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Abstract
We designed a superposition calculus for a clausal fragment of extensional polymorphic
higher-order logic that includes anonymous functions but excludes Booleans. The inference
rules work on βη-equivalence classes of λ-terms and rely on higher-order unification to
achieve refutational completeness.We implemented the calculus in the Zipperposition prover
and evaluated it on TPTP and Isabelle benchmarks. The results suggest that superposition is
a suitable basis for higher-order reasoning.

Keywords Superposition calculus · Higher-order logic · Refutational completeness

1 Introduction

Superposition [6] is widely regarded as the calculus par excellence for reasoning about first-
order logic with equality. To increase automation in proof assistants and other verification
tools based on higher-order formalisms, we propose to generalize superposition to an exten-
sional, polymorphic, clausal version of higher-order logic (also called simple type theory).
Our ambition is to achieve a graceful extension, which coincides with standard superposition
on first-order problems and smoothly scales up to arbitrary higher-order problems.
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Bentkamp et al. [12] designed a family of superposition-like calculi for a λ-free clausal
fragment of higher-order logic, with currying and applied variables. We adapt their exten-
sional nonpurifying calculus to support λ-terms (Sect. 3). Our calculus does not support
interpreted Booleans. It is conceived as the penultimate milestone toward a superposition
calculus for full higher-order logic. If desired, Booleans can be encoded in our logic fragment
using an uninterpreted type and uninterpreted “proxy” symbols corresponding to equality,
the connectives, and the quantifiers.

Designing a higher-order superposition calculus poses three main challenges:

1. Standard superposition is parameterized by a ground-total simplification order �, but
such orders do not exist for λ-terms equal up to β-conversion. The relations designed for
proving termination of higher-order term rewriting systems, such as HORPO [40] and
CPO [22], lackmany of the desired properties (e.g., transitivity, stability under grounding
substitutions).

2. Higher-order unification is undecidable and may give rise to an infinite set of incom-
parable unifiers. For example, the constraint f (y a) ?= y (f a) admits infinitely many
independent solutions of the form {y �→ λx . f n x}.

3. In first-order logic, to rewrite into a term s using an oriented equation t ≈ t ′, it suffices
to find a subterm of s that is unifiable with t . In higher-order logic, this is insufficient.
Consider superposition from f c ≈ a into y c �≈ y b. The left-hand sides can obviously
be unified by {y �→ f}, but the more general unifier {y �→ λx . z x (f x)} also gives rise to
a subterm f c after β-reduction. The corresponding inference generates z c a �≈ z b (f b).

To address the first challenge, we adopt the η-short β-normal form to represent βη-
equivalence classes of λ-terms. In the spirit of Jouannaud and Rubio’s early joint work [39],
we state requirements on the term order only for ground terms (i.e., closed monomorphic βη-
equivalence classes); the nonground case is connected to the ground case via stability under
grounding substitutions. Even on ground terms, we cannot obtain all desirable properties.
We sacrifice compatibility with arguments (the property that s′ � s implies s′ t � s t),
compensating with an argument congruence rule (ArgCong), as in Bentkamp et al. [12].

For the second challenge, we accept that there might be infinitely many incomparable
unifiers and enumerate a complete set (including the notorious flex–flex pairs [37]), relying
on heuristics to postpone the combinatorial explosion. The saturation loop must also be
adapted to interleave this enumeration with the theorem prover’s other activities (Sect. 6).
Despite its reputation for explosiveness, higher-order unification is a conceptual improvement
over SK combinators, because it can often compute the right unifier. Consider the conjecture
∃z.∀x y.z x y ≈ f y x . After negation, clausification, and skolemization (which are as for first-
order logic), the formula becomes z (skx z)(sky z) �≈ f(sky z)(skx z). Higher-order unification
quickly computes the unique unifier: {z �→ λx y. f y x}. In contrast, an encoding approach
based on combinators, similar to the one implemented in Sledgehammer [52], would blindly
enumerate all possible SK terms for z until the right one, S (K (S f)) K, is found. Given the
definitions S z y x ≈ z x (y x) and K x y ≈ x , the E prover [59] in automode needs to perform
3757 inferences to derive the empty clause.

For the third challenge, the idea is that, when applying t ≈ t ′ to perform rewriting inside
a higher-order term s, we can encode an arbitrary context as a fresh higher-order variable z,
unifying s with z t ; the result is (z t ′)σ , for some unifier σ . This is performed by a dedicated
fluid subterm superposition rule (FluidSup).

Functional extensionality is also considered a quintessential higher-order challenge [14],
although similar difficulties arise with first-order sets and arrays [34]. Our approach is to add
extensionality as an axiom and provide optional rules as optimizations (Sect. 5). With this
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axiom, our calculus is refutationally complete w.r.t. extensional Henkin semantics (Sect. 4).
Our proof employs the new saturation framework byWaldmann et al. [71] to derive dynamic
completeness of a given clause prover from ground static completeness.

We implemented the calculus in the Zipperposition prover [28] (Sect. 6). Our empirical
evaluation includes benchmarks from the TPTP [64] and interactive verification problems
exported from Isabelle/HOL [23] (Sect. 7). The results clearly demonstrate the calculus’s
potential. The 2020 edition of the CADE ATP System Competition (CASC) provides further
confirmation: Zipperposition finished 20 percentage points ahead of its closest rival [63]. This
suggests that an implementation inside a high-performance prover such as E [59] or Vampire
[48] could fulfill the promise of strong proof automation for higher-order logic (Sect. 8).

An earlier version of this article was presented at CADE-27 [11]. This article extends
the conference paper with more explanations, detailed soundness and completeness proofs,
including dynamic completeness, and new optional inference rules. We have also updated
the empirical evaluation and extended the coverage of related work. Finally, we tightened
side condition 4 of FluidSup, making the rule slightly less explosive.

2 Logic

Our extensional polymorphic clausal higher-order logic is a restriction of full TPTP THF
[16] to rank-1 (top-level) polymorphism, as in TH1 [41]. In keeping with standard superpo-
sition, we consider only formulas in conjunctive normal form, without explicit quantifiers
or Boolean type. We use Henkin semantics [15,31,35], as opposed to the standard semantics
that is commonly considered the foundation of the HOL systems [33]. Both semantics are
compatible with the notion of provability employed by the HOL systems. But by admit-
ting nonstandard models, Henkin semantics is not subject to Gödel’s first incompleteness
theorem, allowing us to claim refutational completeness of our calculus.

Syntax We fix a set �ty of type constructors with arities and a set Vty of type variables. We
require at least one nullary type constructor and a binary function type constructor→ to be
present in �ty. A type τ, υ is either a type variable α ∈ Vty or has the form κ(τ̄n) for an
n-ary type constructor κ ∈ �ty and types τ̄n . We use the notation ān or ā to stand for the
tuple (a1, . . . , an) or product a1 × · · · × an , where n ≥ 0. We write κ for κ() and τ → υ

for→(τ, υ). Type declarations have the form �ᾱm .τ (or simply τ if m = 0), where all type
variables occurring in τ belong to ᾱm .

We fix a set � of (function) symbols a,b, c, f,g,h, . . . , with type declarations, written
as f : �ᾱm .τ or f, and a set V of term variables with associated types, written as x : τ or x.
The notation t : τ will also be used to indicate the type of arbitrary terms t . We require the
presence of a symbol of type�α.α and of a symbol diff : �α, β.(α → β)→ (α → β)→ α

in �. We use diff to express the polymorphic functional extensionality axiom. A signature is
a pair (�ty, �).

Next, we define terms on three layers of abstraction: raw λ-terms, λ-terms (as α-equiva-
lence classes of raw λ-terms), and terms (as βη-equivalence classes of λ-terms).

The raw λ-terms over a given signature and their associated types are defined inductively
as follows. Every x : τ ∈ V is a raw λ-term of type τ . If f : �ᾱm .τ ∈ � and ῡm is a tuple of
types, called type arguments, then f〈ῡm〉 (or f ifm = 0) is a raw λ-term of type τ {ᾱm �→ ῡm}.
If x : τ and t : υ, then the λ-expression λx . t is a raw λ-term of type τ → υ. If s : τ → υ

and t : τ , then the application s t is a raw λ-term of type υ.
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The function type constructor→ is right-associative; application is left-associative. Using
the spine notation [26], raw λ-terms can be decomposed in a unique way as a nonapplication
head t applied to zero or more arguments: t s1 . . . sn or t s̄n (abusing notation).

A raw λ-term s is a subterm of a raw λ-term t , written t = t[s], if t = s, if t = (λx . u[s]),
if t = (u[s]) v, or if t = u (v[s]) for some raw λ-terms u and v. A proper subterm of a raw
λ-term t is any subterm of t that is distinct from t itself.

A variable occurrence is free in a raw λ-term if it is not bound by a λ-expression. A raw
λ-term is ground if it is built without using type variables and contains no free term variables.

The α-renaming rule is defined as (λx . t) −�→α (λy. t{x �→ y}), where y does not occur
free in t and is not captured by a λ-binder in t . Raw λ-terms form equivalence classes modulo
α-renaming, called λ-terms. We lift the above notions on raw λ-terms to λ-terms.

A substitution ρ is a function from type variables to types and from term variables to
λ-terms such that it maps all but finitely many variables to themselves. We also require that it
is type correct—i.e., for each x : τ ∈ V, xρ is of type τρ. The letters θ, π, ρ, σ are reserved
for substitutions. Substitutions implicitly α-rename λ-terms to avoid capture; for example,
(λx . y){y �→ x} = (λx ′. x). The composition ρσ applies ρ first: tρσ = (tρ)σ . The notation
σ [x̄n �→ s̄n] stands for the substitution that replaces each xi by si and that otherwise coincides
with σ .

The β- and η-reduction rules are specified on λ-terms as (λx . t) u −�→β t{x �→ u} and
(λx . t x) −�→η t . For β, bound variables in t are implicitly renamed to avoid capture; for
η, the variable x must not occur free in t . The λ-terms form equivalence classes modulo
βη-reduction, called βη-equivalence classes or simply terms.

Convention 1 When defining operations that need to analyze the structure of terms, we will
use the η-short β-normal form t↓βη, obtained by applying −�→β and −�→η exhaustively, as
a representative of the equivalence class t . In particular, we lift the notions of subterms and
occurrences of variables toβη-equivalence classes via theirη-shortβ-normal representative.

Many authors prefer the η-long β-normal form [37,39,51], but in a polymorphic setting it has
the drawback that instantiating a type variable with a functional type can lead to η-expansion.
We reserve the letters s, t, u, v for terms and x, y, z for variables.

An equation s ≈ t is formally an unordered pair of terms s and t . A literal is an equation
or a negated equation, written ¬ s ≈ t or s �≈ t . A clause L1 ∨ · · · ∨ Ln is a finite multiset
of literals Lj . The empty clause is written as ⊥.

A complete set of unifiers on a set X of variables for two terms s and t is a set U of
unifiers of s and t such that for every unifier θ of s and t there exists a member σ ∈ U
and a substitution ρ such that xσρ = xθ for all x ∈ X . We let CSUX (s, t) denote an
arbitrary (preferably minimal) complete set of unifiers on X for s and t . We assume that all
σ ∈ CSUX (s, t) are idempotent on X—i.e., xσσ = xσ for all x ∈ X . The set X will consist
of the free variables of the clauses in which s and t occur and will be left implicit.

Given a substitution σ , the σ -instance of a term t or clause C is the term tσ or the clause
Cσ , respectively. If tσ or Cσ is ground, we call it a σ -ground instance.

Semantics A type interpretation Ity = (U, Jty) is defined as follows. The universe U is a
nonempty collection of nonempty sets, called domains. The function Jty associates a function
Jty(κ) : Un → U with each n-ary type constructor κ , such that for all domainsD1,D2 ∈ U,
the set Jty(→)(D1,D2) is a subset of the function space from D1 to D2. The semantics is
standard if Jty(→)(D1,D2) is the entire function space for all D1,D2.

A type valuation ξ is a function that maps every type variable to a domain. The denotation
of a type for a type interpretation Ity and a type valuation ξ is defined by �α�

ξ

Ity
= ξ(α) and
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�κ(τ̄ )�
ξ

Ity
= Jty(κ)(�τ̄ �

ξ

Ity
). We abuse notation by applying an operation on a tuple when it

must be applied elementwise; thus, �τ̄n�
ξ

Ity
stands for �τ1�

ξ

Ity
, . . . , �τn�

ξ

Ity
. A type valuation

ξ can be extended to be a valuation by additionally assigning an element ξ(x) ∈ �τ �
ξ

Ity
to

each variable x : τ . An interpretation function J for a type interpretation Ity associates with
each symbol f : �ᾱm .τ and domain tuple D̄m ∈ Um a value J(f, D̄m) ∈ �τ �

ξ

Ity
, where ξ is

the type valuation that maps each αi to Di .
The comprehension principle states that every function designated by a λ-expression

is contained in the corresponding domain. Loosely following Fitting [31, Sect. 2.4], we
initially allow λ-expressions to designate arbitrary elements of the domain, to be able to
define the denotation of a term.We impose restrictions afterward using the notion of a proper
interpretation. A λ-designation functionL for a type interpretation Ity is a function that maps
a valuation ξ and a λ-expression of type τ to elements of �τ �

ξ

Ity
. A type interpretation, an

interpretation function, and a λ-designation function form an (extensional) interpretation
I = (Ity, J,L). For an interpretation I and a valuation ξ , the denotation of a term is defined

as �x�
ξ

I = ξ(x), �f〈τ̄m〉�ξI = J(f, �τ̄m�
ξ

Ity
), �s t�ξI = �s�ξI(�t�

ξ

I), and �λx . t�ξI = L(ξ, λx . t).

For ground terms t , the denotation does not depend on the choice of the valuation ξ , which
is why we sometimes write �t�I for �t�ξI.

An interpretation I is proper if �λx . t�ξI(a) = �t�ξ [x �→a]
I for all λ-expressions λx . t , all

valuations ξ , and all a. If a type interpretation Ity and an interpretation function J can be
extended by a λ-designation function L to a proper interpretation (Ity, J,L), then this L is
unique [31, Proposition 2.18]. Given an interpretation I and a valuation ξ , an equation s ≈ t

is true if �s�ξI and �t�ξI are equal and it is false otherwise. A disequation s �≈ t is true if s ≈ t

is false. A clause is true if at least one of its literals is true. A clause set is true if all its clauses
are true. A proper interpretation I is a model of a clause set N , written I |� N , if N is true
in I for all valuations ξ .

Axiomatization of Booleans Our clausal logic lacks a Boolean type, but it can easily be
axiomatized as follows. We extend the signature with a nullary type constructor bool ∈ �ty
equipped with the proxy constants t, f : bool, not : bool → bool, and, or, impl, equiv :
bool→ bool→ bool, forall, exists : �α. (α → bool) → bool, eq : �α. α → α → bool,
and choice : �α. (α → bool)→ α, characterized by the axioms

t �≈ f or t x ≈ t equiv x y ≈ and (impl x y) (impl y x)

x ≈ t ∨ x ≈ f or f x ≈ x forall〈α〉 (λx . t) ≈ t

not t ≈ f impl t x ≈ x y ≈ (λx . t) ∨ forall〈α〉 y ≈ f

not f ≈ t impl f x ≈ t exists〈α〉 y ≈ not (forall〈α〉 (λx . not (y x)))

and t x ≈ x x �≈ y ∨ eq〈α〉 x y ≈ t y x ≈ f ∨ y (choice〈α〉 y) ≈ t

and f x ≈ f x ≈ y ∨ eq〈α〉 x y ≈ f

This axiomatization of Booleans can be used in a prover to support full higher-order
logic with or without Hilbert choice, corresponding to the TPTP THF format variants TH0
(monomorphic) [66] andTH1 (polymorphic) [41]. Theprover’s clausifierwould transform the
outer first-order skeleton of a formula into a clause and use the axiomatized Booleans within
the terms. It would also add the proxy axioms to the clausal problem. As an alternative to this
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complete axiomatization, Vukmirović and Nummelin [70] present a possibly refutationally
incomplete calculus extensionwith dedicated rules to support Booleans. This approachworks
better in practice and contributed to Zipperposition’s victory at CASC 2020.

3 The Calculus

The Boolean-free λ-superposition calculus presented here is inspired by the extensional non-
purifying Boolean-free λ-free higher-order superposition calculus described by Bentkamp et
al. [12]. The text of this and the next section is partly based on that paper and the associated
journal submission [10] (with Cruanes’s permission). The central idea is that superposition
inferences are restricted to unapplied subterms occurring in the first-order outer skeleton of
clauses—that is, outside λ-expressions and outside the arguments of applied variables. We
call these “green subterms.” Thus, g ≈ (λx . f x x) cannot be used directly to rewrite g a to
f a a, because g is applied in g a. A separate inference rule, ArgCong, takes care of deriving
g x ≈ f x x , which can be oriented independently of its parent clause and used to rewrite g a
or f a a.

Definition 2 (Green positions and subterms) A green position of a term (i.e., of a βη-
equivalence class) is a finite sequence of natural numbers defined inductively as follows.
For any term t , the empty tuple ε is a green position of t . For all symbols f ∈ �, types τ̄ , and
terms ū, if p is a green position of ui for some i , then i .p is a green position of f〈τ̄ 〉 ū.

The green subterm of a term at a given green position is defined inductively as follows.
For any term t , t itself is the green subterm of t at green position ε. For all symbols f ∈ �,
types τ̄ , and terms ū, if t is a green subterm of ui at some green position p for some i , then t
is the green subterm of f〈τ̄ 〉 ū at green position i .p. We denote the green subterm of s at the
green position p by s|p .

In f (g a) (y b) (λx . h c (g x)), the proper green subterms are a, g a, y b, and λx . h c (g x). The
last two of these do not look like first-order terms, and hence their subterms are not green.

Definition 3 (Green contexts) We write t = s u p to express that u is a green subterm of t
at the green position p and call s p a green context. We omit the subscript p if there are
no ambiguities.

In a βη-normal representative of a green context, the hole never occurs applied. Therefore,
inserting a βη-normal term into the context produces another βη-normal term.

Another key notion is that of a fluid term. Fluid terms are certain variable-headed terms
and λ-expressions into which the calculus must rewrite to be refutationally complete. Fluid
terms trigger the FluidSup rule, which complements the familiar superposition rule Sup.

Definition 4 (Fluid terms) A term t is called fluid if (1) t↓βη is of the form y ūn where
n ≥ 1, or (2) t↓βη is a λ-expression and there exists a substitution σ such that tσ ↓βη is not
a λ-expression (due to η-reduction).

Case (2) can arise only if t contains an applied variable. Intuitively, fluid terms are terms
whose η-short β-normal form can change radically as a result of instantiation. For example,
λx . y a (z x) is fluid because applying {z �→ λx . x} makes the λ vanish: (λx . y a x) = y a.
Similarly, λx . f (y x) x is fluid because (λx . f (y x) x){y �→ λx . a} = (λx . f a x) = f a.

