
THE HALL ALGEBRAS OF ANNULI

BENJAMIN COOPER AND PETER SAMUELSON

Abstract. We refine and prove the central conjecture of our first paper for annuli
with at least two marked intervals on each boundary component by computing the
derived Hall algebras of their Fukaya categories.
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1. Introduction

The Hall algebraic approach to quantum groups developed by Ringel [Rin90] and
Lusztig [Lus91] endowed the theory introduced by Drinfeld and Jimbo with a geomet-
ric and higher categorical intepretation. The relationship between quantum groups
and Witten-Reshetikhin-Turaev topological field theories inspired the famous conjec-
tures of Crane and Frenkel [CF94]. When understood as a 4-dimensional topological
field theory, the objects naturally associated to surfaces are manifestations of skein
algebras. Morton and Samuelson [MS17] suggested that there should be a relation-
ship between the Hall algebra of the Fukaya category and the skein algebra of the
surface. The present paper is one of a series which develops these ideas.

In [CS18], the authors introduced a series of conjectures which suggest a Hall
algebraic approach to skein algebras of surfaces. First, the graded HOMFLY-PT
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skein algebra of a surface was conjectured to be isomorphic to the Hall algebra of the
Fukaya category of that surface, at least once the former was rigorously defined.

HqpSq
„
ÝÑ DHapDπFpSqq

Second, the authors gave a conjectural generators and relations presentation of the
Hall algebra for most surfaces, which was called the Naive Conjecture, see §3.1. This
conjecture implies that if the surface has sufficiently many marked intervals on its
the boundary then the Hall algebra can be presented in an explicit way using a
decomposition of the surface into disks.

The main result of the present paper occurs in §4 where we use quiver techniques to
compute the Hall algebras of the Fukaya categories of annuli Km,n with m marked
intervals on one boundary component and n marked intervals on the other when
m ě 2 and n ě 2 . Roughly stated, this proof has two steps. First, we show that
the Hall algebra is isomorphic to the composition subalgebra of the derived Hall
algebra of a certain quiver. This quiver composition subalgebra has a presentation
by a result of Hernandez and Leclerc. Second, we show that the relations in this
presentation correspond to triangles in the surface, which then hold in the naive
algebra by functoriality.

For example, when the surface S is the annulus K2,2 with two marked intervals
on each boundary component, there is an arc system A consisting of two boundary
arcs intervals E1 , F1 and E3, F3 between each of the two marked intervals and two
internal arcs E2 “ F4 and E4 “ F2 . This is pictured below.

E1

F1

E3

F3

E4
F2

E2
F4

Cutting the annulus along the arc system produces two disks pD2
1,Λ4q and pD2

2,Λ14q
with four arcs Λ4 “ tE1, E2, E3, E4u and Λ14 “ tF1, F2, F3, F4u . Since there are
enough marked intervals, the Naive Conjecture implies that the composition subal-
gebra fpS,Aq is generated by suspensions of the arcs Ei,n “ σnEi and Fj,m “ σmFj
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for 1 ď i, j ď 4 and n,m P Z subject to the (G1) and (G3) relations:
E2,n “ F4,n and E4,n “ F2,n for all n P Z,

rE2,n, F2,ms1 “ 0 and rF2,n, E2,ms1 “ 0 for all n,m P Z,

as well as the relations which hold within each disk algebra fpD2
1,Λ4q and fpD2

2,Λ14q .
Our results show that the Naive Conjecture holds for annuli with at least 2 marked

intervals on each boundary component, and this gives further evidence to suggest the
correctness of this conjecture. Unfortunately, quiver methods do not extend directly
to the general case which will be addressed in [CS] using different techniques.

Our study of the Hall algebra of these annuli is mirror to the study of the Hall
algebra of coherent sheaves on weighted projective lines [BS13]. More complicated
surfaces obtained by the gluing of annuli are mirror to sheaves on gluings of weighted
projective lines [LP18a]. Following [MS17], we expect the Hall algebra of the torus
to parallel the Hall algebra of sheaves on the elliptic curve [BS12, SV11].

While this paper was under review, F. Haiden posted the preprints [Haib, Haia]
which provide a geometric approach to some of the questions studied here.

Acknowledgments. The author would like to thank K. Kawamuro, F. Haiden, Y.
Lekili and O. Schiffmann for their collegiality and helpful conversations. The first
author would also like to thank the Max Planck Institute for the hospitality and
excellent working conditions during July and August 2018. Most of this paper was
written during his visit.

2. Recollections and definitions

In [CS18], we showed that finitary marked surfaces pS,Mq have functorially de-
fined derived Hall algebras DHapDπFpS,Aqq and composition subalgebras fpS,Aq
associated to each arc system A . The purpose of this section is both to recall a few
of these details and to establish notation. New materials include the relationship
between marked surfaces and ribbon graphs. The foliation data from [CS18, §4.3] is
extended to all surfaces. Balanced foliations are introduced here, as are fully formal
arc systems, in Def. 2.1, which are used later in §4.3.

2.1. Surface topology. When a surface S has corners, the smooth part of its bound-
ary BS “ B0S\B1S is a disjoint union of closed 1-manifolds, B0S , and open intervals,
B1S . A marked surface is an oriented surface S with corners together with a subset
M Ă BS of the boundary which contains each closed component, B0S Ă M , and
every other component of B1S . A marked surface is finitary when it is compact, has
boundary and there is at least one marked interval on each boundary component.
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An arc in a marked surface S is a closed embedded interval which intersects M
transversely at its endpoints and is not isotopic to an interval in M . Arcs are
considered up to ambient isotopies in which endpoints may move within respective
components of M . A boundary arc is an arc which is isotopic to the closure of a
component of BSzM . An internal arc is an arc which is not a boundary arc. An
arc system A in S is a collection of pairwise disjoint non-isotopic arcs. A full arc
system is an arc system A containing all boundary arcs that cuts S into a collection
of disks.

Definition 2.1. An arc system A is fully formal when it cuts S into a collection of
disks each of which contains exactly one boundary arc that is not contained in A ,
see [HKK17, §3].

Remark 2.2. A fully formal arc system is not a full arc system. The missing bound-
ary arc can be recovered as a twisted complex of the other arcs in the disk which
contains it.

Example 2.3. If pS,Mq is a disk D2 with m marked intervals then there is a
minimal full arc system Λm consisting only of boundary arcs. Removing any one of
the arcs X P Λ produces an arc system ΛztXu which is fully formal.

A map f : pS,Mq Ñ pT,Nq of marked surfaces is an orientation preserving im-
mersion which satisfies fpMq Ă N and maps the boundary arcs of S to disjoint
non-isotopic arcs in T . Note that such maps are not necessarily closed under com-
position. If f also takes arcs in an arc system for S to arcs in an arc system for T
then f induces a strict A8 -functor between associated Fukaya categories. For more
details see [HKK17, §3].

Marked surfaces as graphs.

Definition 2.4. Fix a countably infinite set Ω . A graph Γ is a subset Γ Ă Ω of
half-edges equipped two partitions

Γ “ \ePEpΓqe and Γ “ \vPV pΓqv
one into edges e P EpΓq and one into vertices v P V pΓq . Each edge e Ă Γ is required
to have cardinality one or two. If |e| “ 2 then e is called an internal edge and if
|e| “ 1 then e is called a boundary edge. The size |v| of a vertex v Ă Γ is called its
valence and it is required to be greater than two; |v| ě 3 . A ribbon graph is a graph
in which each vertex is equipped with a cyclic order.

Proposition 2.5. Marked surfaces pS,Mq equipped with full arc systems A are in
one-to-one correspondence with ribbon graphs.
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This correspondence associates a vertex to each disk in SzA , an edge to each arc
which is in the boundary of two disks, and a half-edge to each arc which is in the
boundary of a unique disk. The cyclic ordering of half-edges in a vertex is determined
by the orientation of the surface.

Gradings of surfaces and graphs. A grading of an oriented surface pS,Mq is a foli-
ation by lines; i.e. a section η P ΓpS,PpTSqq of the projectivization of the tangent
bundle. Two homotopic foliations give equivalent gradings. An oriented marked
surface together with a homotopy class of foliation or equivalent data is said to be
graded. The set of homotopy classes of gradings on S is

HpSq :“ π0ΓpS,PpTSqq. (2.1)

A grading on an immersed curve γ : I Ñ S in a graded surface pS, ηq is a smoothly
varying choice of path γ̃ppq : 9γppq Ñ ηp from the line defined by the derivative of γ
to the foliation at each point p “ γptq . If γ1 and γ2 are two such graded curves and
intersect at a point p then the intersection index is given by

ippγ1, γ2q :“ γ̃1ppq ¨ κ ¨ γ̃2ppq
´1
P π1pPpTpSq, ηpq – Z,

where κ is the shortest counterclockwise path from 9γ1 to 9γ2 . As maps in the Fukaya
category, points of intersection between graded curves are graded by intersection
index. The identification π1pPpTpSq, ηpq – Z is determined by the orientation of
S . If γ is a graded curve then the n-fold suspension of γ is σnγ “ γr´ns is the
graded curve given by multiplying each path generator by n-times the generator of
π1pPpTpSqq .

