9, 113.9, 79.0, 74.2, 40.6, 33.9, 32.7, 18.4, 15.8, 13.1. IR (ATR): $\tilde{v}=$ 3585, 3480, 3082, 3064, 3027, 2943, 2891, 2866, 1639, 1604, 1496, 1456, 1384, 1367, 1341, 1284, 1247, 1213, 1096, 1063, 1032, 1014, 997, 913, 882, 819, 791, 746, 698, 676, 660, 568, 504, 464, 446. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{SiNa} 399.2689[\mathrm{M}+\mathrm{Na}]^{+}$, found 399.2689.

The stereochemistry of the above example 13 was further verified by synthesis of the known compound ${ }^{12} \mathbf{1 3}$ b below bearing the same groups with 1,2-anti and 1,3-anti relationships:

2,3-anti-3,4-syn-3-((Triisopropylsilyl)oxy)-4-methylhex-5-en-2-ol 13b. To a blood red
 solution of $\mathrm{Ni}(C O D)_{2}(7.7 \mathrm{mg}, 0.028 \mathrm{mmol})$ and $\mathbf{L 4}(20 \mathrm{mg}, 0.028 \mathrm{mmol})$ in toluene (2.22 mL) was added the dienolsilane $124(270 \mathrm{mg}, 1.12 \mathrm{mmol})$ causing a darkening of the solution to a brown/red colour. Triethylborane ($1.7 \mathrm{~mL}, 1 \mathrm{~m}$ in hexanes, 1.7 mmol) was added followed by acetaldehyde ($63 \mu \mathrm{~L}, 1.12 \mathrm{mmol}$). The red reaction mixture was stirred at RT for 16 hours. The reaction was quenched with the addition of NaHCO_{3} solution and stirred for 30 minutes before organic phase was separated, and the aqueous phase was extracted with tert-butyl methyl ether ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a cloudy yellow oil. The residue was purified by flash chromatography (hexane/Ethyl acetate $95: 5$ to $9: 1$) to give product 13b as a colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.85$ (ddd, $J=17.5,10.4$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.99-4.88 (m, 2H), 3.80 (qdd, $J=6.4,4.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69 (dd, $J=4.9,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-1.02(\mathrm{~m}, 24 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.8,113.7,79.5,70.4,40.7,18.3,17.8,15.8,13.1 \mathrm{ppm}$. IR (ATR): $\tilde{v}=3443,2943,2867,1639,1463,1385,1253,1102,1061,1015,997,912,851,826$, 790, 774, 464. HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiNa}$: 309.2220, found: 309.2221.

Procedure for the Synthesis of Racemic Diol Derivatives with PPh_{3}

The following procedure was used to obtain racemates for chiral HPLC analysis. Products were generally obtained with lower diastereoselectivity than the enantioselective reaction with L17. The regioselectivity was also generally lower, with small amounts of the product of reaction at C 4 (rather than C 1) of the diene observed - however, this side-product is generally more polar and consequently easily separable by flash chromatography.
$\mathrm{Ni}(\mathrm{cod})_{2}(4 \mathrm{mg}, 0.00145 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(3.8 \mathrm{mg}, 0.00145 \mathrm{mmol})$ were added to a flame-dried Schlenk flask under argon and dissolved in toluene (0.6 mL). The diene (0.319 mmol), triethylborane ($0.44 \mathrm{~mL}, 1 \mathrm{~m}$ in hexanes, 0.44 mmol) and aldehyde (0.29 mmol) were added and the reaction was stirred at rt overnight. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and pH 7 phosphate buffer solution ($\sim 1.5 \mathrm{~mL}$) and aq. $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ in water, $\sim 0.5 \mathrm{~mL})$ were added. After stirring for 1 hour, the mixture was diluted with ethyl acetate (10 mL) and water (10 mL) and transferred to a separating funnel. The organic layer was separated and the aqueous layer was extracted with $2 \times 5 \mathrm{~mL}$ ethyl acetate. The combined organic layers were washed with sat. aq. sodium thiosulfate solution (10 mL) and brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography (SiO_{2}, hexane/ethyl acetate) gave the desired diol.

1.3.2.2 Enantioselective Scope

Representative Procedure E for Enantioselective Vicinal Diol Synthesis with L17

 anti-4-((tert-Butyldimethylsilyl)oxy)-1-phenylhept-6-en-3-ol 18a. Ni(cod) $)_{2}(8 \mathrm{mg}, 0.029$
$\mathrm{mmol})$ and VAPhos-NEt $\mathrm{N}_{2} \mathrm{~L} 17(18.6 \mathrm{mg}, 0.029 \mathrm{mmol})$ were added to a flamedried Schlenk flask under argon and dissolved in toluene (0.6 mL). Diene $\mathbf{S 1 3}(110 \mathrm{mg}, 0.582 \mathrm{mmol})$ and triethylborane ($0.44 \mathrm{~mL}, 1 \mathrm{M}$ in hexanes, 0.44 mmol) were added and the resulting solution was cooled to $-20{ }^{\circ} \mathrm{C}$. Hydrocinnamaldehyde ($38 \mu \mathrm{~L}, 0.291 \mathrm{mmol}$) was then added, the reaction was sealed under argon and the reaction was stirred for 64 h . The reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and pH 7 phosphate buffer solution (1 mL) and aq. $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ in water, $\sim 0.5 \mathrm{~mL}$) were added. After stirring for 1 hour at $0^{\circ} \mathrm{C}$, the mixture was diluted with ethyl acetate (10 mL) and water (10 mL) and transferred to a separating funnel. The organic layer was separated and the aqueous layer was extracted with $2 \times 5 \mathrm{~mL}$ ethyl acetate. The combined organic layers were washed with sat. aq. sodium thiosulfate solution (10 mL) and brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give a light yellow oil. Purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 97:3) gave vicinal diol 18a as a colourless oil (72 $\mathrm{mg}, 77 \%$ yield, 20:1 dr, $84 \% \mathrm{ee}$).

In our hands, this reaction is robust and reproducible. However, several of the components are oxygen-sensitive and care must be taken to ensure the reaction is air-free and that all reaction components are of high purity. The following notes are provided to prevent potential issues and help prospective users obtain the highest yields.

Notes on solvents and reagents:

1. Toluene used in the reaction was refluxed overnight over CaH_{2} under argon and then distilled under argon, and was therefore rigorously oxygen-free.
2. $\mathrm{Ni}(\mathrm{cod})_{2}$ was purchased from Strem Chemicals and transferred to a flame-dried Schlenk flask under argon immediately after opening, after which it is stored in the freezer at $-20^{\circ} \mathrm{C}$ under an over-pressure of argon. The colour should be bright yellow. When taken out of the freezer, the Schlenk flask was allowed to warm to room temperature before weighing the solid out directly into the reaction flask using the "Argon pants" apparatus shown in Figure S 1 below. The same 2 gram batch of $\mathrm{Ni}(\mathrm{cod})_{2}$ was taken out of the freezer and used in this manner multiple times a week for over a year with no issues.
3. Liquid aldehydes were typically distilled under vacuum and stored in the freezer (-20 ${ }^{\circ} \mathrm{C}$) under argon in a crimp capped vial prior to use. Most aldehydes could be stored and re-used for weeks or months in this manner. The presence of carboxylic acid impurities may have a deleterious effect on the enantioselectivity of the reaction and
so the purity of aldehydes was checked by ${ }^{1} \mathrm{H}$ NMR spectroscopy after distillation, as well as before use in the reaction if stored for a long time.
4. Solid aldehydes such as 4-phenylbenzaldehyde and 4-formylphenylboronic acid, pinacol ester were typically used as received after checking purity by ${ }^{1} \mathrm{H}$ NMR spectroscopy. These compounds were stored on the bench at room temperature as they were found not to undergo appreciable air oxidation over days or weeks.
5. Silyloxydienes used were all liquids and were stored analogously to liquid aldehydes. These compounds are very stable at $-20^{\circ} \mathrm{C}$: no evidence of decomposition or isomerisation was noted even after several months.
6. Triethylborane (1 m in hexane) was stored in the freezer at $-20^{\circ} \mathrm{C}$ under argon. Although triethylborane itself is very pyrophoric and any solution of it should be handled under oxygen-free conditions, we had no issues using the hexanes solution. Triethylborane in THF solution is also effective, though since the use of THF as reaction solvent gives marginally lower ees (see section 1.2), the enantioselectivity may drop slightly.

Notes on reaction set-up and purification:

7. Reactions with aliphatic aldehydes are typically run at $-20^{\circ} \mathrm{C}$, while aryl aldehydes are run at $-40^{\circ} \mathrm{C}$. Electron-rich aryl aldehydes (e.g. p-anisaldehyde, see $\mathbf{1 8 f}$) may be run at higher temperatures for better conversion.
8. The ligand should always be added before the solvent as it coordinates and helps to stabilise the nickel (0) catalyst if any oxygen is present in the solution. This is important as $\mathrm{Ni}(\mathrm{cod})_{2}$ is relatively stable in the solid state but extremely O_{2}-sensitive in solution. The diene also seems to help stabilise the nickel, while triethylborane will react with any excess oxygen. The addition of these two components soon after the solvent is therefore recommended to minimise potential decomposition, though it is not necessary if oxygen is not present.
9. Non-polar aldehydes such as hydrocinnamaldehyde sometimes co-eluted with the products during column chromatography. Any remaining traces were removed by standing the product under high vacuum ($1^{*} 10^{-3} \mathrm{mbar}$) overnight.
10. The reaction is run in a sealed Schlenk flask rather than under a flow of argon due to the volatility of triethylborane (bp $95^{\circ} \mathrm{C}$). However, ethylene gas is given off (from reduction of the nickel catalyst with triethylborane) over time, and care should therefore be taken to use reaction vessels which can withstand the increase in pressure caused by this gas evolution, especially if scaling up.
11. The diethylborinate ester formed in the reaction can be surprisingly resistant to hydrolysis (to give the alcohol product). In the original (virtually racemic) reaction with cyclodiphosphazane L6, the reaction was quenched with sat. aq. NaHCO_{3} solution.

However, traces of remaining (non-polar) borinate ester were often observed to elute at the start of the column. Complete hydrolysis could be achieved by adsorbing the crude reaction mixture onto silica gel and leaving it to stand overnight prior to purification. Nevertheless, when performing the enantioselective scope it was decided to switch to a neutral oxidative work-up with $\mathrm{H}_{2} \mathrm{O}_{2}$ and a pH 7 phosphate buffer, which quantitatively cleaves the B-O bond. Either procedure may be used, depending on the presence of base or oxidatively sensitive functionalities on the product.

Figure S1. Use of "Argon pants". The reaction flask and reagent flask are connected via a glassware with two legs and an open top. Argon is run through both Schlenk flasks continuously during operation, ensuring an inert atmosphere and allowing weighing of air-sensitive compounds like $\mathrm{Ni}(\mathrm{cod})_{2}$ without use of a glovebox. Note: compound shown in picture is not $\mathrm{Ni}(c o d)_{2}$.

Notes on the dienes:

TBS dienes seem to be the most reactive with all aldehydes and give generally good enantioselectivity.

TIPS dienes often give the best enantioselectivity but slightly lower reactivity than TBS with alkyl aldehydes. The (Z)-TIPS diene tends to give lower diastereoselectivity for syn products than the less bulky silyl groups.

TES dienes do not have a particular advantage over TBS and TIPS in terms of reactivity or enantioselectivity, but the (Z)-TES diene may give better diastereoselectivity for syn products. These products are unsurprisingly more sensitive than those derived from the bulkier silyl groups and their use was generally avoided in favour of TBS and TIPS dienes.

Notes on HPLC analysis:

Although diastereoselectivity was typically very high for the enantioselective reaction with L17, the racemic reaction with PPh_{3} generally gave a lower dr. This often meant the individual product diastereomers and their enantiomers were difficult to separate on chiral HPLC columns. For this reason, 2D HPLC analysis was often employed to ensure accurate ee determination. This involved first running the isolated product down an achiral column to separate the diastereomers, before subsequent chiral separation of the pure major diastereomer using a chiral column.

Assignment of Absolute Configuration:

The absolute and relative configuration of the anti-configured product 181 was determined by a three-step sequence of ozonolysis, chromium oxidation and desilylation with TBAF to the corresponding lactone. The ${ }^{1} \mathrm{H}$ NMR spectrum matched the literature. The sign of the optical rotation was opposite to that of $(4 S, 5 R)$-5-(4-fluorophenyl)-4-hydroxydihydrofuran- $2(3 H)$-one reported in the literature. ${ }^{13}$ Ligand $\mathbf{L 1 7}$ comprising (R)-VAPOL therefore gives the ($\mathbf{4 R}, \mathbf{5 S}$)configured product.

Data of the lactone: $[\alpha]_{0^{0}}^{0}=-20.0$ ($c=0.7, \mathrm{MeOH}$); lit. (for (4S,5R)-5-(4-fluorophenyl)-4-hydroxydihydrofuran- $2\left(3 \mathrm{H}\right.$-one): $[\alpha]_{0}^{20}=+25$ ($\left.\mathrm{c}=0.87, \mathrm{MeOH}\right), 95 \%$ ee); ${ }^{13}{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (ddd, $J=6.5,5.5,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=17.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=17.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})$.