123



Superposition with Lambdas 899

3.1 The Core Inference Rules

The calculus is parameterized by a strict ground term order, a strict term order, a nonstrict
term order, and a selection function. A strict ground term order � needs to enjoy certain
properties for our completeness proof to work. A strict term order � underapproximates the
lifting of a strict ground term order to the nonground level. To gain some precision in the
side conditions of our rules, we introduce a nonstrict term order � that can compare more
terms than the reflexive closure � of a strict term order �. The selection function resembles
the selection function of first-order superposition, with a minor restriction concerning literals
containing applied variables.

Definition 5 (Strict ground term order) A strict ground term order is a well-founded strict
total order� on ground terms satisfying the following criteria, where� denotes the reflexive
closure of �:
– green subterm property: t s � s;
– compatibility with green contexts: s′ � s implies t s′ � t s .

Given a strict ground term order, we extend it to literals and clauses via themultiset extensions
in the standard way [6, Sect. 2.4].

Two properties that are not required are compatibility with λ-expressions (s′ � s implies
(λx . s′) � (λx . s)) and compatibility with arguments (s′ � s implies s′ t � s t). The latter
would even be inconsistent with totality. To see why, consider the symbols c � b � a and the
terms λx . b and λx . x . Owing to totality, one of the terms must be larger than the other, say,
(λx .b) � (λx . x). By compatibility with arguments, we get (λx .b)c � (λx . x)c, i.e., b � c,
a contradiction. A similar line of reasoning applies if (λx .b) ≺ (λx . x), using a instead of c.

Definition 6 (Strict term order) A strict term order is a relation � on terms, literals, and
clauses such that the restriction to ground entities is a strict ground term order and such that
it is stable under grounding substitutions (i.e., t � s implies tθ � sθ for all substitutions θ

grounding the entities t and s).

Definition 7 (Nonstrict term order) Given the reflexive closure � of a strict ground term
order �, a nonstrict term order is a relation � on terms, literals, and clauses such that t � s
implies tθ � sθ for all θ grounding the entities t and s.

Although we call them orders, a strict term order � is not required to be transitive on non-
ground entities, and a nonstrict term order � does not need to be transitive at all. Normally,
t � s should imply t � s, but this is not required either. A nonstrict term order � allows us
to be more precise than the reflexive closure� of�. For example, we cannot have y b � y a,
because yb �= ya and yb � ya by stability under grounding substitutions (with {y �→ λx .c}).
But we can have y b � y a if b � a. In practice, � and � should be chosen so that they can
compare as many terms as possible while being computable and reasonably efficient.

Definition 8 (Maximality) An element x of a multiset M is �-maximal for some relation �
if for all y ∈ M with y � x , we have y � x . It is strictly �-maximal if it is �-maximal and
occurs only once in M .

Definition 9 (Selection function) A selection function is a function that maps each clause to
a subclause consisting of negative literals, which we call the selected literals of that clause.
A literal L y must not be selected if y ūn , with n > 0, is a �-maximal term of the clause.
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The restriction on the selection function is needed for our proof, but it is an open question
whether it is actually necessary for refutational completeness.

Our calculus is parameterized by a strict term order �, a nonstrict term order �, and a
selection function HSel. The term orders � and � must be based on the same strict ground
term order �. The calculus rules depend on the following auxiliary notions.

Definition 10 (Eligibility) A literal L is (strictly) �-eligible w.r.t. a substitution σ in C for
some relation � if it is selected in C or there are no selected literals in C and Lσ is (strictly)
�-maximal in Cσ. If σ is the identity substitution, we leave it implicit.

Definition 11 (Deep occurrence) A variable occurs deeply in a clause C if it occurs inside a
λ-expression or inside an argument of an applied variable.

For example, x and z occur deeply in f x y ≈ y x ∨ z �≈ (λw. z a), whereas y does not occur
deeply. In particular, a variable occurring as a nongreen subterm is not necessarily a deeply
occurring variable, as exemplified by y. This definition aims to capture all variables with an
occurrence under a λ-expression in some ground instances of C .

The first rule of our calculus is the superposition rule. We regard positive and negative
superposition as two cases of a single rule

D
︷ ︸︸ ︷

D′ ∨ t ≈ t ′
C

︷ ︸︸ ︷

C ′ ∨ s u ≈̇ s′
Sup

(D′ ∨ C ′ ∨ s t ′ ≈̇ s′)σ

where ≈̇ denotes either ≈ or �≈. The following side conditions apply:

1. u is not fluid;
2. u is not a variable deeply occurring in C ;
3. variable condition: if u is a variable y, there must exist a grounding substitution θ such

that tσθ � t ′σθ and Cσθ ≺ C ′′σθ , where C ′′ = C{y �→ t ′};
4. σ ∈ CSU(t, u);
5. tσ �� t ′σ ;
6. s u σ �� s′σ ;
7. Cσ �� Dσ ;
8. t ≈ t ′ is strictly �-eligible in D w.r.t. σ ;
9. s u ≈̇ s′ is �-eligible in C w.r.t. σ , and strictly �-eligible if it is positive.

There are fourmain differenceswith the statement of the standard superposition rule:Contexts
s[ ] are replaced by green contexts s . The standard condition u /∈ V is generalized by
conditions 2 and 3. Most general unifiers are replaced by complete sets of unifiers. And � is
replaced by the more precise ��.

The second rule is a variant of Sup that focuses on fluid green subterms:

D
︷ ︸︸ ︷

D′ ∨ t ≈ t ′
C

︷ ︸︸ ︷

C ′ ∨ s u ≈̇ s′
FluidSup

(D′ ∨ C ′ ∨ s z t ′ ≈̇ s′)σ

with the following side conditions, in addition to Sup’s conditions 5 to 9:

1. u is either a fluid term or a variable deeply occurring in C ;
2. z is a fresh variable;
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3. σ ∈ CSU(z t, u);
4. (z t ′)σ �= (z t)σ .

The equality resolution and equality factoring rules are almost identical to their standard
counterparts:

C
︷ ︸︸ ︷

C ′ ∨ u �≈ u′
ERes

C ′σ

C
︷ ︸︸ ︷

C ′ ∨ u′ ≈ v′ ∨ u ≈ v
EFact

(C ′ ∨ v �≈ v′ ∨ u ≈ v′)σ

For ERes: σ ∈ CSU(u, u′) and u �≈ u′ is �-eligible in C w.r.t. σ . For EFact: σ ∈
CSU(u, u′), uσ �� vσ , and u ≈ v is �-eligible in C w.r.t. σ .

Argument congruence, a higher-order concern, is embodied by the rule

C
︷ ︸︸ ︷

C ′ ∨ s ≈ s′
ArgCong

C ′σ ∨ sσ x̄n ≈ s′σ x̄n

where n > 0 and σ is the most general type substitution that ensures well-typedness of the
conclusion. In particular, if s accepts k arguments, thenArgCong yields k conclusions—one
for each n ∈ {1, . . . , k}—where σ is the identity substitution. If the result type of s is a type
variable, ArgCong yields infinitely many additional conclusions—one for each n > k—
where σ instantiates the result type of s with α1 → · · · → αn−k → β for fresh ᾱn−k and
β. Moreover, the literal s ≈ s′ must be strictly �-eligible in C w.r.t. σ , and x̄n is a tuple of
distinct fresh variables.

The rules are complemented by the polymorphic functional extensionality axiom:

y (diff〈α, β〉 y z) �≈ z (diff〈α, β〉 y z) ∨ y ≈ z (Ext)

From now on, we will omit the type arguments to diff since they can be inferred from the
term arguments.

3.2 Rationale for the Rules

The calculus realizes the following division of labor: Sup and FluidSup are responsible for
green subterms, which are outside λs, ArgCong effectively gives access to the remaining
positions outside λs, and the extensionality axiom takes care of subterms inside λs. The
following examples illustrate these mechanisms. The unifiers below were chosen to keep the
clauses reasonably small.

Example 12 The clause g ≈ f cannot superpose into g a b �≈ f a b because g occurs in a
nongreen context. Instead, we refute these two clauses as follows:

g ≈ f
ArgCong

g x1 x2 ≈ f x1 x2 g a b �≈ f a b
Sup

f a b �≈ f a b
ERes ⊥

The ArgCong inference adds two arguments to g, yielding the term g x1 x2, which is
unifiable with the green subterm g a b. Thus we can apply Sup to the resulting clause.
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Example 13 Applied variables give rise to subtle situations with no counterparts in first-
order logic. Consider the clauses f a ≈ c and h (y b) (y a) �≈ h (g (f b)) (g c), where
f a � c. It is easy to see that the clause set is unsatisfiable, by grounding the second clause
with θ = {y �→ λx . g (f x)}. However, to mimic the superposition inference that can
be performed at the ground level, it is necessary to superpose at an imaginary position
below the applied variable y and yet above its argument a, namely, into the subterm f a of
g (f a) = (λx . g (f x)) a = (y a)θ . We need FluidSup:

f a ≈ c h (y b) (y a) �≈ h (g (f b)) (g c)
FluidSup

h (z (f b)) (z c) �≈ h (g (f b)) (g c)
ERes⊥

FluidSup’s variable z effectively transforms f a ≈ c into z (f a) ≈ z c, whose left-hand side
can be unified with y a by taking {y �→ λx . z (f x)}.

Example 14 The clause set consisting of f a ≈ c, f b ≈ d, and g c �≈ y a ∨ g d �≈ y b has
a similar flavor. ERes applies on either literal of the third clause, but the computed unifier,
{y �→ λx . g c} or {y �→ λx . g d}, is not the right one. Again, we need FluidSup:

f b ≈ d

f a ≈ c g c �≈ y a ∨ g d �≈ y b
FluidSup

g c �≈ z c ∨ g d �≈ z (f b)
ERes

g d �≈ g (f b)
Sup

g d �≈ g d
ERes⊥

Again, the FluidSup inference uses the unifier {y �→ λx . z (f x)} ∈ CSU(z (f a), y a).

Example 15 Third-order clauses containing subterms of the form y (λx . t) can be even more
stupefying. The clause set consisting of fa ≈ c and h(y (λx .g(fx))a) y �≈ h(gc)(λw x .w x)
is unsatisfiable. To see why, apply θ = {y �→ λw x . w x} to the second clause, yielding
h (g (f a)) (λw x .w x) �≈ h (gc) (λw x .w x). Let f a � c. A Sup inference is possible between
the first clause and this ground instance of the second one:

f a ≈ c h (g (f a)) (λw x . w x) �≈ h (g c) (λw x . w x)
Sup

h (g c) (λw x . w x) �≈ h (g c) (λw x . w x)

But at the nonground level, the subterm f a is not clearly localized: g (f a) = (λx .g (f x)) a =
(λw x . w x) (λx . g (f x)) a = (y (λx . g (f x)) a)θ . The FluidSup rule can cope with this
using the unifier {y �→ λw x . w x, z �→ g} ∈ CSU(z (f a), y (λx . g (f x)) a):

f a ≈ c h (y (λx . g (f x)) a) y �≈ h (g c) (λw x . w x)
FluidSup

h (g c) (λw x . w x) �≈ h (g c) (λw x . w x)
ERes⊥

Example 16 The FluidSup rule is concerned not only with applied variables but also with
λ-expressions that, after substitution, may be η-reduced to reveal new applied variables or
green subterms. Consider the clause set consisting of f a ≈ c and h (λu. y u b) (λu. y u a) �≈
h (g (f b)) (g c), where f a � c. Applying the substitution {y �→ λu′ v. g (f v) u′} to the
second clause yields h (λu. g (f b) u) (λu. g (f a) u) �≈ h (g (f b)) (g c) after β-reduction
and h (g (f b)) (g (f a)) �≈ h (g (f b)) (g c) after βη-reduction. A Sup inference is possible
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between the first clause and this new ground clause:

f a ≈ c h (g (f b)) (g (f a)) �≈ h (g (f b)) (g c)
Sup

h (g (f b)) (g c) �≈ h (g (f b)) (g c)

Because it also considers λ-expressions, the FluidSup rule applies at the nonground level to
derive a corresponding nonground clause using {y �→ λu′v.z(fv)u′} ∈ CSU(z(fa), λu.yua):

f a ≈ c h (λu. y u b) (λu. y u a) �≈ h (g (f b)) (g c)
FluidSup

h (z (f b)) (z c) �≈ h (g (f b)) (g c)
ERes⊥

Example 17 Consider the clause set consisting of the facts Csucc = succ x �≈ zero, Cdiv =
n ≈ zero ∨ div n n ≈ one, Cprod = prod K (λk. one) ≈ one, and the negated conjecture
Cnc = prod K (λk. div (succ k) (succ k)) �≈ one. Intuitively, the term prod K (λk. u) is
intended to denote the product

∏

k∈K u, where k ranges over a finite set K of natural numbers.
The calculus derives the empty clause as follows:

Cprod

Cdiv
Ext

y (diff〈α, β〉 y z) �≈ z (diff〈α, β〉 y z) ∨ y ≈ z
FluidSup

w (diff〈α, ι〉 (λk. div (w k) (w k)) z) ≈ zero
∨ one �≈ z (diff〈α, ι〉 (λk. div (w k) (w k)) z) ∨ (λk. div (w k) (w k)) ≈ z

ERes
w (diff〈α, ι〉 (λk. div (w k) (w k)) (λk. one)) ≈ zero
∨ (λk. div (w k) (w k)) ≈ (λk. one) Csucc

Sup

zero �≈ zero ∨ (λk. div (succ k) (succ k)) ≈ (λk. one)
ERes

(λk. div (succ k) (succ k)) ≈ (λk. one) Cnc
Sup

prod K (λk. one) �≈ one
Sup

one �≈ one
ERes⊥

Since the calculus does not superpose into λ-expressions, we need to use the extensionality
axiom to refute this clause set. We perform a FluidSup inference into the extensionality
axiom with the unifier {β �→ ι, z′ �→ λx . x, n �→ w (diff〈α, ι〉 (λk.div (w k) (w k)) z), y �→
λk. div (w k) (w k)} ∈ CSU(z′ (div n n), y (diff〈α, β〉 y z)). Then we apply ERes with the
unifier {z �→ λk. one} ∈ CSU(one, z (diff〈α, ι〉 (λk. div (w k) (w k)) z)) to eliminate the
negative literal. Next, we superpose into Csucc with the unifier {α �→ ι, w �→ succ, x �→
diff〈α, ι〉(λk.div(wk)(wk))(λk.one)} ∈ CSU(w(diff〈α, ι〉(λk.div(wk)(wk))(λk.one)),
succ x). To eliminate the trivial literal, we apply ERes. We then apply a Sup inference into
Cnc and superpose into the resulting clause from Cprod. Finally we derive the empty clause
by ERes.

Because it gives rise to flex–flex pairs—unification constraints where both sides are variable-
headed—FluidSup can be very prolific. With variable-headed terms on both sides of its
maximal literal, the extensionality axiom is another prime source of flex–flex pairs. Flex–
flex pairs can also arise in the other rules (Sup, ERes, and EFact). Due to order restrictions
and fairness, we cannot postpone solving flex–flex pairs indefinitely. Thus, we cannot use
Huet’s pre-unification procedure [37] and must instead choose a full unification procedure
such as Jensen and Pietrzykowski’s [38], Snyder and Gallier’s [61], or the procedure that
has recently been developed by Vukmirović, Bentkamp, and Nummelin [68]. On the positive
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side, optional inference rules can efficiently cover many cases where FluidSup or the exten-
sionality axiom would otherwise be needed (Sect. 5), and heuristics can help postpone the
explosion. Moreover, flex–flex pairs are not always as bad as their reputation; for example,
y a b ?= z c d admits a most general unifier: {y �→ λw x . y′w x c d, z �→ y′ a b}.

The calculus is a graceful generalization of standard superposition, except for the exten-
sionality axiom. From simple first-order clauses, the axiom can be used to derive clauses
containing λ-expressions, which are useless if the problem is first-order. For instance, the
clause g x ≈ f x x can be used for a FluidSup inference into the axiom (Ext) yield-
ing the clause w t (f t t) �≈ z t ∨ (λu. w u (gu)) ≈ z via the unifier {α �→ ι, β �→
ι, x �→ t, v �→ λu. w t u, y �→ λu. w u (g u)} ∈ CSU(v (g x), y (diff〈α, β〉 y z)) where
t = diff〈ι, ι〉 (λu. w u (g u)) z, the variable w is freshly introduced by unification, and v

is the fresh variable introduced by FluidSup (named z in the definition of the rule). By
ERes, with the unifier {z �→ λu. w u (f u u)} ∈ CSU(w t (f t t), z t), we can then derive
(λu. w u (g u)) ≈ (λu. w u (f u u)), an equality of two λ-expressions, although we started
with a simple first-order clause. This could be avoided if we could find a way to make the
positive literal y ≈ z of (Ext) larger than the other literal, or to select y ≈ z without losing
refutational completeness. The literal y ≈ z interacts only with green subterms of functional
type, which do not arise in first-order clauses.

3.3 Soundness

To show soundness of the inferences, we need the substitution lemma for our logic:

Lemma 18 (Substitution lemma) Let I = (Ity, J,L) be a proper interpretation. Then

�τρ�
ξ

Ity
= �τ �

ξ ′
Ity

and �tρ�
ξ

I = �t�ξ
′

I

for all terms t, all types τ , and all substitutions ρ, where ξ ′(α) = �αρ�
ξ

Ity
for all type

variables α and ξ ′(x) = �xρ�
ξ

I for all term variables x.

Proof First, we prove that �τρ�
ξ

Ity
= �τ �

ξ ′
Ity

by induction on the structure of τ . If τ = α is a
type variable,

�αρ�
ξ

Ity
= ξ ′(α) = �α�

ξ ′
Ity

If τ = κ(ῡ) for some type constructor κ and types ῡ,

�κ(ῡ)ρ�
ξ

Ity
= Jty(κ)(�ῡρ�

ξ

Ity
)

IH= Jty(κ)(�ῡ�
ξ ′
Ity

) = �κ(ῡ)�
ξ ′
Ity

Next, we prove �tρ�
ξ

I = �t�ξ
′

I by induction on the structure of a λ-term representative of t ,
allowing arbitrary substitutions ρ in the induction hypothesis. If t = y, then by the definition
of the denotation of a variable

�yρ�
ξ

I = ξ ′(y) = �y�ξ
′

I

If t = f〈τ̄ 〉, then by the definition of the term denotation

�f〈τ̄ 〉ρ�
ξ

I = J(f, �τ̄ ρ�
ξ

Ity
)

IH= J(f, �τ̄ �
ξ ′
Ity

) = �f〈τ̄ 〉�ξ ′I
If t = u v, then by the definition of the term denotation

�(u v)ρ�
ξ

I = �uρ�
ξ

I(�vρ�
ξ

I)
IH= �u�

ξ ′
I (�v�

ξ ′
I ) = �u v�

ξ ′
I
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If t = λz. u, let ρ′(z) = z and ρ′(x) = ρ(x) for x �= z. Using properness of I in the second
and the last step, we have

�(λz. u)ρ�
ξ

I(a) = �(λz. uρ′)�ξI(a) = �uρ′�ξ [z �→a]
I

IH= �u�
ξ ′[z �→a]
I = �λz. u�

ξ ′
I (a) ��

Lemma 19 If I |� C for some interpretation I and some clause C, then I |� Cρ for all
substitutions ρ.

