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Abstract: Dynamic mode decomposition (DMD) is a popular data-driven framework to extract linear
dynamics from complex high-dimensional systems. In this work, we study the system identification
properties of DMD. We first show that DMD is invariant under linear transformations in the image
of the data matrix. If, in addition, the data are constructed from a linear time-invariant system,
then we prove that DMD can recover the original dynamics under mild conditions. If the linear
dynamics are discretized with the Runge–Kutta method, then we further classify the error of the DMD
approximation and detail that for one-stage Runge–Kutta methods; even the continuous dynamics
can be recovered with DMD. A numerical example illustrates the theoretical findings.

Keywords: dynamic mode decomposition; system identification; Runge–Kutta method

1. Introduction

Dynamical systems play a fundamental role in many modern modeling approaches
of physical and chemical phenomena. The need for high fidelity models often results in
large-scale dynamical systems, which are computationally demanding to solve, analyze,
and optimize. Thus the last three decades have seen significant efforts to replace the
so-called full-order model, which is considered the truth model, with a computationally
cheaper surrogate model. In the context of model order reduction, we refer the interested
reader to the monographs [1–5]. Often, the surrogate model is constructed by projecting
the dynamical system onto a low-dimensional manifold, thus requiring a state-space
description of the differential equation.

If a mathematical model is not available or not suited for modification, data-driven
methods, such as the Loewner framework [6,7], vector fitting [8–10], operator inference [11], or
dynamic mode decomposition (DMD) [12] may be used to create a low-dimensional realization
directly from the measurement or simulation data of the system. Suppose the dynamical
system that creates the data is linear. In that case, the Loewner framework and vector fitting
are—under some technical assumptions—able to recover the original dynamical system
and hence serve as system identification tools. Despite the popularity of DMD, a similar
analysis seems to be missing, and this paper aims to close this gap.

Since DMD creates a discrete, linear time-invariant dynamical system from data, we
are interested in answering the following questions:

1. What is the impact of transformations of the data on the resulting DMD approximation?
2. Assume that the data used to generate the DMD approximation are obtained from

a linear differential equation. Can we estimate the error between the continuous
dynamics and the DMD approximation?

3. Are there situations in which we are even able to recover the original dynamical
system from its DMD approximation?
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It is essential to know how the data for the construction of the DMD model are
generated to answer these questions. Assuming exact measurements of the solution may
be valid from a theoretical perspective only. Instead, we take the view of a numerical
analyst and assume that the data are obtained via time integration of the dynamics with
a general Runge–Kutta method (RKM) with known order of convergence. We emphasize
that for linear time-invariant systems, a RKM may not be the method of choice; see, for
instance, [13]. Nevertheless, RKMs are a common numerical technique to solve general
differential equations, which is our main reason to consider RKMs in the following.

We can summarize the questions graphically as in Figure 1. Thus, the dashed lines
represent the questions that we aim to answer in this paper.

ẋ = Fx

xi+1 = Axi (xi)
m
i=0 (x̃i := Txi)

m
i=0

x̃i+1 = ADMD x̃i x̃i+1 = ÃDMD x̃i

time
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Figure 1. Problem setup.

Our main results are the following:

• We show in Theorem 1 that DMD is invariant in the image of the data under linear
transformations of the data.

• Theorem 2 details that DMD is able to identify discrete-time dynamics, i.e., for every
initial value in the image of the data, the DMD approximation exactly recovers the
discrete-time dynamics.

• In Theorem 3, we show that if the DMD approximation is constructed from data that
are obtained via a RKM, then the approximation error of DMD with respect to the
ordinary differential equation is in the order of the error of the RKM. If a one-stage
RKM is used and the data are sufficiently rich, then the continuous-time dynamics,
i.e., the matrix F in Figure 1, can be recovered cf. Lemma 1.

To render the manuscript self-contained, we recall important definitions and re-
sults for RKM and DMD in the upcoming Sections 2.1 and 2.2, respectively, before we
present our analysis in Section 3. We conclude with a numerical example to confirm the
theoretical findings.