Up to homotopy, the choice of η is determined by a collection of integers assigned
to the half-edges of the graph associated to the surface by Prop. 2.5.

Definition 2.6. A function f : Γ Ñ Z on the half-edges of Γ is foliation data when
ř

hPv fphq “ |v|´ 2 for every vertex v P V pΓq .

It is useful to know how foliation data transforms under operations on ribbon
graphs. Suppose f is foliation data on a ribbon graph Γ and the graph Γ{e is
obtained by collapsing an internal edge. This operation is dual to deleting an arc
that separates two disks in a disk decomposition of the surface. If e “ thi, h

1
ju

where hi P Hpvq “ th1, h2, . . . , hnu and h1j P Hpv
1q “ th11, h

1
2, . . . , h

1
mu in Γ then

this new graph is determined by the assignments Γ{e :“ Γze , EpΓ{eq :“ EpΓqze ,
Hpv#v1q “ pHpvq Y Hpv1qqzthi, h

1
ju , see [Igu04, §1.1]. When this is so, the map f

determines foliation data f{e by the assignment

f{ephq :“

$

&

%

fphi´1q ` fph
1
jq if h “ hi´1

fph1j´1q ` fphiq if h “ h1j´1
fphq otherwise

(2.2)
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for h P Hpv#v1q in Γ{e . Otherwise f{e :“ f on pΓ{eqzHpv#v1q .

2.2. Fukaya categories.

Definition 2.7. pFpS,Aqq If S is an oriented graded marked surface and A is an arc
system then [HKK17] defines an A8 -category FpS,Aq with objects ObpFpS,Aqq “
A given by the set of graded arcs in A . The morphisms in FpS,Aq are k -linear
combinations of boundary paths.

Given two distinct arcs X and Y in A , a boundary path from X to Y is a non-
constant path which is contained in a marked interval and which starts on an endpoint
of X , follows the reverse orientation of the boundary and ends on an endpoint Y .
This means that a boundary path has the surface to its right. When X and Y
coincide, the trivial path 1X is considered a boundary path. The degree of a boundary
path γ : r0, 1s Ñ S from X to Y is given by

|γ| :“ iγp0qpX, γq ´ iγp1qpY, γq

for any grading of γ .
The A8 -structure on FpS,Aq is defined below.

pµ1q The map µ1 is always zero.
pµ2q The map µ2 is given by concatenation of boundary paths: if a and b can

be concatenated then
µ2pb, aq :“ p´1q|a|a ¨ b,

otherwise, µ2pb, aq :“ 0 .
pµmq Suppose that pD2,Λq is a disk with m marked intervals and m ě 3 .

Let Λ be the boundary arcs and tc1, . . . , cmu the boundary paths between
them ordered cyclically according to the reverse disk orientation. Then a disk
sequence is a collection of boundary paths tf ˝ c1, . . . , f ˝ cmu in pS,Aq for
some map f : pD2,Λq Ñ pS,Aq of marked surfaces.

If a1, . . . , am is a disk sequence and b is a boundary path then
µmpam, . . . , a1 ¨ bq :“ p´1q|b|b or µmpb ¨ am, . . . , a1q :“ b

when a1 ¨ b ‰ 0 or b ¨ am ‰ 0 respectively; otherwise the map µm is defined
to be zero.

Notice that the definition above only depends on the underlying ribbon graph
together with a choice of foliation data f : Γ Ñ Z . This foliation data can be used to
describe the degrees of maps in the Fukaya category. If αi : hi Ñ hi`1 is a boundary
path from the edge dual to hi to the edge dual to hi`1 , then the intersection index
determines a degree

|αi| :“ ipphi, αiq ´ iqphi`1, αiq
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where αi is an arbitrarily graded path from p on the arc associated to hi to q on
the arc associated to hi`1 . This degree agrees with the value of the foliation data; in
the sense that fphiq “ |αi| .

Definition 2.8. If C is an A8 -category then there is a triangulated category DπC
called the split-closed derived category. It is uniquely characterized by the property
of being the smallest split-closed triangulated subcategory of the homotopy category
of C -modules H0pC -modq containing the image of the Yoneda embedding. For other
details, see [CS18, §4.2.2] and references therein.

Definition 2.9. The split-closed derived Fukaya category DπFpS,Aq is the split-
closed derived category of the Fukaya category FpS,Aq introduced above.

2.3. Balanced gradings. A balanced foliation is one which will allow the forma-
tion of graded closed curves. This brief section introduces balanced foliations and
establishes a few of their elementary properties.

Definition 2.10. A double pair consists of two arcs X and Y in a graded marked
surface pS,Mq and two distinct non-trivial boundary paths γ, γ1 : X Ñ Y from X
to Y . A double pair is balanced when the degrees of the paths |γ| “ |γ1| agree. A
foliation η on a surface S is balanced if all double pairs are balanced.

Remark 2.11. The arcs S and T in the annuli Km,n of Fig. 1 are a balanced pair.

There is a different formulation of this definition. A foliation rηs P HpSq gives a
section η P rηs , so that η : pS, BSq Ñ pPpTSq, BPpTSqq which gives a class η˚rS, BSs P
H2pPpTSq, BPpTSqq . Poincaré duality determines a class Dη˚rS, BSs P H1pPpTSqq ,
so the Kronecker pairing gives a map

˚ : HpSq ˆH1pPpTSqq Ñ Z where η ˚ rγs :“ xDη˚rS, BSs, rγsy. (2.3)
In particular, any immersed curve γ : S1 Ñ S in S gives a section sγ “ pγ, r 9γsq :
S1 Ñ PpTSq and so a class rγs “ psγq˚rS1s P H1pPpTSqq .

The pairing Eqn. (2.3) allows us to associate an integer to each immersed curve,
and this number has an equivalent, geometric, interpretation as a winding number
or the algebraic intersection number between the fixed field η˚rS, BSs and the class
psγq˚rS

1s . This is the number of times the tangent vector of γ winds around the
foliation as one traces through the curve. In more detail, suppose St defines a path
from rγ1pt0qs to ηγpt0q . This path can be extended in an interval pt0 ´ ε, t0 ` εq , and
then to all of γ using a finite cover. So there is the initial path St and the path Tt
from γ1pt0q to ηγpt0q obtained from traversing γ once. The composition ST´1 is a
path from ηγpt0q to itself, and the pairing becomes

η ˚ γ :“ ST´1
P π1pPpTSq, γpt0qq – Z

where the identification with Z is again determined by the orientation of S .
7



Since S has boundary, TS is trivial so the fiber bundle RP 1 Ñ PpTSq Ñ S gives
a non-canonically split short exact sequence

0 Ð H1
pRP 1

q
i˚
ÐÝ H1

pPpTSqq p˚
ÐÝ H1

pSq Ð 0.
Since a class in H1pPpTSqq is dual to η˚rS, BSs when its algebraic intersection with
the vertical fiber is 1 , i˚pDη˚rS, BSsqprRP 1sq “ 1 , the set of homotopy classes of
foliations can be identified with a subset HpSq “ pi˚q´1pV q where V P H1pRP 1q

satisfies xV, rRP 1sy “ 1 . The map p˚ gives HpSq the structure of an H1pSq-torsor,
if c P H1pSq then rη ` cs “ rηs ` p˚c , see [LP18b, §1.1].

The algebraic condition in Def. 2.10 is equivalent to the geometric condition in the
proposition below.

Proposition 2.12. A foliation η is balanced if and only if η ˚ γ “ 0 for all unob-
structed embedded closed curves γ in S .

Proof. It is only necessary to consider embedded curves because the pairing factors
through homology. Suppose η ˚ γ “ 0 for all closed curves γ . Up to homotopy, we
can push the line field defining η up so that it is perpendicular to both X and Y . If
α, β : X Ñ Y are two distinct non-trivial paths between internal arcs X and Y then
concatenating them with X and Y forms a loop γ :“ X ¨ α ¨ Y ¨ β´1 . The condition
that the |α| “ |β| is equivalent to the condition that η ˚ γ “ 0 . The proof of the
converse is the same. �

Corollary 2.13. There is one balanced foliation on the annulus.

Proof. Let S :“ S1 ˆ r0, 1s . Since S1 is a Lie group and r0, 1s is contractible, the
tangent bundle of the annulus is trivial. This implies PpTSq – S ˆ PpR2q – S ˆ S1 .
Then a section η : S Ñ PpTSq is a map S Ñ S1 and, up to homotopy, such maps are
in bijection with maps S1 Ñ S1 , which are classified (up to homotopy) by degree.
Now under this identification, degpηq “ η ˚ rS1 ˆ t0us so that the only balanced
foliation is the one which corresponds to the degree zero self-map of the circle.