The absolute and relative configuration of the syn-configured product 19d was determined by desilylation with TBAF to give the corresponding syn-diol 19d-OH. The ${ }^{1} \mathrm{H}$ NMR spectrum matched the literature. The sign of the optical rotation was opposite to that of the (R, R) configured product reported previously in the literature. ${ }^{14}$ Ligand L17 comprising (R)-VAPOL therefore gives the (\mathbf{S}, S)-configured product.

Data of diol 19d-OH: $[\alpha] z^{2}=-2.0\left(\mathrm{C}=1.15, \mathrm{CHCl}_{3}\right)$; lit. (for the R, R-isomer): $[\alpha] \mathrm{b}^{\circ}=+6.06$ ($\mathrm{C}=$ $\left.\left.1.23, \mathrm{CHCl}_{3}\right), 96 \% \mathrm{ee}\right) ;{ }^{14}{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 3 \mathrm{H}), 5.86$ (dddd, $J=17.0,10.0,8.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.12(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{dd}, J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (dd, $J=13.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (dd, $J=13.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-$ $2.28(\mathrm{~m}, 2 \mathrm{H}), 2.13$ (br. d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00$ (br. d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$.

It is important to note that the chiral center derived from the aldehyde is S-configured in the anti- as well as in the syn-series. On this basis, all other products were assigned by analogy.
anti-5-Methyl-1-phenyl-4-((triisopropylsilyl)oxy)hept-6-en-3-ol 13. Prepared according to
 representative procedure E ($-20^{\circ} \mathrm{C}$). Purified by column chromatography over silica gel (hexane/ethyl acetate $=99: 1$ to 98:2) to give 13 as a colorless oil (67 mg , yield $=61 \%,>10: 1 \mathrm{dr}$). For characterisation data, please see the entry for the racemate. The shown absolute configuration was assigned by analogy (see above).

The ee of 13 was determined by 2D HPLC analysis.
Separation of diastereomers: 100 m RX-SiL, $\varnothing 4.6 \mathrm{~mm}, n$-heptane/MTBE 98:2, v=1.0 mL/min, $\lambda=220 \mathrm{~nm}, \mathrm{t}$ (major) $=3.60 \mathrm{~min}, 308 \mathrm{~K}$. (Note: minor diastereomer not identified for either sample)

Sampling table (${ }^{(} \mathrm{D}$)

13: separation of diastereomers on achiral column

Sampling table ('D)

rac-13: separation of diastereomers on achiral column

Chiral separation of major diastereomer: 150 mm Chiralcel OD-3R, 4.6 mm i.D., n heptane $/$ MTBE $=85: 15, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=3.00 \mathrm{~min}, \mathrm{t}($ minor $)=4.53 \mathrm{~min}$. 298 K

13: ee determination of pure major diastereomer

Signal: DAD2 A, Sig=220,4 Ref $=360,100$

Compound	Cut	Ret.Time	Area	Width	Height	
1	1	2.993	637.012	0.073	145.098	0.864
			637.012			
2	1	4.533	647.818	0.129	83.438	0.923
			647.818			

rac-13: separation of enantiomers
anti-4-((tert-Butyldimethylsilyl)oxy)-1-phenylhept-6-en-3-ol 18a. $[\alpha]_{0^{20}}=-11.2$ ($\mathbf{c}=0.51$,

CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 3 \mathrm{H})$, 5.79 (ddt, $J=17.3,10.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.64(\mathrm{~m}$, $1 \mathrm{H}), 3.61$ (dq, $J=8.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (ddd, $J=14.6,8.8,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=4.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.75$ (dddd, $J=9.3,8.0,5.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1,135.3,128.4,128.4,125.8,117.0,75.1,73.8,36.2,33.5$, 32.4, 25.9, 18.1, -4.3, -4.6. IR (ATR): $\tilde{v}=3460,2956,2926,2857,1472,1361,1253,1074$, 1031, 1004, 912, 825, 810, 780, 746, 698. HRMS (GC-Cl): m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}$: 321.2244, found: 321.2239. The shown absolute configuration was assigned by analogy (see above).

The ee of 18a was determined by HPLC analysis: Daicel 150 mm Chiralpak IB-N-3, $\varnothing 4.6 \mathrm{~mm}$, n -heptane/i-propanol $=99: 1, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ major $)=3.68 \mathrm{~min}, \mathrm{t}($ minor $)=7.61$ min.

anti-1-Phenyl-4-((triethylsilyl)oxy)hept-6-en-3-ol 18b. Prepared according to representative
 procedure E (-20 $\left.{ }^{\circ} \mathrm{C}\right)$. Purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $97: 3$ to $95: 5$) to give diol 18b as a light yellow oil (74 $\mathrm{mg}, 79 \%$ yield, $>10: 1 \mathrm{dr}, 82 \% \mathrm{ee}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta=7.31-7.26$ (m, 2H), 7.23-7.16 (m, 3H), 5.80 (ddt, $J=17.0,10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.08-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.68$ (ddd, $J=7.5,5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dt}, J=8.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{ddd}, J=14 . .5,9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.65 (ddd, $J=14.0,9.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30 (dtt, $J=14.5,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.25-2.09 (br. s, 1H, O-H), 2.24-2.16 (m, 1H), 1.74 (ddt, $J=9.5,7.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), $0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.59$ (q, $J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=142.3,135.4,128.6,128.5,126.0,117.1,75.2$, 74.0, 36.4, 33.6, 32.6, 7.0, 5.2; IR (ATR): $\tilde{v}=3455,2953,2876,1641,1455,1239,1074,1003$, 911, 724, 698; LRMS m/z (ESI ${ }^{+}$) [M+Na] ${ }^{+}$343; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}\right]^{+} 343.2064$, found 343.2061 . The shown absolute configuration was assigned by analogy (see above).

The ee of $\mathbf{1 8 b}$ was determined by 2D HPLC analysis
Separation of diastereomers: 50 mm Zorbax Eclipse Plus C18, $\varnothing 4.6 \mathrm{~mm}$, methanol/water gradient 70% to 90% over 5 minutes, $\mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}$ (major) $=5.73 \mathrm{~min}, \mathrm{t}($ minor $)$ $=5.83 \mathrm{~min}, 308 \mathrm{~K}$.
${ }^{1} \mathrm{D}$ chromatogram(s)

Sampling table (${ }^{1} \mathrm{D}$)

Cut group	Cut \#	${ }^{1} \mathrm{D}$ Cut start [min]	${ }^{1}$ D Ret. time [min]	$\begin{aligned} & \text { ¹D Duration } \\ & {[\mathrm{min}]} \end{aligned}$	Trigger	start [min]	
	1	5.73	***	0.04	Time	5.77	1st Diastereomer
	2	5.83	***	0.04	Time	27.62	2nd Diastereomer

Component table
Signal: DAD2 A, Sig=220,4 Ref $=360,100$

Component	1D Sampling range $[\mathrm{min}]$	Ret.Time ${ }^{2} \mathrm{D}[\mathrm{min}]$	Area	Area\%
1	$5.73-5.77$	13.665	805.865	83.570
2	$5.73-5.77$	15.063	81.765	8.479
3	$5.83-5.87$	13.312	12.447	1.291
4	$5.83-5.87$	13.721	64.217	6.660

18b: separation of diastereomers on achiral column
${ }^{1} \mathrm{D}$ chromatogram(s)

Sampling table (${ }^{1} \mathrm{D}$)

Cut group	Cut \#	1D Cut start $[\mathrm{min}]$	1D Ret. time [min]	1D Duration [min]	Trigger ${ }^{2} \mathrm{D}$ Run start	
[min]						

Component table
Signal: DAD2 A, Sig=220,4 Ref=360,100
Component ${ }^{1} \mathrm{D}$ Sampling range [min]

Ret.Time ${ }^{2} \mathrm{D}[\mathrm{min}]$	Area	Area\%
13.648	1065.157	12.577
14.962	1053.460	12.439
13.877	3151.375	37.210
14.359	3199.265	37.775

rac-18b: separation of diastereomers on achiral column

Chiral separation of major diastereomer: Daicel 150 mm Chiralpak IB-N-3, $\varnothing 4.6 \mathrm{~mm}$, n-heptane/i-propanol $=99: 1, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ major $)=3.68 \mathrm{~min}, \mathrm{t}($ minor $)=7.61$ min.

Signal: DAD2 A, Sig=220,4 Ref=360,100

Compound	Cut	Ret.Time	Area	Width	Height Symmetry			
1	1	13.665	805.865	0.220	60.924	0.889	1st Enantiomer	
			805.865					
2	1	15.063	81.765	0.296	4.607	1.081	2nd Enantiomer $=81.6 \%$	
			81.765					

18b: ee determination of pure major diastereomer

Signal: DAD2 A, Sig=220,4 Ref=360,100

Compound	Cut	Ret.Time	Area	Width	Height Symmetry		
1	1	13.648	1065.157	0.227	78.136	0.880	1st Enantiomer
			1065.157				
2	1	14.962	1053.460	0.278	63.108	0.782	2nd Enantiomer
			1053.460				

rac-18b: separation of enantiomers of pure major diastereomer
anti-2-((tert-Butyldimethylsilyl)oxy)-1-cyclohexylpent-4-en-1-ol 18c. Prepared according
 to representative procedure $\mathrm{E}\left(-20^{\circ} \mathrm{C}\right)$. Purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 99:1 to 98:2) to give diol 18c as a light yellow oil (51 mg , 59% yield, $20: 1 \mathrm{dr}, 90 \%$ ee $) .[\alpha]_{0}^{20}=6.1\left(\mathrm{c}=0.49, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=5.84(\mathrm{ddt}, J=17.0,10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{dt}, J=8.0,3.5 \mathrm{~Hz}$, 1 H), $3.29(\mathrm{dd}, J=8.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{app} . d d d t, J=14.5,8.5,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.15$ $(\mathrm{m}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.13$ (m, 3H), 1.06-0.96 (tt, J=11.0, 3.0 Hz, 2H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06(2)(\mathrm{s}, 3 \mathrm{H}), 0.05(7)(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=136.1,116.9,78.9,73.0,39.3,35.0,29.7,28.8,26.6,26.1,26.0$, 25.9, 18.2, -4.2, -4.4; IR (ATR): $\tilde{v}=3577,2926,2854,1450,1362,1253,1065,911,832,773 ;$ LRMS m/z (ESI ${ }^{+}$) $[\mathrm{M}+\mathrm{Na}]^{+} 321$; HRMS $\left(\mathrm{ESI}^{+}, m / z\right)$ calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiNa}\right]^{+}$321.2220, found 321.2218. The shown absolute configuration was assigned by analogy (see above).

The ee of 18 c was determined by chiral GC analysis

chirale Messung, Verhältnis der Enantiomere
Zuordnung siehe achirale GC-MS des Racemates 27800 DAU-DA-181-01 20/7709

No.	Ret.Time min	Rel.Area Peak Name 2
1	279,48	$5,09$.
2	294,11	$94,91$.

```
Instrument parameters:
    Column:
    Temperature:
    220/100 iso/350 Split 80
    Gas:
```

18c: 90% ee

chirale Messung des Racemates, Verhältnis der Enantiomere
Zuordnung siehe achirale GC-MS 27800 DAU-DA-181-01 $20 / 7709$

No.	Ret.Time	Rel.Area Peak Name
min	$\%$	
1	287,46	50,04
2	304,07	$49,96$.

```
Instrument parameters:
    Column:
    emperature:
    Gas:
    Sample size:
                220/100 iso/350
                0,50 bar Hydrogen
                0,2\muL
```

rac-18c: separation of enantiomers
anti-1-Cyclohexyl-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18d. Prepared according to
 representative procedure $\mathrm{E}\left(-20^{\circ} \mathrm{C}\right)$. Purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 99:1) to give diol 18d as a colourless oil ($52 \mathrm{mg}, 52 \%$ yield, 20:1 dr, $92 \% \mathrm{ee}$). $[\alpha]{ }_{\circ_{0}^{0}}=7.8\left(\mathrm{c}=0.45, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=5.93$ (ddt, $J=17.0,10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ (app. dq, $J=17.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.02 (ddt, $J=$ $10.0,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.00 (td, $J=5.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38 (dd, $J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40 (br. s, $1 \mathrm{H})$, 2.34-2.28 (m, 2H), 2.15-2.07 (m, 1H), 1.78-1.62 (m, 3H), 1.58-1.52 (m, 1H), 1.48-1.37 (m, $1 \mathrm{H}), 1.27-1.16(\mathrm{~m}, 3 \mathrm{H}), 1.09-1.06(\mathrm{~m}, 21 \mathrm{H}), 1.00-0.90(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=136.1,116.8,79.3,73.2,39.5,35.6,30.1,28.7,26.6,26.0,25.9,18.3,12.8 ; \operatorname{IR}(A T R): \tilde{v}=$ 3576, 2923, 2853, 1707, 1641, 1463, 1450, 1385, 1366, 1296, 1256, 1079, 1061, 995, 912, 882, 750, 676; LRMS m/z (ESI ${ }^{+}$[$\mathrm{M}^{+N a]^{+}} 363$; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for [$\left.\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{SiNa}\right]^{+} 363.2690$, found 363.2689 . The shown absolute configuration was assigned by analogy (see above).