Notation

As is standard, N, R, and R[t] denote the positive integers, the real numbers, and
the polynomials with real coefficients, respectively. For any n, m ∈ N, we denote with
Rn×m the set of n×m matrices with real entries. The set of nonsingular matrices of size
n× n is denoted with GLn(R). Let A = [aij] ∈ Rn×m, B ∈ Rp×q, and xi ∈ Rn (i = 1, . . . , k).
The transpose and the Moore–Penrose pseudoinverse of A are denoted with AT and A†,
respectively. The Kronecker product ⊗ is defined as

A⊗ B :=

[ a11B ··· a1mB
...

...
an1B ··· anmB

]
∈ Rnp×mq.
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We use span{x1, . . . , xk} to denote the linear span of the vectors x1, . . . , xk and also
casually write span{X} = span{x1, . . . , xk} for the column space of the matrix X with
{x1, . . . , xk} as its columns. For A ∈ Rn×n and a vector x0 ∈ Rn, we denote the reachable
space as C(x0, A) = span{x0, Ax0, . . . , An−1x0}. The Stiefel manifold of n× r dimensional
matrices with real entries is denoted by

St(n, r) :=
{

U ∈ Rn×r | UTU = Ir

}
, (1)

where Ir denotes the r × r identity matrix. For a continuously differentiable function
x : I → Rn from the interval I ⊆ R to the vector space Rn, we use the notation ẋ := d

dt x
to denote the derivative with respect to the independent variable t, which we refer to as
the time.

2. Preliminaries

As outlined in the introduction, DMD creates a finite-dimensional linear model to
approximate the original dynamics. Thus, in view of possibly exact system identification,
we need to assume that the data that are fed to the DMD algorithm are obtained from a
linear ODE, which in the sequel is denoted by

ẋ(t) = Fx(t) (2a)

with given matrix F ∈ Rn×n. To fix a solution of (2a), we prescribe the initial condition

x(0) = x0 ∈ Rn, (2b)

and denote the solution of the initial value problem (IVP) as x(t; x0) := exp(Ft)x0. For the
analysis of DMD, we assume that the matrix F is not available. Instead, the question is to
what extent DMD is able to recover the matrix F solely from measurements of the state
variable x.

Remark 1. While a DMD approximation, despite its linearity, may well reproduce trajectories
of nonlinear systems (see, for example, [14]), the question of DMD being able to recover the full
dynamics has to focus on linear systems. Here, the key observation is that a DMD approximation is
a finite-dimensional linear map. In contrast, the encoding of nonlinear systems via a linear operator
necessarily needs an infinite-dimensional mapping.

2.1. Runge–Kutta Methods

To solve the IVP (2) numerically, we employ a RKM, which is a common one-step
method to approximate ordinary and differential-algebraic equations [15,16]. More pre-
cisely, given a step size h > 0, the solution of the IVP (2) is approximated via the sequence
xi ≈ x(t0 + ih) given by

xi+1 = xi + h
s

∑
j=1

β jk j, (3a)

with the so-called internal stages k j ∈ Rn (implicitly) defined via

k j = Fxi + h
s

∑
`=1

αj,`Fk` for j = 1, . . . , s, (3b)

where s ∈ N denotes the number of stages in the RKM. Using the matrix notation
A = [αj,`] ∈ Rs×s and β = [β j] ∈ Rs, the s-stage RKM defined via (3) is conveniently
summarized with the pair (A, β). Note that we restrict our presentation to linear time-
invariant dynamics, and hence, do not require the full Butcher tableau.

Since the ODE (2a) is linear, we can rewrite the internal stages as
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


In − hα1,1F −hα1,2F . . . −hα1,sF
−hα2,1F In − hα2,2F . . . −hα2,sF

...
. . . . . .