Proof We have to show that Cρ is true in I for all valuations ξ . Given a valuation ξ , define
ξ ′ as in Lemma 18. Then, by Lemma 18, a literal in Cρ is true in I for ξ if and only if the
corresponding literal in C is true in I for ξ ′. There must be at least one such literal because
I |� C and hence C is in particular true in I for ξ ′. Therefore, Cρ is true in I for ξ . ��
Theorem 20 (Soundness) The inference rules Sup, FluidSup, ERes, EFact, and ArgCong
are sound (even without the variable condition and the side conditions on fluidity, deeply
occurring variables, order, and eligibility).

Proof We fix an inference and an interpretation I that is a model of the premises. We need
to show that it is also a model of the conclusion.

From the definition of the denotation of a term, it is obvious that congruence holds in our
logic, at least for subterms that are not inside a λ-expression. In particular, it holds for green
subterms and for the left subterm t of an application t s.

By Lemma 19, I is a model of the σ -instances of the premises as well, where σ is the
substitution used for the inference. Let ξ be a valuation. By making case distinctions on the
truth under I, ξ of the literals of the σ -instances of the premises, using the conditions that σ
is a unifier, and applying congruence, it follows that the conclusion is true under I, ξ . Hence,
I is a model of the conclusion. ��
As in the λ-free higher-order logic of Bentkamp et al. [10], skolemization is unsound in our
logic. As a consequence, axiom (Ext) does not hold in all interpretations, but the axiom is
consistent with our logic, i.e., there exist models of (Ext).

3.4 The Redundancy Criterion

A redundant clause is usually defined as a clause whose ground instances are entailed by
smaller (≺) ground instances of existing clauses. This would be too strong for our calcu-
lus, as it would make most clauses produced by ArgCong redundant. The solution is to
base the redundancy criterion on a weaker ground logic—ground monomorphic first-order
logic—in which argument congruence and extensionality do not hold. The resulting notion
of redundancy gracefully generalizes the standard first-order notion.

We employ an encoding F to translate ground higher-order terms into ground first-order
terms. F indexes each symbol occurrence with the type arguments and the number of term
arguments. For example, F(f a) = f1(a0) and F(g〈κ〉) = gκ

0 . In addition, F conceals
λ-expressions by replacing them with fresh symbols. These measures effectively disable
argument congruence and extensionality. For example, the clause sets {g ≈ f, g a �≈ f a}
and {b ≈ a, (λx . b) �≈ (λx . a)} are unsatisfiable in higher-order logic, but the encoded
clause sets {g0 ≈ f0, g1(a0) �≈ f1(a0)} and {b0 ≈ a0, lamλx . b �≈ lamλx . a} are satisfiable in
first-order logic, where lamλx . t is a family of fresh symbols.

Given a higher-order signature (�ty, �), we define a ground first-order signature (�ty,

�GF) as follows. The type constructors �ty are the same in both signatures, but→ is unin-
terpreted in first-order logic. For each ground instance f〈ῡ〉 : τ1 → · · · → τn → τ of a
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symbol f ∈ �, we introduce a first-order symbol fῡj ∈ �GF with argument types τ̄j and return
type τj+1 → · · · → τn → τ , for each j . Moreover, for each ground term λx . t , we introduce
a symbol lamλx . t ∈ �GF of the same type.

Thus, we consider three levels of logics: the higher-order level H over a given signature
(�ty, �), the ground higher-order level GH, which is the ground fragment of H, and the
ground monomorphic first-order level GF over the signature (�ty, �GF) defined above. We
use TH, TGH, and TGF to denote the respective sets of terms, TyH, TyGH, and TyGF to denote
the respective sets of types, and CH, CGH, and CGF to denote the respective sets of clauses.
Each of the three levels has an entailment relation |�. A clause set N1 entails a clause set
N2, denoted N1 |� N2, if every model of N1 is also a model of N2. For H and GH, we use
higher-order models; for GF, we use first-order models. This machinery may seem excessive,
but it is essential to define redundancy of clauses and inferences properly, and it will play an
important role in the refutational completeness proof (Sect. 4).

The three levels are connected by two functions G and F :

Definition 21 (Grounding function G on terms and clauses) The grounding function G maps
terms t ∈ TH to the set of their ground instances—i.e., the set of all tθ ∈ TGH where θ is a
substitution. It also maps clauses C ∈ CH to the set of their ground instances—i.e., the set of
all Cθ ∈ CGH where θ is a substitution.

Definition 22 (Encoding F on terms and clauses) The encoding F : TGH → TGF is defined
recursively as

F(λx . t) = lamλx . t F(f〈ῡ〉 s̄j ) = fῡj (F(s̄j ))

using η-short β-normal representatives of terms. The encoding F is extended to map from
CGH to CGF by mapping each literal and each side of a literal individually.

Schematically, the three levels are connected as follows:

H
higher-order

GH
ground higher-order

GF
ground first-order

FG

The mapping F is clearly bijective. Using the inverse mapping, the order � can be trans-
ferred from TGH to TGF and from CGH to CGF by defining t � s as F −1(t) � F −1(s) and
C � D as F −1(C) � F −1(D). As with standard superposition, � on clauses is the multiset
extension of � on literals, which in turn is the multiset extension of � on terms, because
F −1 maps the multiset representations elementwise.

For example, let C = y b ≈ y a∨ y �≈ f a ∈ CH. Then G(C) contains, among many other
clauses, Cθ = f b b ≈ f a a ∨ (λx . f x x) �≈ f a ∈ CGH, where θ = {y �→ λx . f x x}. On
the GF level, this clause corresponds to F(Cθ) = f2(b0,b0) ≈ f2(a0, a0) ∨ lamλx . f x x �≈
f1(a0) ∈ CGF.

A key property of F is that green subterms in TGH correspond to subterms in TGF. This
allows us to show that well-foundedness, totality on ground terms, compatibility with con-
texts, and the subterm property hold for � on TGF.

Lemma 23 Let s, t ∈ TGH. We have F(t s p) = F(t)[F(s)]p. In other words, s is a green
subterm of t at green position p if and only if F(s) is a subterm of F(t) at position p.

Proof Analogous to Lemma 3.17 of Bentkamp et al. [10]. ��
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Lemma 24 Well-foundedness, totality, compatibility with contexts, and the subterm property
hold for � in TGF.

Proof Analogous to Lemma 3.19 of Bentkamp et al. [10], using Lemma 23. ��
The saturation procedures of superposition provers delete clauses that are strictly subsumed
by other clauses. A clause C subsumes D if there exists a substitution σ such that Cσ ⊆ D.
A clause C strictly subsumes D if C subsumes D, but D does not subsume C . For example,
x ≈ c strictly subsumes both a ≈ c and b �≈ a ∨ x ≈ c. The proof of refutational
completeness of resolution and superposition provers relies on the well-foundedness of the
strict subsumption relation. Unfortunately, this property does not hold for higher-order logic,
where f x x ≈ c is strictly subsumed by f (x a) (x b) ≈ c, which is strictly subsumed by
f (x a a′) (x b b′) ≈ c, and so on. To prevent such infinite chains, we use a well-founded
partial order� on CH. We can define� as ·� ∩ >size, where ·� stands for “subsumed by” and
D >size C if either size(D) > size(C) or size(D) = size(C) and D contains fewer distinct
variables than C ; the size function is some notion of syntactic size, such as the number of
constants and variables contained in a clause. This yields for instance a ≈ c � x ≈ c and
f (x a a) ≈ c � f (y a) ≈ c. To justify the deletion of subsumed clauses, we set up our
redundancy criterion to cover subsumption, following Waldmann et al. [71].

We define the sets of redundant clauses w.r.t. a given clause set as follows:

– Given C ∈ CGF and N ⊆ CGF, let C ∈ GFRedC(N ) if {D ∈ N | D ≺ C} |� C .
– Given C ∈ CGH and N ⊆ CGH, let C ∈ GHRedC(N ) if F(C) ∈ GFRedC(F(N )).
– Given C ∈ CH and N ⊆ CH, let C ∈ HRedC(N ) if for every D ∈ G(C), we have

D ∈ GHRedC(G(N )) or there exists C ′ ∈ N such that C � C ′ and D ∈ G(C ′).
For example, h g x ≈ h f x is redundant w.r.t. g ≈ f, but g x ≈ f x and (λx . g) ≈ (λx . f) are
not, because F translates an unapplied g to g0, whereas an applied g is translated to g1 and
the expression λx . g is translated to lamλx . g. These different translations prevent entailment
on the GF level. For an example of subsumption, we assume that a ≈ c � x ≈ c holds, for
instance using the above definition of �. Then a ≈ c is redundant w.r.t. x ≈ c.

Along with the three levels of logics, we consider three inference systems : HInf, GHInf,
and GFInf. HInf is the inference system described in Sect. 3.1. For uniformity, we regard the
extensionality axiom as a premise-free inference rule Extwhose conclusion is axiom (Ext).
The rules of GHInf include Sup, ERes, and EFact from HInf, but with the restriction that
premises and conclusion are ground and with all references to � replaced by �. In addition,
GHInf contains a premise-free rule GExt whose infinitely many conclusions are the ground
instances of (Ext), and the following ground variant of ArgCong:

C ′ ∨ s ≈ s′
GArgCong

C ′ ∨ s ūn ≈ s′ ūn
where s ≈ s′ is strictly �-eligible in C ′ ∨ s ≈ s′ and ūn is a nonempty tuple of ground
terms.

GFInf contains all Sup, ERes, and EFact inferences from GHInf translated by F . It
coincides with standard first-order superposition.

Each of the three inference systems is parameterized by a selection function. ForHInf, we
globally fix one selection functionHSel. ForGHInf andGFInf, we need to consider different
selection functions. We write GHInfGHSel for GHInf and GFInfGFSel for GFInf to make the
dependency on the respective selection functions GHSel and GFSel explicit. Let G(HSel)
denote the set of all selection functions on CGH such that for each clause in C ∈ CGH, there
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exists a clause D ∈ CH withC ∈ G(D) and corresponding selected literals. For each selection
function GHSel on CGH, via the bijection F , we obtain a corresponding selection function
on CGF, which we denote by F(GHSel).

We extend the functions F and G to inferences:

Notation 25 Given an inference ι, we write prems(ι) for the tuple of premises, mprem(ι) for
the main (i.e., rightmost) premise, and concl(ι) for the conclusion.

Definition 26 (Encoding F on inferences) Given a Sup, ERes, or EFact inference ι ∈
GHInf, let F(ι) ∈ GFInf denote the inference defined by prems(F(ι)) = F(prems(ι)) and
concl(F(ι)) = F(concl(ι)).

Definition 27 (Grounding function G on inferences) Given an inference ι ∈ HInf, and a
selection function GHSel ∈ G(HSel), we define the set GGHSel(ι) of ground instances of ι to

be all inferences ι′ ∈ GHInfGHSel such that prems(ι′) = prems(ι)θ and concl(ι′) = concl(ι)θ
for some grounding substitution θ .

This will map Sup and FluidSup to Sup, EFact to EFact, ERes to ERes, Ext to GExt,
and ArgCong to GArgCong inferences, but it is also possible that GGHSel(ι) is the empty
set for some inferences ι.

We define the sets of redundant inferences w.r.t. a given clause set as follows:

– Given ι ∈ GFInfGFSel and N ⊆ CGF, let ι ∈ GFRedGFSelI (N ) if prems(ι) ∩
GFRedC(N ) �= ∅ or {D ∈ N | D ≺ mprem(ι)} |� concl(ι).

– Given ι ∈ GHInfGHSel and N ⊆ CGH, let ι ∈ GHRedGHSelI (N ) if
– ι is not a GArgCong or GExt inference and F(ι) ∈ GFRedF(GHSel)

I (F(N )); or
– ι is a GArgCong or GExt inference and concl(ι) ∈ N ∪ GHRedC(N ).

– Given ι ∈ HInf and N ⊆ CH, let ι ∈ HRedI(N ) if GGHSel(ι) ⊆ GHRedI(G(N )) for all
GHSel ∈ G(HSel).

Occasionally, we omit the selection function in the notation when it is irrelevant. A clause set
N is saturated w.r.t. an inference system and the inference component RedI of a redundancy
criterion if every inference from clauses in N is in RedI(N ).

3.5 Simplification Rules

The redundancy criterion (HRedI,HRedC) is strong enough to support most of the simplifi-
cation rules implemented in Schulz’s first-order prover E [57, Sects. 2.3.1 and 2.3.2], some
only with minor adaptations. Deletion of duplicated literals, deletion of resolved literals,
syntactic tautology deletion, negative simplify-reflect, and clause subsumption adhere to our
redundancy criterion.

Positive simplify-reflect and equality subsumption are supported by our criterion if they
are applied in green contexts u instead of arbitrary contexts u[ ]. Semantic tautology
deletion can be applied as well, but we must use the entailment relation of the GF level—i.e.,
only rewriting in green contexts can be used to establish the entailment. Similarly, rewriting of
positive and negative literals (demodulation) can only be applied in green contexts.Moreover,
for positive literals, the rewriting clausemust be smaller than the rewritten clause—acondition
that is also necessarywith the standard first-order redundancy criterion but not always fulfilled
bySchulz’s rule.As for destructive equality resolution, even in first-order logic the rule cannot
be justified with the standard redundancy criterion, and it is unclear whether it preserves
refutational completeness.
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As a representative example, we show how demodulation into green contexts can be
justified. The justification for the other simplification rules is similar.

Lemma 28 Demodulation into green contexts is a simplification:

t ≈ t ′
C

︷ ︸︸ ︷

s tσ ≈̇ s′ ∨ C ′
Demod

t ≈ t ′ s t ′σ ≈̇ s′ ∨ C ′

where tσ � t ′σ and C � (t ≈ t ′)σ . It adheres to the redundancy criterion HRedC—i.e., the
deleted premise C is redundant w.r.t. the conclusions.

Proof Let N be the set consisting of the two conclusions.Wemust show thatC ∈ HRedC(N ).
Let Cθ be a ground instance of C . By the definition of HRedC, it suffices to show that
Cθ ∈ GHRedC(G(N )). By the definition of GHRedC, we must therefore show that F(Cθ) ∈
GFRedC(F(G(N ))). By the definition ofGFRedC, this is equivalent to proving that the clauses
in F(G(N )) that are smaller than F(Cθ) entail F(Cθ).

By compatibility with green contexts and stability under grounding substitutions of �,
the condition tσ � t ′σ implies that D = F((s t ′σ ≈̇ s′ ∨ C ′)θ) is a clause in F(G(N ))

that is smaller than F(Cθ). By stability under grounding substitutions, C � (t ≈ t ′)σ
implies that E = F((t ≈ t ′)σθ) is another clause in F(G(N )) that is smaller than F(Cθ). By
Lemma 23, green subterms on the GH level correspond to subterms on the GF level. Thus,
{D, E} |� F(Cθ) by congruence. ��

3.6 A Derived TermOrder

We stated some requirements on the term orders � and � in Sect. 3.1 but have not shown
how to fulfill them. To derive a suitable strict term order �, we propose to encode η-short
β-normal forms into untyped first-order terms and apply an order �fo of first-order terms
such as the Knuth–Bendix order [45] or the lexicographic path order [43].

The encoding, denoted by O, indexes symbols with their number of term arguments,
similarly to the F encoding. Unlike the F encoding,O translates λx : τ. t to lam(O(τ ),O(t))
and uses De Bruijn [25] symbols to represent bound variables. TheO encoding replaces fluid
terms t by fresh variables zt and maps type arguments to term arguments, while erasing any
other type information. For example,O(λx : κ. f(f(a〈κ〉))(yb)) = lam(κ, f2(f1(a0(κ)), z yb)).
The use of DeBruijn indices and themonolithic encoding of fluid terms ensure stability under
both α-renaming and substitution.

Definition 29 (Encoding O) Given a signature (�ty, �), O encodes types and terms as terms

over the untyped first-order signature �ty � {fk | f ∈ �, k ∈ N} � {lam} � {dbik | i, k ∈ N}.
We reuse higher-order type variables as term variables in the target untyped first-order logic.
Moreover, let zt be an untyped first-order variable for each higher-order term t . The auxiliary
function Bx (t) replaces each free occurrence of the variable x by a symbol dbi , where i is
the number of λ-expressions surrounding the variable occurrence. The type-to-term version
of O is defined by O(α) = α and O(κ(τ̄ )) = κ(O(τ̄ )). The term-to-term version is defined
by
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O(t) =

⎧

⎪
⎨

⎪
⎩

zt if t = x or t is fluid

lam(O(τ ),O(Bx (u))) if t = (λx : τ. u) and t is not fluid

fk(O(τ̄ ),O(ūk)) if t = f〈τ̄ 〉 ūk
For example, let s = λy. f y (λw.g(yw))where y has type κ → κ andw has type κ . We have
By(f y (λw.g(yw))) = fdb0(λw.g(db1w)) andBw(g(db1w)) = g(db1db0). Neither s nor
λw.g(yw) are fluid. Hence,we haveO(s) = lam(→(κ, κ), f2(db

0
0, lam(κ,g1(db

1
1(db

0
0))))).

Definition 30 (Derived strict term order) Let the strict term order derived from �fo be �λ

where t �λ s if O(t) �fo O(s).

We will show that the derived �λ fulfills all properties of a strict term order (Definition 6) if
�fo fulfills the corresponding properties on first-order terms. For the nonstrict term order �,
we can use the reflexive closure �λ of �λ.

Lemma 31 Let�fo be a strict partial order on first-order terms and�λ the derived term order
on βη-equivalence classes. If the restriction of�fo to ground terms enjoys well-foundedness,
totality, the subterm property, and compatibility with contexts (w.r.t. first-order terms), the
restriction of �λ to ground terms enjoys well-foundedness, totality, the green subterm prop-
erty, and compatibility with green contexts (w.r.t. βη-equivalence classes).