The ee of 18d was determined by chiral GC analysis

Verhältnis der Enantiomere
Zuordnung achiral nach Racemat GCMS 30077 DAU-DA-253-01 21/8093

Racemat
Verhältnis der Enantiomere
Zuordnung achiral nach GCMS 30077 DAU-DA-253-01 21/8093

rac-18d: separation of enantiomers
anti-1-([1,1'-Biphenyl]-4-yl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18e. Prepared
 according to representative procedure $\mathrm{E}\left(-40{ }^{\circ} \mathrm{C}\right)$. Purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 98:2) to give diol 18e as a light yellow oil ($74 \mathrm{mg}, 62 \%$ yield, $>20: 1 \mathrm{dr}, 93 \% \mathrm{ee}$). $[\alpha]_{0^{\circ}}=-4.0$ ($\mathrm{c}=0.48$, $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.64(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 1 \mathrm{H})$, $5.83-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.91(\mathrm{~m}, 3 \mathrm{H}), 4.19(\mathrm{td}, \mathrm{J}=5.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.37-2.28$ (m, 1H), 2.21-2.13 (m, 1H), 1.18-1.11 (m, 21H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=141.1$, 140.3, 139.3, 135.3, 128.9, 127.3, 127.2, 127.0, 126.9, 117.1, 76.5(2), 76.4(8), 36.0, 18.3(3), 18.3(1), 12.8; IR (ATR): $\tilde{v}=3572,3030,2942,2865,1642,1600,1487,1462,1387,1322,1244,1181$, 1093, 1063, 996, 912, 882, 828, 763, 677; HRMS (ESI ${ }^{+}, m / z$) calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{SiNa}\right]^{+}$ 433.2533, found 433.2534. The shown absolute configuration was assigned by analogy (see above). The ee of $\mathbf{1 8 e}$ was determined by 2D HPLC analysis. Separation of diastereomers: 50 mm Eclipse Plus C18, $\varnothing 4.6 \mathrm{~mm}$, methanol/water $85: 15, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}$ (major) $=11.8 \mathrm{~min}, \mathrm{t}($ minor $)=12.6 \mathrm{~min}, 308 \mathrm{~K}$.

Sampling table (${ }^{1} \mathrm{D}$)

18e: separation of diastereomers on achiral column

Sampling table (${ }^{1} \mathrm{D}$)

$\begin{array}{l}\text { Cut } \\ \text { group }\end{array}$	Cut \#	$\begin{array}{c}\text { 1D Cut start } \\ \text { [min] }\end{array}$	$\begin{array}{c}\text { 1D Ret. time } \\ \text { [min] }\end{array}$	$\begin{array}{c}\text { 1D Duration } \\ \text { [min] }\end{array}$	Trigger ${ }^{2}$ D Run start	
	1	11.81	$* * *$	0.04	Peak	11.85
	2	12.64	$* * *$	0.04	Peak	28.75

rac-18e: separation of diastereomers on achiral column

Chiral separation of major diastereomer: 150 mm Chiralpak IC-3, $\varnothing 4.6 \mathrm{~mm}$, acetonitrile/water $=70: 30, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=8.37 \mathrm{~min}, \mathrm{t}($ major $)=9.23 \mathrm{~min} .318 \mathrm{~K}$

Signal: DAD2 A, Sig=220,4 Ref=360,100

Compound	Cut	Ret.Time	Area	Width	Height	Symmetry
1	1	8.367	62.280	0.179	4.104	0.868
			62.280			
2	1	9.289	1621.640	0.250	95.886	0.863

Area	Area\%
62.280	3.699
1621.640	96.301

18e: ee determination of pure major diastereomer

Signal: DAD2 A, Sig=220,4 Ref=360,100

| Compound | Cut | Ret.Time | Area | Width | Height | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | Symmetry

rac-18e: separation of enantiomers
anti-1-(4-Methoxyphenyl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18f. Prepared according
 to representative procedure $\mathrm{E}\left(-30^{\circ} \mathrm{C}\right)$. Purified by flash chromatography (SiO_{2}, hexane/ethyl acetate $98: 2$ to $95.5: 4: 5$) to give diol $\mathbf{1 8 f}$ as a colourless oil ($51 \mathrm{mg}, 48 \%$ yield, $>20: 1 \mathrm{dr}, 93 \% \mathrm{ee}$). $[\alpha]_{0^{30}}=4.3$ ($\mathrm{c}=0.49$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.59$ (ddt, $\mathrm{J}=$ $16.0,11.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (td, $J=6.0,3.5 \mathrm{~Hz}$, 1 H), 3.81 (s, 3H), 2.23 (app. dddt, $J=14.5,7.5,6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.08 (app. dddt, $J=14.5$, $7.5,6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.13-1.06(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=159.0,135.4,132.4$, 127.7, 117.0, 113.7, 76.6, 76.3, 55.4, 36.0, 18.3(3), 18.3(2), 12.8; IR (ATR): $\tilde{v}=3571,3075$, 2943, 2866, 1613, 1513, 1463, 1246, 1172, 1094, 1063, 1036, 997, 913, 882, 825, 676;LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{El} \mathrm{I}^{+}\right)[\mathrm{M}]^{+}$364; HRMS (ESI, m / z) calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNa}\right]^{+} 387.2326$, found 387.2326. The shown absolute configuration was assigned by analogy (see above).

The ee of 18 f was determined by HPLC analysis: 150 mm Chiralpak IA-3, $\varnothing 4.6 \mathrm{~mm}, n$ -heptane/i-propanol $=99.5: 0.5, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=225 \mathrm{~nm}, \mathrm{t}($ major $)=7.26 \mathrm{~min}, \mathrm{t}($ minor $)=$ 10.25 min .

anti-1-(2-Methylphenyl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18g. Prepared according
 to representative procedure $\mathrm{E}\left(-40^{\circ} \mathrm{C}\right)$. Purified by flash chromatography (SiO_{2}, hexane/ethyl acetate $99: 1$ to $98.5: 1.5$) with remaining aldehyde removed under high vacuum overnight to give diol $\mathbf{1 8 g}$ as a light yellow oil (53 $\mathrm{mg}, 52 \%$ yield, $>20: 1 \mathrm{dr}, 91 \% \mathrm{ee}) .[\alpha]_{{ }^{20}}=-12.5\left(\mathrm{c}=0.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=7.63(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7-10$ (dd, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.88(\mathrm{~m}, 2 \mathrm{H})$, 4.14 (td, $J=5.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80 (br. s, 1H), 2.31 (s, 3H), 2.30-2.15 (m, 2H), 1.12-1.07 (m, $21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=138.3,135.4,134.6,130.2,127.3,126.7,126.6,116.9$, 74.1, 73.5, 36.1, 19.6, 18.3, 12.8; IR (ATR): $\tilde{v}=3562,3075,2943,2866,1640,1462,1383$, 1244, 1092, 1061, 996, 912, 881, 754, 676; LRMS m/z (ESI ${ }^{+}$) [M+Na] ${ }^{+} 371$; HRMS (ESI ${ }^{+}, m / z$) calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{SiNa}\right]^{+} 371.2377$, found 371.2380 . The shown absolute configuration was assigned by analogy (see above). The ee of $\mathbf{1 8 g}$ was determined by 2D HPLC analysis

Separation of diastereomers: 150 mm Eclipse Plus C18 $1.8 \mu \mathrm{~m}, \varnothing 4.6 \mathrm{~mm}$, methanol/water $85: 15, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=19.6 \mathrm{~min}, \mathrm{t}($ minor $)=20.3 \mathrm{~min}, 308 \mathrm{~K}$.

Sampling table ($\left.{ }^{1} \mathrm{D}\right)$
$\begin{array}{lrrcccc}\begin{array}{l}\text { Cut } \\ \text { group }\end{array} & \text { Cut \# } & \begin{array}{c}\text { D Cut start } \\ {[\mathrm{min}]}\end{array} & \begin{array}{c}\text { 1D Ret. time } \\ {[\mathrm{min}]}\end{array} & \begin{array}{c}\text { 1D Duration } \\ {[\mathrm{min}]}\end{array} & \text { Trigger }{ }^{2} \mathrm{D} \text { Run start } \\ & 1 & 19.60 & & & 0.04 & \text { Time }\end{array}$
18 g : separation of diastereomers on achiral column

Sampling table (${ }^{1} \mathrm{D}$)

rac-18g: separation of diastereomers on achiral column

Chiral separation of major diastereomer: 150 mm Chiralpak IBN-3, $\varnothing 4.6 \mathrm{~mm}$, acetonitrile/water $=70: 30, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=8.37 \mathrm{~min}, \mathrm{t}($ major $)=9.23$ min. 298 K

| Signal: DAD2 A, Sig=220,4 Ref $=360,100$ | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Compound | Cut | Ret.Time | Area | Width | Height | Symmetry |
| 1 | 1 | 7.810 | 58.036 | 0.170 | 5.572 | 0.850 |
| | | | 58.036 | | | |
| 2 | 1 | 8.707 | 1218.026 | 0.178 | 109.022 | 0.868 |

Component	${ }^{1}$ D Sampling range $[\mathrm{min}]$	Ret.Time ${ }^{2} \mathrm{D}[\mathrm{min}]$	Area	Area\%
1	$19.60-19.64$	7.810	58.036	4.548
1. diastereomer 1. enantiomer				
2	$19.60-19.64$	8.707	1218.026	95.452
			1. diastereomer 2. enantiomer	

18 g : ee determination of pure major diastereomer

rac-18g: separation of enantiomers
anti-1-(Naphthalen-2-yl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18h. Prepared according

to representative procedure $\mathrm{E}\left(-40^{\circ} \mathrm{C}\right)$. Purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $99: 1$ to $\left.98.5: 1.5\right)$ to give diol 18 h as a colourless oil ($74 \mathrm{mg}, 66 \%$ yield, $>20: 1 \mathrm{dr}, 94 \% \mathrm{ee}$). $[\alpha]_{0^{20}}^{\circ}=-16.4$ ($\mathrm{c}=0.50$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.88-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 5.71$ (ddt, $\mathrm{J}=$ $16.5,11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.05 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.94-4.87 (m, 2H), 4.24 (ddd, $J=6.5,5.5,3.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.87 (br. s, 1H), 2.27 (app. dddt, $J=15.0,7.5,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.09 (app. dddt, $J=$ $15.0,7.0,5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.16-1.10(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=137.7,135.3$, 133.4, 133.0, 128.1, 127.9, 127.8, 126.2, 125.9, 125.3, 124.6, 117.1, 76.8, 76.4, 35.9, 18.4, 18.3, 12.8; IR (ATR): $\tilde{v}=3571,3057,2942,2865,1639,1463,1362,1244,1094,1063,996$, 912, 882, 816, 745677, 476; HRMS (ESI,$~ m / z$) calculated for [$\left.\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{SiNa}\right]^{+} 407.2377$, found 407.2380. The shown absolute configuration was assigned by analogy (see above).

The ee of 18h was determined by HPLC analysis: 150 mm Chiralpak IC-3, $\varnothing 4.6 \mathrm{~mm}, \mathrm{n}$ heptane $/ i-$ propanol $=99: 1, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=225 \mathrm{~nm}, \mathrm{t}($ minor $)=3.59 \mathrm{~min}, \mathrm{t}($ major $)=3.92$ min.

$1225 \mathrm{~nm}, 4 \mathrm{~nm}$

PDA Ch1 22nm			
Peak \#	Ret. Time	Area $\%$	
1	2,64	0,24	Name
2	3,59	2,95	1. Enantiomer Diastereomer 1
3	3,92	95,08	2. Enantiomer Diastereomer 1 94.0% ee
4	4,48	0,62	1. Enantiomer Diastereomer 2
5	4,91	0,42	2. Enantiomer Diastereomer 2 + impurity
6	11,19	0,69	
Total		100,00	

anti-1-(4-Fluorophenyl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18i. Prepared according to

representative procedure $\mathrm{E}\left(-40^{\circ} \mathrm{C}\right)$. Purified by flash chromatography (SiO_{2}, hexane/ethyl acetate 99:1 to 98:2) to give diol 18i as a light yellow oil ($73 \mathrm{mg}, 71 \%$ yield, $>20: 1 \mathrm{dr}, 93 \% \mathrm{ee}$). $[\alpha]_{{ }^{20}}^{20}=-1.9\left(\mathrm{c}=0.54, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.68$ (ddt, $J=17.5,10.5$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{td}, J=6.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ (br. s, 1H), 2.23 (app. dddt, $J=14.5,7.0,6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.07 (app. dddt, $J=14.5,7.0,5.5,1.5$ $\mathrm{Hz}), 1.12-1.08(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=162.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=245.0 \mathrm{~Hz}\right), 136.0(\mathrm{~d}$, $\left.{ }^{4} J_{C F}=3.0 \mathrm{~Hz}\right), 135.0,128.2\left(\mathrm{~d},{ }^{3} J_{C F}=8.0 \mathrm{~Hz}\right), 117.2,115.1\left(\mathrm{~d},{ }^{2} J_{C F}=21.0 \mathrm{~Hz}\right), 76.4,76.1$, 36.0, 18.3(1), 18.2(9), 12.8; IR (ATR): $\tilde{v}=3562,3075,2943,2866,1640,1462,1383,1244$, 1092, 1061, 996, 912, 881, 754, 676; HRMS (ESI ${ }^{+}, m / z$) calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{SiNa}\right]^{+}$ 375.2126, found 375.2129. The shown stereostructure was assigned by conversion into a compound of known absolute configuration (see above).