...
−hαs,1F · · · −hαs,s−1F In − hαs,sF







k1
k2
...

ks


 =




Fxi
Fxi

...
Fxi


 (4)

Setting k :=
[
kT

1 . . . kT
s
]T ∈ Rsn and e :=

[
1 . . . 1

]T ∈ Rs, the linear system in (4)
can be written as

(Is ⊗ In − hA⊗ F)k = (e⊗ F)xi, (5)

where ⊗ denotes the Kronecker product. If h is small enough, the matrix (Is ⊗ In − hA⊗ F)
is invertible, and thus, we obtain the discrete linear system

xi+1 = xi + h
s

∑
j=1

β jk j = xi + h(βT ⊗ In)k

= xi + h(βT ⊗ In)(Is ⊗ In − hA⊗ F)−1(e⊗ F)xi = Ahxi,

with (using the identity Is ⊗ In = Isn)

Ah := In + h(βT ⊗ In)(Isn − hA⊗ F)−1(e⊗ F). (6)

Example 1. The explicit (or forward) Euler method is given as (A, β) = (0, 1) and according to
(6) we obtain the well-known formula Ah = In + hF. For the implicit (or backward) Euler method
(A, β) = (1, 1) the discrete system matrix is given by

Ah = In + h(In − hF)−1F = (In − hF)−1(In − hF + hF) = (In − hF)−1.

To guarantee that the representation (6) is valid, we make the following assumption
throughout the manuscript.

Assumption 1. For any s-stage RKM (A, β) and any dynamical system matrix F ∈ Rn×n, we
assume that the step size h is chosen such that the matrix Isn − hA⊗ F is nonsingular.

Remark 2. Using Assumption 1, the matrix Isn − hA⊗ F is nonsingular, and thus, there exists a
polynomial p = ∑sn−1

k=0 pktk ∈ R[t] of degree at most sn− 1 depending on the step size h such that

(Isn − hA⊗ F)−1 = p(Isn − hA⊗ F) =
sn−1

∑
k=0

pk(Isn − hA⊗ F)k

=
sn−1

∑
k=0

pk

k

∑
ρ=0

(
k
ρ

)
(−1)ρhρ(Aρ ⊗ Fρ),

where the last equality follows from the binomial theorem. Consequently, we have

Ah = In +
sn−1

∑
k=0

pk

k

∑
ρ=0

(
k
ρ

)
(−1)ρhρ+1

(
βTAρe

)
Fρ+1. (7)

Rearranging the terms together with the Cayley–Hamilton theorem implies the existence of a
polynomial p̃ ∈ R[t] of degree at most n such that Ah = p̃(F). As a direct consequence, we see that
any eigenvector of F is an eigenvector of Ah and thus, Ah is diagonalizable if F is diagonalizable.

Having computed the matrix Ah, the question that remains to be answered is the
quality of the approximation ‖x(ih; x0) − xi‖, which yields the following well-known
definition (cf. [15]).
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Definition 1. A RKM (A, β) has order p if there exists a constant C ≥ 0 (independent of h)
such that

‖x(h; x0)− x1‖ ≤ Chp+1 (8)

holds, where x1 = Ahx0 with Ah defined as in (6).

For one-step methods, it is well known that the local errors—as estimated in (8) for the
initial time step—basically sum in the global error such that the following estimate holds:

‖x(Nh; x0)− xN‖ ≤ Chp;

see, e.g., ([15], Thm. II.3.6).

2.2. Dynamic Mode Decomposition

For i = 0, . . . , m, assume data points xi ∈ Rn are available. If not explicitly stated,
we do not make any assumption on m. The idea of DMD is to determine a linear time-
invariant relation between the data, i.e., finding a matrix ADMD ∈ Rn×n such that the data
approximately satisfy

xi+1 ≈ ADMDxi for i = 0, 1, . . . , m− 1.

Following [17], we introduce

X :=
[
x0 . . . xm−1

]
∈ Rn×m and Z :=

[
x1 . . . xm

]
∈ Rn×m. (9)

Then, the DMD approximation matrix is defined as the minimum-norm solution of

min
M∈Rn×n

‖Z−MX‖F, (10)

where ‖ · ‖F denotes the Frobenius norm. It is easy to show that the minimum-norm solution
is given by ADMD = ZX† [12], where X† denotes the Moore–Penrose pseudoinverse of X.
This motivates the following definition.