Proof Transitivity and irreflexivity of �fo imply transitivity and irreflexivity of �λ.
Well- foundedness: If there existed an infinite chain t1 �λ t2 �λ · · · of ground terms,
there would also be the chain O(t1) �fo O(t2) �fo · · · , contradicting the well-foundedness
of �fo on ground λ-free terms.
Totality: By ground totality of �fo, for any ground terms t and s we have O(t) �fo O(s),
O(t) ≺fo O(s), or O(t) = O(s). In the first two cases, it follows that t �λ s or t ≺λ s. In the
last case, it follows that t = s because O is clearly injective.
Green subterm property: Let s be a term. We show that s �λ s|p by induction on
p, where s|p denotes the green subterm at a green position p. If p = ε, this is trivial. If
p = p′.i , we have s �λ s|p′ by the induction hypothesis. Hence, it suffices to show that
s|p′ �λ s|p′.i . From the existence of the green position p′.i , we know that s|p′ must be of
the form s|p′ = f〈τ̄ 〉 ūk . Then s|p′.i = ui . The encoding yields O(s|p′) = fk(O(τ̄ ),O(ūk))
and hence O(s|p′) �fo O(s|p′.i ) by the ground subterm property of�fo. Hence, s|p′ �λ s|p′.i
and thus s �λ s|p .
Compatibility with green contexts: By induction on the depth of the context, it
suffices to show that t �λ s implies f〈τ̄ 〉 ū t v̄ �λ f〈τ̄ 〉 ū s v̄ for all t , s, f, τ̄ , ū, and v̄. This
amounts to showing thatO(t) �fo O(s) impliesO(f〈τ̄ 〉ū t v̄) = fk(O(τ̄ ),O(ū),O(t),O(v̄)) �fo
fk(O(τ̄ ),O(ū),O(s),O(v̄)) = O(f〈τ̄ 〉 ū s v̄), which follows directly from ground compatibility
of �fo with contexts and the induction hypothesis. ��
Lemma 32 Let�fo be a strict partial order on first-order terms. If�fo is stable under ground-
ing substitutions (w.r.t. first-order terms), the derived term order�λ is stable under grounding
substitutions (w.r.t. βη-equivalence classes).

Proof Assume s �λ s′ for some terms s and s′. Let θ be a higher-order substitution grounding
s and s′. We must show sθ �λ s′θ . We will define a first-order substitution ρ grounding
O(s) and O(s′) such that O(s)ρ = O(sθ) and O(s′)ρ = O(s′θ). Since s �λ s′, we have
O(s) �fo O(s′). By stability of �fo under grounding substitutions, O(s)ρ �fo O(s′)ρ. It
follows that O(sθ) �fo O(s′θ) and hence sθ �λ s′θ .
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We define the first-order substitution ρ as αρ = αθ for type variables α and zuρ = O(uθ)

for terms u. Strictly speaking, the domain of a substitution must be finite, so we restrict this
definition of ρ to the finitely many variables that occur in the computation of O(s) and O(s′).

Clearly O(τ )ρ = O(τθ) for all types τ occurring in the computation of O(s) and O(s′).
Moreover, O(t)ρ = O(tθ) for all t occurring in the computation of O(s) and O(s′), which we
show by induction on the definition of the encoding. If t = x or if t is fluid, O(t)ρ = ztρ =
O(tθ). If t = f〈τ̄ 〉ū, thenO(t)ρ = fk(O(τ̄ )ρ,O(ū)ρ)

IH= fk(O(τ̄ θ),O(ūθ)) = O(f〈τ̄ θ〉(ūθ)) =
O(tθ). If t = (λx : τ. u) and t is not fluid, then O(t)ρ = lam(O(τ )ρ,O(Bx (u))ρ)

IH=
lam(O(τθ),O(Bx (u)θ)) = lam(O(τθ),O(Bx (u)θ [x �→ x])) = O(λx : τθ. uθ [x �→ x]) =
O((λx : τ. u)θ) = O(tθ). ��

4 Refutational Completeness

Besides soundness, themost important property of the Boolean-free λ-superposition calculus
introduced in Sect. 3 is refutational completeness. We will prove static and dynamic refu-
tational completeness of HInf w.r.t. (HRedI,HRedC), which are defined as follows. For the
precise definitions of inference systems and redundancy criteria, we refer to Waldmann et al.
[71].

Definition 33 (Static refutational completeness) Let Inf be an inference system, and let
(RedI,RedC) be a redundancy criterion. The inference system Inf is statically refutation-
ally complete w.r.t. (RedI,RedC) if we have N |� ⊥ if and only if ⊥ ∈ N for every clause
set N that is saturated w.r.t. Inf and RedI.

Definition 34 (Dynamic refutational completeness) Let Inf be an inference system, and let
(RedI,RedC) be a redundancy criterion. Let (Ni )i be a finite or infinite sequence over sets of
clauses. Such a sequence is a derivation if Ni \ Ni+1 ⊆ RedC(Ni+1) for all i . It is fair if all
Inf-inferences from clauses in the limit inferior

⋃

i
⋂

j≥i Nj are contained in
⋃

i RedI(Ni ).
The inference system Inf is dynamically refutationally complete w.r.t. (RedI,RedC) if for
every fair derivation (Ni )i such that N0 |� ⊥, we have ⊥ ∈ Ni for some i .

4.1 Outline of the Proof

The proof proceeds in three steps, corresponding to the three levels GF,GH, andH introduced
in Sect. 3.4:

1. We use Bachmair and Ganzinger’s work on the refutational completeness of standard
(first-order) superposition [6] to prove static refutational completeness of GFInf.

2. From the first-order model constructed in Bachmair and Ganzinger’s proof, we derive a
clausal higher-order model and thus prove static refutational completeness of GHInf.

3. We use the saturation framework by Waldmann et al. [71] to lift the static refutational
completeness of GHInf to static and dynamic refutational completeness of HInf.

In the first step, since the inference system GFInf is standard ground superposition, we
can make use of Bachmair and Ganzinger’s results. Given a saturated clause set N ⊆ CGF
with ⊥ /∈ N , Bachmair and Ganzinger prove refutational completeness by constructing a
term rewriting system RN and showing that it can be viewed as an interpretation that is a
model of N . This first step deals exclusively with ground first-order clauses.

In the second step, we derive refutational completeness ofGHInf. Given a saturated clause
set N ⊆ CGH with⊥ /∈ N , we use the first-order model RF(N ) of F(N ) constructed in the first
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step to derive a clausal higher-order interpretation that is a model of N . Under the encoding
F , occurrences of the same symbol with different numbers of arguments are regarded as
different symbols—e.g., F(f) = f0 and F(f a) = f1(a0). All λ-expressions λx . t are regarded
as uninterpreted symbols lamλx . t . The difficulty is to construct a higher-order interpretation
that merges the first-order denotations of all fi into a single higher-order denotation of f and
to show that the symbols lamλx . t behave like λx . t . This step relies on saturation w.r.t. the
GArgCong rule—which connects a term of functional type with its value when applied to
an argument x—and on the presence of the extensionality rule GExt.

In the third step, we employ the saturation framework by Waldmann et al. [71] , which is
based on Bachmair and Ganzinger’s framework [7, Sect. 4], to prove refutational complete-
ness ofHInf. Both frameworks help calculus designers prove static and dynamic refutational
completeness of nonground calculi. In addition, the framework by Waldmann et al. explic-
itly supports the redundancy criterion defined in Sect. 3.4, which can be used to justify the
deletion of subsumed clauses. Moreover, their framework provides completeness theorems
for prover architectures, such as the DISCOUNT loop.

The main proof obligation we must discharge to use the framework is that there should
exist nonground inferences in HInf corresponding to all nonredundant inferences in GHInf.
We face two specifically higher-order difficulties. First, in standard superposition, we can
avoid Sup inferences into variables x by exploiting the clause order’s compatibility with
contexts: If t ′ ≺ t , we have C{x �→ t ′} ≺ C{x �→ t}, which allows us to show that Sup
inferences into variables are redundant. This technique fails for higher-order variables x that
occur applied in C , because the order lacks compatibility with arguments. This is why our
Sup rule must perform some inferences into variables. The other difficulty also concerns
applied variables. We must show that any nonredundant Sup inference in level GH into a
position corresponding to a fluid term or a deeply occurring variable in level H can be lifted
to a FluidSup inference. This involves showing that the z variable in FluidSup can represent
arbitrary contexts around a term t .

For the entire proof of refutational completeness, βη-normalization is the proverbial bark-
ing dog that never bites. On level GH, the rules Sup, ERes, and EFact preserve η-short
β-normal form, and so does first-order term rewriting. Thus, we can completely ignore−�→β

and−�→η. On level H, instantiation can cause β- and η-reduction, but this poses no difficulties
thanks to the clause order’s stability under grounding substitutions.

4.2 The Ground First-Order Level

We use Bachmair and Ganzinger’s results on standard superposition [6] to prove refutational
completeness of GF. In the subsequent steps, we will also make use of specific properties of
the model Bachmair and Ganzinger construct. The basis of Bachmair and Ganzinger’s proof
is that a term rewriting system R defines an interpretation TGF/R such that for every ground
equation s ≈ t , we have TGF/R |� s ≈ t if and only if s ←→∗

R t . Formally, TGF/R denotes
the monomorphic first-order interpretation whose universes Uτ consist of the R-equivalence
classes over TGF containing terms of type τ . The interpretation TGF/R is term-generated—
that is, for every element a of the universe of this interpretation and for any valuation ξ , there
exists a ground term t such that �t�ξTGF/R = a. To lighten notation, we will write R to refer
to both the term rewriting system R and the interpretation TGF/R.

The term rewriting system is constructed as follows:

Definition 35 Let N ⊆ CGF. We first define sets of rewrite rules EC
N and RC

N for all C ∈ N
by induction on the clause order. Assume that ED

N has already been defined for all D ∈ N
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such that D ≺ C . Then RC
N =

⋃

D≺C ED
N . Let EC

N = {s −�→ t} if the following conditions
are met:

(a) C = C ′ ∨ s ≈ t ;
(b) s ≈ t is �-maximal in C ;
(c) s � t ;
(d) C ′ is false in RC

N ;
(e) s is irreducible w.r.t. RC

N .

Then C is said to produce s −�→ t . Otherwise, EC
N = ∅. Finally, RN =⋃

D ED
N .

Based onBachmair andGanzinger’swork, Bentkamp et al. [10, Lemma 4.4 and Theorem4.5]
prove the following properties of RN :

Lemma 36 Let⊥ /∈ N and N ⊆ CGF be saturated w.r.t. GFInf and GFRedI. If C = C ′ ∨ s ≈
t ∈ N produces s −�→ t , then s ≈ t is strictly �-eligible in C and C ′ is false in RN .

Theorem 37 (Ground first-order static refutational completeness) The inference system
GFInf is statically refutationally complete w.r.t. (GFRedI,GFRedC). More precisely, if
N ⊆ CGF is a clause set saturated w.r.t. GFInf and GFRedI such that ⊥ /∈ N, then RN

is a model of N .

4.3 The Ground Higher-Order Level

In this subsection, let GHSel be a selection function on CGH, let N ⊆ CGH be a clause set
saturatedw.r.t.GHInfGHSel andGHRedGHSelI such that⊥ /∈ N . Clearly,F(N ) is then saturated

w.r.t. GFInfF(GHSel) and GFRedF(GHSel)
I .

We abbreviate RF(N ) as R. Given two terms s, t ∈ TGH, we write s ∼ t to abbreviate
R |� F(s) ≈ F(t), which is equivalent to �F(s)�R = �F(t)�R .

Lemma 38 For all terms t, s : τ → υ in TGH, the following statements are equivalent:

1. t ∼ s;
2. t (diff t s) ∼ s (diff t s);
3. t u ∼ s u for all u ∈ TGH.

Proof (3)⇒ (2): Take u := diff t s.
(2)⇒ (1): Since N is saturated, theGExt inference that generates the clauseC = t (difft s) �≈
s (diff t s) ∨ t ≈ s is redundant—i.e., C ∈ N ∪ GHRedC(N )—and hence R |� F(C) by
Theorem 37 and the assumption that⊥ /∈ N . Therefore, it follows from t (difft s) ∼ s (difft s)
that t ∼ s.
(1)⇒ (3):We assume that t ∼ s—i.e.,F(t)←→∗

R F(s). By induction on the number of rewrite
steps between F(t) and F(s) and by transitivity of∼, it suffices to show that F(t) −�→R F(s)
implies t u ∼ s u. If the rewrite step F(t) −�→R F(s) is not at the top level, then neither s↓βη

nor t↓βη can be λ-expressions. Therefore, (s↓βη) (u↓βη) and (t↓βη) (u↓βη) are in η-short
β-normal form, and there is an analogous rewrite step F(t u) −�→R F(s u) using the same
rewrite rule. It follows that t u ∼ s u. If the rewrite step F(t) −�→R F(s) is at the top level,

123



914 A. Bentkamp et al.

F(t) −�→ F(s) must be a rule of R. This rule must originate from a productive clause of the

form F(C) = F(C ′ ∨ t ≈ s). By Lemma 36, F(t ≈ s) is strictly �-eligible in F(C) w.r.t.
F(GHSel), and hence t ≈ s is strictly �-eligible in C w.r.t. GHSel.

Thus, the following GArgCong inference ι applies:

C ′ ∨ t ≈ s
GArgCong

C ′ ∨ t u ≈ s u

By saturation, ι is redundant w.r.t. N—i.e., concl(ι) ∈ N ∪ GHRedC(N ). By Theorem 37
and the assumption that ⊥ /∈ N , F(concl(ι)) is then true in R. By Lemma 36, F(C ′) is false
in R. Therefore, F(t u ≈ s u) must be true in R. ��

Lemma 39 Let s ∈ TH and θ , θ ′ grounding substitutions such that xθ ∼ xθ ′ for all variables x
and αθ = αθ ′ for all type variables α. Then sθ ∼ sθ ′.

Proof In this proof, wework directly on λ-terms. To prove the lemma, it suffices to prove it for
any λ-term s. Here, for λ-terms t1 and t2, the notation t1 ∼ t2 is to be read as t1↓βη ∼ t2↓βη

because F is only defined on η-short β-normal terms.
Definition We extend the syntax of λ-terms with a new polymorphic function symbol
⊕ : �α. α → α → α. We will omit its type argument. It is equipped with two reduction
rules:⊕ t s −�→ t and⊕ t s −�→ s. A β⊕-reduction step is either a rewrite step following one
of these rules or a β-reduction step.
The computability path order �CPO [22] guarantees that

– ⊕ t s �CPO s by applying rule @	;
– ⊕ t s �CPO t by applying rule @	 twice;
– (λx . t) s �CPO t[x �→ s] by applying rule @β.

Since this order is moreover monotone, it decreases with β⊕-reduction steps.
The order is also well-founded; thus, β⊕-reductions terminate. And since the β⊕-

reduction steps describe a finitely branching term rewriting system, by Kőnig’s lemma [44],
there is a maximal number of β⊕-reduction steps from each λ-term.

Definition A λ-term is term-ground if it does not contain free term variables. It may contain
polymorphic-type arguments.

Definition We introduce an auxiliary function S that essentially measures the size of a
λ-term but assigns a size of 1 to term-ground λ-terms.

S(s) =

⎧

⎪
⎨

⎪
⎩

1 if sis term-ground or is a bound or free variable or a symbol

1+ S(t) if s is not term-ground and has the form λx . t

S(t)+ S(u) if s is not term-ground and has the form t u

We prove sθ ∼ sθ ′ by well-founded induction on s, θ , and θ ′ using the left-to-right
lexicographic order on the triple

(

n1(s), n2(s), n3(s)
) ∈ N3, where

– n1(s) is the maximal number of β⊕-reduction steps starting from sσ , where σ is the
substitution mapping each term variable x to ⊕ xθ xθ ′;

– n2(s) is the number of free term variables occurring more than once in s;
– n3(s) = S(s).
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Case 1: The λ-term s is term-ground. Then the lemma is trivial.

Case 2: The λ-term s contains k ≥ 2 free term variables. Then we can apply the induction
hypothesis twice and use the transitivity of ∼ as follows. Let x be one of the free term
variables in s. Let ρ = {x �→ xθ} the substitution that maps x to xθ and ignores all other
variables. Let ρ′ = θ ′[x �→ x].

We want to invoke the induction hypothesis on sρ and sρ′. This is justified because sσ
⊕-reduces to sρσ and to sρ′σ . These ⊕-reductions have at least one step because x occurs
in s and k ≥ 2. Hence, n1(s) > n1(sρ) and n1(s) > n1(sρ′).

This application of the induction hypothesis gives us sρθ ∼ sρθ ′ and sρ′θ ∼ sρ′θ ′. Since
sρθ = sθ and sρ′θ ′ = sθ ′, this is equivalent to sθ ∼ sρθ ′ and sρ′θ ∼ sθ ′. Since moreover
sρθ ′ = sρ′θ , we have sθ ∼ sθ ′ by transitivity of∼. The following illustration visualizes the
above argument:

sρ sρ′

sθ ∼
IH

sρθ ′ = sρ′θ ∼
IH

sθ ′
θ θ ′ θ θ ′

Case 3: The λ-term s contains a free term variable that occurs more than once. Then we
rename variable occurrences apart by replacing each occurrence of each free term variable x
by a fresh variable xi , for which we define xiθ = xθ and xiθ ′ = xθ ′. Let s′ be the resulting
λ-term. Since sσ = s′σ , we have n1(s) = n1(s′). All free term variables occur only once in
s′. Hence, n2(s) > 0 = n2(s′). Therefore, we can invoke the induction hypothesis on s′ to
obtain s′θ ∼ s′θ ′. Since sθ = s′θ and sθ ′ = s′θ ′, it follows that sθ ∼ sθ ′.

Case 4: The λ-term s contains only one free term variable x , which occurs exactly once.

Case 4.1: The λ-term s is of the form f〈τ̄ 〉 t̄ for some symbol f, some types τ̄ , and some
λ-terms t̄ . Then let u be the λ-term in t̄ that contains x . We want to apply the induction
hypothesis to u, which can be justified as follows. Consider the longest sequence of β⊕-
reductions from uσ . This sequence can be replicated inside sσ = (f〈τ̄ 〉 t̄)σ . Therefore, the
longest sequence of β⊕-reductions from sσ is at least as long—i.e., n1(s) ≥ n1(u). Since
both s and u have only one free term variable occurrence, we have n2(s) = 0 = n2(u). But
n3(s) > n3(u) because u is a term-nonground subterm of s.

Applying the induction hypothesis gives us uθ ∼ uθ ′. By definition of F , we have
F((f〈τ̄ 〉 t̄)θ) = fτ̄ θ

m F(t̄θ) and analogously for θ ′, where m is the length of t̄ . By congruence
of ≈ in first-order logic, it follows that sθ ∼ sθ ′.

Case 4.2: The λ-term s is of the form x t̄ for some λ-terms t̄ . Then we observe that, by
assumption, xθ ∼ xθ ′. By applying Lemma 38 repeatedly, we have xθ t̄ ∼ xθ ′ t̄ . Since x
occurs only once, t̄ is term-ground and hence sθ = xθ t̄ and sθ ′ = xθ ′ t̄ . Therefore, sθ ∼ sθ ′.