The ee of $\mathbf{1 8 i}$ was determined by 2D HPLC analysis
Separation of diastereomers: 50 mm Phenyl Hexyl, $\varnothing 4.6 \mathrm{~mm}$, methanol/water 80:20, v=1.0 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=3.39 \mathrm{~min}, \mathrm{t}($ minor $)=3.66 \mathrm{~min}, 308 \mathrm{~K}$.

Sampling table (${ }^{1} \mathrm{D}$)

Cut group	Cut \#	${ }^{\text {'D Cut start }} \underset{\text { [min] }}{ }$	'D Ret. time [min]	${ }^{1} \mathrm{D}$ Duration ${ }_{\text {[min] }}$	Trigger ${ }^{2} \mathrm{D}$ Run start [min]	
	1	3.39	3.396	0.04	Time	3.44
	2	3.66	3.680	0.04	Time	57.44

18i: separation of diastereomers on achiral column

Sampling table (${ }^{1} \mathrm{D}$)

rac-18i: separation of diastereomers on achiral column
Chiral separation of major diastereomer: 150 mm Chiralpak AS-3R, $\varnothing 4.6 \mathrm{~mm}$, acetonitrile/water $=70: 30, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}$ (major) $=12.94 \mathrm{~min}, \mathrm{t}($ minor $)=14.24$ min. 298 K

Compound	Cut	Ret.Time	Area	Width	Height	Symmetry
1	1	12.944	3911.805	0.335	184.522	0.914
			3911.805			
2	1	14.244	136.702	0.347	6.153	0.962

Component	'D Sampling range $[\mathrm{min}]$	Ret.Time ${ }^{2} \mathrm{D}[\mathrm{min}]$	Area	Area\%
1	$3.39-3.43$	12.944	3911.805	95.4971. diastereomer 1. enantiomer $=93.2 \%$
2	$3.39-3.43$	14.244	136.702	3.3371. diastereomer 2. enantiomer
3	$3.66-3.70$	12.942	47.733	1.165

18i: ee determination of pure major diastereomer

Signal: DAD2 A, Sig=220,4 Ref=360,100

| Compound | Cut | Ret.Time | Area | Width | Height | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | Symmetry

rac-18i: separation of enantiomers
anti-1-(3-Chlorophenyl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18j. Prepared according to
 representative procedure $\mathrm{E}\left(-40{ }^{\circ} \mathrm{C}\right)$. Purified by flash chromatography (SiO_{2}, hexane/ethyl acetate 98:2) to give diol $\mathbf{1 8} \mathbf{j}$ as a colourless oil (75 mg , 70% yield, $>20: 1 \mathrm{dr}, 87 \%$ ee). $[\alpha]_{0^{00}}=-23.8\left(\mathrm{c}=0.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.39-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 5.70(\mathrm{ddt}, J=17.5,10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.99-4.91 (m, 2H), $4.82(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{td}, J=6.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.24$ (app. dddt, $J=14.5,7.0,6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.07 (app. dddt, $J=14.5,7.0,6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.12$1.07(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=142.4,134.9,134.4,129.6,127.7,126.8,124.7$, 117.3, 76.2, 76.1, 36.1, 18.3(1), 18.2(8), 12.8; IR (ATR): $\tilde{v}=3567,2943,2866,1599,1575$, 1464, 1431, 1192, 1095, 1063, 997, 914, 881, 783, 678; LRMS m/z (ESI ${ }^{+}$[M+Na] ${ }^{+} 391$; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{2}{ }^{35} \mathrm{CISiNa}\right]^{+} 391.1831$, found 391.1833. The shown absolute configuration was assigned by analogy (see above).

The ee of $\mathbf{1 8} \mathbf{j}$ was determined by 2D HPLC analysis
Separation of diastereomers: 50 mm Phenyl Hexyl, $\varnothing 3.0 \mathrm{~mm}$, methanol/water 75:25, v=0.5 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=11.30 \mathrm{~min}, \mathrm{t}($ minor $)=12.08 \mathrm{~min}, 308 \mathrm{~K}$.

18j: separation of diastereomers on achiral column

Sampling table (${ }^{1} \mathrm{D}$)

rac-18j: separation of diastereomers on achiral column

Chiral separation of major diastereomer: 150 mm Chiralpak IB-N3, $\varnothing 4.6 \mathrm{~mm}$, methanol/water $=80: 20, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=11.52 \mathrm{~min}, \mathrm{t}($ minor $)=12.66 \mathrm{~min} .298 \mathrm{~K}$

	Signal: DAD2 A, Sig=220,4 Ref=360,100									
	Compound	Cut	Ret.Time	Area	Width	Height	Symmetry			
	1	1	11.523	$\begin{aligned} & 115.896 \\ & 115.896 \end{aligned}$	0.229	6.057	1.007	1st enant	mer	
	2	1	12.661	$\begin{aligned} & 1603.361 \\ & \mathbf{1 6 0 3 . 3 6 1} \end{aligned}$	0.329	71.283	0.866	2nd enan	iomer	
Component	${ }^{1} \mathrm{D}$ Sa	g	ge [min]	Re	ne ${ }^{2} \mathrm{D}$ [min]		Area	Area\%		
1		11.3	- 11.38		11.523		115.896	6.741	E1/D1	ee $=86.5 \%$
2		11.3	- 11.38		12.661		1603.361	93.259	E2/D1	

18j: ee determination of pure major diastereomer

Compound	Cut	Ret.Time	Area	Width	Height Symmetry		
1	1	11.510	934.491	0.299	47.996	0.898	1st enantiomer
			934.491				
2	1	12.667	942.454	0.346	42.540	0.873	2st enantiomer

rac-18j: separation of enantiomers
anti-1-(4-(Trifluoromethyl)phenyl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18k. Prepared
 according to representative procedure $\mathrm{E}\left(-40{ }^{\circ} \mathrm{C}\right)$. Purified by flash chromatography (SiO_{2}, hexane/ethyl acetate 98:2) to give diol $\mathbf{1 8 k}$ as a colourless oil ($99 \mathrm{mg}, 75 \%$ yield, $20: 1 \mathrm{dr}, 78 \% \mathrm{ee}$). $[\alpha]_{0^{0}}^{20}=2.0$ ($\mathrm{c}=0.51$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.69$ (ddt, $J=17.5,10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.98-4.88 (m, 3H), 4.14 (td, $J=6.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (br. s, 1 H), 2.24 (app. dddt, $J=14.5,7.0,6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.05 (dddt, $J=14.2,7.0,5.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.13-1.08(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=144.3,134.8,129.8\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=32.5 \mathrm{~Hz}\right.$), 126.9, 125.2 ($\mathrm{q},{ }^{3} J_{C F}=4.0 \mathrm{~Hz}$), $124.3\left(\mathrm{q},{ }^{1} J_{C F}=273.0 \mathrm{~Hz}\right), 117.4,76.2,76.1,18.2(9), 18.2(6)$, 12.8; IR (ATR): $\tilde{v}=3457,1621,1464,1416,1323,1164,1125,1066,1017,917,882,827$, 679; LRMS m/z (ESI') [M-H] 401; HRMS (ESI, m/z) calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{~F}_{3} \mathrm{Si}^{-}\right.$401.2134, found 401.2130. The shown absolute configuration was assigned by analogy (see above).

The ee of 18k was determined by HPLC analysis: 150 mm Chiralpak IA-3, $\varnothing 4.6 \mathrm{~mm}, n-$ heptane $/$ i-propanol $=98: 2, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=3.02 \mathrm{~min}, \mathrm{t}($ minor $)=3.67$ min.

anti-1-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-2-((triisopropylsilyl)oxy)-

pent-4-en-1-ol 18I. Prepared according to representative procedure E (-40 $\left.{ }^{\circ} \mathrm{C}\right)$. Purified by
 flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 98:2) to give diol 18 I as a colourless oil ($86 \mathrm{mg}, 64 \%$ yield, $>20: 1 \mathrm{dr}, 92 \% \mathrm{ee}$). $[\alpha] \mathrm{b}^{\circ}=$ $4.0\left(\mathrm{c}=0.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.78(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{ddt}, J=17.5,10.5,7.0 \mathrm{~Hz}$, 1 H), 4.95-4.87 (m, 3H), 4.15-4.09 (m, 1H), 2.76 (br. s, 1H), 2.20 (app. dddt, $J=15.0,7.5,6.5$, $1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.06-1.97 (m, 1H), $1.35(\mathrm{~s}, 12 \mathrm{H}), 1.13-1.08(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Note: one aryl carbon missing due to overlap. $\delta=143.3,135.3,134.8,125.8,117.1,83.9$, 76.7, 76.4, 35.8, 25.1, 25.0, 18.3(3), 18.3(1), 12.8; IR (ATR): $\tilde{v}=3567,2943,2866,1613$, 1464, 1399, 1358, 1319, 1144, 1087, 1020, 882, 859, 676, 657; HRMS (ESI ${ }^{+}, m / z$) calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{O}_{4} \mathrm{BSiNa}\right]^{+} 483.3076$, found 483.3072 . The shown absolute configuration was assigned by analogy (see above).

The ee of 18 l was determined by 2D HPLC analysis
Separation of diastereomers: 50 mm Phenyl Hexyl, $\varnothing 4.6 \mathrm{~mm}$, methanol/water 80:20, v=1.0 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}$ (major) $=6.37 \mathrm{~min}, \mathrm{t}($ minor $)=7.07 \mathrm{~min}, 308 \mathrm{~K}$.

Sampling table (${ }^{(} \mathrm{D}$)

$\begin{array}{l}\text { Cut } \\ \text { group }\end{array}$	Cut \#	$\begin{array}{c}\text { 1D Cut start } \\ \text { [min] }\end{array}$	$\begin{array}{c}\text { 1D Ret. time } \\ \text { [min] }\end{array}$	$\begin{array}{c}\text { 'D Duration } \\ \text { [min] }\end{array}$	Trigger ${ }^{2} \mathrm{D}$ Run start	
[min]						

181: separation of diastereomers on achiral column

Sampling table (${ }^{1} \mathrm{D}$)

Cut group	Cut \#	${ }^{1} \mathrm{D}$ Cut start [min]	${ }^{1}$ D Ret. time [min]	$\begin{gathered} \text { 'D Duration } \\ {[\mathrm{min}]} \end{gathered}$	Trigger	n start [min]	
	1	6.43	***	0.04	Time		1st diastereomer
	2	7.08	***	0.04	Time	33.32	2nd diastereomer

rac-181: separation of diastereomers on achiral column
Chiral separation of major diastereomer: 150 mm Chiralcel OZ-3R, $\varnothing 4.6 \mathrm{~mm}$, acetonitrile/water $=65: 35, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=12.56 \mathrm{~min}, \mathrm{t}($ minor $)=13.43$ min. 298 K

Compound	Cut	Ret.Time	Area	Width	Height	Symmetry		
1	1	12.564	$\begin{aligned} & 4794.488 \\ & 4794.488 \end{aligned}$	0.323	223.377	0.905	1st enantiomer	\%
2	1	13.431	$\begin{aligned} & 197.623 \\ & 197.623 \end{aligned}$	0.285	8.114	0.923	2nd enantiomer	

18I: ee determination of pure major diastereomer

Signal: DAD2 A, Sig=220,4 Ref=360,100

Compound	Cut	Ret.Time	Area	Width	Height Symmetry		
1	1	12.618	1700.665	0.302	79.416	0.944	1st enantiomer
			$\mathbf{1 7 0 0 . 6 6 5}$				
2	1	13.494	1729.389	0.327	73.925	0.915	2nd enantiomer

rac-18I: separation of enantiomers
anti-1-(Furan-2-yl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18m. Prepared according to
 representative procedure $\mathrm{E}\left(-30^{\circ} \mathrm{C}\right)$. Purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 99:1 to 97:3) to give diol 18m as a colourless oil (75 mg , 70% yield, $>20: 1 \mathrm{dr}, 94 \% \mathrm{ee}) .[\alpha]_{{ }^{20}}=-17.5\left(\mathrm{c}=0.55, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.37-7.35(\mathrm{~m}, 1 \mathrm{H}), 6.35-6.31(\mathrm{~m}, 2 \mathrm{H}), 5.81-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.05-5.97(\mathrm{~m}, 2 \mathrm{H}), 4.80-$ 4.75 ($\mathrm{m}, 1 \mathrm{H}$), 4.26-4.20 (m, 1H), 2.58 (dd, $J=5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (ddd, $J=14.5,7.0,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=153.2,141.7,134.4,117.5$, 110.4, 107.3, 74.7, 71.3, 37.5, 18.3, 18.2, 12.8; IR (ATR): $\tilde{v}=3458,2943,2866,1640,1463$, $1385,1245,1147,1104,1065,1000,916,881,803,731,676 ;$ LRMS m/z (ESI $\left.{ }^{+}\right)[\mathrm{M}+\mathrm{Na}]^{+} 347$; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}^{+}\right.$347.2019, found 347.2013.