Definition 2. Consider the data xi ∈ Rn for i = 0, 1, . . . , m and associated data matrices X and
Z defined in (9). Then the matrix ADMD := ZX† is called the DMD matrix for (xi)

m
i=0. If the

eigendecomposition of ADMD exists, then the eigenvalues and eigenvectors of ADMD are called
DMD eigenvalues and DMD modes of (xi)

m
i=0, respectively.

The Moore–Penrose pseudoinverse and, thus, also the DMD matrix can be computed
via the singular value decomposition (SVD); see, for example, ([18], Ch. 5.5.4). Let

[
U Ū

][Σ 0
0 0

][
V>

V̄>

]
= X

denote the SVD of X, with r := rank(X), U ∈ St(n, r), Σ ∈ Rr×r and rank(Σ) = r, and
V ∈ St(m, r), where we use the Stiefel manifold as defined in (1). Then

X† =
[
V V̄

][Σ−1 0
0 0

][
U>

Ū>

]
= VΣ−1U> (11)

and, thus,
ADMD = ZVΣ−1UT . (12)

For later reference, we call UΣV> = X the trimmed SVD of X.
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3. System Identification and Error Analysis

In this section, we present our main results. Before discussing system identification
for discrete-time (cf. Section 3.2) and continuous-time (cf. Section 3.3) dynamical systems
via DMD, we study the impact of transformations of the data on DMD in Section 3.1.

3.1. Data Scaling and Invariance of the DMD Approximation

Scaling and more general transformations of data are often used to improve the perfor-
mance of the methods that work on the data. Since DMD is inherently related to the Moore–
Penrose inverse, we first study the impact of a nonsingular matrix
T ∈ GLn(R) on the generalized inverse. To this purpose, consider a matrix X ∈ Rn×m with
r := rank(X). Let X = UΣV> denote the trimmed SVD of X with U ∈ St(n, r), Σ ∈ GLr(R)
and V ∈ St(m, r). Let TU = QR denote the QR-decomposition of TU with Q ∈ Rn×n and
R ∈ Rn×r. We immediately obtain rank(RS) = r. Let RΣ = ÛΣ̂V̂> denote the trimmed
SVD of RΣ with Û ∈ St(n, r), Σ̂ ∈ GLr(R), and V̂ ∈ St(r, r). We immediately infer

V̂V̂> = Ir. (13)

It is easy to see that the matrices UT := QÛ ∈ Rn×r, and VT := VV̂ ∈ Rm×r satisfy
U>T UT = Ir = V>T VT , i.e., UT ∈ St(n, r) and VT ∈ St(m, r). The trimmed SVD of TX is thus
given by

TX = TUΣV> = QRΣV> = QÛΣ̂V̂>V> = UTΣ̂V>T .

We conclude

(TX)†TX = VTV>T = VV̂V̂>V> = VV> = X†X,

where we used the identity (13). We have thus shown the following result.

Proposition 1. Let X ∈ Rn×m and T ∈ GLn(R). Then (TX)†(TX) = X†X.

With these preparations, we can now show that the DMD approximation is partially
invariant to general regular transformations applied to the training data. More precisely, a
data transformation only affects the part of the DMD approximation that is not in the image
of the data.

Theorem 1. For given data (xi)
m
i=0 consider the matrices X and Z as defined in (9) and the

corresponding DMD matrix ADMD ∈ Rn×n. Consider T ∈ GLn(R) and let

X̃ := TX and Z̃ := TZ

be the matrices of the transformed data. Let ÃDMD := Z̃X̃† denote the DMD matrix for the
transformed data. Then the DMD matrix is invariant under the transformation in the image of X,
i.e.,

ADMDX = T−1 ÃDMDTX = T−1 ÃDMDX̃.