�

2.4. Hall algebras. As a vector space, the derived Hall algebra of a triangulated
category T satisfying certain finiteness conditions is given by Q-linear combinations
of isomorphism classes of objects

DHpT q :“ QxObpT q{isoy.
If X, Y P ObpT q{iso then their product is given by

XY :“
ÿ

L

FL
X,YL
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Here FL
X,Y are Toën’s structure constants

FL
X,Y :“ |HompX,LqY |

|AutpXq|
¨

ś

ną0|Ext´npX,Lq|p´1qn

ś

ną0|Ext´npX,Xq|p´1qn (2.4)

for X, Y, L P ObpT q{iso where HompX,LqY :“ tf P HompX,Lq : Cpfq – Y u .
When the marked surface pS,Mq is finitary, Prop. 4.10 in [CS18] shows that

there is a meaningful definition of the derived Hall algebra of the Fukaya category
T “ DπFpS,Aq for any full arc system A when the coefficient field is a finite field
Fq .

The Euler form is the map x¨, ¨y : K0pT q bK0pT q Ñ Z given by

xX, Y y :“
ÿ

nPZ
p´1qn dimExtnpX, Y q. (2.5)

It can be symmetrized by setting X ¨ Y :“ xX, Y y` xY,Xy . Sometimes the notation
pX, Y q :“ X ¨Y is used. This defines a symmetric bilinear form on the Grothendieck
group K0pT q which can be identified with the Cartan matrix for the derived category
of modules over an acyclic quiver.

The twisted derived Hall algebra DHapT q :“ DHpT q bQ Qpqq has the same basis,
with multiplication twisted by the Euler form

X ˚ Y :“ qxY,XyXY.

(See the value of q in §4.5.)

2.5. Subalgebras of Hall algebras. If pS,Mq is a finitary surface endowed with
a full arc system A then the derived Hall algebra DHapDπFpS,Aqq of the Fukaya
category is too big. The composition subalgebras introduced below are much more
reasonable objects to study.

Definition 2.14. The composition subalgebra fpS,Aq is the image of the canonical
map

κ : F pZAq Ñ DHapDπFpS,Aqq
from the free Qpqq-algebra on the set ZA of suspensions of arcs to the derived Hall
algebra.

This composition subalgebra is an analog of the composition subalgebra of the
Hall algebra of quiver representations, which is the subalgebra generated by simple
modules. This construction satisfies the following functoriality property, see [CS18,
Cor. 5.11].
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Theorem 2.15. (Embedding) Suppose that pS,Mq and pS 1,M 1q are marked surfaces
equipped with full arc systems A and A1 . If f : pS,Mq Ñ pS 1,M 1q is an embedding
which induces an injection π0pMq Ñ π0pM

1q between sets of components of marked
intervals then f induces a monomorphism f˚ : fpS,Aq Ñ fpS 1, A1q.

2.6. Disk presentations and gluing statements. In this subsection we first recall
the presentation of the composition subalgebra fpD2,Λ3q associated to the disk with
three boundary arcs from [CS18]. Second the algebra associated to disk formed by a
gluing a family of such disks pD2,Λ3q is recalled. For more detail and discussion see
[CS18].

Theorem 5.16 of [CS18] introduces a presentation for the composition subalgebra
fpD2,Λmq of a disk pD2,mq with m boundary arcs equipped with the minimal full
arc system Λm . (It is a minimal arc system because there are no internal arcs.) An
important special case occurs when m “ 3 .

E1

E3 E2

α1α3

α2

In the illustration above, the arc system consists of the three boundary arcs Λ3 :“
tE1, E2, E3u . As the boundary of the disk is oriented counterclockwise, there are
boundary arcs αi : Ei Ñ Ei`1 for i P Z{3 . The foliation data h : Λ3 Ñ Z satisfies
hpEiq “ |αi| .

In the special case m “ 3 , the presentation of fpD2,Λ3q becomes the corollary
below.

Corollary 2.16. Suppose that the disk pD2, 3q with three marked intervals is equipped
with a minimal arc system Λ3 “ tE1, E2, E3u and foliation data h : Λ3 Ñ Z. Then
the algebra fpD2,Λ3q has only two families of relations,

(R1) Self-extension:

rEi,0, Ei,ksq2p´1qk “ δk,1
q´1

q2 ´ 1 for k ě 1,
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(R2) Adjacent commutativity and convolution:
rEi`1,k, Ei,hpiqsqp´1qk`1 “ δk,1Ei`2,1´hpi`1q for k ě 1,
rEi`1,k, Ei,hpiqsqp´1qk “ 0 for k ă 1.

Due to the balancing condition in §2.1 this paper will often assume that the foliation
data h takes a simplified form.
Remark 2.17. When hpE1q “ 0 , hpE2q “ 0 and hpE3q “ 1 , the key (R2)-relations,
when k “ 1 above, can be written as

E1 “ rσE3, E2sq, E2 “ rE1, E3sq and E3 “ rE2, σ
´1E1sq.

The second result from [CS18] is to do with the gluing of disks. Suppose that
pD2

1,Λnq and pD2
2,Λmq are two disks with minimal arc systems Λn “ tEkukPZ{n and

Λm “ tFkukPZ{m . Up to homotopy, the foliations of each disk can be chosen to be
tangent to boundary arcs. So if Ei P Λn and Fj P Λm then there is a gluing defined
by the quotient

pD2
1,Λnq \i,j pD

2
2,Λmq :“ pD2

1 \i,j D
2
2,Λn \i,j Λmq.

The glued disk D2
1 \i,j D

2
2 “ pD

2
1 \D2

2q{pEi „ Fjq is formed by the quotient which
identifies the two boundary arcs on each disk. This disk supports a minimal arc
system Λn \i,j Λm “ pΛnztEiuq \ pΛmztFjuq .

Ei Fj

Ei´1 “ Gn´1

Ei`1 “ G1

Fj`1 “ Gn

Fj´1 “ G0

If this minimal arc system is labelled by Λn \i,j Λm “ tGkukPZ{pn`m´2q then the
foliation data is determined by Eqn. (2.2).

The statement below summarizes Theorem 5.23 in [CS18] which shows how to glue
disks algebraically.
Theorem 2.18. (Gluing) The Hall algebra of the disk obtained by a gluing is iso-
morphic to the �-product of Hall algebras of the disks. In more detail, there are
isomorphisms

α : fpD2
1 \i,j D

2
2,Λn \i,j Λmq Õ fpD2

1,Λnq�i,j fpD2
2,Λmq : β, (2.6)
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where the algebra on the righthand side is given by the free product of the algebras
fpD2

1,Λnq and fpD2
2,Λmq subject to the relations listed below.

(G1) Gluing:
Fj,s “ Ei,s for all s P Z,

(G3) Far-commutativity:
rEk,s, F`,ts1 “ 0 for all pk, `q R Int and s, t P Z,

where Int “ tpi`1, j´1q, pi, j´1q, pi, j`1q, pi´1, jq, pi´1, j`1q, pi`1, jqu.

(The set Int above is the set of pairs of boundary arcs which intersect the same
marked interval in the glued disk.)

Remark 2.19. The theorem produces a natural presentation for the algebra asso-
ciated to a decomposition of a disk fpD2, Aq into a family of disks which have been
glued together. This implies that the inclusion Λn Ă A induces an isomorphism of
algebras

fpD2,Λnq
„
ÝÑ fpD2, Aq.

So the presentation fpD2,Λnq in [CS18, §5.2.1] is implied by Thm. 2.18 and the
presentation for pD2,Λ3q in Cor. 2.16.

It is interesting to ask whether the gluing theorem above extends to surfaces which
are more general than a disk. In the next section, we recall the naive gluing conjec-
ture of [CS18] which suggests circumstances in which this construction produces the
correct result.

3. The Naive Gluing conjecture

Suppose that pS,Mq is a graded marked surface with an arc system A such that the
inclusions of disks pDi,Λmiq ãÑ pS,Aq in an arc decomposition SzA “ \ipDi,Λmiq

determine monomorphisms fpDi,Λmiq ãÑ fpS,Aq . Then it was conjectured in [CS18,
§5.5] that the gluing relations in Theorem 2.18 yield a presentation for the composi-
tion subalgebra fpS,Aq . This is the Naive Conjecture 3.4.

In this section this conjecture is reviewed and shown to satisfy several naturality
properties with respect to the topology of surfaces. Thm. 3.5 shows that the naive
conjecture commutes with certain Pachner moves between arc systems and Prop. 3.6
shows that the naive conjecture commutes with the embedding theorem.
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3.1. The conjecture. This section is organized as follows. First Def. 3.1 recalls the
extension of the gluing construction in Thm. 2.18 to all surfaces. Thm. 3.3 recalls
the comparison map γA associated to an arc system A . The Naive Conjecture 3.4
states that the map γA is an isomorphism when the marked surface pS,Mq with arc
system A has enough marked intervals as in Def. 3.2.

Definition 3.1. Suppose that pS,Mq is a graded marked surface and A is a full arc
system. By definition, the internal arcs of A cut the surface into a collection of disks

pS,Aq “ pD2
1,Λm1q \i1,j1 pD

2
2,Λm2q \i2,j2 ¨ ¨ ¨ \i`´1,j`´1 pD

2
` ,Λm`q.