Case 4.3: The λ-term s is of the form λz. u for some λ-term u. Then we observe that to
prove sθ ∼ sθ ′, it suffices to show that sθ (diff sθ sθ ′) ∼ sθ ′ (diff sθ sθ ′) by Lemma 38. Via
βη-conversion, this is equivalent to uρθ ∼ uρθ ′ where ρ = {z �→ diff (sθ↓βη) (sθ ′↓βη)}.
To prove uρθ ∼ uρθ ′, we apply the induction hypothesis on uρ.

It remains to show that the induction hypothesis applies on uρ. Consider the longest
sequence of β⊕-reductions from uρσ . Since zρ starts with the diff symbol, zρ will not cause
more β⊕-reductions than z. Hence, the same sequence of β⊕-reductions can be applied
inside sσ = (λz. u)σ , proving that n1(s) ≥ n1(uρ). Since both s and uρ have only one
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free term variable occurrence, n2(s) = 0 = n2(uρ). But n3(s) = S(s) = 1+ S(u) because
s is term-nonground. Moreover, S(u) ≥ S(uρ) = n3(uρ) because ρ replaces a variable by
a ground λ-term. Hence, n3(s) > n3(uρ), which justifies the application of the induction
hypothesis.

Case 4.4: The λ-term s is of the form (λz. u) t0 t̄ for some λ-terms u, t0, and t̄ . We apply
the induction hypothesis on s′ = u{z �→ t0} t̄ . To justify it, consider the longest sequence
of β⊕-reductions from s′σ . Prepending the reduction sσ −�→β s′σ to it gives us a longer
sequence from sσ . Hence, n1(s) > n1(s′). The induction hypothesis gives us s′θ ∼ s′θ ′.
Since ∼ is invariant under β-reductions, it follows that sθ ∼ sθ ′. ��
We proceed by defining a higher-order interpretation IGH = (UGH, JGHty , JGH,LGH) derived
from R. The interpretation R is an interpretation in monomorphic first-order logic. Let Uτ

be its universe for type τ and J its interpretation function.
To illustrate the construction, we will employ the following running example. Let the

higher-order signature be �ty = {ι,→} and � = {f : ι → ι, a : ι, b : ι}. The first-order
signature accordingly consists of �ty and �GF = {f0, f1, a0,b0} ∪ {lamλx . t | λx . t ∈ TGH}.
Wewrite [t] for the equivalence class of t ∈ TGF modulo R.We assume that [f0] = [lamλx . x ],
[a0] = [f1(a0)], and [b0] = [f1(b0)], and that f0, lamλx . a, lamλx . b0 , a0, and b0 are in disjoint
equivalence classes. Hence, Uι→ι = {[f0], [lamλx . a], [lamλx . b], . . . } and Uι = {[a0], [b0]}.

When defining the universe UGH of the higher-order interpretation, we need to ensure
that it contains subsets of function spaces, since JGHty (→)(D1,D2) must be a subset of the

function space fromD1 toD2 for allD1,D2 ∈ UGH. But the first-order universesUτ consist
of equivalence classes of terms from TGF w.r.t. the rewriting system R, not of functions.

To repair this mismatch, we will define a family of functions Eτ that give a meaning to
the elements of the first-order universes Uτ . We will define a domain Dτ for each ground
type τ and then let UGH be the set of all these domainsDτ . Thus, there will be a one-to-one
correspondence between ground types and domains. Since the higher-order and first-order
type signatures are identical (including→, which is uninterpreted in first-order logic), we
can identify higher-order and first-order types.

We define Eτ and Dτ in a mutual recursion. To ensure well-definedness, we must simul-
taneously show that Eτ is bijective. We start with nonfunctional types τ : Let Dτ = Uτ and
let Eτ : Uτ −�→ Dτ be the identity. Clearly, the identity is bijective. For functional types, we
define

Dτ→υ =
{

ϕ : Dτ −�→ Dυ | ∃ s : τ → υ. ∀ u : τ. ϕ
(

Eτ

(

�F(u)�R
)) = Eυ

(

�F(s u)�R
)}

Eτ→υ : Uτ→υ −�→ Dτ→υ

Eτ→υ(�F(s)�R)
(

Eτ

(

�F(u)�R
)) = Eυ

(

�F(s u)�R
)

To verify that this equation is a valid definition of Eτ→υ , we must show that

– every element of Uτ→υ is of the form �F(s)�R for some term s;
– every element of Dτ is of the form Eτ

(

�F(u)�R
)

for some term u;
– the definition does not depend on the choice of such s and u;
– Eτ→υ(�F(s)�R) ∈ Dτ→υ for all s.

The first claim holds because R is term-generated and F is a bijection. The second claim
holds because R is term-generated and F and Eτ are bijections. To prove the third claim,
we assume that there are other ground terms t and v such that �F(s)�R = �F(t)�R and
Eτ

(

�F(u)�R
) = Eτ

(

�F(v)�R
)

. Since Eτ is bijective, we have �F(u)�R = �F(v)�R . Using
the ∼-notation, we can write this as u ∼ v. Applying Lemma 39 to the term x y and
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the substitutions {x �→ s, y �→ u} and {x �→ t, y �→ v}, we obtain s u ∼ t v—
i.e., �F(s u)�R = �F(t v)�R . Thus, the definition of Eτ→υ above does not depend on the
choice of s and u. The fourth claim is obvious from the definition of Dτ→υ and the third
claim.

It remains to show that Eτ→υ is bijective. For injectivity, we fix two terms s, t ∈ TGH such
that for all u ∈ TGH, we have �F(s u)�R = �F(t u)�R . By Lemma 38, �F(s)�R = �F(t)�R ,
which shows that Eτ→υ is injective. For surjectivity, we fix an element ϕ ∈ Dτ→υ . By
definition ofDτ→υ , there exists a term s such that ϕ

(

Eτ

(

�F(u)�R
)) = Eυ

(

�F(s u)�R
)

for all
u. Hence,Eτ→υ(�F(s)�R) = ϕ, proving surjectivity and therefore bijectivity ofEτ→υ . Below,
we will usually write E instead of Eτ since the type τ is determined by Eτ ’s first argument.

In our running example, we thus have Dι = Uι = {[a0], [b0]} and Eι is the identity
Uι −�→ Dι, c �→ c. The function E0

ι→ι maps [f0] to the identity Dι −�→ Dι, c �→ c; it
maps [lamλx . a] to the constant functionDι −�→ Dι, c �→ [a0]; and it maps [lamλx . b] to the
constant function Dι −�→ Dι, c �→ [b0]. The swapping function [a0] �→ [b0], [b0] �→ [a0]
is not in the image of E0

ι→ι. Therefore,Dι→ι contains only the identity and the two constant
functions, but not this swapping function.

We define the higher-order universe as UGH = {Dτ | τ ground}. Moreover, we define
JGHty (κ)(Dτ̄ ) = Uκ(τ̄ ) for all κ ∈ �ty, completing the type interpretation IGHty = (UGH, JGHty ).

We define the interpretation function as JGH(f,Dῡm ) = E(J(fῡm0 )) for all f : �ᾱm .τ .
In our example, we thus have JGH(f) = E([f0]), which is the identity on Dι −�→ Dι.
Finally, we need to define the designation function LGH, which takes a valuation ξ and a

λ-expression as arguments. Given a valuation ξ , we choose a grounding substitution θ such
that Dαθ = ξ(α) and E(�F(xθ)�R) = ξ(x) for all type variables α and all variables x . Such
a substitution can be constructed as follows: We can fulfill the first equation in a unique
way because there is a one-to-one correspondence between ground types and domains. Since
E−1(ξ(x)) is an element of a first-order universe and R is term-generated, there exists a
ground term t such that �t�ξR = E−1(ξ(x)). Choosing one such t and defining xθ = F −1(t)
gives us a grounding substitution θ with the desired property.

We define LGH(ξ, (λx . t)) = E(�F((λx . t)θ)�R). To prove that this is well-defined, we
assume that there exists another substitution θ ′ with the properties Dαθ ′ = ξ(α) for all α

and E(�F(xθ ′)�R) = ξ(x) for all x . Then we have αθ = αθ ′ for all α due to the one-to-one
correspondence between domains and ground types. We have �F(xθ)�R = �F(xθ ′)�R for all
x because E is injective. By Lemma 39 it follows that �F((λx . t)θ)�R = �F((λx . t)θ ′)�R ,
which proves that LGH is well-defined.

In our example, for all ξ we have LGH(ξ, λx . x) = E([lamλx . x ]) = E([f0]), which is the
identity. If ξ(y) = [a0], then LGH(ξ, λx . y) = E([lamλx . a]), which is the constant function
c �→ [a0]. Similarly, if ξ(y) = [b0], then LGH(ξ, λx . y) is the constant function c �→ [b0].

This concludes the definition of the interpretation IGH = (UGH, JGHty , JGH,LGH). It
remains to show that IGH is proper. In a proper interpretation, the denotation �t�IGH of a
term t does not depend on the representative of t modulo βη, but since we have not yet
shown IGH to be proper, we cannot rely on this property. For this reason, we use λ-terms in
the following three lemmas and mark all βη-reductions explicitly.

The higher-order interpretation IGH relates to the first-order interpretation R as follows:

Lemma 40 Given a ground λ-term t, we have �t�IGH = E(�F(t↓βη)�R).

Proof By induction on t . Assume that �s�IGH = E
(

�F(s↓βη)�R

)

for all proper subterms s

of t . If t is of the form f〈τ̄ 〉, then
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�t�IGH = JGH(f,Dτ̄ )

= E(J(f0,UF(τ̄ )))

= E(�f0〈F(τ̄ )〉�R)

= E(�F(f〈τ̄ 〉)�R)

= E(�F(f〈τ̄ 〉↓βη)�R) = E(�F(t↓βη)�R)

If t is an application t = t1 t2, where t1 is of type τ → υ, then

�t1 t2�IGH = �t1�IGH(�t2�IGH)

IH= Eτ→υ(�F(t1↓βη)�R)(Eτ (�F(t2↓βη)�R))

Def E= Eυ(�F((t1 t2)↓βη)�R)

If t is a λ-expression, then

�λx . u�
ξ

IGH = LGH(ξ, (λx . u))

= E(�F((λx . u)θ↓βη)�R)

= E(�F((λx . u)↓βη)�R)

where θ is a substitution such that Dαθ = ξ(α) and E(�F(xθ)�R) = ξ(x). ��
We need to show that the interpretation IGH = (UGH, JGHty , JGH,LGH) is proper. In the proof,
we will need to employ the following lemma, which is very similar to the substitution lemma
(Lemma 18), but we must prove it here for our particular interpretation IGH because we have
not shown that IGH is proper yet.

Lemma 41 (Substitution lemma) We have �τρ�
ξ

IGHty
= �τ �

ξ ′
IGHty

and �tρ�
ξ

IGH = �t�ξ
′

IGH for all

λ-terms t, all τ ∈ TyH and all grounding substitutions ρ, where ξ ′(α) = �αρ�
ξ

IGHty
for all type

variables α and ξ ′(x) = �xρ�
ξ

IGH for all term variables x.

Proof We proceed by induction on the structure of τ and t . The proof is identical to the one of
Lemma 18, except for the last step, which uses properness of the interpretation, a property we
cannot assumehere.However, here,we have the assumption thatρ is a grounding substitution.
Therefore, if t is a λ-expression, we argue as follows:

�(λz. u)ρ�
ξ

IGH = �(λz. uρ′)�ξIGH where ρ′(z) = z and ρ′(x) = ρ(x) for x �= z

= LGH(ξ, (λz. uρ′)) by the definition of the term denotation

= E(�F((λz. u)ρθ↓βη)�
ξ
R) for some θ by the definition of LGH

= E(�F((λz. u)ρ↓βη)�
ξ
R) because (λz. u)ρ is ground

∗= LGH(ξ ′, λz. u) by the definition of LGHand Lemma 40

= �λz. u�
ξ ′
IGH by the definition of the term denotation

The step ∗ is justified as follows: We have LGH(ξ ′, λz. u) = E(�F((λz. u)θ ′↓βη)�
ξ
R)

by the definition of LGH, if θ ′ is a substitution such that Dαθ ′ = ξ ′(α) for all α and
E(�F(xθ ′↓βη)�

ξ
R) = ξ ′(x) for all x . By the definition of ξ ′ and by Lemma 40, ρ is such

a substitution. Hence, LGH(ξ ′, λz. u) = E(�F((λz. u)ρ↓βη)�
ξ
R). ��
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Lemma 42 The interpretation IGH is proper.

Proof We must show that �(λx . t)�ξIGH(a) = �t�ξ [x �→a]
IGH for all λ-expressions λx . t , all valua-

tions ξ , and all values a.

�λx . t�ξIGH(a) = LGH(ξ, λx . t)(a) by the definition of � �IGH

= E(�F((λx . t)θ↓βη)�R)(a) by the definition of LGH for some θ

such that E(�F(zθ)�R) = ξ(z) for all z
andDαθ = ξ(α) for all α

= E(�F(((λx . t)θ s)↓βη)�R) by the definition of E
where E(�F(s)�R) = a

= E(�F(t(θ [x �→ s])↓βη)�R) by β-reduction

= �t(θ [x �→ s])�IGH by Lemma 40

= �t�ξ [x �→a]
IGH by Lemma 41

��
Lemma 43 IGH is a model of N .

Proof By Lemma 40, we have �t�IGH = E(�F(t)�R) for all t ∈ TGH. Since E is a bijection, it
follows that any (dis)equation s ≈̇ t ∈ CGH is true in IGH if and only if F(s ≈̇ t) is true in R.
Hence, a clause C ∈ CGH is true in IGH if and only if F(C) is true in R. By Theorem 37 and
the assumption that⊥ /∈ N , the interpretation R is a model of F(N )— that is, for all clauses
C ∈ N , F(C) is true in R. Hence, all clauses C ∈ N are true in IGH and therefore IGH is a
model of N . ��
We summarize the results of this subsection in the following theorem:

Theorem 44 (Ground static refutational completeness) Let GHSel be a selection function
on CGH. Then the inference system GHInfGHSel is statically refutationally complete w.r.t.
(GHRedI,GHRedC). In other words, if N ⊆ CGH is a clause set saturated w.r.t. GHInfGHSel

and GHRedGHSelI , then N |� ⊥ if and only if ⊥ ∈ N.

The construction of IGH relies on specific properties of R. It would not work with an arbi-
trary first-order interpretation. Transforming a higher-order interpretation into a first-order
interpretation is easier:

Lemma 45 Given a clausal higher-order interpretation I on GH, there exists a first-order
interpretation IGF on GF such that for any clause C ∈ CGH the truth values of C in I and of
F(C) in IGF coincide.

Proof Let I = (Ity, J,L) be a clausal higher-order interpretation. Let UGF
τ = �τ �Ity be the

first-order type universe for the ground type τ . For a symbol fῡj ∈ �GF, let JGF(f
ῡ
j ) = �f〈ῡ〉�I

(up to currying). For a symbol lamλx . t ∈ �GF, let JGF(lamλx . t ) = �λx . t�I. This defines a
first-order interpretation IGF = (UGF, JGF).

We need to show that for any C ∈ CGH, I |� C if and only if IGF |� F(C). It suffices
to show that �t�I = �F(t)�

IGF
for all terms t ∈ TGH. We prove this by induction on the

structure of the η-short β-normal form of t . If t is a λ-expression, this is obvious. If t is
of the form f〈ῡ〉 s̄j , then F(t) = fῡj (F(s̄j )) and hence �F(t)�

IGF
= JGF(fῡj )(�F(s̄j )�IGF ) =

�f〈ῡ〉�I(�F(s̄j )�IGF )
IH= �f〈ῡ〉�I(�s̄j �I) = �t�I. ��
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4.4 The Nonground Higher-Order Level

To lift the result to the nonground level, we employ the saturation framework of Waldmann
et al. [71]. It is easy to see that the entailment relation |� on GH is a consequence relation
in the sense of the framework. We need to show that our redundancy criterion on GH is a
redundancy criterion in the sense of the framework and that G is a grounding function in the
sense of the framework:

Lemma 46 The redundancy criterion forGH is a redundancy criterion in the sense of Sect. 2
of the saturation framework.

Proof We must prove the conditions (R1) to (R4) of the saturation framework. Adapted to
our context, they state the following for all clause sets N , N ′ ⊆ CGH:

(R1) if N |� ⊥, then N \ GHRedC(N ) |� ⊥;
(R2) if N ⊆ N ′, then GHRedC(N ) ⊆ GHRedC(N ′) and GHRedI(N ) ⊆ GHRedI(N ′);
(R3) if N ′ ⊆ GHRedC(N ), then GHRedC(N ) ⊆ GHRedC(N \ N ′) and GHRedI(N ) ⊆

GHRedI(N \ N ′);
(R4) if ι ∈ GHInf and concl(ι) ∈ N , then ι ∈ GHRedI(N ).

The proof is analogous to the proof of Lemma 4.12 of Bentkamp et al. [10], using Lemma 45.
��

Lemma 47 The grounding functions GGHSel for GHSel ∈ G(HSel) are grounding functions
in the sense of Sect. 3 of the saturation framework.

Proof We must prove the conditions (G1), (G2), and (G3) of the saturation framework.
Adapted to our context, they state the following:

(G1) G(⊥) = {⊥};
(G2) for every C ∈ CH, if ⊥ ∈ G(C), then C = ⊥;
(G3) for every ι ∈ HInf, GGHSel(ι) ⊆ GHRedGHSelI (G(concl(ι))).

Clearly, C = ⊥ if and only if ⊥ ∈ G(C) if and only if G(C) = {⊥}, proving (G1) and (G2).
For every ι ∈ HInf, by the definition of GGHSel, we have concl(GGHSel(ι)) ⊆ G(concl(ι)),
and thus (G3) by (R4). ��
To lift the completeness result of the previous subsection to the nonground calculus HInf,
we employ Theorem 14 of the saturation framework, which, adapted to our context, is stated
as follows. The theorem uses the notation Inf(N ) to denote the set of Inf-inferences whose
premises are in N , for an inference system Inf and a clause set N . Moreover, it uses Herbrand
entailment |�G on CH, which is defined so that N1 |�G N2 if and only if G(N1) |� G(N2).

Theorem 48 (Lifting theorem) If GHInfGHSel is statically refutationally complete w.r.t.
(GHRedGHSelI ,GHRedC) for every GHSel ∈ G(HSel), and if for every N ⊆ CH that is satu-

rated w.r.t. HInf and HRedI there exists a GHSel ∈ G(HSel) such that GHInfGHSel(G(N )) ⊆
GGHSel(HInf(N ))∪GHRedGHSelI (G(N )), then also HInf is statically refutationally complete

w.r.t. (HRedI,HRedC) and |�G .