Moreover, if T is unitary or rank(X) = n, then

ADMD = T−1 ÃDMDT. (14)

Proof. Using Proposition 1, we obtain

T−1 ÃDMDTX = T−1TZ(TX)†TX = ZX†X = ADMDX.

If T is unitary or rank(X) = n, then we immediately obtain (TX)† = X†T−1, and thus

T−1 ÃDMDT = T−1TZ(TX)†T = ZX†T−1T = ADMD,
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which concludes the proof.

While Theorem 1 states that DMD is invariant under transformations in the image
of the data matrix, the invariance in the orthogonal complement of the image of the data
matrix, i.e., equality (14), is, in general, not satisfied. We illustrate this observation in the
numerical simulations in Section 4 and in the following analytical example.

Example 2. Consider the data vectors xi := [i + 1, 0]> for i = 0, 1, 2 and T :=
[

1 0
1 1

]
. Then,

X =

[
1 2
0 0

]
, Z =

[
2 3
0 0

]
, X† = 1

5

[
1 0
2 0

]
, TX =

[
1 2
1 2

]
, (TX)† = 1

10

[
1 1
2 2

]
.

We thus obtain

ADMD = 1
5

[
8 0
0 0

]
, ÃDMD = 1

5

[
4 4
4 4

]
, and T−1 ÃDMDT = 1

5

[
8 4
0 0

]
,

confirming that DMD is invariant under transformations in the image of the data, but not in the
orthogonal complement.

Remark 3. One can show that in the setting of Theorem 1, the matrix M̂ := TADMDT−1 is a
minimizer (not necessarily the minimum-norm solution) of

min
M∈Rn×n

∥∥∥Ẑ−MX̂
∥∥∥

F
.

3.2. Discrete-Time Dynamics

In this subsection, we focus on the identification of discrete-time dynamics, which are
exemplified by the discrete-time system

xi+1 = Axi (15)

with initial value x0 ∈ Rn and system matrix A ∈ Rn×n. The question that we want to
answer is to what extent DMD is able to recover the matrix A solely from data.

Proposition 2. Consider data (xi)
m
i=0 generated by (15), associated data matrices X, Z as defined

in (9), and the corresponding DMD matrix ADMD. Moreover let UΣV> = X with U ∈ St(n, r),
Σ ∈ GLr(R), V ∈ St(m, r), and r := rank(X) denote the trimmed SVD of X. Then

ADMD = AUU>. (16)

Proof. By assumption, we have X =
[
x0 Ax0 · · · Am−1x0

]
and Z = AX = AUΣV>.

We conclude

ADMD = ZX† = AUΣV>VΣ−1U> = AUU>.

Remark 4. We immediately conclude that DMD recovers the true dynamics, i.e., ADMD = A,
whenever rank(X) = n. This is the case if and only if (A, x0) is controllable, i.e., C(A, x0) has
dimension n, and the data set is sufficiently rich, i.e., m ≥ n.

Our next theorem identifies the part of the dynamics that is exactly recovered in the
case that rank(X) < n that occurs for (A, x0) is not controllable or m < n.

Theorem 2. Consider the setting of Proposition 2. If span{U} is ADMD invariant, then the DMD
approximation is exact in the image of U, i.e.,
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(Ai − Ai
DMD)x0 = 0 for all i ≥ 0 and x0 ∈ span{U}. (17)

If, in addition, ker(A) ∩ span{U}⊥ = {0}, then also the converse direction holds.

Proof. Let x0 ∈ span{U}. Since span{U} is ADMD invariant, we conclude Ai
DMDx0 ∈

span{U} for i ≥ 0, i.e., there exists yi ∈ Rr such that Ai
DMDx = Uyi. Using Proposition 2

we conclude

Ai+1
DMDx0 = ADMD Ai

DMDx0 = ADMDUyi = Axi = Ai+1x0.