Since the surface pS,Aq can be reassembled by gluing the ` disks together, iden-
tifying the arc ik in Λmk with the arc jk in Λmk`1 , the gluing theorem suggests the
following definition of the naive algebra npS,Aq

npS,Aq :“ fpD2,Λm1q�i1,j1 fpD2
2,Λm2q�i2,j2 ¨ ¨ ¨�i`´1,j`´1 fpD2

` ,Λm`q. (3.1)
Roughly speaking, npS,Aq is the free product of the disk algebras subject to the (G1)
and (G3) relations from Thm. 2.18. More precisely, Eqn. (3.1) is to be interpreted
as a quotient of the free product of the disk algebras fpD2

k,Λmkq by two relations

(G1) If two arcs E P Λmk and F P Λmk1
contained in distinct disks are identi-

fied by the gluing then they are identified in the naive algebra npS,Aq .
E “ F

(G3) Suppose that E P Λmk and F P Λmk1
are contained in distinct disks.

Then if the end points of E and F are not contained in some marked interval
of pS,Mq then they are required to commute in the naive algebra npS,Aq .

rE,F s1 “ 0

All relations are required to be closed under the action of suspension: if R P I is an
element in the ideal I generated by the relations above then σnR P I for all n P Z .

The condition that pS,Mq has enough marked intervals is the key premise of the
naive conjecture below.

Definition 3.2. The marked surface and full arc system pS,M,Aq above is said
to have enough marked intervals when SzA “ \Nk“1pD

2
k,Mkq and, for each k , the

inclusion ιk : pD2
k,Mkq Ñ pS,Mq is injective on connected components.

pιkq˚ : π0pMkq Ñ π0pMq is injective (3.2)

When this criteria is satisfied, there is a comparison map γA from the naive algebra
to the composition subalgebra which is determined by mapping the arcs in each disk
a P Λmi to their representatives a P A . In [CS18, Thm. 5.33] it is shown that γA
exists and is surjective.
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Theorem 3.3. Suppose that pS,Mq is a graded marked surface with a full arc system
A. If pS,M,Aq has enough marked intervals then there is a surjective map

γA : npS,Aq� fpS,Aq where γApaq :“ a for all a P A.

The following naive gluing conjecture [CS18, Conj. 5.34] is a refinement of the
theorem above.

Conjecture 3.4. If pS,M,Aq is a graded marked surface with enough marked inter-
vals then the comparison map γA is an isomorphism.

In §4, Thm. 4.15 shows that this conjecture holds for annuli Km,n when m,n ě 2 .

3.2. Naturality and embedding properties. The remainder of this section con-
tains a few structural statements which support the conjecture and are useful for
proving relations in the naive algebra. The first goal is to show that if γA is an
isomorphism for some arc system A then γA1 exists and is also an isomorphism for
any other arc system A1 which has enough marked intervals and is related to A by
a Pachner move. This is accomplished by studying how Def. 3.1 transforms under
Pachner moves. After this Prop. 3.6 shows that the embedding maps of Thm. 2.15
commute with the comparison maps of Thm. 3.3.

The theorem below shows that the naive algebras which differ by some Pachner
moves are naturally isomorphic and that this isomorphism commutes with the com-
parison maps γ .

Theorem 3.5. Suppose that pS,Mq is a marked surface, A and A1 are two full arc
systems such that A1 “ Aztru for some internal arc r P A and both pS,M,Aq and
pS,M,A1q have enough marked intervals. Then there is an isomorphism

npS,Aq – npS,A1q
which makes the diagram below commute.

npS,Aq npS,A1q„

fpS,Aq fpS,A1q„

γA γA1

Proof. First some notation. Since the arc systems A and A1 differ by a single arc
r P A , there is a unique disk pDr,Λmrq in the decomposition SzA1 “ \Ni“1pDi,Λmiq

containing the arc r , so that
SzA “ ppDr1 ,Λr1q \r,r pDr2 ,Λr2qq \i‰r pDi,Λmiq.

14



For the bottom row of the commutative diagram, the inclusion A1 Ă A determines
a monomorphism b : fpS,A1q Ñ fpS,Aq by Thm. 2.15. This map is uniquely
determined by equivariance under suspension and the assignments,

bpxq :“ x for all x P A1 (3.3)
on generating arcs. Now by assumption, the disk pDr,Λmrq containing r as an inter-
nal arc satisfies the embedding criteria of Thm. 2.15. So there are monomorphisms

fpDr,Λmrq ãÑ fpS,A1q b
ÝÑ fpS,Aq.

The Gluing Theorem 2.18 implies that any internal arc r in Dr can be expressed in
terms of suspensions of the boundary arcs Λr , r “ R P fpDr,Λmrq , see Rmk. 2.19.
So the map b is also onto because bpRq “ r . Therefore, b is an isomorphism.

The rest of the theorem is an algebraic version of the geometric argument above.
There are mutually inverse isomorphisms

α : npS,Aq Õ npS,A1q : β (3.4)
which commute with the maps γA and γA1 as shown above.

For a map β : npS,A1q Ñ npS,Aq to commute with γA and γA1 it must be defined
on generators by the same assignments as Eqn. (3.3).

βpxq :“ x for all x P A1. (3.5)
In the same way, the map α : npS,Aq Ñ npS,A1q is determined by the assignments
that the inverse a : fpS,Aq Ñ fpS,A1q of the map b makes to generators. (This
follows from the fact that any M´1 boundary arcs generate the Fukaya-Hall algebra
of the disk with M boundary arcs.)

The rest of the proof shows that the assignments of β and α on generators above
determine isomorphisms between naive algebras in Eqn. (3.4).

When the number N of disks in the decomposition of S by A1 is one, it suf-
fices to observe that this statement reduces to the gluing theorem 2.18 because by
construction npS,A1q “ fpDr, Amrq and npS,Aq “ fpDr1 ,Λr1q�r,r fpDr2 ,Λr2q .

When there is more than one disk, the isomorphism from the gluing theorem is
shown to extend along the construction of the naive algebras. In each case, npS,Aq
and npS,A1q is a quotient of a free product of either side of the gluing isomorphism
with disk algebras subject to the gluing relations from Def. 3.1. Assembling these
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quotients of free products gives the diagram below.

npS,Aq

¨ ¨ ¨ ˚ fpDr´1,Λmr´1q
˘

˚
`

fpDr,Λrq
˘

˚
`

fpDr`1,Λmr`1q ˚ ¨ ¨ ¨

¨ ¨ ¨ ˚ fpDr´1,Λmr´1q
˘

˚
`

fpDr1 ,Λr1q�r,r fpDr2 ,Λr2q
˘

˚
`

fpDr`1,Λmr`1q ˚ ¨ ¨ ¨

npS,A1q

π

ρ

β̃

α̃

α

β

α1

β1

In this diagram, there are maps α̃ and β̃ which extend the assignments made by the
gluing theorem in Eqn. (3.5) by identity homomorphisms on the other components
in each of the two free products. By construction, α̃β̃ “ 1 and β̃α̃ “ 1 . The maps
π and ρ are quotient maps, set α1 :“ ρα̃ and β1 :“ πβ̃ .

The maps α1 and β1 lift along π and ρ to maps α an β because they respect the
(G1) and (G3) relations which determine the quotients. In more detail, they respect
the (G1) relations because these relations state that two arcs in two disks are set to
be equal when they are glued and the collection of such arcs is identical for the arc
systems A1 and Aztru . The maps α1 and β1 respect the (G3) relations for the same
reason; they are parameterized in the same way by the same arcs. It follows that
there are unique maps α and β such that απ “ α1 and βρ “ β1

Finally, these lifts are mutually inverse isomorphisms because απ “ α1 implies
that βαπ “ βα1 . So βα is the unique lift of βα1 along π . Now using the equations
above, pβαqπ “ βα1 “ βρα̃ “ β1α̃ “ πβ̃α̃ “ π1 “ 1π , so that βαπ “ βα1 “ 1π . In
particular, pβαqπ “ 1π , so uniqueness of lifts implies that βα “ 1 . By symmetry,
αβ “ 1 . �

The proposition below shows that the naive conjecture is functorial with respect
to the embedding theorem 2.15.

Proposition 3.6. Suppose that i : pS 1,M 1, A1q ãÑ pS,M,Aq is an inclusion of marked
surfaces, each with enough marked intervals and π0pi|M 1q is injective. Then there is
an algebra homomorphism i˚ making the diagram below commute.

npS 1, A1q npS,Aq
i˚

fpS 1, A1q fpS,Aq
j˚

γA1 γA
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Here j˚ is the embedding from Thm. 2.15 and the maps γA and γA1 are comparison
maps.

Proof. The map i˚ : npS 1, A1q Ñ npS,Aq is obtained by writing npS,Aq as a quotient
r

npS 1, A1q p
ÝÑ npS 1, A1q ˚ fpD2

1,Λm1q ˚ ¨ ¨ ¨ ˚ fpD2
n,Λmnq

r
ÝÑ npS,Aq

where tpD2
i ,Λmiqu

n
i“1 are the disks in SzA which are not contained in S 1zA1 . So

i˚ :“ rp . The diagram commutes because all of the maps in the commutative diagram
act by identity on generating arcs. �

4. The Hall algebras of naive annuli

In this section the naive conjecture 3.4 is proven for the annuli Km,n with m,n ě 2
marked intervals on each boundary component. Section 4.1 introduces arc systems
Λ̄m,n and Λm,n for each annulus Km,n . The arc system Λm,n is fully formal in the
sense of Def. 2.1 and the arc system Λ̄m,n is full and has enough marked intervals in
the sense of Def. 3.2. In §4.2 the presentation for the algebra npKm,n, Λ̄m,nq predicted
by the naive conjecture is written out in complete detail. The next two sections
constitute the technical heart of the paper. Section 4.3 constructs an isomorphism
between the composition subalgebra fpKm,n,Λm,nq and the composition subalgebra
associated to a quiver Vm,n . Section 4.5 uses this isomorphism, in conjunction with
Prop. 3.6 to show that the comparison map γΛ̄m,n is an isomorphism, proving the
naive conjecture.