The ee of 18m was determined by 2D HPLC analysis
Separation of diastereomers: 100 m RX-SiL, $\varnothing 4.6 \mathrm{~mm}, n$-heptane $/ \mathrm{MTBE} 97: 3, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=220 \mathrm{~nm}, \mathrm{t}($ major) $=4.03 \mathrm{~min}, 308 \mathrm{~K}$. (Note: minor diastereomer not identified for either sample)

Sampling table (${ }^{1} \mathrm{D}$)

18m: separation of diastereomers on achiral column

Sampling table (${ }^{1} \mathrm{D}$)
Cut
group Cut\# $\quad \begin{gathered}\text { D Cut start } \\ {[\mathrm{min}]}\end{gathered} \quad \begin{gathered}\text { 'D Ret. time } \\ {[\mathrm{min}]}\end{gathered} \quad \begin{gathered}\text { 'D Duration } \\ {[\mathrm{min}]}\end{gathered} \quad \begin{gathered}\text { Trigger }{ }^{2} \mathrm{D} \text { Run start } \\ {[\mathrm{min}]}\end{gathered}$
$\begin{array}{llll}3.920 & 0.04 & \text { Peak } & 3.94\end{array}$
rac-18m: separation of diastereomers on achiral column

Chiral separation of major diastereomer: 150 mm Chiralcel OD-3R, $\varnothing 4.6 \mathrm{~mm}, n-$ heptane $/ \mathrm{MTBE}=95: 5, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=5.33 \mathrm{~min}, \mathrm{t}($ minor $)=6.05 \mathrm{~min}$. 298 K

| 1 | 1 | 5.333 | 4225.224 | 0.135 | 521.356 | 0.894 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 4225.224 | | | |

2	1	6.049	123.017	0.153	13.382	0.946
			123.017			

Component
${ }^{1} \mathrm{D}$ Sampling range [min] Ret.Time ${ }^{2} \mathrm{D}$ [min]
$\begin{array}{rrrr}4.03-4.07 & 5.333 & 4225.224 & \text { 97.1711. } \text { enantiomer } \\ 4.03-4.07 & 6.049 & 123.017 & \text { 2.8292. enantiomer }=94.3 \%\end{array}$

18m: ee determination of pure major diastereomer Cutt: : 1

rac-18m: separation of enantiomers
syn-2-((tert-Butyldimethylsilyl)oxy)-1-cyclohexylpent-4-en-1-ol 19a. Prepared according
 to representative procedure $\mathrm{E}\left(-20^{\circ} \mathrm{C}\right)$. Purified by flash chromatography (SiO_{2}, hexane/ethyl acetate 99:1 to 98:2) to give diol 19a as a colourless oil ($55 \mathrm{mg}, 63 \%$ yield, $20: 1 \mathrm{dr}, 90 \% \mathrm{ee}$). $[\alpha]{ }^{20}=10.5$ ($\mathrm{c}=0.55, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.67(\mathrm{ddt}, J=17.5,10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.94(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.69(\mathrm{~m}$, 1 H), 3.01 (dd, $J=7.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.41-2.32 (m, 1H), 2.17-2.09 (m, 1H), 1.96 (br. s, 1H), 1.90$1.83(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.03(\mathrm{~m}, 3 \mathrm{H}), 1.00-$ $0.87(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=134.3$, 117.5, 76.1, 71.3, 40.3, 39.1, 29.7, 28.7, 26.5, 26.2, 26.1, 25.9, 18.1, -3.9, -4.7; IR (ATR): $\tilde{v}=$ 3562, 2926, 2854, 1641, 1449, 1390, 1361, 1253, 1102, 1049, 910, 834, 774, 678; LRMS m/z (EI') [M] ${ }^{+}$298; HRMS (ESI', m/z) calculated for [$\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Sij}^{-}$297.22564, found 297.22553. The shown absolute configuration was assigned by analogy (see above).

The ee of 19a was determined by chiral GC

syn-1-Cyclohexyl-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 19b. Prepared according to
 representative procedure $\mathrm{E}\left(-20^{\circ} \mathrm{C}\right)$. Purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 99:1) to give diol 19b as a colourless oil ($55 \mathrm{mg}, 36 \%$ yield, $14: 1 \mathrm{dr}, 93 \% \mathrm{ee}) .[\alpha]_{0^{0}}^{0}=10.9\left(\mathrm{c}=0.47, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=5.75(\mathrm{ddt}, J=17.0,10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.04(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{dt}, J=9.0,3.0 \mathrm{~Hz}$, 1 H), 3.12 (dd, $J=7.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.54 (app. dddt, $J=14.0,8.4,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27 (app. dddd, $J=13.5,6.5,3.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.16 (br. s, 1 H$), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.58(\mathrm{~m}, 5 \mathrm{H})$, 1.49-1.38 (m, 1H), 1.23-1.14 (m, 3H), 1.10-1.07 (m, 21H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 134.2, 117.8, 75.9, 71.8, 40.3, 39.1, 30.1, 28.7, 26.7, 26.3(2), 26.3(0), 18.4, 18.3, 13.0; IR (ATR): $\tilde{v}=3550,2924,2866,1705,1641,1463,1450,1386,1249,1107,1058,995,916,881$, 677; LRMS m/z (ESI ${ }^{+}$[$\mathrm{M}+\mathrm{Na}^{+} 363$; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{SiNa}\right]^{+}$ 363.2690, found 363.2688 . The shown absolute configuration was assigned by analogy (see above).

The ee of 19 b was determined by chiral GC

Verhăltnis der Enantiomere
Zuordnung achiral nach Racemat GCMS 30077 DAU-DA-253-01 21/8093

Verhältnis der Enantiomere
Zuordnung achiral nach GCMS 30077 DAU-DA-253-01 21/8093

No.	Ret. Time min	Rel.Area \%	Peak Name	Suggestion!
15	362,04	49,06		OH
16	371,08	50,94		
Instrument parameters:				
		$24,5 \mathrm{~m}$	IVADEX-1 0,25/0,25df G/662	
Temperature:Gas:		220/120 iso/350		
		0,50 bar	Hydrogen	
		$0,2 \mu \mathrm{~L}$		

syn-4-((tert-Butyldimethylsilyl)oxy)-1-phenylhept-6-en-3-ol 11a. Prepared according to
 representative procedure $\mathrm{E}\left(-20{ }^{\circ} \mathrm{C}\right)$. Purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 97:3) to give diol 11a as a colourless oil (69 mg , 74% yield, $11: 1 \mathrm{dr}, 90 \% \mathrm{ee}) .[\alpha]_{0}^{20}=-4.6\left(\mathrm{c}=0.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dt}, J=8.1,2.1 \mathrm{~Hz}, 3 \mathrm{H}$), 5.77 (ddt, $J=17.3,10.2,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.11-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.59$ (ddd, $J=7.0,4.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{tdd}, J=8.4,5.8,4.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.85 (ddd, $J=13.8,8.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.27-$ $2.13(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 8 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.2,134.2,128.4,128.3,125.7,117.6,74.7,71.9,38.6,35.7,32.2,25.9,18.1,-$ 4.1, - 4.6 ppm. IR (ATR): $\tilde{v}=3461,2929,2857,1641,1604,1496,1471,1390,1361,1254$, 1074, 1004, 912, 833, 810, 774, 746, 698, 678. MS (EI) m/z (\%): 263 (12), 245 (4), 207 (4), 185 (100), 171 (39), 129 (64), 91 (65), 75 (79). HRMS (ESI ${ }^{+}$m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}$: 343.2063 , found: 343.2065 . The shown absolute configuration was assigned by analogy (see above).

The ee of 11a was determined by 2D HPLC analysis. Please note, in this case the syn diastereomer, which was the major diastereomer in the enantioselective reaction, was the minor (2nd) diastereomer of the racemic sample.

Separation of diastereomers: 50 mm Zorbax Eclipse Plus C18, $\varnothing 4.6 \mathrm{~mm}$, acetonitrile/water $75: 25, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=5.37 \mathrm{~min}, \mathrm{t}($ minor $)=5.64 \mathrm{~min}, 308 \mathrm{~K}$.

11a: separation of diastereomers on achiral column

Sampling table (${ }^{1} \mathrm{D}$)

Cut group	Cut \#	1D Cut start [min]	1D Ret. time [min]	D D Duration [min]	Trigger ${ }^{2} \mathrm{D}$ Run start	
[min]						

rac-11a: separation of diastereomers on achiral column
Chiral separation of syn diastereomer: 150 mm Chiralpak IB-N3, $\varnothing 4.6 \mathrm{~mm}$, acetonitrile/water $=55: 45, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=16.71 \mathrm{~min}, \mathrm{t}$ (major) $=17.60 \mathrm{~min} .298 \mathrm{~K}$

Signal: DAD2 A, Sig=220,4 Ref $=360,100$								
Compound	Cut	Ret.Time	Area	Width	Height	Symmetry		
3	2	16.713	409.537	0.360	17.410	0.926	1st Enantiomer	
			409.537					
4	2	17.597	7421.021	0.401	289.337	0.853	2nd Enantiomer $=89.5 \%$	

11a: ee determination of pure syn diastereomer
Cut\#: 2 2nd Diastereomer

Signal: DAD2 A, Sig=220,4 Ref=360,100						
Compound	Cut	Ret.Time	Area	Width	Height	Symmetry
3	2	16.047	$\begin{aligned} & 13.013 \\ & 13.013 \end{aligned}$	0.409	0.531	0.991
4	2	16.734	$\begin{array}{r} 233.371 \\ 233.371 \end{array}$	0.399	9.744	0.931 1st Enantiomer
5	2	17.624	$\begin{array}{r} 232.800 \\ 232.800 \end{array}$	0.384	9.432	0.902 2nd Enantiomer
6	2	20.599	$\begin{aligned} & 19.235 \\ & 19.235 \end{aligned}$	0.659	0.486	0.693

rac-11a: separation of enantiomers of syn diastereomer
syn-4-((tert-Butyldimethylsilyl)oxy)-2-methylhept-6-en-3-ol 19c. Prepared according to
 representative procedure $\mathrm{E}\left(-20^{\circ} \mathrm{C}\right)$. Purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 98.5:1.5) to give diol 19c as a colourless oil ($42 \mathrm{mg}, 56 \%$ yield, $20: 1 \mathrm{dr}, 91 \% \mathrm{ee}$). Note: compound is likely volatile, should not be left under high vacuum. $[\alpha]_{0^{20}}=21.0\left(\mathrm{c}=0.49, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.77$ (ddt, J $=17.5,10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.12-5.04(\mathrm{~m}, 2 \mathrm{H}), 3.77$ (ddd, $J=7.5,4.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.05 (dd, $J=$ $7.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.48-2.39 (m, 1H), 2.22 (app. dddt, $J=14.0,7.0,4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.07 (br. $\mathrm{s}, 1 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.91-0.89(\mathrm{~m}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, 0.11 (s, 3H), 0.09 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=134.4,117.7,77.2,72.0,39.3,30.6$, 26.0, 19.6, 18.4,, 18.2, -3.8, -4.5; IR (ATR): $\tilde{v}=3561,2956,2930,2858,1641,1741,1389$, 1362, 1254, 1055, 1005, 913, 866, 834, 774, 679; LRMS m/z (EI+) [M] ${ }^{+}$258; HRMS (ESI ${ }^{+}, m / z$) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiNa}\right]^{+}$281.1907, found 281.1903. The shown absolute configuration was assigned by analogy (see above).

The ee of 19c was determined by chiral GC

Instrument parameters:	
Column:	30,0 m BGB-176/BGB-15 0,25/0,25df G/618
Temperature:	$220 / 70,225 \mathrm{~min}$ iso $8 / \mathrm{min} 240,3 \mathrm{~min}$ iso / 350
Gas:	0,60 bar H2
Sample size:	

syn-3-((tert-Butyldimethylsilyl)oxy)-1-phenylhex-5-en-2-ol 19d. Prepared according to
 representative procedure $\mathrm{E}\left(-20^{\circ} \mathrm{C}\right)$. Purified by flash chromatography (SiO_{2}, hexane/ethyl acetate 98:2) to give diol 19d as a colourless oil (40 $\mathrm{mg}, 45 \%$ yield, $20: 1 \mathrm{dr}, 88 \% \mathrm{ee}) \cdot[\alpha]_{\circ^{20}}=-3.1\left(\mathrm{c}=0.55, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 5.78(\mathrm{ddt}, J=17.5,10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12-5.04(\mathrm{~m}, 2 \mathrm{H}), 3.76$ (ddd, $J=8.5,4.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (ddd, $J=J=7.0,5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80 (dd, $J=14.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (dd, $J=14.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 (app. dtt, $J=14.0,7.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25$ (app. dddt, $J=14.0,7.5,5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11$ (s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=139.1,134.3,129.4,128.5,126.4,117.7,74.1,73.7,40.3$, 38.6, 26.0, 18.3, -3.9, -4.4; IR (ATR): $\tilde{v}=3560,3028,2953,2929,2857,1641,1471,1389$, 1361, 1253, 1076, 1004, 909, 832, 774, 74, 698; LRMS m/z (EI+) [M] ${ }^{+} 306 ;$ HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiNa}\right]^{+}$329.1907, found 329.1910. The absolute configuration was assigned after desilylation by comparison of the resulting diol with literature data (see above).