The proof of (17) follows via induction over i. For the converse direction, let
x = xU + x⊥U with xU ∈ span{U} and x⊥U ∈ span{U}⊥. Proposition 2 and (17) imply

(A− ADMD)x = Ax⊥U 6= 0,

which completes the proof.

Remark 5. The proof of Theorem 2 details that span{U} is ADMD-invariant if and only if
span{U} is A invariant. Moreover, span{U} = span{X} implies that this condition can be
checked easily during the data-generation process. If we further assume that the data are generated
via (15), then this is the case whenever

rank
([

x0 · · · xi
]
) = rank(

[
x0 · · · xi+1

])

for some i ≥ 0.

3.3. Continuous-Time Dynamics and RK Approximation

Suppose now that the data (xi)
m
i=0 are generated by a continuous process, i.e., via the

dynamical system (2). In this case, we are interested in recovering the continuous dynamics
from the DMD approximation. As a consequence of Theorem 2, we immediately obtain the
following results for exact sampling.

Corollary 1. Let ADMD be the DMD matrix for the sequence xi = exp(iFh)x0 ∈ Rn for
i = 1, . . . , m with m ≥ n. Then

x(ih; x̃0) = Ai
DMD x̃0

if and only if x̃0 ∈ span{x0, . . . , xm}, where x(t; x̃0) denotes the solution of the IVP (2) with initial
value x̃0.

Proof. The assertion follows immediately from Proposition 2 with the observation that
exp(iFh) is nonsingular.

We conclude that we can recover the continuous dynamics with the matrix logarithm
(see [19] for further details), whenever rank(X) = n. In practical applications, an exact
evaluation of the flow map is typically not possible. Instead, a numerical time-integration
method is used to approximate the continuous dynamics.

Suppose we use a RKM with constant step size h > 0 to obtain a numerical ap-
proximation (xi)

m
i=0 ⊆ Rn of the IVP (2) and use these data to construct the DMD matrix

ADMD ∈ Rn×n as in Definition 2. If we now want to use the DMD matrix to obtain an ap-
proximation for a different initial condition, say x(0) = x̃0, we are interested in quantifying
the error

‖x(ih; x̃0)− Ai
DMD x̃0‖.

Theorem 3. Suppose that the sequence (xi)
m
i=0, with xi ∈ Rn for i = 0, . . . , m, is generated from

the linear IVP (2) via a RKM of order p and step size h > 0 and satisfies



Mathematics 2022, 10, 418 9 of 13

span{x0, . . . , xm−1} = span{x0, . . . , xm}.
Let ADMD ∈ Rn×n denote the associated DMD matrix. Then there exists a constant C ≥ 0

such that
‖x(ih; x̃0)− Ai

DMD x̃0‖ ≤ Chp (18)

holds for any x̃0 ∈ span({x0, . . . , xm−1}).

Proof. Since the data (xi)
m
i=0 are generated from a RKM, there exists a matrix Ah ∈ Rn×n

such that xi+1 = Ahxi for i = 0, . . . , m− 1. Let x̃0 ∈ span({x0, . . . , xm−1}). Then, Theorem 2
implies Ai

h x̃0 = Ai
DMD x̃0 for any i ≥ 0. Thus, the result follows from the classical error

estimates for RKM (see, for example, [15], Thm. II.3.6) and from the equality

‖x(ih; x̃0)− Ai
DMD x̃0‖ = ‖x(ih; x̃0)− Ai

h x̃0‖ ≤ Chp

for some C ≥ 0 since the RKM is of order p.

The proof details that due to Proposition 2, we are essentially able to recover the
discrete dynamics Ah obtained from the RKM via DMD, provided that rank(X) = n. As
laid out in Remark 4, this condition is equivalent to (Ah, x0) being controllable for which
the controllability of (F, x0) is a necessary condition.

The question that remains to be answered is whether it is possible to recover the
continuous dynamic matrix F from the discrete dynamics ADMD (respectively Ah) provided
that the Runge–Kutta scheme used to discretize the continuous dynamics is known. For
any 1-stage Runge–Kutta method (α, β), i.e., s = 1 in (3), this is indeed the case since then
(6) simplifies to

Ah = In + hβ(In − hαF)−1F,

which yields

F = −1
h
(In − Ah)(αAh + (β− α)In)

−1.