4.1. Arc systems for annuli. An annulus S1 ˆ r0, 1s with m boundary arcs
tE1, . . . , Emu on one boundary component and n boundary arcs tF1, . . . , Fnu on
the other is denoted by Km,n .
Km,n :“ pS1

ˆr0, 1s,Mq where M :“ pS1
ˆt0, 1uqzptE1, . . . , Emu\tF1, . . . , Fnuq

We require m,n ě 1 so that Km,n is finitary, see [CS18, Prop. 4.10]. The labels on
the arcs tEiuiPZ{m and tFiuiPZ{n are cyclically ordered according to the orientation of
the surface; so that Ei`1 follows Ei and Fj`1 follows Fj in the cyclic order induced
by the orientation along the boundary. (This implies HompEi, Ei`1q “ k .)

There is a standard arc decomposition Λm,n :“ tS, T u \ tP1, . . . , Pm´1u \

tQ1, . . . , Qn´1u consisting of arcs which cut the annulus Km,n into disks. This arc
system can be completed to a full arc system

Λ̄ :“ Λ\ tE1, . . . , Emu \ tF1, . . . , Fnu (4.1)
by adding all of the missing boundary arcs to the standard arc system. For notational
reasons, it will be convenient to set Pm :“ T , Qn :“ T , Q0 :“ S and Qn :“ S . See
the figure below.
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S

S

T T

P1 P2F2 F1

Q1 E1 E2 E3

Figure 1. The annulus K3,2 and the arc system Λ̄3,2 .

Notation 4.1. Many of the objects in this section are parameterized by fixed sub-
scripts m,n . These subscripts will be written often enough to avoid confusion, but
not so often as to avoid nuisance.

Definition 4.2. Each triple of arcs on the righthand side below uniquely determines
the disk in Km,nzΛ̄ which will be labelled by the lefthand side.

Cj :“ pD2, tPj, Pj`1, Ej`1uq for 0 ď j ă m

Di :“ pD2, tQi, Qi`1, Fi`1uq for 0 ď i ă n

Definition 4.3. If Γm,n is the ribbon graph dual to Km,n then the standard foliation
data λ : Γ Ñ Z is determined by setting λphq “ 1 for each half-edge dual to a
boundary edge and λphq “ 0 otherwise. This foliation data is balanced and so it is
constant along the core curve of the annulus.

4.2. Naive relations for the composition subalgebra fpK, Λ̄q. In this section
presentations for the algebras npKm,n, Λ̄q introduced by Def. 3.1 are fully articulated.

Proposition 4.4. The naive algebra npKm,n, Λ̄q of the annulus Km,n is the Qpqq-
algebra generated by suspensions of arcs ZΛ̄ in the full standard arc system

Λ̄ “ tS, T u \ tP1, . . . , Pm´1u \ tQ1, . . . , Qn´1u \ tE1, . . . , Emu \ tF1, . . . , Fnu,

and Q0 :“ S, Qn :“ T, P0 :“ S, Pm :“ T

see Eqn. (4.1). These generators are subject to the relations listed below.

(1) The three boundary arcs on each of the disks, Cj and Di from Def. 4.2, in
the decomposition Km,nzΛ̄ satisfy relations (R1) and (R2) from Cor. 2.16.

(2) Commutativity relations hold between distant arcs. In particular, for each
` P Z, there are
(a) S and T arc relations

rS,Ek,`s1 “ 0 for 1 ă k ă m and rT,Ek,`s1 “ 0 for 1 ă k ă m (4.2)
rS, Fk,`s1 “ 0 for 1 ă k ă n and rT, Fk,`s1 “ 0 for 1 ă k ă n
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(b) P and Q arc relations
rPi, Ek,`s1 “ 0 for 1 ď i ă m and k ‰ i, i` 1
rPi, Fk,`s1 “ 0 for 1 ď i ă m and k ‰ 1, n
rQi, Fk,`s1 “ 0 for 1 ď i ă n and k ‰ i, i` 1
rQi, Ek,`s1 “ 0 for 1 ď i ă n and k ‰ 1,m
rPi, Qk,`s1 “ 0 for 1 ď i ă m and 1 ď k ă n

(c) Boundary arc relations
rEi, Ej,`s1 “ 0 for 1 ď i ď m and j ‰ i, i` 1 P Z{m (4.3)
rFi, Fj,`s1 “ 0 for 1 ď i ď n and j ‰ i, i` 1 P Z{n
rEi, Fj,`s1 “ 0 for 1 ď i ď m and 1 ď j ď n (4.4)

where Ek,` :“ σ`Ek , Fk,` :“ σ`Fk and relations are taken to be closed
under the action of suspension, see Def. 3.1

The proposition is proven by a careful study of Fig. 1 and knowledge of Def. 3.1.

4.3. The parameterization Φ. The key result in this section is Thm. 4.11 which
shows that the generator G associated to the arc system Λm,n determines an iso-
morphism between the composition subalgebra fpKm,n, Λ̄m,nq and the composition
subalgebra DCpV op

m,nq of the quiver V op
m,n introduced below. For the most part, this

is accomplished by showing that the isomorphism between derived Hall algebras in-
duced by the equivalence between DπFpK,Λq and Dbpmod-EndpGqq commutes with
inclusions of associated composition subalgebras. The important stuff can be found
in Lem. 4.9. The rest follows from the identifications EndpGq – mod-kV and
fpK,Λq – fpK, Λ̄q which can be found in Eqn. (4.8) and the proof of Thm. 4.11
respectively.

The complement Km,nzΛm,n of the standard arc system is a disjoint union of disks
Cj and Di from Def. 4.2. The object Gm,n :“ ‘LPΛm,nL generates the category
DπFpK,Λq (see [HKK17, §3.4]). Since Λ̄ is a full arc system and Λ is fully formal,
the inclusion Λ Ă Λ̄ induces an equivalence

ϕ : DπFpKm,n,Λq „ÝÑ DπFpKm,n, Λ̄q. (4.5)
Since each of the disks in the collection Km,nzΛm,n contain exactly one boundary arc,
an Ei or an Fj , which is not in the arc system Λ , the endomorphism algebra

kVm,n :“ End˚DπFpK,ΛqpGm,nq (4.6)
is formal; this means that the higher A8 -operations vanish, µn “ 0 for n ě 3 , see
[HKK17, §3.4]. By Def. 2.7, kVm,n is the path algebra [Sch14, Def. 4.5] of the quiver
Vm,n pictured below.
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P0 “ S “ Q0

P1Vm,n : P2 ¨ ¨ ¨ Pm´1

Q1 Q2 ¨ ¨ ¨ Qn´1

Pm “ T “ Qn

Since Gm,n generates the category DπFpK,Λq , there is an equivalence of triangu-
lated categories

φ : DπFpK,Λq „ÝÑ Db
pmod-kV op

q given by L ÞÑ Hom˚
pG,Lq (4.7)

from the split-closed Fukaya category Def. 2.9 to the bounded derived category of
finitely generated right kV op

m,n -modules [LH03, §7.6]. Note that such a functor induces
an isomorphism φ˚ of associated derived Hall algebras, see [XX08, Toë06] or [CS18,
Thm. 2.6].

The next proposition records what this functor does to arcs in the standard arc
system.

Proposition 4.5. The functor φ associates to each arc L P Λ the right kV op -module
φpLq “ 1LkV op consisting of oriented paths in the quiver V op which begin at the vertex
L.

Proof. For each arc L P Λ , the value of φ can be computed since
φpLq “ HomDπFpK,ΛqpG,Lq

“ HomDπFpK,Λqp‘L1PΛL
1, Lq

“ ‘L1PΛHomDπFpK,ΛqpL
1, Lq

“ ‘L1PΛHomFpK,ΛqpL
1, Lq.

So φpLq has a basis given by the paths β : L1 Ñ L in V , or equivalently, paths
β : L Ñ L1 in V op . The module structure is determined by composition, a path
α : X Ñ Y in V op acts on a path β in V op by

β ¨ α “

"

βα if Y “ L1

0 if Y ‰ L1.

So as a right module over the path algebra kV op , ΦpLq is the right projective module
1LkV op where 1L is the idempotent associated to the vertex L . �
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There is an equivalence of abelian categories ρ : mod-kV op „
ÝÑ RepkpV

opq , see
[Sch14, Thm. 5.4]. This map induces an equivalence

ρ˚ : Db
pmod-kV op

q
„
ÝÑ Db

pRepkpV
op
qq (4.8)

of associated derived categories. In the proposition above, ρ˚ takes the right module
1LkV to a functor V op Ñ V ectk from the opposite of the quiver V to the cate-
gory of vector spaces. The value of this functor at a vertex K in the quiver V
is HomV oppL,Kq . For notational reasons, this paper will not distinguish between
1LkV op and ρ˚p1LkV opq .