Proof This is almost an instance of Theorem 14 of the saturation framework. We take CH
for F, CGH for G, and G(HSel) for Q. It is easy to see that the entailment relation |�
on GH is a consequence relation in the sense of the framework. By Lemmas 46 and 47,
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(GHRedGHSelI ,GHRedC) is a redundancy criterion in the sense of the framework, and GGHSel

are grounding functions in the sense of the framework, for all GHSel ∈ G(HSel). The redun-
dancy criterion (HRedI,HRedC) matches exactly the intersected lifted redundancy criterion
Red∩G,� of the saturation framework. Theorem 14 of the saturation framework states the
theorem only for � = ∅. By Lemma 16 of the saturation framework, it also holds if � �= ∅.

��
Let N ⊆ CH be a clause set saturated w.r.t. HInf and HRedI. We assume that HSel fulfills
the selection restriction that a literal L y must not be selected if y ūn , with n > 0, is a
�-maximal term of the clause, as required in Definition 9. For the above theorem to apply, we
need to show that there exists a selection function GHSel ∈ G(HSel) such that all inferences
ι ∈ GHInfGHSel with prems(ι) ∈ G(N ) are liftable or redundant. Here, for ι to be liftable
means that ι is a GGHSel-ground instance of a HInf-inference from N ; for ι to be redundant
means that ι ∈ GHRedGHSelI (G(N )).

To choose the right selection function GHSel ∈ G(HSel), we observe that each ground
clause C ∈ G(N ) must have at least one corresponding clause D ∈ N such that C is a
ground instance of D. We choose one of them for each C ∈ G(N ), which we denote by
G−1(C). Then letGHSel select those literals in C that correspond to literals selected byHSel
in G−1(C). With respect to this selection function GHSel, we can show that all inferences
from G(N ) are liftable or redundant:

Lemma 49 Let G−1(C) = D ∈ N and Dθ = C. Let σ and ρ be substitutions such that
xσρ = xθ for all variables x in D. Let L be a (strictly) �-eligible literal in C w.r.t. GHSel.
Then there exists a (strictly) �-eligible literal L ′ in D w.r.t. σ and HSel such that L ′θ = L.

Proof If L ∈ GHSel(C), then there exists L ′ such that L ′θ = L and L ′ ∈ HSel(D) by the
definition of G−1. Otherwise, L is �-maximal in C . Since C = Dσρ, there are literals L ′ in
Dσ such that L ′ρ = L . Choose L ′ to be a �-maximal among them. Then L ′ is �-maximal
in Dσ because for any literal L ′′ ∈ D with L ′′ � L ′, we have L ′′ρ � L ′ρ = L and hence
L ′′ρ = L by �-maximality of L .

If L is strictly �-maximal in C , L ′ is also strictly �-maximal in Dσ because a duplicate
of L ′ in Dσ would imply a duplicate of L in C . ��
Lemma 50 (Liftingof ERes,EFact,GArgCong, andGExt) AllERes,EFact,GArgCong,
and GExt inferences from G(N ) are liftable.

Proof ERes: Let ι ∈ GHInfGHSel be an ERes inference with prems(ι) ∈ G(N ). Then ι is of
the form

Cθ = C ′θ ∨ sθ �≈ s′θ
ERes

C ′θ

whereG−1(Cθ) = C = C ′ ∨ s �≈ s′ and the literal sθ �≈ s′θ is�-eligiblew.r.t.GHSel. Since
sθ and s′θ are unifiable and ground, we have sθ = s′θ . Thus, there exists an idempotent
σ ∈ CSU(s, s′) such that for some substitution ρ and for all variables x in C , we have
xσρ = xθ . By Lemma 49, we may assume without loss of generality that s �≈ s′ is �-
eligible in C w.r.t. σ and HSel. Hence, the following inference ι′ ∈ HInf applies:

C ′ ∨ s �≈ s′
ERes

C ′σ

Then ι is the σρ-ground instance of ι′ and is therefore liftable.
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EFact: Analogously, if ι ∈ GHInfGHSel is an EFact inference with prems(ι) ∈ G(N ), then
ι is of the form

Cθ = C ′θ ∨ s′θ ≈ t ′θ ∨ sθ ≈ tθ
EFact

C ′θ ∨ tθ �≈ t ′θ ∨ sθ ≈ t ′θ

where G−1(Cθ) = C = C ′ ∨ s′ ≈ t ′ ∨ s ≈ t , the literal sθ ≈ tθ is �-eligible in C w.r.t.
GHSel, and sθ ⊀ tθ . Then s ⊀ t . Moreover, sθ and s′θ are unifiable and ground. Hence,
sθ = s′θ and there exists an idempotent σ ∈ CSU(s, s′) such that for some substitution ρ

and for all variables x in C , we have xσρ = xθ . By Lemma 49, we may assume without
loss of generality that s ≈ t is �-eligible in C w.r.t. σ and HSel. It follows that the following
inference ι′ ∈ HInf is applicable:

C ′ ∨ s′ ≈ t ′ ∨ s ≈ t
EFact

(C ′ ∨ t �≈ t ′ ∨ s ≈ t ′)σ

Then ι is the σρ-ground instance of ι′ and is therefore liftable.
GArgCong: Let ι ∈ GHInfGHSel be a GArgCong inference with prems(ι) ∈ G(N ). Then ι

is of the form

Cθ = C ′θ ∨ sθ ≈ s′θ
GArgCong

C ′θ ∨ sθ ūn ≈ s′θ ūn

where G−1(Cθ) = C = C ′ ∨ s ≈ s′, the literal sθ ≈ s′θ is strictly �-eligible w.r.t. GHSel,
and sθ and s′θ are of functional type. It follows that s and s′ have either a functional or
a polymorphic type. Let σ be the most general substitution such that sσ and s′σ take n
arguments. By Lemma 49, we may assume without loss of generality that s �≈ s′ is strictly
�-eligible in C w.r.t. σ and HSel. Hence the following inference ι′ ∈ HInf is applicable:

C ′ ∨ s ≈ s′
ArgCong

C ′σ ∨ sσ x̄n ≈ s′σ x̄n

Since σ is the most general substitution that ensures well-typedness of the conclusion, ι is a
ground instance of ι′ and is therefore liftable.
GExt: The conclusion of a GExt inference in GHInf is by definition a ground instance of
the conclusion of an Ext inference in HInf. Hence, the GExt inference is a ground instance
of the Ext inference. Therefore it is liftable. ��
Some of the Sup inferences in GHInf are liftable as well:

Lemma 51 (Instances of green subterms) Let s be a λ-term in η-short β-normal form, let σ
be a substitution, and let p be a green position of both s and sσ ↓βη. Then (s|p)σ ↓βη =
(sσ ↓βη)|p.
Proof By induction on p. If p = ε, then (s|p)σ ↓βη = sσ ↓βη = (sσ ↓βη)|p . If p = i .p′,
then s = f〈τ̄ 〉 s1 . . . sn and sσ = f〈τ̄ σ 〉 (s1σ) . . . (snσ), where 1 ≤ i ≤ n and p′ is a green
position of si . Clearly,βη-normalization steps of sσ can take place only in proper subterms. So
sσ ↓βη = f〈τ̄ σ 〉(s1σ ↓βη) . . . (snσ ↓βη). Since p = i .p′ is a green position of sσ ↓βη, p

′must
be a green position of (siσ)↓βη. By the induction hypothesis, (si |p′)σ ↓βη = (siσ ↓βη)|p′ .
Therefore (s|p)σ ↓βη = (s|i .p′)σ ↓βη = (si |p′)σ ↓βη = (siσ ↓βη)|p′ = (sσ ↓βη)|p . ��
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Lemma 52 (Lifting of Sup) Let ι ∈ GHInfGHSel be a Sup inference

Dθ
︷ ︸︸ ︷

D′θ ∨ tθ ≈ t ′θ

Cθ
︷ ︸︸ ︷

C ′θ ∨ sθ tθ p ≈̇ s′θ
Sup

D′θ ∨ C ′θ ∨ sθ t ′θ p ≈̇ s′θ

where G−1(Dθ) = D = D′ ∨ t ≈ t ′ ∈ N, sθ = sθ tθ p, and G−1(Cθ) = C = C ′ ∨
s ≈̇ s′ ∈ N. We assume that s, t , sθ , and tθ are represented by λ-terms in η-short β-normal
form. Let p′ be the longest prefix of p that is a green position of s. Since ε is a green position
of s, the longest prefix always exists. Let u = s|p′ . Suppose one of the following conditions
applies: (i) u is a deeply occurring variable in C; (ii) p = p′ and the variable condition
holds for D and C; or (iii) p �= p′ and u is not a variable. Then ι is liftable.

Proof The Sup inference conditions for ι are that tθ ≈ t ′θ is strictly �-eligible, sθ ≈̇ s′θ is
strictly �-eligible if positive and �-eligible if negative, Dθ �� Cθ , tθ �� t ′θ , and sθ �� s′θ .
We assume that s, t , sθ , and tθ are represented by λ-terms in η-short β-normal form. By
Lemma 51, uθ agrees with sθ |p′ (considering both as terms rather than as λ-terms).

Case 1: We have (a) p = p′, (b) u is not fluid, and (c) u is not a variable deeply occurring in
C . Then uθ = sθ |p′ = sθ |p = tθ . Since θ is a unifier of u and t , there exists an idempotent
σ ∈ CSU(t, u) such that for some substitution ρ and for all variables x occurring in D and
C , we have xσρ = xθ . The inference conditions can be lifted: (Strict) eligibility of tθ ≈ t ′θ
and sθ ≈̇ s′θ w.r.t. GHSel implies (strict) eligibility of t ≈ t ′ and s ≈̇ s′ w.r.t. σ and HSel;
Dθ �� Cθ implies D �� C ; tθ �� t ′θ implies t �� t ′; and sθ �� s′θ implies s �� s′. Moreover,
by (a) and (c), condition (ii) must hold and thus the variable condition holds for D and C .
Hence there is the following Sup inference ι′ ∈ HInf:

D′ ∨ t ≈ t ′ C ′ ∨ s u p ≈̇ s′
Sup

(D′ ∨ C ′ ∨ s t ′ p ≈̇ s′)σ

Then ι is the σρ-ground instance of ι′ and therefore liftable.
Case 2: We have (a) p �= p′, or (b) u is fluid, or (c) u is a variable deeply occurring in C .
We will first show that (a) implies (b) or (c). Suppose (a) holds, but neither (b) nor (c) holds.
Then condition (iii) must hold—i.e., u is not a variable. Moreover, since (b) does not hold,
u cannot have the form y ūn for a variable y and n ≥ 1. If u were of the form f〈τ̄ 〉 s1 . . . sn
with n ≥ 0, uθ would have the form f〈τ̄ θ〉 (s1θ) . . . (snθ), but then there is some 1 ≤ i ≤ n
such that p′.i is a prefix of p and s|p′.i is a green subterm of s, contradicting the maximality
of p′.

So u must be a λ-expression, but since tθ is a proper green subterm of uθ , uθ cannot be
a λ-expression, yielding a contradiction. We may thus assume that (b) or (c) holds.

Let p = p′.p′′. Let z be a fresh variable. Define a substitution θ ′ that maps this variable
z to λy. (sθ |p′) y p′′ and any other variable w to wθ . Clearly, (z t)θ ′ = (sθ |p′) tθ p′′ =
sθ |p′ = uθ = uθ ′. Since θ ′ is a unifier of u and zt , there exists an idempotent σ ∈ CSU(zt, u)

such that for some substitution ρ, for x = z, and for all variables x in C and D, we have
xσρ = xθ ′. As in case 1, (strict) eligibility of the ground literals implies (strict) eligibility
of the nonground literals. Moreover, by construction of θ ′, tθ ′ = tθ �= t ′θ = t ′θ ′ implies
(z t)θ ′ �= (z t ′)θ ′, and thus (z t)σ �= (z t ′)σ . Since we also have (b) or (c), there is the
following inference ι′:

D′ ∨ t ≈ t ′ C ′ ∨ s u p′ ≈̇ s′
FluidSup

(D′ ∨ C ′ ∨ s z t ′ p′ ≈̇ s′)σ
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Then ι is the σρ-ground instance of ι′ and therefore liftable. ��
The other Sup inferences might not be liftable, but they are redundant:

Lemma 53 Let ι ∈ GHInfGHSel be a Sup inference from G(N ) not covered by Lemma 52.
Then ι ∈ GHRedGHSelI (G(N )).

Proof Let Cθ = C ′θ ∨ sθ ≈̇ s′θ and Dθ = D′θ ∨ tθ ≈ t ′θ be the premises of ι, where
sθ ≈̇ s′θ and tθ ≈ t ′θ are the literals involved in the inference, sθ � s′θ , tθ � t ′θ , and C ′,
D′, s, s′, t , t ′ are the respective subclauses and terms in C = G−1(Cθ) and D = G−1(Dθ).

Then the inference ι has the form

D′θ ∨ tθ ≈ t ′θ C ′θ ∨ sθ tθ ≈̇ s′θ
Sup

D′θ ∨ C ′θ ∨ sθ t ′θ ≈̇ s′θ

To show that ι ∈ GHRedGHSelI (G(N )), it suffices to show {D ∈ F(G(N )) | D ≺ F(Cθ)} |�
F(concl(ι)). To this end, let I be an interpretation in GF such that I |� {D ∈ F(G(N )) |
D ≺ F(Cθ)}. We need to show that I |� F(concl(ι)). If F(D′θ) is true in I, then obviously
I |� F(concl(ι)). So we assume that F(D′θ) is false in I. Since Cθ � Dθ by the Sup order
conditions, it follows that I |� F(tθ ≈ t ′θ). Therefore, it suffices to show I |� F(Cθ).

Let p be the green position in sθ where ι takes place and p′ be the longest prefix of p
that is a green subterm of s. Let u = s|p′ . Since Lemma 52 does not apply to ι, u is not a
deeply occurring variable; if p = p′, the variable condition does not hold for D andC ; and if
p �= p′, u is a variable. This means either the green position p does not exist in s, because it
is below an unapplied variable that does not occur deeply inC , or s|p is an unapplied variable
that does not occur deeply in C and for which the variable condition does not hold.

Case 1: The green position p does not exist in s because it is below a variable x that does
not occur deeply in C . Then tθ is a green subterm of xθ and hence a green subterm of xθ w̄

for any arguments w̄. Let v be the term that we obtain by replacing tθ by t ′θ in xθ at the
relevant position. Since I |� F(tθ ≈ t ′θ), by congruence, I |� F(xθ w̄ ≈ v w̄) for any
arguments w̄. Hence, I |� F(Cθ) if and only if I |� F(C{x �→ v}θ) by congruence. Here,
it is crucial that the variable does not occur deeply in C because congruence does not hold
in F -encoded terms below λ-binders. By the inference conditions, we have tθ � t ′θ , which
implies F(Cθ) � F(C{x �→ v}θ) by compatibility with green contexts. Therefore, by the
assumption about I, we have I |� F(C{x �→ v}θ) and hence I |� F(Cθ).

Case 2: The term s|p is a variable x that does not occur deeply in C and for which the
variable condition does not hold.

From this, we know that Cθ � C ′′θ , where C ′′ = C{x �→ t ′}.
We cannot have Cθ = C ′′θ because xθ = tθ �= t ′θ and x occurs in C . Hence, we have

Cθ � C ′′θ . By the definition of I, Cθ � C ′′θ implies I |� F(C ′′θ). We will use equalities
that are true in I to rewrite F(Cθ) into F(C ′′θ), which implies I |� F(Cθ) by congruence.

By saturation, everyArgCong inference ι′ from D is inHRedI(N )—i.e., G(concl(ι′)) ⊆
G(N ) ∪GHRedC(G(N )). Hence, D′θ ∨ tθ ū ≈ t ′θ ū is in G(N ) ∪GHRedC(G(N )) for any
ground arguments ū.

We observe that whenever tθ ū and t ′θ ū are smaller than the �-maximal term of Cθ for
some arguments ū, we have

I |� F(tθ ū) ≈ F(t ′θ ū) (*)

To show this, we assume that tθ ū and t ′θ ū are smaller than the �-maximal term of Cθ and
we distinguish two cases: If tθ is smaller than the �-maximal term of Cθ , all terms in D′θ
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are smaller than the �-maximal term of Cθ and hence D′θ ∨ tθ ū ≈ t ′θ ū ≺ Cθ . If, on the
other hand, tθ is equal to the�-maximal term of Cθ , then tθ ū and t ′θ ū are smaller than tθ .
Hence tθ ū ≈ t ′θ ū ≺ tθ ≈ t ′θ and D′θ ∨ tθ ū ≈ t ′θ ū ≺ Dθ ≺ Cθ . In both cases, since
D′θ is false in I, by the definition of I, we have (*).

Next, we show the equivalence of Cθ and C ′′θ via rewriting with equations of form
(*) where tθ ū and t ′θ ū are smaller than the �-maximal term of Cθ . Since x does not
occur deeply in C , every occurrence of x in C is not inside a λ-expression and not inside
an argument of an applied variable. Therefore, all occurrences of x in C are in a green
subterm of the form x v̄ for some terms v̄ that do not contain x . Hence, every occurrence
of x in C corresponds to a subterm F((x v̄)θ) = F(tθ v̄θ) in F(Cθ) and to a subterm
F((x v̄){x �→ t ′}θ) = F(t ′θ v̄{x �→ t ′}θ) = F(t ′θ v̄θ) in F(C ′′θ). These are the only
positions where Cθ and C ′′θ differ.

To justify the necessary rewrite steps from F(tθ v̄θ) into F(t ′θ v̄θ) using (*), wemust show
that F(tθ v̄θ) and F(t ′θ v̄θ) are smaller than the �-maximal term in F(Cθ) for the relevant
v̄. If v̄ is the empty tuple, we do not need to show this because I |� F(tθ ≈ t ′θ) follows
from F(Dθ)’s being true and F(D′θ)’s being false. If v̄ is nonempty, it suffices to show that
x v̄ is not a �-maximal term in C . Then F(tθ v̄θ) and F(t ′θ v̄θ), which correspond to the
term x v̄ in C , cannot be�-maximal in F(Cθ) and F(C ′′θ). Hence they must be smaller than
the �-maximal term in F(Cθ) because they are subterms of F(Cθ) and F(C ′′θ) ≺ F(Cθ),
respectively.

To show that x v̄ is not a �-maximal term in C , we make a case distinction on whether
sθ ≈̇ s′θ is selected in Cθ or sθ is the �-maximal term in Cθ . One of these must hold
because sθ ≈̇ s′θ is �-eligible in Cθ . If it is selected, by the selection restrictions, x cannot
be the head of a�-maximal term of C . If sθ is the�-maximal term in Cθ , we can argue that
x is a green subterm of s and, since x does not occur deeply, s cannot be of the form x v̄ for a
nonempty v̄. This justifies the necessary rewrites between F(Cθ) and F(C ′′θ) and it follows
that I |� F(Cθ). ��
With these properties of our inference systems in place, Theorem 48 guarantees static and
dynamic refutational completeness of HInf w.r.t. HRedI. However, this theorem gives us
refutational completeness w.r.t. the Herbrand entailment |�G , defined so that N1 |�G N2 if
G(N1) |� G(N2), whereas our semantics is Tarski entailment |�, defined so that N1 |� N2

if any model of N1 is a model of N2. To repair this mismatch, we use the following lemma,
which can be proved along the lines of Lemma 4.19 of Bentkamp et al. [10], using Lemmas 18
and 19.