Combining (19) with Proposition 2 yields the following result.

Lemma 1. Suppose that the sequence (xi)
m
i=0 ⊆ Rn is generated from the linear IVP (2) via the

1-stage Runge-Kutta method (α, β) with step size h > 0. Let ADMD ∈ Rn×n denote the associated
DMD matrix. If rank({x0, . . . , xm−1}) = n, then

F = −1
h
(In − ADMD)(αADMD + (β− α)In)

−1, (19)

provided that the inverse exists.

If the assumption of Lemma 1 holds, then we can recover the continuous dynamic
matrix from the DMD approximation. The corresponding formula for popular 1-stage
methods is presented in Table 1.

Table 1. Identification of continuous-time systems via DMD with 1-stage Runge–Kutta methods.

Method (α, β) Lemma 1

explicit Euler (0, 1) F = − 1
h (In − ADMD)

implicit Euler (1, 1) F = 1
h (In − A−1

DMD)
implicit midpoint rule ( 1

2 , 1) F = 1
2h (ADMD − In)(ADMD + In)−1

In this scenario, let us emphasize that we can compute the discrete dynamics with the
DMD approximation for any time step.

The situation is different for s ≥ 2, as we illustrate with the following example.
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Example 3. For given h > 0, consider F1 := 0 and F2 := − 2
h . Then, for Heun’s method,

i.e., A =
[

0 0
1 0
]

and β> =
[ 1

2
1
2

]
, we obtain Ah = p(F) with p(x) = 1 + hx + h2

2 x2, and
thus p(F1) = p(F2). In particular, we cannot distinguish the continuous-time dynamics in this
specific scenario.

4. Numerical Examples

To illustrate our analytical findings, we constructed a dynamical system that exhibits
some fast dynamics that is stable but not exponentially stable and has a nontrivial but
exactly computable flow map. In this way, we can check the approximation both quali-
tatively and quantitatively. In addition, the system can be scaled to arbitrary state-space
dimensions. Most importantly, for our purposes, the system is designed such that for any
initial value, the space not reached by the system is at least as large as the reachable space.
The complete code of our numerical examples can be found in the supplementary material.

With N ∈ N, ∆ := diag(0, 1, . . . , N − 1) we consider the continuous-time dynamics (2)
with

F :=
[

0 2∆
0 − 1

2 ∆

]
and exp(tF) =

[
I 4(I − exp(− t

2 ∆))
0 exp(− t

2 ∆)

]
.

Starting with an initial value x0 ∈ R2N we can thus generate exact snapshots of the
solution via x(t) = exp(tF)x0, as well as the controllability space

C(F, x0) = span
{

x0,
[

0 2∆
0 − 1

2 ∆

]
x0,
[

0 2∆
0 − 1

2 ∆

]2

x0, . . . ,
[

0 2∆
0 − 1

2 ∆

]2N−1

x0

}
.

One can confirm that dim(C(F, x0)) ≤ N with equality if, for example, the initial state

x0 =

[
x0,1
x0,2

]

has no zero entries in its lower part x0,2 ∈ RN . Due to (7), we immediately infer

dim(C(Ah, x0)) ≤ N

for any Ah obtained by a Runge–Kutta method. We conclude that DMD is at most capable
of reproducing solutions that evolve in C(F, x0). Indeed, as outlined in Proposition 2, all
components of any other initial value x̃0 that are in the orthogonal complement of C(F, x0)
are set to zero in the first DMD iteration.

For our numerical experiments, we set N := 5, x0 := [1, 2, . . . , 10]>, and consider the
time-grid ti := ih for i = 0, 1, . . . , 100 with uniform step size h = 0.1. A SVD of exactly
sampled data

[
U1 U2

][Σ1 0
0 0

]
VT =

[
x0 x(h; x0) x(2h; x0) · · · x(10; x0)

]
(20)

of the matrix of snapshots of the solution x(t; x0) reveals that the solution space is indeed
of dimension N = 5 and defines the bases U1, U2 ∈ St(10, 5) of C(F, x0) and its orthogonal
complement, respectively.