Composing the functors in Eqns. (4.7) and (4.8) produces the main object of our
study, Φ :“ ρ˚ ˝ φ , which is an equivalence of categories

Φ : DπFpKm,nq
„
ÝÑ Db

pRepkpV
op
m,nqq. (4.9)

The example below is included to illustrate which quiver modules are associated
to arcs in Λ by the functor Φ .

Example 4.6. Suppose that the surface is K2,2 . Then the equivalence Φ :
DπFpK2,2,Λq „

ÝÑ DbpRepkpV
op

2,2qq associates to each arc L P Λ “ tS, T,Q1, P1u , a
functor ΦpLq : V op Ñ V ectk in RepkpV

opq . By Prop. 4.5 above, the value of ΦpLq
at a vertex K is the k -vector space HomV oppL,Kq . This is the set of k -linear com-
binations of oriented paths in the quiver V op

2,2 which begin at the vertex L and end
at the vertex K . For L P Λ , these modules are pictured below.

k

0ΦpSq :

0

0 k

kΦpP1q :

0

0 k

0ΦpQ1q :

k

0 k2

kΦpT q :

k

k

The lemma below is standard triangulated category stuff (for a proof see [Nee01,
Prop. 1.1.20]).

Lemma 4.7. Suppose the diagram below is a commutative square

A B
α

C D
β

ψ ϕ

in a triangulated category T . If the vertical maps ψ and ϕ are isomorphisms then
there is an isomorphism Cpαq – Cpβq between the cones of the horizontal maps.

Definition 4.8. The special arc N is pictured as a dashed line below. This arc is
contained in the boundary of two embedded disks D and D1 .
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NN
D

D1

EmQn´1

Fn Pm´1

Functoriality implies that the equivalence Φ from Eqn. (4.9) induces an isomor-
phism

Φ˚ : DHapDπFpKm,nqq Ñ DHapDb
pRepkpV

op
m,nqqq.

Thm. 4.11 will use Lem. 4.9 below to show that Φ˚ induces an isomorphism between
composition subalgebras.

The lemma below computes the value of Φ˚ on generating arcs L P Λ . Recall that
zL is the 1-dimensional simple module associated to the vertex L P V op .

Lemma 4.9. (1) The isomorphism Φ˚ maps the following arcs onto the 1-
dimensional simple modules of the quiver V op

m,n

Φ˚pSq “ zS

Φ˚pEiq “ zPi for 1 ď i ă m (4.10)
Φ˚pFjq “ zQj for 1 ď j ă n (4.11)
Φ˚pNq “ zT (4.12)

(2) The value of Φ˚ on any other arc X P Λ̄ has an expression in terms of simple
modules

Φ˚pPiq “ rΦ˚pPi´1q, zPisq for 0 ă i ă m (4.13)
Φ˚pQjq “ rΦ˚pQj´1q, zQj sq for 0 ă j ă n

Φ˚pEmq “ rΦ˚pQn´1q, zT sq (4.14)
Φ˚pFnq “ rΦ˚pPm´1q, zT sq

Φ˚pT q “ rΦ˚pPm´1q, rΦ˚pQn´1q, zT sqsq (4.15)
“ rΦ˚pQn´1q, rΦ˚pPn´1q, zT sqsq.

Proof. The proof has four parts. The first three parts establish the equations in the
list (1) above. The first part concerns the simple module zS at the vertex S . The
second part shows that the simple modules at vertices Pi and Qj correspond to the
arcs Ei and Fj respectively. Since the argument in the second part is repeated several
times, more details are given there. The third case identifies the simple module at
the vertex T as the image of the arc N from Def. 4.8. The last part uses the
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distinguished triangles from earlier computations to establish the equations in list
(2) above.

Part 1. The arc S corresponds to the simple module zS because the projective
ΦpSq “ 1SkV op is 1-dimensional, see Ex. 4.6 above.
Part 2. In the category RepkpV

opq , there is a short exact sequence
0 Ñ 1Pi´1kV

op
Ñ 1PikV op

Ñ zPi Ñ 0 (4.16)
for 1 ď i ă m , see [Sch14, Rmk. 1.3]. These short exact sequences determine
distinguished triangles of the form

¨ ¨ ¨ Ñ 1Pi´1kV
op
Ñ 1PikV op

Ñ zPi Ñ ¨ ¨ ¨ (4.17)
in the derived category DbpRepkpV

opqq . By Prop. 4.5 above, there are isomorphisms
1PikV op „

ÝÑ ΦpPiq . Under this identification, the map 1Pi´1kV
op Ñ 1PikV op in Eqn.

(4.17) corresponds to the map Φppi´1q where pi´1 : Pi´1 Ñ Pi is the boundary arc
from Pi´1 to Pi in the annulus Km,n . So the diagram below commutes.

1Pi´1kV
op 1PikV op zPi

ΦpPi´1q ΦpPiq CpΦppi´1qq

a

By Lem. 4.7, there is an isomorphism a : zPi
„
ÝÑ CpΦppi´1qq . Since Φ is a map of

triangulated categories, there is an isomorphism b : CpΦppi´1qq
„
ÝÑ ΦpCppi´1qq .

On the other hand, the disk Ci´1 Ă K determined by the arcs tPi´1, Pi, Eiu
satisfies the embedding criteria of Thm. 2.15, so the associated functor DπFpCi´1q ãÑ

DπFpKm,nq is full and faithful. Since it maps the distinguished triangle

¨ ¨ ¨ Ñ Ei,1 Ñ Pi´1,0
pi´1
ÝÝÑ Pi,0 Ñ Ei,0 Ñ Pi´1,´1 Ñ ¨ ¨ ¨

to the distinguished triangle associated to the boundary path pi´1 , Lem. 4.7 shows
that there is an isomorphism c : Cppi´1q

„
ÝÑ Ei in DπFpK, Λ̄q . Combining these

isomorphisms shows that
zPi –a CpΦppi´1qq –b ΦpCppi´1qq –Φpcq ΦpEiq.

So Φ˚pEiq “ zPi for 1 ď i ă m . The proof of Eqn. (4.11) follows from the same
argument because the computation is symmetric for the arcs Pi and Qj .

Part 3. The proof that Φ˚pNq “ zT requires two short exact sequences. Each
short exact sequence gives a relation by an argument analogous to the one in Part 2.
The two relations combine at the end.
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First there is a short exact sequence
0 Ñ 1Pm´1kV

op
Ñ 1TkV op

Ñ X Ñ 0 (4.18)
where X :“ 1TkV op{1Pm´1kV

op is the module V op Ñ V ectk in the category
RepkpV

opq described by the diagram below.

k

0 0 ¨ ¨ ¨ 0X :

k k ¨ ¨ ¨ k

k

Since the inclusion 1Pm´1kV
op Ñ 1TkV op agrees with Φppm´1q under the identifica-

tions in Prop. 4.5, the isomorphism ΦpEmq – X follows from Lem. 4.7.
Secondly, the boundary arc τ : Qn´1 Ñ Em determines a short exact sequence

0 Ñ 1Qn´1kV
Φpτq
ÝÝÑ X Ñ zT Ñ 0 (4.19)

in the category RepkpV opq . So CpΦpτqq – zT . However, since the disk D in Def. 4.8
determined by the arcs tN,Em, Qn´1u satisfies the embedding criteria of Thm. 2.15,
Lem. 4.7 implies that Cpτq – N. Combining isomorphisms completes proof of Eqn.
(4.12),

ΦpNq – ΦpCpτqq – CpΦpτqq – zT .

Part 4. This section contains the proofs of Eqns. (4.13), (4.14) and (4.15). All of
the other equations in the list (2) are computed in an analogous way by symmetry.

For Eqn. (4.13), the identification ΦpPiq – 1PiV follows from Prop. 4.5. This
allows us to write the short exact sequences (4.16) as 0 Ñ ΦpPi´1q Ñ ΦpPiq Ñ zPi Ñ
0 so that Rmk. 2.17 gives the relation Φ˚pPiq “ rΦ˚pPi´1q, zPisq for 0 ă i ă m .

To see Eqn. (4.14), combining the short exact sequence (4.19) and the isomorphism
ΦpEmq – X from Part 2 above gives the short exact sequence 0 Ñ ΦpQn´1q Ñ

ΦpEmq Ñ zT Ñ 0 so Rmk. 2.17 implies Φ˚pEmq “ rΦ˚pQn´1q, zT sq .
For Eqn. (4.15), the short exact sequence (4.18) and Rmk. 2.17 give the relation

T “ rPm´1, Emsq from which we obtain Φ˚pT q “ rΦ˚pPm´1q,Φ˚pEmqsq . �

Before applying the lemma above to Thm. 4.11 below, recall the definition of the
composition subalgebra of a quiver Q .