The ee of 19d was determined by 2D HPLC analysis
Separation of diastereomers: 50 mm Eclipse PAH, $\varnothing 4.6 \mathrm{~mm}$, acetonitrile/water 60:40, v=1.0 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=9.99 \mathrm{~min}, \mathrm{t}($ major $)=10.36 \mathrm{~min}, 308 \mathrm{~K}$.

Sampling table (${ }^{1} \mathrm{D}$)

19d: separation of diastereomers on achiral column

Sampling table (${ }^{1} \mathrm{D}$)

Cut group	Cut \#	${ }^{1} \mathrm{D}$ Cut start [min]	${ }^{1}$ D Ret. time $[\mathrm{min}]$	$\begin{aligned} & \text { 'D Duration } \\ & {[\mathrm{min}]} \end{aligned}$	Trigger ${ }^{2} \mathrm{D}$ Run start [min]		
	1	9.96	9.986	0.04	Time	10.01	1st diastereomer
	2	10.34	10.358	0.04	Time	61.86	2nd diastereomer
	3	11.50	***	0.04	Time	36.86	isomer

rac-19d: separation of diastereomers on achiral column
Chiral separation of major diastereomer: 150 mm Chiralpak OJ-3R, $\varnothing 4.6 \mathrm{~mm}$, acetonitrile/water $=50: 50, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=18.73 \mathrm{~min}, \mathrm{t}($ minor $)=22.81$ min. 298 K

19d: ee determination of pure major diastereomer
Cut\#: 2 2nd diastereomer

Signal: DAD2 A, Sig=220,4 Ref=360,100

Compound	Cut	Ret.Time	Area	Width	Height Symmetry		
3	2	18.637	689.760	0.511	22.507	0.717	1st enantiomer
			689.760				
4	2	22.667	684.341	0.625	18.239	0.700	2nd enantiomer
			684.341				

rac-19d: separation of enantiomers
syn-1-([1,1'-Biphenyl]-4-yl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 19e. Prepared
 according to representative procedure $\mathrm{E}\left(-20^{\circ} \mathrm{C}\right)$. Purified by flash chromatography (SiO_{2}, hexane/ethyl acetate 98:2) to give diol 19a as a colourless oil ($107 \mathrm{mg}, 90 \%$ yield, $18: 1 \mathrm{dr}, 74 \% \mathrm{ee}$). $[\alpha]_{0^{\circ}}^{0}=-12.3$ ($\mathrm{c}=0.47$, $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.64-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 1 \mathrm{H})$, $6.00-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (ddd, $J=8.0,5.0,3.5 \mathrm{~Hz}$, 1 H), 3.06 (br. s, 1H), 2.56 (dddt, $J=14.5,8.0,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.31-2.21 (m, 1H), 1.09-1.04 (m, 21H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=141.2,140.5,133.9,128.9,127.3,127.2,127.1$, 127.0, 118.2, 77.1, 74.6, 38.5, 18.2, 18.1, 12.9; IR (ATR): $\tilde{v}=3556,3030,2942,2865,1640$, 1600, 1487, 1463, 1387, 1241, 1201, 1094, 1060, 997, 912, 882, 825, 762, 677, 510; LRMS $m / z\left(E S I^{+}\right)[\mathrm{M}+\mathrm{Na}]^{+} 433$; HRMS (ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$) calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{SiNa}\right]^{+} 433.2533$, found 433.2534. The shown absolute configuration was assigned by analogy (see above).

The ee of 19e was determined by 2D HPLC analysis
Separation of diastereomers: 50 mm Eclipse Plus C18, $\varnothing 4.6 \mathrm{~mm}$, methanol/water 85:15, v = $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=11.91 \mathrm{~min}, \mathrm{t}($ major $)=12.64 \mathrm{~min}, 308 \mathrm{~K}$.


```
Sampling table ('D)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Cut group & Cut \# & 'D Cut start [min] & \({ }^{1}\) D Ret. time [min] & \[
\begin{gathered}
\text { 'D Duration } \\
{[\mathrm{min}]}
\end{gathered}
\] & Trigger \({ }^{2}\) & \({ }^{2}\) D Run start [min] \\
\hline & 1 & 11.91 & *** & 0.04 & Time & 11.95 \\
\hline & 2 & 12.77 & 12.808 & 0.04 & Time & 28.85 \\
\hline
\end{tabular}
```

19e: separation of diastereomers on achiral column

rac-19e: separation of diastereomers on achiral column

Chiral separation of major diastereomer: 150 mm Chiralcel IC-3, $\varnothing 4.6 \mathrm{~mm}$, acetonitrile/water $=70: 30, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=10.19 \mathrm{~min}, \mathrm{t}($ minor $)=11.24 \mathrm{~min} .298 \mathrm{~K}$

Signal: DAD2 A, Sig=220,4 Ref=360,100

Component	'D Sampling range [min]
1	$11.91-11.95$
2	$11.91-11.95$
3	$12.77-12.81$
4	$12.77-12.81$

Ret.Time ${ }^{2}$ D [min]

19e: ee determination of pure major diastereomer

rac-19e: separation of enantiomers
syn-1-([1,1'-Biphenyl]-4-yl)-2-(benzyloxy)pent-4-en-1-ol 19f. Prepared according to
 representative procedure $\mathrm{E}\left(-40^{\circ} \mathrm{C}\right)$. Purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $95: 5$ to $92: 8$) to give diol 19 f as a light yellow oil ($53 \mathrm{mg}, 53 \%$ yield, $18: 1 \mathrm{dr}, 92 \%$ ee). $[\alpha]_{0^{20}}=60.7\left(\mathrm{c}=0.46, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.64-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 6 \mathrm{H}), 5.96-$ $5.84(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.65(\mathrm{~m}$, 1H), 2.90 (br. s, 1H), 2.45 (app. dddt, 14.8, $6.7,5.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.24 (app. dddt, 14.5, 7.8, $5.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=141.0 .140 .9,140.1,138.1,134.1,128.9$, 128.6, 128.1, 128.0, 127.6, 127.4, 127.2, 118.0, 83.2, 75.3, 72.7, 34.9; IR (ATR): $\tilde{v}=3436$, 3030, 2871, 1640, 1600, 1486, 1453, 1405, 1270, 1205, 1064, 914, 839, 733, 695; LRMS m/z $\left(\mathrm{El}^{+}\right)$[M] ${ }^{+} 344$; HRMS (ESI,$\left.~ m / z\right)$ calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}\right]^{+} 367.1668$, found 367.1671. The shown absolute configuration was assigned by analogy (see above).

The ee of 19 f was determined by HPLC analysis: 150 mm Chiralpak IC-3, $\varnothing 4.6 \mathrm{~mm}, n-$ heptane $/$ i-propanol $=90: 10, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=4.59 \mathrm{~min}, \mathrm{t}($ major $)=5.01$ min.

1.3.3 Synthesis of Dienyl Ethers

(E)-Configured dienes were prepared by reacting the appropriate aldehyde with a silyl chloride or triflate in the presence of triethylamine. (Z)-Configured dienes were made through a threestep sequence starting with methylation of commercially available cis-2-buten-1,4-diol using methyl iodide, substitution of the remaining hydroxy group, and (Z)-selective low temperature elimination of the methoxy group with n-BuLi. Both methods give the desired dienes as effectively a single isomer. These compounds are generally stable to silica gel chromatography and may be stored for months in the freezer under argon without decomposition or isomerisation as judged by ${ }^{1} \mathrm{H}$ NMR spectroscopy. However, they are acid-sensitive and for this reason either $\mathrm{C}_{6} \mathrm{D}_{6}$ or neutralised CDCl_{3} were used to record NMR spectra.

General Procedure F for Preparation of (E)-DienyIEthers. The aldehyde (1.0 or 1.7 equiv) and triethylamine (2.5 equiv) were dissolved in dichloromethane. To this solution was added the appropriate silyl triflate (1.0 or 1.1 equiv) dropwise at $0^{\circ} \mathrm{C}$, then the mixture was stirred at reflux temperature for 5 h . The mixture was diluted with ether and washed with cold sat. NaHCO_{3} and brine. The organic phase was dried over MgSO_{4}, filtered and the solvent was removed in vacuo. The residue was purified by flash chromatography over silica gel (hexane 100%) to give the product.
(E)-Triisopropyl((3-methylbuta-1,3-dien-1-yl)oxy)silane 7. The desired product was
 prepared according to the general procedure F , using 3-methylbut-2-enal (1.6 $\mathrm{mL}, 17.0 \mathrm{mmol}, 1.7$ equiv), triethylamine ($3.5 \mathrm{~mL}, 25.0 \mathrm{mmol}, 2.5$ equiv) and TIPS triflate ($2.7 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.0$ equiv) in dichloromethane (7.0 mL). The residue was purified by flash chromatography over silica gel (hexane 100\%) to give 7 as colorless liquid ($2.2 \mathrm{~g}, 92 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.64$ (br d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.86 (dd, $J=12.0$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.65(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.13$ (m, 3H), 1.11-1.07 (m, 18H). HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{OSi}: 240.1901$ [M] ${ }^{+}$, found 240.1903. Matches known data. ${ }^{15}$
(E)-tert-Butyldimethyl((3-methylbuta-1,3-dien-1-yl)oxy)silane S9. The desired product was
 prepared according to the general procedure F, using 3 -methylbut-2-enal ($1.6 \mathrm{~mL}, 17.0 \mathrm{mmol}, 1.7$ equiv), triethylamine ($3.5 \mathrm{~mL}, 25.0 \mathrm{mmol}, 2.5$ equiv) and TBDMS triflate ($2.3 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.0$ equiv) in dichloromethane $(7.0 \mathrm{~mL}$). The residue was purified by flash chromatography over silica gel (hexane 100\%) to give $\mathbf{S 9}$ as colorless liquid ($1.6 \mathrm{~g}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.55$ (br d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.84 (br d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.66(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{dd}, \mathrm{J}=1.4,0.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}$, 9 H), 0.16 (s, 6 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.4,139.9,116.3,111.9,25.8,19.2,18.4,-$ 5.1. HRMS (ESI) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{OSi}$: $198.1432[\mathrm{M}]^{+}$, found 198.1434. Matches known data. ${ }^{16}$
(E)-Triethyl((3-methylbuta-1,3-dien-1-yl)oxy)silane S10. The desired product was prepared
 according to the general procedure F, using 3-methylbut-2-enal ($1.4 \mathrm{~mL}, 14.1$ $\mathrm{mmol}, 1.4$ equiv), triethylamine ($3.5 \mathrm{~mL}, 25.1 \mathrm{mmol}, 2.5$ equiv) and TES triflate ($2.3 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.0$ equiv) in dichloromethane $(7.0 \mathrm{~mL})$. The residue was purified by flash chromatography over silica gel (hexane 100%) to give $\mathbf{S 1 0}$ as colorless liquid ($1.4 \mathrm{~g}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.56(\mathrm{~d}, ~ J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (dd, $J=12.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.75-4.73 (m, 1H), 4.69-4.66 (m, 1H), $1.80(\mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-0.96(\mathrm{~m}, 9 \mathrm{H}), 0.73-$ 0.66 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.3,140.0,116.3,111.9,19.2,6.2,4.1$. IR (ATR): $\tilde{v}=3083,3035,2956,2813,2878,1642,1605,1457,1414,1379,1333,1272,1239,1167$, 1098, 1074, 1005, 974, 921, 867, 791, 765, 729, 680, $516 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{OSi}: 240.1903$ [M] ${ }^{+}$, found 240.1903 .
(E)-triisopropyl((2-methylbuta-1,3-dien-1-yl)oxy)silane S11. The desired product was

prepared according to the general procedure F, using 2-methylbut-2-enal (0.6 $\mathrm{mL}, 5.9 \mathrm{mmol}, 1.0$ equiv), triethylamine ($1.7 \mathrm{~mL}, 11.9 \mathrm{mmol}, 2.0$ equiv) and TIPS triflate ($1.8 \mathrm{~mL}, 6.5 \mathrm{mmol}, 1.1$ equiv) in dichloromethane $(4.0 \mathrm{~mL})$. The residue was purified by flash chromatography over silica gel (hexane 100\%) to give S11 as colorless liquid ($1.1 \mathrm{~g}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.52-6.50(\mathrm{~m}, 1 \mathrm{H}), 6.32$ (ddd, $J=17.2,10.7$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00$ (ddd, $J=17.2,1.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=10.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.13(\mathrm{~m}, 3 \mathrm{H}), 1.10-1.06(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.6,137.3$, 118.0, 107.9, 17.8, 12.0, 8.7. IR (ATR): $\tilde{v}=2944,2893,2867,1695,1641,1463,1419,1392$, 1368, 1242, 1176, 1071, 1014, 995, 984, 919, 878, 829, 788, 684, 664, 592, 504, 463, 443 cm^{-1}. HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{OSi}: 240.1903\left[\mathrm{M}^{+}\right.$, found 240.1903 .
(E)-(Buta-1,3-dien-1-yloxy)triisopropylsilane S12. Prepared according to the general人отIPs procedure F, using crotonaldehyde ($1.4 \mathrm{~mL}, 17.0 \mathrm{mmol}$), triethylamine (3.5 mL , $25.0 \mathrm{mmol})$ and TIPS triflate ($2.7 \mathrm{~mL}, 10.0 \mathrm{mmol}$) in dichloromethane $(7.0 \mathrm{~mL})$. The residue was purified by flash chromatography over silica gel (hexane 100\%) to give S12 as a colorless liquid ($1.8 \mathrm{~g}, 80 \%$ yield). ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.67$ (dd, $\left.J=11.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.28$ (dddd, $J=16.9,10.9,10.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.78 (ddt, $J=11.8,11.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00$ (ddt, $J=16.9,1.7$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ (ddd, $J=10.3,1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}) 1.21-1.12(\mathrm{~m}, 3 \mathrm{H}), 1.10-1.06(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=145.9,133.6,114.1,111.6,17.8,12.1$. HRMS (ESI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{26}$ OSi: $226.1745[\mathrm{M}]^{+}$, found 226.1747. Matches known data. ${ }^{15}$
(E)-(Buta-1,3-dien-1-yloxy)(tert-butyl)dimethylsilane S13. To a solution of crotonaldehyde