For our numerical experiment, whose results are depicted in Figure 2, we choose the
initial values

x̃0 := U1e ∈ span(U1) and x̂0 := U2e ∈ span(U2) = span(U1)
⊥,

with e = [1, 1, 1, 1, 1]>. The exact solution for both initial values is presented in Figure 2a,b,
respectively. Our simulations confirm the following:
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• As predicted by Theorem 2, the DMD approximation for the initial value x̃0, depicted
in Figure 2c, exactly recovers the exact solution, while the DMD approximation for the
initial value x̂0 (cf. Figure 2d) is identically zero.

• If we first transform the data with the matrix

T =




1 1
. . . . . .

. . . 1

1



∈ GL2N(R),

then compute the DMD approximation, and then transform the results back, the
DMD approximation for x̃0 remains unchanged (see Figure 2e), confirming (14) from
Theorem 1. In contrast, the prediction of the dynamics for x̂0 changes (see
Figure 2f), highlighting that DMD is not invariant under state-space transformations
in the orthogonal complement of the data.

The presented numerical example is chosen to illustrate the importance of the reachable
space. Computing a subspace numerically is a delicate task in particular if, as in our
example, the ratio of the largest and the smallest entry in the controllability matrix is of size
(1/2)2N−3(N−1)2N

(1/2)2N−1 = 4(N − 1)2N , which leads to huge rounding errors already for moderate
N. This mainly concerns the separation of the reachable and the unreachable subspace,
which, however, can be monitored in a general implementation for a general setup. Since
in standard SVD implementations, the dominant directions (and, thus, the Moore–Penrose
inverse) are computed with high accuracy, for quantitative approximations using DMD,
these numerical issues are less severe.
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Figure 2. Comparison of the exact solution, DMD approximation, and DMD approximation based
on transformed data, for initial values inside, the reachable subspace, i.e., x̃0 ∈ C(F, x0), and outside
the reachable subspace, i.e., x̂0 ∈ C(F, x0)

⊥. (a) Exact solution with initial value x̃0 (b) Exact solution
with initial value x̂0 (c) DMD approximation with initial value x̃0 (d) DMD approximation with initial
value x̂0 (e) DMD with transformed data with initial value x̃0 (f) DMD with transformed data with
initial value x̂0.

5. Conclusions

This work has highlighted fundamental properties of the DMD approach if applied to
linear problems both in continuous and discrete times. Depending on how the initial data
relates to the reachable space, the DMD can recover the exact discrete-time dynamics. If,
in addition, the discrete-time data is generated from a continuous-time system via time-
discretization with a Runge-Kutta scheme, then the error of the DMD approximation is in
the same order as the time-integration method. As a side-product of our analysis, we have
made a relation of the Moore-Penrose inverse and regular transformations explicit that has
not been stated so far. Although the findings mainly confirm what should be expected, the
basic principles like controllability will well generalize to nonlinear problems.
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relates to the reachable space, the DMD can recover the exact discrete-time dynamics. If,
in addition, the discrete-time data is generated from a continuous-time system via time-
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5. Conclusions

This work highlighted fundamental properties of the DMD approach if applied to
linear problems both in continuous and discrete times. Depending on how the initial data
relate to the reachable space, the DMD can recover the exact discrete-time dynamics. If,
in addition, the discrete-time data are generated from a continuous-time system via time
discretization with a Runge–Kutta scheme, then the error of the DMD approximation is in
the same order as the time-integration method. As a by-product of our analysis, we made
a relation of the Moore–Penrose inverse and regular transformations explicit, which has
not been stated so far. Although the findings mainly confirm what should be expected, the
basic principles, such as controllability, will well generalize to nonlinear problems.
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