Definition 4.10. The composition subalgebra DCpQq of the Hall algebra
DCpQq Ă DHapDb

pRepkpQqqq

is the subalgebra generated by suspensions of the 1-dimensional simple modules
zi,n :“ zirns for each vertex i and n P Z .
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The theorem below is the principal application of Lem. 4.9.

Theorem 4.11. The derived equivalence Φ : DπFpK,Λq „
ÝÑ DbpReppV opqq induces

an isomorphism
Φ˚ : fpK, Λ̄q „ÝÑ DCpV op

q

of composition subalgebras of derived Hall algeras.

Proof. The proof involves two separate tasks, each of which follow from arguments
of the same type. The functoriality of the derived Hall algebra is used to construct
an isomorphism and then shown to induce a map between composition subalgebras
by looking at special relations in either case.

The first step is to construct the isomorphism fpK,Λq – fpK, Λ̄q . The re-
lation Λ Ă Λ̄ determines a functor FpK,Λq Ñ FpK, Λ̄q which gives a functor
DπFpK,Λq „

ÝÑ DπFpK, Λ̄q . The latter is an equivalence, see Rmk. 2.2. Restrict-
ing the map induced by functoriality of the derived Hall construction, produces a
monomorphism fpK,Λq ãÑ DHapDπFpK, Λ̄qq which factors through fpK, Λ̄q by def-
inition. The resulting map fpK,Λq Ñ fpK, Λ̄q is necessarily an injective homomor-
phism, it is onto because each boundary arc Ei is contained the disk Ci´1 determined
by the arcs tPi´1, Pi, Eiu . Since Ci´1 Ă K satisfies the embedding criteria in Thm.
2.15, the relation Ei “ rPi, σ

´1Pi´1sq must hold in fpK, Λ̄q . The same argument
applies to the generators Fj .

Now functoriality of the derived Hall construction implies that Φ induces an
isomorphism Φ˚ : DHapDπFpK,Λqq „

ÝÑ DHapDbpReppV opqqq . As an isomorphism,
Φ˚|fpK,Λ̄q remains injective when restricted to the composition subalgebra fpK, Λ̄q Ă
DHapDπFpK,Λqq . On the other hand, the list (1) in Lem. 4.9 implies that

tzS, zPi , zQj , zT : 1 ď i ă n, 1 ď j ă mu Ă imΦ˚|fpK,Λ̄q
and since Φ˚ commutes with suspensions, it follows that the image of Φ˚|fpK,Λ̄q
contains the generators of the composition subalgebra DCpV opq Ă imΦ˚|fpK,Λ̄q Ă
DHapDbpReppV opqqq .

On the other hand, the list (2) in Lem. 4.9 shows that the image of any other arc
generating fpK, Λ̄q is contained in the subalgebra DCpV opq generated by the simple
modules zi,n for i P Λ̄ . So Φ˚pΛ̄q Ă DCpV opq .

It follows that imΦ˚|fpK,Λ̄q “ DCpV opq , so that an isomorphism between com-
position subalgebras is obtained by restriction, Φ˚ :“ Φ˚|fpK,Λ̄q : fpK, Λ̄q „

ÝÑ

DCpV opq . �

Remark 4.12. Although an equivalence Φ˚ exists for the non-naive annuli, Km,n

with n “ 1 or m “ 1 , the equivalence does not descend to a map between composition
subalgebras as above.
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4.4. Relations for the composition subalgebra DCpV q. Thm 4.11 shows that
the composition subalgebra fpK, Λ̄q is isomorphic to the composition subalgebra
DCpV opq . The purpose of this section is to introduce relations for the latter algebra.

Prop. 4.13 below is due to Hernandez-Leclerc [HL15, Prop. 8.1], it relies on Toën
[Toë06, Prop. 7.1] which in turn extends Ringel [Rin90]. These relations agree with
those in [CS18, §2.2].

Recall that zL is the 1-dimensional simple module associated to the vertex L P V op .

Proposition 4.13. The composition subalgebra DCpQq of an acyclic quiver is gen-
erated by the symbols zi,n parameterized by vertices i P I and n P Z subject to the
relations below.

(K0) for n P Z, if i ¨ j “ 0
rzi,n, zj,n`ks1 “ 0

(K1) for n P Z, if i ¨ j “ ´1
rzi,n, rzi,n, zj,nsq¯1sq˘1 “ 0

rzi,n, zj,n`ksqp´1qk “ 0 for k ě 1
(K2) for n P Z, if i ¨ j “ 2

rzi,n, zj,n`ksqp´1qki¨j “ δk,1δi,j
q´1

q2 ´ 1 for k ě 1

where the pairing i ¨ j :“ xzi,0, zj,0y ` xzj,0, zi,0y is as in §2.4.

The remainder of this section applies this proposition to the quivers Vm,n from §4.3.
By the proposition, the graph Vm,n together with the Euler form on the Grothendieck
group of its representation category suffice to determine a presentation for DCpV opq .

The Grothendieck group K0pRepkpV
op
m,nqq is given by the lattice spanned by the

simple modules pi for 0 ď i ď m and qj for 0 ď j ď n associated to the vertices of
V op
m,n after imposing the relations p0 “ q0 and pm “ qn .
Recall that the Euler form in Eqn. (2.5) of a quiver such as V op

m,n can be computed
from the graph [Sch14, Prop. 8.4]. If m ą 1 or n ą 1 then the Euler form is
determined by the equations

pi ¨ pi “ 2 for 0 ď i ď m and qi ¨ qi “ 2 for 0 ď i ď n,

pi ¨ pi`1 “ ´1 for 0 ď i ă m and qi ¨ qi`1 “ ´1 for 0 ď i ă n.

All other vectors pair to zero. These assignments in conjunction with Prop. 4.13
above give presentations for the composition subalgebras DCpV opq .
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4.5. Proof of the naive conjecture. In this section, Thm. 4.15 shows that the
comparison map γΛ̄ : npKm,n, Λ̄q Ñ fpKm,n, Λ̄q is an isomorphism when m,n ě 2 .
This establishes the naive conjecture for annuli.

Before proving the theorem it is useful to check that certain relations hold in the
algebras of interest.
Lemma 4.14. When m,n ě 2, the following relations hold in both the composition
subalgebra fpKm,n, Λ̄q and the naive algebra npKm,n, Λ̄q.

(1) Disk relations from disks Cm´1 and Dn´1 determined by the arcs tEm, T, Pm´1u

and tFn, T,Qn´1u

T “ rPm´1, Emsq T “ rQn´1, Fnsq

Em “ rT, σ
´1Pm´1sq Fn “ rT, σ

´1Qn´1sq

Pm´1 “ rσEm, T sq Qn´1 “ rσFn, T sq

(2) Disk relations from disks D and D1 from Def. 4.8 determined by the arcs
tEm, Qn´1, Nu and tFn, Pm´1, Nu

Em “ rQn´1, N sq Fn “ rPm´1, N sq

N “ rEm, σ
´1Qn´1sq N “ rFn, σ

´1Pm´1sq

Qn´1 “ rσN,Emsq Pm´1 “ rσN, Fnsq

Proof. All of the relations follow from the observation that they hold in the disk
algebras of embedded disks together with Prop. 3.6.

�

When m “ 1 or n “ 1 the disk containing the unique boundary arc in Km,nzΛ̄
does not satisfy the embedding criteria of Thm. 2.15 so the annulus is not naive.
The theorem below shows that the naive conjecture 3.4 holds when m,n ě 2 .
Theorem 4.15. When m,n ě 2, the map γΛ̄ is an isomorphism.

Proof. The map γΛ̄ : npKm,n, Λ̄q � fpKm,n, Λ̄q is onto by Thm. 5.33 [CS18]. By
Thm. 4.11, there is an isomorphism Φ˚ : fpKm,n, Λ̄q „

ÝÑ DCpV opq . So there is a
diagram,

npKm,n, Λ̄q

fpKm,n, Λ̄q DCpV op
m,nq

γΛ̄

Φ˚
ψ

ϕ
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in which ψ :“ Φ˚ ˝ γΛ̄ . In order to show that γΛ̄ is injective, it suffices to construct
a homomorphism ϕ : DCpV op

m,nq Ñ npKm,n, Λ̄q which satisfies
ϕ ˝ ψ “ 1npK,Λ̄q. (4.20)

The proof consists of four steps. The first step is to define the maps ψ and ϕ on
generators. Since ψ “ Φ˚ ˝γΛ̄ by definition, the map ψ is a homomorphism. In Step
#2, ϕ is shown to be a homomorphism. In Step #3, Eqn. (4.20) is shown to hold.
Step #1. Since γΛ̄|Λ̄ “ 1 and the commutative diagram is σ -equivariant, the

homomorphism ψ “ Φ˚˝γΛ̄ agrees with Φ˚ on generating arcs Λ̄ and the assignments
below follow from list (1) of Lem. 4.9.

ψpSq “ zS ψpNq “ zT

ψpEiq “ zPi ψpFjq “ zQj

for 1 ď i ă m and 1 ď j ă n . The value of ψ on other arcs is determined by the
inductive formula in list (2) of Lem. 4.9.