($5.5 \mathrm{~mL}, 66 \mathrm{mmol}$), triethylamine ($10 \mathrm{~mL}, 72 \mathrm{mmol}$) and TBSCI ($10 \mathrm{~g}, 66 \mathrm{mmol}$) in MeCN (10 ml) was added dropwise a solution of $\mathrm{NaI}(10.5 \mathrm{~g}, 70 \mathrm{mmol})$ in $\mathrm{MeCN}(50 \mathrm{ml})$. The reaction was heated to $50^{\circ} \mathrm{C}$ for 16 hours and allowed to cool before being poured onto ice (150 g) and extracted with pentane ($4 \times 100 \mathrm{ml}$). The combined organic phases
were washed with brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a pale yellow oil. The crude liquid was distilled under vacuum (20 mbar) discarding the forerun $68-75$!C collecting the between fraction $75-82^{\circ} \mathrm{C}$ to give the product S 13 as a colorless liquid ($7.9 \mathrm{~g}, 65 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.57$ (dd, $J=11.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.22 (dddd, $J=$ $16.9,10.9,10.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.73 (ddt, $J=11.8,10.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.81$ (ddt, $J=10.3,1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.5$, 133.5, 114.3, 112.0, 25.7, 18.4, -5.1. Matches known data. ${ }^{17}$
(E)-(Buta-1,3-dien-1-yloxy)triethylsilane S14. The desired product was prepared according to general procedure \# using crotonaldehyde ($2.73 \mathrm{~mL}, 33.0 \mathrm{mmol}$), triethylamine ($10.5 \mathrm{~mL}, 75.0 \mathrm{mmol}$), triethylsilyl triflate ($6.78 \mathrm{~mL}, 30.0 \mathrm{mmol}$) and dichloromethane (21 mL) to give product $\mathbf{S 1 4}$ as a colourless oil ($4.09 \mathrm{~g}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta=6.57$ (app. dq, $J=12.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.26 (dddd, $J=17.0,11.0,10.0,0.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.98$ (app. ddt, $J=11.5,11.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.03 (app. ddt, $J=17.0,1.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.87 (app. ddt, $J=10.0,1.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.55(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H})$. Matches known data. ${ }^{18}$
(Z)-4-Methoxybut-2-en-1-ol S15. To a suspension of $\mathrm{NaH}(900 \mathrm{mg}, 37.7 \mathrm{mmol})$ in THF (120 mL) at $0^{\circ} \mathrm{C}$ was added cis-1,4-butendiol ($10 \mathrm{~mL}, 121.7 \mathrm{mmol}$) dropwise. Once addition was complete the reaction was allowed to come to RT and stirred until H_{2} evolution had ceased (30 minutes). At this point the beige suspension was again chilled to $0^{\circ} \mathrm{C}$ and methyl iodide ($1.8 \mathrm{~mL}, 28.9 \mathrm{mmol}$) was added in a single portion. After stirring for 10 mins at $0^{\circ} \mathrm{C}$ the reaction was allowed to come to RT and stirred overnight. The reaction was then quenched with the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the organic phase was separated, and the aqueous phase was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a pale yellow oil. The residue was purified by flash chromatography (hexane/ethyl acetate 2:1) to give product $\mathbf{S 1 5}$ as a colourless oil ($2.38 \mathrm{~g}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.77-5.68$ $(\mathrm{m}, 1 \mathrm{H}), 5.59$ (dtt, $J=11.2,6.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.94$ (ddd, $J=6.3,1.6,0.8$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.28(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.4,127.6$, 68.0, $58.3,58.0$ ppm. Matches known data. ${ }^{19}$
(Z)-(tert-butyl)(dimethyl)(4-methoxybut-2-en-1-yl)oxy)silane S16. To a solution of alcohol
 S15 ($2.31 \mathrm{~g}, 22.59 \mathrm{mmol}$) in DMF (20 mL) at $0^{\circ} \mathrm{C}$ was added imidazole (3 g , $44.1 \mathrm{mmol})$ followed by TBSCI ($5.1 \mathrm{~g}, 33.8 \mathrm{mmol}$). The reaction was stirred with cooling for 10 minutes before being allowed to reach rt and being stirred overnight. The homogenous reaction mixture was then poured into $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic extracts were washed twice with brine, dried and concentrated to a pale yellow oil. The residue was purified by flash
chromatography (hexane/tert-butyl methyl ether 95:5) to give the product as a colourless oil ($4.45 \mathrm{~g}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.74-5.64$ (m, 1H), 5.57 (dtt, $J=11.3,6.3,1.6 \mathrm{~Hz}$, 1 H), 4.24 (ddt, $J=6.0,1.9,0.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.98 (dd, $J=6.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.32(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}$, 9 H), 0.07 ($\mathrm{s}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.7,126.8,68.2,59.5,58.0,25.9,18.3,-5.2$ ppm. Matches known data. ${ }^{20}$
(Z)-(Buta-1,3-dien-1-yloxy)(tert-butyl)dimethylsilane S17. To a solution of TBS ether S16 =___OTBS $(4.15 \mathrm{~g}, 19.2 \mathrm{mmol})$ in diethyl ether $(75 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ was added n-BuLi $(20 \mathrm{~mL}$, 1.6 m in hexanes, 32 mmol) dropwise ensuring the internal temperature never exceeded -20 ${ }^{\circ} \mathrm{C}$. The reaction was then stirred for two hours maintaining the temperature between $-20^{\circ} \mathrm{C}$ and $-30^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ solution and allowed to reach r . The organic phase was separated, and the aqueous phase was extracted with pentane (3×50 $\mathrm{mL})$. The combined organic phases were washed with brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a pale yellow oil. The oil was distilled under vacuum, collecting all distillate between $65-70^{\circ} \mathrm{C}$ at 17 mbar. Colourless liquid ($2.65 \mathrm{~g}, 81 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}) $\delta 6.76$ (dtd, $J=17.3,10.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.23-6.15 (m, 1H), $5.20(\mathrm{dd}, J=10.8,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.07$ (dd, $J=17.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.5,129.9,113.0,111.2,25.6,18.3,-5.4 \mathrm{ppm}$. Matches known data. ${ }^{20}$
(Z)-Triisopropyl((4-methoxybut-2-en-1-yl)oxy)silane S18. Alcohol S15 (1.0 g, 9.79 mmol$)$ TIPSO $\nearrow={ }^{\text {OMe }}$ was dissolved in DMF $(10 \mathrm{~mL})$ in a flame-dried Schlenk flask. The solution was cooled to $0^{\circ} \mathrm{C}$ and imidazole ($1.33 \mathrm{~g}, 19.6 \mathrm{mmol}$) and TIPSCI ($3.14 \mathrm{~mL}, 14.7 \mathrm{mmol}$) were added. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 10 mins , then allowed to warm to room temperature and stirred overnight. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted $3 x$ with ethyl acetate. The combined organic layers were washed with brine (2 x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give a light yellow liquid. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 98:2) to give the desired product S18 as a colourless oil ($2.30 \mathrm{~g}, 91 \%$ yield). ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.72$ (dtt, $J=11.5,6.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ (dtt, $J=11.5,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (ddt, $J=7.0,1.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.99$ (ddt, $J=6.5,1.5,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 1.09-1.05(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=133.2$, 126.6, 68.5, 59.9, 58.1, 18.1, 12.1; IR (ATR): $\tilde{v}=2942,2865,1463,1091,1066,995,881,803$, 679, 657; HRMS (CI (isobutane), m/z) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}^{+}\right.$259.20855, found 259.20878. Matches known data. ${ }^{20}$
(Z)-(Buta-1,3-dien-1-yloxy)triisopropylsilane S19. Silyl ether S18 ($2.22 \mathrm{~g}, 8.59 \mathrm{mmol}$) was
 added to a flame-dried Schlenk flask under argon, dissolved in diethyl ether (32 mL) and cooled to $-20^{\circ} \mathrm{C}$. n-BuLi ($7.3 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 11.7 mmol) was added and the reaction mixture stirred at the same temperature for 2 h . The mixture was
quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted $3 x$ with ethyl acetate. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure to give a colourless liquid. Purification by flash chromatography (SiO_{2}, hexane/ethyl acetate 98:2) to give the desired product as a colourless liquid ($1.35 \mathrm{~g}, 70 \%$ yield). ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.19-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.18$ (app. ddt, $\left.J=6.0,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.26$ (app. ddt, $J=11.0,6.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.15 (app. ddt, $J=17.5,2.0,1.0 \mathrm{~Hz}$), 4.98 (dddd, $J=10.5$, $2.0,1.5,1.0 \mathrm{~Hz}), 1.04-1.00(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=141.1,130.4,113.2,111.7$, 17.8, 12.2. Matches known data. ${ }^{20}$
(Z)-Triethyl((4-methoxybut-2-en-1-yl)oxy)silane S20. Alcohol S15 (1.00 g, 9.79 mmol$)$ was dissolved in DMF (10 mL) in a flame-dried Schlenk flask. The solution was
 cooled to $0^{\circ} \mathrm{C}$ and imidazole ($1.33 \mathrm{~g}, 19.6 \mathrm{mmol}$) and TESCI ($2.47 \mathrm{~mL}, 14.7$ $\mathrm{mmol})$ were added. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 10 mins then allowed to warm to room temperature and stirred overnight. The reaction was quenched with water and extracted with ethyl acetate (3 x). The combined organic layers were washed with brine (2 x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give a colourless liquid. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $\left.98: 2\right)$ to give the desired product as a colourless oil ($1.88 \mathrm{~g}, 89 \%$ yield). ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.70$ (dtt, $J=11.0,6.0,1.5$ $\mathrm{Hz} .1 \mathrm{H}), 5.57$ (dtt, $J=11.5,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (ddt, $J=6.0,1.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.98 (ddt, $J=$ $6.5,1.5,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.64-0.57(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=132.8,127.1,68.3,59.2,58.1,6.8,4.6 ; \mathrm{IR}(\mathrm{ATR}): \tilde{\mathrm{v}}=2955,2876,1459,1413$, 1293, 1190, 1080, 1004, 816, 724; HRMS (Cl (isobutane), m/z) calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Sil}^{+}\right.$ 217.16154, found 217.16183. Matches known data. ${ }^{20}$
(Z)-(Buta-1,3-dien-1-yloxy)triethylsilane S21. Silyl ether S20 ($1.80 \mathrm{~g}, 8.32 \mathrm{mmol}$) was added $=\mathrm{OSiEt}_{3}$ to a flame-dried Schlenk flask under argon, dissolved in diethyl ether and cooled to $-20^{\circ} \mathrm{C} . n$ - $\mathrm{BuLi}(7.1 \mathrm{~mL}, 1.6 \mathrm{~m}$ in hexanes, 11.3 mmol$)$ was added and the reaction mixture stirred at the same temperature for 2 h . The mixture was quenched with 10% aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted $3 x$ with ethyl acetate. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure to give a yellow oil. Purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/TERT-BUTYL METHYL ETHER 99:1) to give the desired product $\mathbf{S 2 1}$ as a colourless liquid ($882 \mathrm{mg}, 58 \%$ yield). ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$) $\delta=7.16-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.11$ (app. ddt, $J=6.0,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.28 (app. ddt, $J=11.0,6.0$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.15 (app. ddt, $J=17.5,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.97 (dddd, $J=10.5,2.0,1.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 0.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.53(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=140.5,130.5$, 113.3, 112.1, 6.7, 4.7. Matches known data. ${ }^{20}$
2. NMR Spectra of New or Previously Insufficiently Characterized Compounds SI-2