Lemma 54 For N ⊆ CH, we have N |�G ⊥ if and only if N |� ⊥.
Theorem 55 (Static refutational completeness) The inference systemHInf is statically refuta-
tionally complete w.r.t. (HRedI,HRedC). In other words, if N ⊆ CH is a clause set saturated
w.r.t. HInf and HRedI, then we have N |� ⊥ if and only if ⊥ ∈ N.

Proof We apply Theorem 48. By Theorem 44, GHInfGHSel is statically refutationally com-
plete for allGHSel ∈ G(HSel). By Lemmas 50, 52, and 53, for every saturated N ⊆ CH, there
exists a selection function GHSel ∈ G(HSel) such that all inferences ι ∈ GHInfGHSel with
prems(ι) ∈ G(N ) either are GGHSel-ground instances of HInf-inferences from N or belong
to GHRedGHSelI (G(N )).

Theorem 48 implies that if N ⊆ CH is a clause set saturated w.r.t. HInf and HRedI, then
N |�G ⊥ if and only if ⊥ ∈ N . By Lemma 54, this also holds for the Tarski entailment |�.
That is, if N ⊆ CH is a clause set saturated w.r.t. HInf and HRedI, then N |� ⊥ if and only if
⊥ ∈ N . ��
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From static completeness, we can easily derive dynamic completeness:

Theorem 56 (Dynamic refutational completeness) The inference system HInf is dynamically
refutationally complete w.r.t. (HRedI,HRedC) as specified in Definition 34.

Proof By Theorem 17 of the saturation framework, this follows from Theorem 55 and
Lemma 54. ��

5 Extensions

In addition to the simplification rules presented in Sect. 3.5, the core calculus can be extended
with various optional rules for higher-order reasoning. Like the previous rules, they are not
necessary for refutational completeness but can allow the prover to find more direct proofs.
Most of these rules are concerned with the areas covered by the FluidSup rule and the
extensionality axiom.

Two of the optional rules below rely on the notion of “orange subterms.”

Definition 57 A λ-term t is an orange subterm of a λ-term s if s = t ; or if s = f〈τ̄ 〉 s̄ and t is
an orange subterm of si for some i ; or if s = x s̄ and t is an orange subterm of si for some i ;
or if s = (λx . u) and t is an orange subterm of u.

For example, in the term f (g a) (y b) (λx . h c (g x)), the orange subterms are all the green
subterms—a, g a, y b, λx . h c (g x) and the whole term—and in addition b, c, x , g x ,
and h c (g x). Following Convention 1, this notion is lifted to βη-equivalence classes via
representatives in η-short β-normal form. We write t = s x̄n . u to indicate that u is an
orange subterm of t , where x̄n are the variables bound in the orange context around u, from
outermost to innermost. If n = 0, we simply write t = s u .

Once a term s x̄n . u has been introduced, we write s x̄n . u′ η to denote the same
context with a different subterm u′ at that position. The η subscript is a reminder that u′ is not
necessarily an orange subterm of s x̄n . u′ η due to potential applications of η-reduction.
For example, if s x . g x x = h a (λx . g x x), then s x . f x η = h a (λx . f x) = h a f.

Demodulation in Orange Contexts Demodulation, which destructively rewrites using an
equality t ≈ t ′, is available at green positions, as described in Sect. 3.5. In addition, a variant
of demodulation rewrites in orange contexts:

t ≈ t ′ C s x̄ . tσ
λDemodExt

t ≈ t ′ C s x̄ . t ′σ η s x̄ . tσ ≈ s x̄ . t ′σ η

where the term tσ may refer to the bound variables x̄ . The following side conditions apply:

1. s x̄ . tσ ↓βη is a λ-expression or a term of the form y ūn with n > 0;

2. s x̄ . tσ � s x̄ . t ′σ η;

3. C s x̄ . tσ � s x̄ . tσ ≈ s x̄ . t ′σ η

Condition 3 ensures that the second premise is redundant w.r.t. the conclusions and may
be removed. The double bar indicates that the conclusions collectively make the premises
redundant and can replace them.

The third conclusion, which is entailed by t ≈ t ′ and (Ext), could be safely omitted if the
corresponding (Ext) instance is smaller than the second premise. But in general, the third
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conclusion is necessary for the proof, and the variant of λDemodExt that omits it—let us
call it λDemod—might not preserve refutational completeness.

An instance of λDemodExt, where g z is rewritten to f z z under a λ-binder, follows:

g x ≈ f x x k (λz. h (g z)) ≈ c
λDemodExt

g x ≈ f x x k (λz. h (f z z)) ≈ c (λz. h (g z)) ≈ (λz. h (f z z))

Lemma 58 λDemodExt is sound and preserves refutational completeness of the calculus.

Proof Soundness of the first conclusion is obvious. Soundness of the second and third con-
clusions follows from congruence and extensionality using the premises. Preservation of
completeness is justified by redundancy. Specifically, we justify the deletion of the second
premise by showing that it is redundant w.r.t. the conclusions—i.e., if for every ground
instance C s x̄ . tσ θ ∈ G(C s x̄ . tσ ), its encoding F(C s x̄ . tσ θ) is entailed
by F(G(N )), where N are the conclusions of λDemodExt. The first conclusion cannot help
us prove redundancybecause s x̄ .tσ θ↓βη might be aλ-expression and thenF(s x̄ .tσ θ)

is a symbol that is unrelated to F(tσθ). Instead, we use the θ -instances of the last two conclu-
sions. By Lemma 23, F(C s x̄ . t ′σ η θ) has F(s x̄ . t ′σ ηθ) as a subterm. If this subterm
is replaced by F(s x̄ . tσ θ), we obtain F(C s x̄ . tσ θ). Hence, the F -encodings of the
θ -instances of the last two conclusions entail the F -encoding of the θ -instance of the second
premise by congruence. Due to the side condition that the second premise is larger than the
second and third conclusion, by stability under grounding substitutions, the θ -instances of
the last two conclusions must be smaller than the θ -instance of the second premise. Thus,
the second premise is redundant. ��
Pruning Arguments of Variables The next simplification rule can be used to prune argu-
ments of applied variables if the arguments can be expressed as functions of the remaining
arguments. For example, the clause C[ y a b (f b a), y b d (f d b)], in which y occurs twice,
can be simplified to C[ y′ a b, y′ bd]. Here, for each occurrence of y, the third argument can
be computed by applying f to the second and first arguments. The rule can also be used to
remove the repeated arguments in y b b �≈ y a a, the static argument a in y a c �≈ y a b, and
all four arguments in y a b �≈ z b d. It is stated as

C
PruneArg

Cσ

where the following conditions apply:

1. σ = {y �→ λx̄j . y′ x̄j−1};
2. y′ is a fresh variable;
3. C � Cσ ;
4. the minimum number k of arguments passed to any occurrence of y in the clause C is at

least j ;
5. there exists a term t containing no variables bound in the clause such that for all terms

of the form y s̄k occurring in the clause we have sj = t s̄j−1 sj+1 . . . sk .

Clauses with a static argument correspond to the case t := (λx̄j−1 xj+1 . . . xk . u), where u
is the static argument (containing no variables bound in t) and j is its index in y’s argument
list. The repeated argument case corresponds to t := (λx̄j−1 xj+1 . . . xk . xi ), where i is the
index of the repeated argument’s mate.

Lemma 59 PruneArg is sound and preserves refutational completeness of the calculus.

123



928 A. Bentkamp et al.

Proof The rule is sound because it simply applies a substitution to C . It preserves complete-
ness because the premise C is redundant w.r.t. the conclusion Cσ . This is because the sets of
ground instances ofC andCσ are the same andC � Cσ . ClearlyCσ is an instance ofC . We
will show the inverse: that C is an instance of Cσ . Let ρ = {y′ �→ λx̄j−1 xj+1 . . . xk . y x̄j−1
(t x̄j−1 xj+1 . . . xk) xj+1 . . . xk}. We show Cσρ = C . Consider an occurrence of y in C .
By the side conditions, it will have the form y s̄k ū, where sj = t s̄j−1 sj+1 . . . sk . Hence,
(y s̄k)σρ = (y′ s̄j−1 sj+1 . . . sk)ρ = y s̄j−1 (t s̄j−1 sj+1 . . . sk) sj+1 . . . sk = y s̄k . Thus,
Cσρ = C . ��
We designed an algorithm that efficiently computes the subterm u of the term t = (λx1 . . .

xj−1 xj+1 . . . xk . u) occurring in the side conditions of PruneArg. The algorithm is incom-
plete, but our tests suggest that it discovers most cases of prunable arguments that occur in
practice. The algorithmworks bymaintaining amapping of pairs (y, i) of functional variables
y and indices i of their arguments to a set of candidate terms for u. For an occurrence y s̄n
of y and for an argument sj , the algorithm approximates this set by computing all possible
ways in which subterms of sj that are equal to any other si can be replaced with the variable
xi corresponding to the i th argument of y. The candidate sets for all occurrences of y are
then intersected. An arbitrary element of the final intersection is returned as the term u.

Example 60 Suppose that ya(fa)b and y z (fz)b are the only occurrences of y in a clause. The
initial mapping is {1 �→ TH, 2 �→ TH, 3 �→ TH}. After computing the ways in which each
argument can be expressed using the remaining ones for the first occurrence and intersecting
the sets, we get {1 �→ {a}, 2 �→ {f a, f x1}, 3 �→ {b}}, where x1 represents y’s first
argument. Finally, after computing the corresponding sets for the second occurrence of y and
intersecting them with the previous candidate sets, we get {1 �→ ∅, 2 �→ {f x1}, 3 �→ {b}}.
The final mapping shows that we can remove the second argument, since it can be expressed
as a function of the first argument: t = (λx1 x3. f x1 x3). We can also remove the third
argument, since its value is fixed: t = (λx1 x3. b).

Example 61 Suppose that y (λx . a) (f a) c and y (λx . b) (f b) d are the only occurrences
of y in a clause. Here, PruneArg can be used to eliminate the second argument by taking
t := (λx1 x3. f (x1 x3)), but our algorithm fails to detect this.

Alternatives to Axiom (EXT) Following the literature [34,62], we provide a rule for negative
extensionality:

C ′ ∨ s �≈ s′
NegExt

C ′ ∨ s (sk〈ᾱ〉 ȳ) �≈ s′ (sk〈ᾱ〉 ȳ)
The following conditions apply:

1. sk is a fresh Skolem symbol;
2. s �≈ s′ is �-eligible in the premise;
3. ᾱ and ȳ are the type and term variables occurring free in the literal s �≈ s′.

Negative extensionality can be applied as an inference rule at any time or as a simplification
rule during preprocessing of the initial problem. The rule uses Skolem terms sk ȳ rather than
diff s s′ because they tend to be more compact.

Lemma 62 (NegExt’s satisfiability preservation) Let N ⊆ CH, and let E be the conclusion
of a NegExt inference from N . If N ∪ {(Ext)} is satisfiable, then N ∪ {(Ext), E} is
satisfiable.
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Proof Let I be a model of N ∪ {(Ext)}. We need to construct a model of N ∪ {(Ext), E}.
Since (Ext) holds in I, so does its instance s (diff s s′) �≈ s′ (diff s s′) ∨ s ≈ s′. We extend
the model I to a model I′, interpreting sk such that I′ |� sk〈ᾱ〉 ȳ ≈ diff s s′. The Skolem
symbol sk takes the free type and term variables of s �≈ s′ as arguments, which include all
the free variables of diff s s′, allowing us to extend I in this way.

By assumption, the premise C ′ ∨ s �≈ s′ is true in I and hence in I′. Since the above
instance of (Ext) holds in I, it also holds in I′. Hence, the conclusion C ′ ∨ s (sk〈ᾱm〉 ȳn) �≈
s′ (sk〈ᾱm〉 ȳn) also holds, which can be seen by resolving the premise against the (Ext)
instance and unfolding the defining equation of sk. ��

One reason why the extensionality axiom is so prolific is that both sides of its maximal
literal, y(diffyz) �≈ z(diffyz), are fluid. As a pragmatic alternative to the axiom,we introduce
the “abstracting” rules AbsSup, AbsERes, and AbsEFact with the same premises as the
core Sup, ERes, and EFact, respectively. We call these rules collectively Abs. Each new
rule shares all the side conditions of the corresponding core rule except that of the form
σ ∈ CSU(s, t). Instead, it lets σ be the most general unifier of s and t’s types and adds
this condition: Let v s1, . . . , sn = sσ and v t1, . . . , tn = tσ , where v is the largest
common green context of sσ and tσ . If any si is of functional type and the core rule has
conclusion Eσ , the new rule has conclusion Eσ ∨ s1 �≈ t1 ∨ · · · ∨ sn �≈ tn . The NegExt
rule can then be applied to those literals si �≈ ti whose sides have functional type. Essentially
the same idea was proposed by Bhayat and Reger as unification with abstraction in the
context of combinatory superposition [19, Sect. 3.1]. The approach regrettably does not
fully eliminate the need for axiom (Ext), as Visa Nummelin demonstrated via the following
example.

Example 63 Consider the unsatisfiable clause set consisting of h x ≈ f x , k h ≈ k g, and
k g �≈ k f, where k takes at most one argument and h � g � f. The only nonredundant Abs
inference applicable is AbsERes on the third clause, resulting in g �≈ f. Applying ExtNeg

further produces g sk �≈ f sk. The set consisting of all five clauses is saturated.

A different approach is to instantiate the extensionality axiom with arbitrary terms s, s′ of
the same functional type:

ExtInst

s (diff s s′) �≈ s′ (diff s s′) ∨ s ≈ s′

Wewould typically choose s, s′ among the green subterms occurring in the current clause set.
Intuitively, if we think in terms of eligibility,ExtInst demands s (diffs s′) ≈ s′ (diffs s′) to be
proved before s ≈ s′ can be used. This can be advantageous because simplifying inferences
(based onmatching) will often be able to rewrite the applied terms s (diffs s′) and s′ (diffs s′).
In contrast, Abs assume s ≈ s′ and delay the proof obligation that s (diff s s′) ≈ s′ (diff s s′).
This can create many long clauses, which will be subject to expensive generating inferences
(based on full unification).

Superposition can be generalized to orange subterms as follows:

D′ ∨ t ≈ t ′ C ′ ∨ s x̄ . u ≈̇ s′
λSup

(D′ ∨ C ′ ∨ s x̄ . t ′ η ≈̇ s′)σρ

where the substitution ρ is defined as follows: Let Py = {y} for all type and term variables
y /∈ x̄ . For each i , let Pxi be defined recursively as the union of all Py such that y occurs
free in the λ-expression that binds xi in s x̄ . u σ or that occurs free in the corresponding
subterm of s x̄ . t ′ ησ .
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Then ρ is defined as {xi �→ ski 〈ᾱi 〉 ȳi for each i}, where ȳi are the term variables in Pxi
and ᾱi are the type variables in Pxi and the type variables occurring in the type of the λ-
expression binding xi . In addition, Sup’s side conditions and the following conditions apply:
10. x̄ has length n > 0;
11. x̄σ = x̄ ;
12. the variables x̄ do not occur in yσ for all variables y in u.

The substitution ρ introduces Skolem terms to represent bound variables that would oth-
erwise escape their binders.

Example 64 We can shorten the derivation of Example 17 by applying λSup as follows:

Cdiv
︷ ︸︸ ︷

n ≈ zero ∨ div n n ≈ one

Cnc
︷ ︸︸ ︷

prod K (λk. div (succ k) (succ k)) �≈ one
λSup

succ sk ≈ zero ∨ prod K (λk. one) �≈ one

From this conclusion, ⊥ can be derived using only Sup and ERes inferences. We thus avoid
both FluidSup and (Ext).

The rule can be justified in terms of paramodulation and extensionality, with the Skolem
terms standing for diff terms:

Lemma 65 (λSup’s satisfiability preservation) Let N ⊆ CH, and let E be the conclusion of a
λSup inference from N . If N ∪ {(Ext)} is satisfiable, then N ∪ {(Ext), E} is satisfiable.
Proof Let I be a model of N ∪ {(Ext)}. We need to construct a model of N ∪ {(Ext), E}.
For each i , let vi be the λ-expression binding xi in the term s x̄ . u σ in the rule. Let v′i
be the variant of vi in which the relevant occurrence of uσ is replaced by t ′σ . We define a
substitution π recursively by xiπ = diff (viπ) (v′iπ) for all i . This definition is well-founded
because the variables xj with j ≥ i do not occur freely in vi and v′i . We extend the model I
to a model I′, interpreting ski such that I′ |� ski 〈ᾱi 〉 ȳi ≈ diff (viπ) (v′iπ) for each i . Since
the free type and term variables of any xiπ are necessarily contained in Pxi , the arguments
of ski include the free variables of diff (viπ) (v′iπ), allowing us to extend I in this way.

By assumption, the premises of the λSup inference are true in I and hence in I′. We
need to show that the conclusion (D′ ∨ C ′ ∨ s x̄ . t ′ η ≈̇ s′)σρ is also true in I′. Let
ξ be a valuation. If I′, ξ |� (D′ ∨ C ′)σρ, we are done. So we assume that D′σρ and
C ′σρ are false in I′ under ξ . In the following, we omit ‘I′, ξ |�’, but all equations (≈)
are meant to be true in I′ under ξ . Assuming D′σρ and C ′σρ are false, we will show
inductively that viπ ≈ v′iπ for all i = k, . . . , 1. By this assumption, the premises imply
that tσρ ≈ t ′σρ and s x̄ . u σρ ≈̇ s′σρ. Due to the way we constructed I′, we have
wπ ≈ wρ for any term w. Hence, we have tσπ ≈ t ′σπ . The terms vkπ (diff (vkπ) (v′kπ))

and v′kπ (diff (vkπ) (v′kπ)) are the respective result of applying π to the body of the λ-
expressions vk and v′k . Therefore, by congruence, tσπ ≈ t ′σπ and tσ = uσ imply that
vkπ (diff (vkπ) (v′kπ)) ≈ v′kπ (diff (vkπ) (v′kπ)). The extensionality axiom then implies
vkπ ≈ v′kπ .

It follows directly from the definition of π that for all i , viπ (diff (viπ) (v′iπ)) =
si vi+1π and v′iπ (diff (viπ) (v′iπ)) = si v′i+1π for some context si . The sub-
terms vi+1π of si vi+1π and v′i+1π of si v′i+1π may be below applied variables but
not below λs. Since substitutions avoid capture, in vi and v′i , π only substitutes xj with j < i ,
but in vi+1 and v′i+1, it substitutes all xj with j ≤ i . By an induction using these equations,
congruence, and the extensionality axiom, we can derive from vkπ ≈ v′kπ that v1π ≈ v′1π.
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Since I′ |� wπ ≈ wρ for any term w, we have v1ρ ≈ v′1ρ. By congruence, it follows that
s x̄ . u σρ ≈ s x̄ . t ′ ησρ. With s x̄ . u σρ ≈̇ s′σρ, it follows that (s x̄ . t ′ η ≈̇ s′)σρ.

Hence, the conclusion of the λSup inference is true in I′. ��
Alternatives to FLUIDSUP The next rule, duplicating flex subterm superposition, is a
lightweight substitute for FluidSup:

D′ ∨ t ≈ t ′ C ′ ∨ s y ūn ≈̇ s′
DupSup

(D′ ∨ C ′ ∨ s z ūn t
′ ≈̇ s′)ρσ

where n > 0, ρ = {y �→ λx̄n . z x̄n (w x̄n)}, and σ ∈ CSU(t, w (ūnρ)) for fresh variables
w, z. The order and eligibility restrictions are as for Sup. The rule can be understood as the
composition of an inference that applies the substitution ρ and of a paramodulation inference
into the subterm w (ūnρ) of s z (ūnρ) (w (ūnρ)) . DupSup is general enough to replace
FluidSup in Examples 13 and 14 but not in Example 15. On the other hand, FluidSup’s
unification problem is usually a flex–flex pair, whereas DupSup yields a less explosive flex–
rigid pair unless t is variable-headed.

The last rule, flex subterm superposition, is an evenmore lightweight substitute for Fluid-
Sup:

D′ ∨ t ≈ t ′ C ′ ∨ s y ūn ≈̇ s′
FlexSup

(D′ ∨ C ′ ∨ s t ′ ≈̇ s′)σ

where n > 0 and σ ∈ CSU(t, y ūn). The order and eligibility restrictions are as for Sup.

6 Implementation

Zipperposition [27,28] is an open-source superposition prover written in OCaml.1 Its raw
performance might not be comparable to highly optimized provers such as E and Vampire,
but its code is easier to maintain and modify. Our rough estimate is that it is about three times
slower than E. Originally designed for polymorphic first-order logic (TF1 [21]), Zipperposi-
tion was later extended by Cruanes with an incomplete higher-order mode based on pattern
unification [53]. Bentkamp et al. [12] extended it further with a complete λ-free clausal
higher-order mode. We have now implemented a clausal higher-order mode based on our
calculus. We use the order �λ (Sect. 3.6) derived from the Knuth–Bendix order [45] and the
lexicographic path order [43]. We currently use the corresponding nonstrict order �λ as �.

Except for FluidSup, the core calculus rules already existed in Zipperposition in a simi-
lar form. To improve efficiency, we extended the prover to use a higher-order generalization
[68] of fingerprint indices [58] to find inference partners for all new binary inference rules.
To speed up the computation of the Sup conditions, we omit the condition Cσ �� Dσ in
the implementation, at the cost of performing additional inferences. Among the optional
rules, we implemented λDemod, PruneArg, NegExt, Abs, ExtInst, λSup, DupSup, and
FlexSup. For λDemod and λSup, demodulation, subsumption, and other standard simplifi-
cation rules (as implemented in E [59]), we use pattern unification. For generating inference
rules that require enumerations of complete sets of unifiers, we use the complete procedure of
Vukmirović et al. [68]. It has better termination behavior, produces fewer redundant unifiers,
and can be implementedmore efficiently than procedures such as Jensen and Pietrzykowski’s

1 https://github.com/sneeuwballen/zipperposition.
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[38] and Snyder and Gallier’s [61]. The set of fluid terms is overapproximated in the imple-
mentation by the set of terms that are either nonground λ-expressions or terms of the form
y ūn with n > 0. To efficiently retrieve candidates for Abs inferences without slowing down
superposition term indexing structures, we implemented dedicated indexing for clauses that
are eligible for Abs inferences [70, Sect. 3.3].

Zipperposition implements a DISCOUNT-style given clause procedure [5]. The proof
state is represented by a set A of active clauses and a set P of passive clauses. To interleave
nonterminating unification with other computation, we added a set T containing possibly
infinite sequences of scheduled inferences. These sequences are stored as finite instructions
of how to compute the inferences. Initially, all clauses are in P . At each iteration of the main
loop, the prover heuristically selects a given clause C from P . If P is empty, sequences from
T are evaluated to generate more clauses into P; if no clause can be produced in this way,
A is saturated and the prover stops. Assuming a given clause C could be selected, it is first
simplified using A. Clauses in A are then simplified w.r.t. C , and any simplified clause is
moved to P . Then C is added to A and all sequences representing nonredundant inferences
between C and A are added to T . This maintains the invariant that all nonredundant infer-
ences between clauses in A have been scheduled or performed. Then some of the scheduled
inferences in T are performed and the conclusions are put into P .

We can view the above loop as an instance of the abstract Zipperposition loop prover
ZL of Waldmann et al. [71, Example 34]. Their Theorem 32 allows us to obtain dynamic
completeness for this prover architecture from our static completeness result (Theorem 54).
This requires that the sequences in T are visited fairly, that clauses in P are chosen fairly,
and that simplification terminates, all of which are guaranteed by our implementation.

The unification procedure we use returns a sequence of either singleton sets containing the
unifier or an empty set signaling that a unifier is still not found. Empty sets are returned to give
back control to the caller of unification procedure and avoid getting stuck on nonterminating
problems. These sequences of unifier subsingletons are converted into sequences containing
subsingletons of clauses representing inference conclusions.

7 Evaluation

The evaluation consists of two parts: an assessment of the extensions described in Sect. 5
and a comparison of our prototype implementation with Zipperposition’s modes for less
expressive logics and with other higher-order provers. The experiments were run on StarExec
nodes equipped with Intel Xeon E5-2609 0 CPUs clocked at 2.40GHz. Following CASC
2019 [65], we set 180s as the CPU time limit. Our results are publicly available.2

Evaluation of Extensions In the first part, we assess the usefulness of the extensions
described in Sect. 5. We used both standard TPTP benchmarks [64] and Sledgehammer-
generated benchmarks [52]. From the TPTP, version 7.2.0, we used all 499 monomorphic
higher-order theorems in TH0 syntax without interpreted Booleans and arithmetic (TH0).
The Sledgehammer benchmarks, corresponding to Isabelle’s Judgment Day suite [23], were
regenerated to target clausal higher-order logic (SH-λ). They comprise 1253 problems, each
generated from 256 Isabelle facts (definitions and lemmas).

We fixed a reasonable base configuration of Zipperposition parameters. For each exten-
sion, we then changed the corresponding parameters and observed the effect on the success
rate. The base configuration uses the complete variant of the unification procedure of Vuk-

2 https://doi.org/10.5281/zenodo.4032969.
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Fig. 1 Number of problems proved without rules included in the base configuration

Fig. 2 Number of problems proved using rules that perform rewriting under λ-binders

Fig. 3 Number of problems proved using rules that perform extensionality reasoning

Fig. 4 Number of problems proved with rules that perform superposition into fluid terms

mirović et al. [68]. It also includes the optional rules NegExt and PruneArg, substitutes
FlexSup for the highly explosive FluidSup, and excludes axiom (Ext). This configuration
is not refutationally complete.

The rulesNegExt (NE) and PruneArg (PA)were added to the base configuration because
our informal experiments showed that they usually help. Figure 1 confirms this, although the
effect is small. In all tables, +R denotes the inclusion of a rule R not present in the base,
and−R denotes the exclusion of a rule R present in the base. Numbers given in parentheses
denote the number of problems that are solved only by the given configuration and by no
other configuration in the same table.

The rules λDemod (λD) and λSup extend the calculus to perform some rewriting under
λ-binders. While experimenting with the calculus, we noticed that for some configurations,
λSup performs better when the number of fresh Skolem symbols it introduces overall is
bounded by some parameter n. As Fig. 2 shows, the inclusion of these rules has a different
effect on the two benchmark sets. On the other hand, different choices of n for λSup (denoted
by λSn) do not seem to influence the success rate much.

The evaluation of the Abs and ExtInst rules and axiom (Ext), presented in Fig. 3,
confirms our intuition that including the extensionality axiom is severely detrimental to
performance. The +(Ext) configuration solves two unique problems on SH-λ benchmarks,
but this small success is coincidental, since (Ext) is not even referenced in the generated
proofs.

The FlexSup rule included in the base configuration underperformed. Even the FluidSup
and DupSup rules outperform FlexSup, as shown in Fig. 4. This effect is especially visible
on SH-λ benchmarks. On TPTP, the differences are negligible.

Most of the extensions have a stronger effect on SH-λ than on TH0. A possible explanation
is that the Boolean-free TH0 benchmark subset consists mostly of problems that are simple
to solve using most prover parameters. On the other hand, SH-λ benchmarks are of varying
difficulty and can thus benefit more from changing prover parameters.
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Main Evaluation In the second part, we seek to answer the following research questions:

1. What is the overhead of our implementation on first-order problems, compared with
first-order superposition?

2. How does our implementation compare with λ-free clausal superposition on λ-free prob-
lems?

3. How does the complete implementation of our calculus compare with incomplete vari-
ants?

4. How does our implementation compare with other higher-order provers on Boolean-free
higher-order benchmarks?

We needed more benchmarks to answer questions 1 and 2. From the TPTP, we used 1000
randomly selected first-order (FO) problems in CNF, FOF, or TFF syntax without arithmetic.
We partitioned the TH0 problems used above into those containing no λ-expressions (TH0λf,
452 problems) and those containing λ-expressions (TH0λ, 47 problems). To make the SH-λ
problems accessible toλ-free clausal higher-order provers,we regenerated themusingλ-lifted
supercombinators (SH-ll), as described by Meng and Paulson [52].

To answer questions 1 and 2, we ran Zipperposition in first-order (FOZip) and λ-free
(λfreeZip) modes, as well as in amode that encodes curried applications using a distinguished
binary symbol @ before using first-order Zipperposition (@+FOZip). To answer question 3,
we evaluated the implementation of our calculus in Zipperposition in three configurations:
λZip-base, λZip-pragmatic, and λZip-full. The configuration λZip-base is the base described
above. The configuration λZip-pragmatic builds on λZip-base by disabling FlexSup and
replacing complete unification with the pragmatic variant pv21121 of the unification procedure
[68]. The configuration λZip-full is a refutationally complete extension of λZip-base that
substitutes FluidSup for FlexSup and includes axiom (Ext).

To answer question 4, we selected all contenders in the THF division of CASC 2019 as
representatives of the state of the art: CVC4 1.8 prerelease [9], Leo-III 1.4 [62], Satallax
3.4 [24], and Vampire 4.4 [18]. We also included Ehoh [69], the λ-free clausal higher-
order mode of E 2.4. Leo-III and Satallax are cooperative higher-order provers that can be
set up to regularly invoke first-order provers as terminal proof procedures. To assess the
performance of their core calculi, we also evaluated them with first-order backends disabled.
We denote these “uncooperative” configurations by Leo-III-uncoop and Satallax-uncoop, as
opposed to the standard versions Leo-III-coop and Satallax-coop. To demonstrate the best
performance of Zipperposition, we evaluated it in a portfolio mode that runs the prover in
various configurations (Zip-uncoop). We also evaluated a cooperative version of the portfolio
which, in some configurations, invokes Ehoh as backend on higher-order problems after a
predefined time (Zip-coop). In this version, Zipperposition encodes selected clauses from the
proof state to λ-free higher-order logic supported by Ehoh [69]. On first-order problems, we
ran Ehoh, Vampire, and Zip-uncoop using the provers’ respective first-order modes.

A summary of these experiments is presented in Fig. 5. Regarding question 1, we observe
thatλZip-pragmatic incurs less than 1%overhead andλZip-base incurs less than 3%overhead
comparedwith FOZip,which is very reasonable. Regarding question 2, the numbers show that
λZip-pragmatic outperforms λfreeZip on TH0λf problems and but falls behind λfreeZip on
SH-ll problems. Regarding question 3, we see that λZip-full has substantially more overhead
and performs worse than λZip-pragmatic and λZip-base on almost all benchmark sets, due
to the explosive extensionality axiom and FluidSup rule.

Regarding question 4, we learn that, except on TH0λ problems, both λZip-base and λZip-
pragmatic outperform Leo-III-uncoop (which also runs a fixed configuration) by substantial
margins. In addition, Zip-uncoop outperforms Satallax-uncoop (which also uses a portfolio).
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Fig. 5 Number of problems proved by the different provers

Our most competitive configuration, Zip-coop, emerges as the winner on both problem sets
containing λ-expressions. The raw evaluation data show that, on higher-order TPTP bench-
marks, Zip-coop does not solve any problems that no other cooperative prover solves. This
probably says more about the benchmark set than about the prover. By contrast, on SH-ll
benchmarks Zip-coop uniquely solves 21 problems, and on SH-λ benchmarks, it uniquely
solves 27 problems, w.r.t. other cooperative provers.

8 Discussion and RelatedWork

Bentkamp et al. [12] introduced four calculi for λ-free clausal higher-order logic organized
along two axes: intensional versus extensional, and nonpurifying versus purifying. The puri-
fying calculi flatten the clauses containing applied variables, thereby eliminating the need for
superposition into variables. As we extended their work to support λ-expressions, we found
the purification approach problematic and gave it up because it needs x to be smaller than
x t , which is impossible to achieve with a term order on βη-equivalence classes. We also
quickly gave up our attempt at supporting intensional higher-order logic. Extensionality is
the norm for higher-order unification [30] and is mandated by the TPTP THF format [66]
and in proof assistants such as HOL4, HOL Light, Isabelle/HOL, Lean, Nuprl, and PVS.

Bentkamp et al. viewed their approach as “a stepping stone toward full higher-order logic.”
It already included a notion analogous to green subterms and an ArgCong rule, which help
cope with the complications occasioned by β-reduction.

Our Boolean-free λ-superposition calculus joins the family of proof systems for higher-
order logic. It is related to Andrews’s higher-order resolution [1], Huet’s constrained
resolution [36], Jensen and Pietrzykowski’s ω-resolution [38], Snyder’s higher-order E-
resolution [60], Benzmüller and Kohlhase’s extensional higher-order resolution [14],
Benzmüller’s higher-order unordered paramodulation and RUE resolution [13], and Bhayat
and Reger’s combinatory superposition [19]. A noteworthy variant of higher-order unordered
paramodulation is Steen and Benzmüller’s higher-order ordered paramodulation [62], whose
order restrictions undermine refutational completeness but yield better empirical results.
Other approaches are based on analytic tableaux [8,46,47,55], connections [2], sequents
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[50], and satisfiability modulo theories (SMT) [9]. Andrews [3] and Benzmüller and Miller
[15] provide excellent surveys of higher-order automation.

Combinatory superposition was developed shortly after λ-superposition and is closely
related. It is modeled on the intensional nonpurifying calculus by Bentkamp et al. and targets
extensional polymorphic clausal higher-order logic. Both combinatory and λ-superposition
gracefully generalize the highly successful first-order superposition rules without sacrificing
refutational completeness, and both are equipped with a redundancy criterion, which ear-
lier refutationally complete higher-order calculi lack. In particular, PruneArg is a versatile
simplification rule that could be useful in other provers. Combinatory superposition’s distin-
guishing feature is that it uses SKBCI combinators to represent λ-expressions. Combinators
can be implemented more easily starting from a first-order prover; β-reduction amounts to
demodulation. However, according to its developers [19], “Narrowing termswith combinator
axioms is still explosive and results in redundant clauses. It is also never likely to be com-
petitive with higher-order unification in finding complex unifiers.” Among the drawbacks
of λ-superposition are the need to solve flex–flex pairs eagerly and the explosion caused by
the extensionality axiom. We believe that this is a reasonable trade-off, especially for large
problems with a substantial first-order component.

Our prototype Zipperposition joins the league of automatic theorem provers for higher-
order logic.We list someof its rivals. TPS [4] is basedon the connectionmethod and expansion
proofs. LEO [14] and Leo-II [17] implement variants of RUE resolution. Leo-III [62] is based
on higher-order paramodulation. Satallax [24] implements a higher-order tableau calculus
guided by a SAT solver. Leo-II, Leo-III, and Satallax integrate external first-order provers
as terminal proof procedures. AgsyHOL [50] is based on a focused sequent calculus guided
by narrowing. The SMT solvers CVC4 and veriT have recently been extended to higher-
order logic [9]. Vampire now implements both combinatory superposition and a version of
standard superposition in which first-order unification is replaced by restricted combinatory
unification [18].

Half a century ago, Robinson [56] proposed to reduce higher-order logic to first-order logic
via a translation. “Hammer” tools such as Sledgehammer [54], MizAR [67], HOLyHammer
[42], and CoqHammer [29] have since popularized this approach in proof assistants. The
translation must eliminate the λ-expressions, typically using SKBCI combinators or λ-lifting
[52], and encode typing information [20].

9 Conclusion

We presented the Boolean-free λ-superposition calculus, which targets a clausal fragment of
extensional polymorphic higher-order logic.With the exception of a functional extensionality
axiom, it gracefully generalizes standard superposition. Our prototype prover Zipperposition
shows promising results on TPTP and Isabelle benchmarks. In future work, we plan to pursue
five main avenues of investigation.

We first plan to extend the calculus to support Booleans and Hilbert choice. Booleans are
notoriously explosive. We want to experiment with both axiomatizations and native support
in the calculus. Native support would likely take the form of a primitive substitution rule
that enumerates predicate instantiations [2], delayed clausification rules [32], and rules for
reasoning about Hilbert choice.

We want to investigate techniques to curb the explosion caused by functional extension-
ality. The extensionality axiom reintroduces the search space explosion that the calculus’s
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order restrictions aim at avoiding. Maybe we can replace it by more restricted inference rules
without compromising refutational completeness.

Wewill also look into approaches to curb the explosion caused by higher-order unification.
Our calculus suffers from the need to solve flex–flex pairs. Existing procedures [38,61,68]
enumerate redundant unifiers. This can probably be avoided to some extent. It could also be
useful to investigate unification procedures that would delay imitation/projection choices via
special schematic variables, inspired by Libal’s representation of regular unifiers [49].

We clearly need to fine-tune and develop heuristics. We expect heuristics to be a fruitful
area for future research in higher-order reasoning. Proof assistants are an inexhaustible source
of easy-looking benchmarks that are beyond the power of today’s provers. Whereas “hard
higher-order” may remain forever out of reach, we believe that there is a substantial “easy
higher-order” fragment that awaits automation.

Finally, we plan to implement the calculus in a state-of-the-art prover.A suitable basis for
an optimized implementation of the calculus would be Ehoh, the λ-free clausal higher-order
version of E developed by Vukmirović, Blanchette, Cruanes, and Schulz [69].
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