ψpPiq “ rψpPi´1q, zPisq for 0 ă i ă m (4.21)
ψpQjq “ rψpQj´1q, zQj sq for 0 ă j ă n

ψpEmq “ rψpQn´1q, zT sq (4.22)
ψpFnq “ rψpPm´1q, zT sq

ψpT q “ rψpPm´1q, rψpQn´1q, zT sqsq (4.23)

Since the map ϕ must invert the choices for ψ on generating arcs, the assignments
below are prescribed.

ϕpzSq “ S ϕpzT q “ N (4.24)
ϕpzPiq “ Ei ϕpzQjq “ Fj

where 1 ď i ă m and 1 ď j ă n . (Note since N R Λ̄ , technically the definition of ϕ
uses Lem. 4.14 to express N in terms of generators in Λ̄ .)

Step #2. In order to prove that the definition of ϕ in Step #1 determines a
homomorphism

ϕ : DCpV op
q Ñ npK, Λ̄q

it suffices to show that the Eqns. (K0), (K1) and (K2) from Prop. 4.13 vanish in the
image of ϕ . To demonstrate that this is so, in each case, this proof either invokes
a far commutativity (G3)-relation from Def. 3.1 or uses Prop. 3.6 to show that the
relation holds in the Hall algebra of an embedded disk.

For Eqn. (K0): If z and w are 1-dimensional simple modules and the Euler form
is z ¨ w “ 0 then we will show that the relation

ϕrz, σkws1 “ 0 for k P Z
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holds in npK, Λ̄q . There are several cases,

(1) pi ¨ qj “ 0 for all 0 ă i ă m and 0 ă j ă n with i ‰ j . This case follows
immediately from Eqn. (4.4) because ϕrzPi , zQj ,`s1 “ rEi, Fj,`s1 “ 0.

(2) pi ¨ pj “ 0 for all 0 ď i ă m and, j ă i ´ 1 or j ą i ` 1 . If i “ 0 and
1 ă j ă m then the relation becomes ϕrzP0 , zPj ,`s1 “ rS,Ej,`s1 which follows
from Eqn. (4.2). If 0 ă i ă j ă m then ϕrzPi , zPj ,`s1 “ rEi, Ej,`s1 “ 0 by
Eqn. (4.3). Similarly, the cases 0 “ j ă i ă m and 0 ă j ă i ă m are
covered by Eqn. (4.2) and Eqn. (4.3).

Two cases remain, in both j “ m and either i “ 0 or 0 ă i ă m ´ 1 . In
the image of ϕ they are

rS, σ`N s1 “ 0 and rEi, σ
`N s1 “ 0 (4.25)

respectively. Form a new arc system Λ̄1 by removing T from Λ̄ and replacing
it with N ; Λ̄1 :“ pΛ̄ztT uq \ tNu . This Pachner move preserves the disk
embedding property because the disk pD2, tEm, Qn´1, Fn, Pm´1uq is embedded
fully faithfully in Km,n , see Def. 4.8. By Thm. 3.5 there is an isomorphism

f : npK, Λ̄q „ÝÑ npK, Λ̄1q
associated to this Pachner move. Since the arcs do not share marked intervals,
the relations Eqn. (4.25) occur as (G3) relations in npK, Λ̄1q , but f is an
isomorphism which satisfies fpSq “ S , fpEiq “ Ei and fpNq “ N .

(3) qi ¨qj “ 0 for all 0 ď i ă n and, j ă i´1 or j ą i`1 . The proof is symmetric
to that of case (2) above.

For Eqn. (K1): Suppose that ϕpzq and ϕpwq appear as consecutive boundary
arcs in a disk R ãÑ K that satisfies the embedding criteria in Prop. 3.6. Then the
relations

ϕrz, rz, wsq¯1sq˘1 “ 0 (4.26)
ϕrz, σkws

qp´1qk “ 0 for k ě 1 (4.27)

hold in npK, Λ̄q . Eqn. (4.27) agrees with the (R2)-relation in Cor. 2.16. This is
true for Eqn. (4.26) because Lem. 5.18 [CS18] shows that this relation holds for
consecutive arcs in the composition subalgebra of a disk.

The pairs tϕpzSq, ϕpzP1qu and tϕpzSq, ϕpzQ1qu are consecutive arcs in the disks
C0 and D0 respectively. For 0 ă i ď m ´ 2 and 0 ă j ď n ´ 2 , the arcs
tϕpzPiq, ϕpzPi`1qu “ tEi, Ei`1u and tϕpzQjq, ϕpzQj`1qu “ tFj, Fj`1u are consecu-
tive arcs in the disks Ci´1 \Pi`1 Ci and Dj´1 \Qj`1 Dj respectively. The arcs
tϕpzPm´1q, ϕpzT qu “ tEm´1, Nu are consecutive in the disk D from Def. 4.8. Like-
wise the arcs tϕpzQn´1q, ϕpzT qu “ tFn´1, Nu are consecutive in the disk D1 from Def.
4.8.
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For Eqn. (K2): Notice that when z and w are 1-dimensional simple modules
z ¨ w “ 2 implies that z “ w . So suppose that z is a 1-dimensional simple module
and ϕpzq is an arc in Km,n . Then since the relation

rϕpzq, σkϕpzqs1 “ 0
agrees with the (R1)-relation in Cor. 2.16, it must hold in npK, Λ̄q when ϕpzq is
the boundary arc of a disk R ãÑ K that satisfies the embedding criteria in Prop.
3.6. The disk R which implies this relation depends on the generator z . For the
generators zS , zPi and zQj , the arcs ϕpzSq “ S , ϕpzPiq “ Ei and ϕpzQjq bound the
disks C0 , Ci´1 and Dj´1 in K . Also for zT , the arc ϕpzT q “ N bounds the disk
D Ă K from Def. 4.8.

Step #3. The map ψ is a left inverse of ϕ , ϕ ˝ ψ “ 1npK,Λ̄q . It suffices to check
this equation on generators. The definitions in Step #1 and Step #2 show that the
equation holds tautologically on the generators S , Ei for 1 ď i ă m and Fj for
1 ď j ă n .

Now we show that relation holds on generators Pi using induction. The base case
follows by definition because P0 :“ S . Assuming ϕψpPiq “ Pi ,

ϕψpPi`1q “ ϕrψpPiq, zPisq (4.21)
“ rϕψpPiq, ϕpzPiqsq (Step #2)
“ rPi, ϕpzPiqsq (Induction)
“ rPi, Eisq (4.24)
“ Pi`1 (Lem. 4.14)

In summary, by symmetry
ϕψpPiq “ Pi for 0 ď i ă m and ϕψpQjq “ Qj for 0 ď j ă n. (4.28)

It remains to show that ϕψ “ 1 on the generators Em , Fn and T .
ϕψpEmq “ ϕrψpQn´1q, zT sq (4.22)

“ rϕψpQn´1q, ϕpzT qsq (Step #2)
“ rQn´1, ϕpzT qsq (4.28)
“ rQn´1, N sq (4.24)
“ Em (Lem. 4.14)
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The proof that ϕψpFnq “ Fn is symmetric. Lastly,
ϕψpT q “ ϕrψpPm´1q, rψpQn´1q, zT sqsq (4.23)

“ rϕψpPm´1q, rϕψpQn´1q, ϕpzT qsqsq (Step #2)
“ rPm´1, rQn´1, ϕpzT qsqsq (4.28)
“ rPm´1, rQn´1, N sqsq (4.24)
“ rPm´1, Emsq (Lem. 4.14)
“ T (Lem. 4.14)

�

Glossary of notation

X ¨ Y §2.4
pX, Y q §2.4
\i,j §2.6
�i,j Thm. 2.18
A §2.1
Λm Ex. 2.3
Λm,n §4.1
Λ̄m,n §4.1
balanced Def. 2.10
boundary path Def. 2.7
Ci Def. 4.2
D2 disk
Di Def. 4.2
DCpQq Prop. 4.13
DπC Def. 2.8
DπFpS,Aq Def. 2.9
DHapDq §2.4
degree Def. 2.7
double pair Def. 2.10
Ei §4.3
edge §2.4
Φ (4.9)
Fi §4.3
FpS,Aq Def. 2.7

fpD2,Λ3q Cor. 2.16
fpS,Aq Def. 2.14
foliation data Def. 2.6
full arc system §2.1
fully formal Def. 2.1
γA Thm. 3.3
Γ §2.4
Gm,n §4.3
HpSq (2.1)
Km,n §4.1
M §2.1
map of surfaces §2.1
npS,Aq Def. 3.1
Ω §2.4
Pi §4.3
Qi §4.3
σ suspension §2.1
S §2.1
S arc in Λ̄m,n

T arc in Λ̄m,n

kVm,n (4.6)
Vm,n §4.3
vertex §2.4
zX simple module 4.13

The value of q . If s :“ |Fs| then q2 “ s . This convention agrees with the paper
[CS18].
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q -Analogues of the Lie bracket. If A is a Zrqs-algebra and x, y P A then the q -
analogue of the Lie bracket rx, ysq P A is defined by the equation below.

rx, ysq :“ xy ´ qyx

This q -commutator satisfies a number of elementary algebraic identities, several of
which are listed at the end of [CS18].
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