SI-3

-223.19

SI-4

कुत
5 sु

ตूल ติตต \%都

SI-8

L6

L7

sane

明铞

L9

[^0]

	$\begin{aligned} & \text { T } \\ & 8 \\ & \hline \mathbf{N} \end{aligned}$																\uparrow					
. 5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0

[^1]

$\begin{array}{llllllllllllllllll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$
$90 \quad 80$ $70 \quad 60$

SI-L1

SI-L2

SI-L3

										1		1						1
80	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

SI-L4

SI-L5

$$
\begin{array}{ll}
\\
\hline 100
\end{array}
$$

SI-L6

SI-L7

SI-L8

SI-L9

SI-L10

(

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | |
| :--- |
| $f 1(\mathrm{pmm})$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

(200

SI-L12

SI-L19

SI-L20

SI-L21

SI-L22

जら

SI-L23

SI-L24

[^2](100

SI-L25

SI-L26

SI-L27

裂
$\begin{array}{lllllllllllllllll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110\end{array} 100$
90
070 $60 \quad 50$ $40 \quad 30$ $\begin{array}{lll}0 & 1 & 10\end{array}$

SI-L28

SI-L29

(

[^3]

SI-L30

[^4]

SI-L31

[^5]

SI-L32

SI-L33

SI-L34

[^6]

SI-L35

[^7]SI-L36

SI-L37

anti-6-methyl-1-phenyl-4-((triisopropylsilyl)oxy)hept-6-en-3-ol (9a).

anti-4-((tert-butyldimethylsilyl)oxy)-6-methyl-1-phenylhept-6-en-3-ol (9b).

anti-6-methyl-1-phenyl-4-((triethylsilyl)oxy)hept-6-en-3-ol (9c).

anti-2-methyl-4-((triisopropylsilyl)oxy)non-1-en-5-ol (9d).

anti-2,6-dimethyl-4-((triisopropylsilyl)oxy)hept-6-en-3-ol (9e).

anti-1-cyclopropyl-4-methyl-2-((triisopropylsilyl)oxy)pent-4-en-1-ol (9f).

anti-2,2,6-trimethyl-4-((triisopropylsilyl)oxy)hept-6-en-3-ol (9g).

anti-2,7,11-trimethyl-4-((triisopropylsilyl)oxy)dodeca-1,10-dien-5-ol (9h).

Major

Minor
 $\underbrace{\text { Ning }}$

anti-1-phenyl-4-((triisopropylsilyl)oxy)hept-6-en-3-ol (9i).

9k

iso-9k

anti-4-methyl-1-phenyl-2-((triisopropylsilyl)oxy)pent-4-en-1-ol (91).

anti-2-((tert-butyldimethylsilyl)oxy)-4-methyl-1-phenylpent-4-en-1-ol (9m).

Methyl 4-(anti-2-((tert-butyldimethylsilyl)oxy)-1-hydroxypent-4-en-1-yl)benzoate (9n)

4-(anti-2-((tert-butyldimethylsilyl)oxy)-1-hydroxypent-4-en-1-yl)benzonitrile (9o)

[^8]1-(3-(anti-2-((tert-butyldimethylsilyl)oxy)-1-hydroxypent-4-en-1-yl)phenyl)ethan-1-one (9p)

[^9]anti-1-(furan-2-yl)-4-methyl-2-((triisopropylsilyl)oxy)pent-4-en-1-ol (9q).

anti-4-methyl-1-(thiophen-2-yl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol (9r).

syn-4-((tert-butyldimethylsilyl)oxy)-1-phenylhept-6-en-3-ol 11a

৷icmo

$\begin{array}{lll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40\end{array}$
syn-2-((tert-butyIdimethyIsilyl)oxy)-1-phenylpent-4-en-1-ol 11b

syn-5-methyl-1-phenyl-4-((triisopropylsilyl)oxy)hept-6-en-3-ol (13).
C-

anti-4-((tert-butyldimethylsilyl)oxy)-1-phenylhept-6-en-3-ol 18a

anti-1-phenyl-4-((triethylsilyl)oxy)hept-6-en-3-ol 18b

[^10]anti-2-((tert-butyldimethylsilyl)oxy)-1-cyclohexylpent-4-en-1-ol 18c

[^11]anti-1-cyclohexyl-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18d

anti-1-([1,1'-biphenyl]-4-yl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18e

[^12]anti-1-(4-methoxyphenyl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18f

[^13]anti-1-(o-tolyl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18g

[^14]anti-1-(naphthalen-2-yl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18h

[^15]anti-1-(4-fluorophenyl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18i

[^16]anti-1-(3-chlorophenyl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18j

[^17]anti-1-(4-(trifluoromethyl)phenyl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18k

anti-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 181

anti-1-(furan-2-yl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 18m

syn-2-((tert-butyldimethylsilyl)oxy)-1-cyclohexylpent-4-en-1-ol 19a

syn-1-cyclohexyl-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 19b

[^18]syn-4-((tert-butyldimethylsilyl)oxy)-2-methylhept-6-en-3-ol 19c

syn-3-((tert-butyldimethylsilyl)oxy)-1-phenylhex-5-en-2-ol 19d

[^19]syn-1-([1, 1'-biphenyl]-4-yl)-2-((triisopropylsilyl)oxy)pent-4-en-1-ol 19e

di. \quad a i a

 1

[^20]syn-1-([1,1'-biphenyl]-4-yl)-2-(benzyloxy)pent-4-en-1-ol 19f

[^21]
3. References

1. Malik, H. A.; Sormunen, G. J.; Montgomery, J., A General Strategy for Regiocontrol in NickelCatalyzed Reductive Couplings of Aldehydes and Alkynes. J. Am. Chem. Soc. 2010, 132 (18), 63046305.
2. Teichert, J. F.; Feringa, B. L., Phosphoramidites: Privileged Ligands in Asymmetric Catalysis. Angew. Chem. Int. Ed. 2010, 49 (14), 2486-2528.
3. Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P., Scope and Mechanism of the Pt-Catalyzed Enantioselective Diboration of Monosubstituted Alkenes. J. Am. Chem. Soc. 2013, 135 (30), 11222-11231.
4. Roth, T.; Wadepohl, H.; Wright, D. S.; Gade, L. H., Chiral Ditopic Cyclophosphazane (CycloP) Ligands: Synthesis, Coordination Chemistry, and Application in Asymmetric Catalysis. Chem. Eur. J. 2013, 19 (41), 13823-13837.
5. Zhou, H.; Wang, W.-H.; Fu, Y.; Xie, J.-H.; Shi, W.-J.; Wang, L.-X.; Zhou, Q.-L., Highly Enantioselective Copper-Catalyzed Conjugate Addition of Diethylzinc to Enones Using Chiral Spiro Phosphoramidites as Ligands. J. Org. Chem. 2003, 68 (4), 1582-1584.
6. Yang, Y.; Zhu, S.-F.; Duan, H.-F.; Zhou, C.-Y.; Wang, L.-X.; Zhou, Q.-L., Asymmetric Reductive Coupling of Dienes and Aldehydes Catalyzed by Nickel Complexes of Spiro Phosphoramidites: Highly Enantioselective Synthesis of Chiral Bishomoallylic Alcohols. J. Am. Chem. Soc. 2007, 129 (8), 2248-2249.
7. Hulst, R.; de Vries, N. K.; Feringa, B. L., α-Phenylethylamine based chiral phospholidines; new agents for the determination of the enantiomeric excess of chiral alcohols, amines and thiols by means of 31P NMR. Tetrahedron: Asymmetry 1994, 5 (4), 699-708.
8. van den Berg, M.; Minnaard, A. J.; Haak, R. M.; Leeman, M.; Schudde, E. P.; Meetsma, A.; Feringa, B. L.; de Vries, A. H. M.; Maljaars, C. E. P.; Willans, C. E.; Hyett, D.; Boogers, J. A. F.; Henderickx, H. J. W.; de Vries, J. G., Monodentate Phosphoramidites: A Breakthrough in Rhodium-Catalysed Asymmetric Hydrogenation of Olefins. Adv. Syn. Cat. 2003, 345 (1-2), 308-323.
9. Erre, G.; Junge, K.; Enthaler, S.; Addis, D.; Michalik, D.; Spannenberg, A.; Beller, M., Synthesis of Novel Monodentate Phosphoramidites and Their Application in Iridium-Catalyzed Asymmetric Hydrogenations. Chem. Asian J. 2008, 3 (5), 887-894.
10. Fürstner, A.; Nagano, T.; Müller, C.; Seidel, G.; Müller, O., Total Synthesis and Evaluation of the Actin-Binding Properties of Microcarpalide and a Focused Library of Analogues. Chemistry - A European Journal 2007, 13 (5), 1452-1462.
11. Schulz, A.; Villinger, A.; Westenkirchner, A., Synthesis of 1,3-Dichloro-cyclo-1,3diphosphadiazanes from Silylated Amino(dichloro)phosphanes. Inorganic Chemistry 2013, 52 (19), 11457-11468.
12. Nocquet, P. A.; Mace, A.; Legros, F.; Lebreton, J.; Dujardin, G.; Collet, S.; Martel, A.; Carboni, B.; Carreaux, F., Stereodivergent approach in the protected glycal synthesis of L-vancosamine, Lsaccharosamine, L-daunosamine and L-ristosamine involving a ring-closing metathesis step. Beilstein J Org Chem 2018, 14, 2949-2955.
13. Sawano, T.; Yamamoto, H., Enantioselective Epoxidation of β, γ-Unsaturated Carboxylic Acids by a Cooperative Binuclear Titanium Complex. ACS Catal. 2019, 9 (4), 3384-3388.
14. Jiao, P.; Kawasaki, M.; Yamamoto, H., A Sequential O-Nitrosoaldol and Grignard Addition Process: An Enantio- and Diastereoselective Entry to Chiral 1,2-Diols. Angew. Chem. Int. Ed. 2009, 48 (18), 3333-3336.
15. Kimura, M.; Ezoe, A.; Mori, M.; Iwata, K.; Tamaru, Y., Regio- and stereoselective nickel-catalyzed homoallylation of aldehydes with 1,3-dienes. J Am Chem Soc 2006, 128 (26), 8559-8568.
16. Mechsner, B.; Henssen, B.; Pietruszka, J., First enantioselective total synthesis of altersolanol A. Org Biomol Chem 2018, 16 (41), 7674-7681.
17. Bose, D.; Frey, W.; Pietruszka, J., The 'Mikami'-Catalyst in Enantioselective Diels-Alder Reactions of Juglone-Based Dienophiles with Different 1-Oxygenated Dienes: An Investigation on the Substitution Pattern Dependent Regioselectivity. Synthesis-Stuttgart 2014, 46 (18), 2524-2532.
18. LeBideau, F.; Gilloir, F.; Nilsson, Y.; Aubert, C.; Malacria, M., Stereocontrolled synthesis of alpha-trialkylsilyl-beta,gamma-unsaturated aldehydes via palladium(0) catalysis. Synthetic usefulness. Tetrahedron 1996, 52 (21), 7487-7510.
19. Emery, K. J.; Tuttle, T.; Murphy, J. A., Evidence of single electron transfer from the enolate anion of an N, N'-dialkyldiketopiperazine additive in BHAS coupling reactions. Org Biomol Chem 2017, 15 (41), 8810-8819.
20. Tayama, E.; Saito, S., Copper-Catalyzed Regiospecific and 1,2-Regioselective Cyclopropanation of (1Z)-1-Amino- and (1Z)-1-Oxy-1,3-butadienyl Derivatives. Synlett 2015, 26 (13), 1880-1884.

[^0]:

[^1]:

[^2]: $\begin{array}{lll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40\end{array}$

[^3]:

[^4]:

[^5]: $\begin{array}{llllllllllllllllllllllllllllllllllll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40\end{array}$

[^6]: $\begin{array}{lllllllllllllllllll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

[^7]: $\begin{array}{lll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40\end{array}$

[^8]:

[^9]: $\begin{array}{lllllllllllllllllll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

[^10]: $\begin{array}{llllllllllllllllll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

[^11]:

[^12]: $\begin{array}{lll}270 & 260 & 250 & 24 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40\end{array}$

[^13]: $\begin{array}{lllllll}270 & 260 & 250 & 240 & 230 & 220 & 210\end{array} 200$
 $\begin{array}{llllllllllll}0 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$
 $90 \quad 80$

[^14]: $\begin{array}{lllllllllllllllllll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

[^15]: $\begin{array}{lllllllllllllllllll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 9\end{array}$

[^16]:

[^17]: $\begin{array}{llllllllllllllllllll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80\end{array}$

[^18]: $\begin{array}{lllllllllllllllllllllllllllll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$

[^19]:

[^20]: $\begin{array}{lllllllllllllllllll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

[^21]:

