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ON PETERSSON’S PARTITION LIMIT FORMULA

CARLOS CASTAÑO-BERNARD AND FLORIAN LUCA

Abstract. For each prime p ≡ 1 (mod 4) consider the Legendre
character χ = ( ·

p
). Let p±(n) be the number of partitions of n

into parts λ > 0 such that χ(λ) = ±1. Petersson proved a beau-
tiful limit formula for the ratio of p+(n) to p−(n) as n → ∞ ex-
pressed in terms of important invariants of the real quadratic field
K = Q(

√
p). But his proof is not illuminating and Grosswald con-

jectured a more natural proof using a Tauberian converse of the
Stolz-Cesàro theorem. In this paper we suggest an approach to
address Grosswald’s conjecture. We discuss a monotonicity con-
jecture which looks quite natural in the context of the monotonicity
theorems of Bateman-Erdős.

1. Introduction

Let K be a real quadratic field, hK its class number, and εK >
1 its fundamental unit. Let us assume that the discriminant of K
is a prime number p, so in particular p ≡ 1 (mod 4). Consider the
Nebentypus cover Xχ(p) of degree two of the modular curve X0(p)
introduced by Shimura [16, p. 174] in his work towards a theory of
“real multiplication”.1 The Fricke involution wp of Xχ(p) is defined
over K and the curve Xχ(p) corresponds to the congruence subgroup

Γχ(p) =

{(

a b
c d

)

∈ Γ0(p) : χ(a) = 1

}

,

where χ denotes the Legendre character χ = ( ·
p
) of conductor p. To

simplify the discussion here, we will assume that p > 5. Let f be
the modular unit on the curve Xχ(p) introduced by Ogg an Ligozat,
as described by Mazur [9, pp. 107–108]. In this paper we define a
certain normalization u of f and use its Fourier expansion and that
of the composite ŭ = u ◦ wp to generalize a limit formula due Schur.
(See Proposition 2.) We use this limit formula together with a mono-
tonicity theorem of Bateman and Erdős [2], a consequence of the work
of Meinardus [10] (described in the appendix), and a ratio Tauberian
theorem due to Sato [14], to prove the following.

1Shimura determines division points of certain one-dimensional factors of the
Jacobian Jχ(p) of Xχ(p) that generate abelian extensions of K. These one-
dimensional factors are cut out by the action of the Hecke algebra and the involution
wp over K on Jχ(p).
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Theorem 1. With the above assumptions, for each n ∈ Z≥0 let p±(n)
denote the number of partitions

n = λ1 + · · ·+ λr

with parts λi ∈ Z>0 such that λ1 ≤ λ2 ≤ · · · ≤ λr and χ(λi) = ±1, for
i = 1, 2, . . . , r. Then

lim
ν→∞

∑ν
n=0 p+(n)

∑ν
n=0 p−(n)

= εhK

K .

Of course, the above theorem follows directly from the classical Stolz-
Cesàro theorem [12, p. 14] applied to a celebrated partition limit for-
mula due to Petersson [11],

(1) lim
n→∞

p+(n)

p−(n)
= εhK

K .

But our proof does not use Eq. (1). In fact, Petersson’s partition limit
formula follows directly from Theorem 1 and a converse of the Stolz-
Cesàro theorem2 due to Păltănea [13], provided we assume a special
case of Conjecture 1, discussed in Section 4. This is a monotonicity
conjecture which looks quite natural in the context of the monotonicity
theorems of Bateman and Erdős [2].

Petersson obtained Eq. (1) by first establishing the asymptotic ex-
pression for p+(n) and for p−(n) separately, after a rather laborious
calculation. So given the simplicity of Eq. (1), it seems desirable to
have a simpler proof. In fact, Grosswald [5] conjectured that a mono-
tonicity theorem of Bateman and Erdős [2] together with a suitable
Tauberian converse to the Stolz-Cesàro theorem, would furnish a nicer
proof of Eq. (1). It is hoped that our approach can shed new light
on Grosswald’s conjecture. Moreover, the key role played here by the
modular unit u on Xχ(p) and the Fricke involution wp of Xχ(p) may
help pave the way towards an explanation why hK and εK appear in
Eq. (1), a question which was raised by Petersson [11].

The rest of the paper is organized as follows. In Section 2 we use
Klein forms to define the modular unit u on Xχ(p). Then we use the
class number formula for real quadratic fields to obtain the constant
term of the Fourier expansion of u. We express the Fourier expansion
of ŭ as an infinite product and conclude this section with a discussion
of the p = 5 case, where we express the Rogers-Ramanujan continued
fraction in terms of ŭ. In Section 3 we use the Fourier expansions of
u and of ŭ to obtain a generalization of a limit formula due to Schur,
which we use to prove Theorem 1. In Section 4 we discuss Conjecture 1,
including the numerical evidence that supports it, and also suggest an
open question. In the appendix Luca shows how Eq. (1) follows from

2Păltănea stated his theorem as a converse of L’Hôpital rule for locally integrable
functions. But applying his theorem to suitable step functions yields a converse of
the Stolz-Cesàro theorem.
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the work of Meinardus. The appendix also includes a discussion of the
inequality (4), which is used in our proof of Theorem 1.

2. Two Fourier expansions

Following Kubert and Lang [7, p. 27], for each z ∈ C and each lattice
L ⊂ C we may define the Klein form

k(z, L) = e−
1
2
η(z,L)zσ(z, L),

where σ(z, L) is the Weierstraß sigma-function and z 7→ η(z, L) is the
R-linear function that gives the quasi-periods of the Weierstraß zeta-
function with respect to the lattice L. Put ka(τ) = k(z, Lτ ), where the
point a = (a1, a2) ∈ R2 is uniquely determined by z = a1τ + a2 and
Lτ = Zτ ⊕ Z, with τ lying in the Poincaré upper-half plane

H = {z ∈ C : ℑ(z) > 0}.
As before, consider a prime number p > 5 such that p ≡ 1 (mod 4)
and define

u(τ) =

p−1
2
∏

r=1

k(0,r/p)(τ)
χ(r).

As we shall see, up to a multiplicative constant this is Ogg and Ligozat’s
modular unit f on the Nebentypus cover Xχ(p) described by Mazur [9,
pp. 107–108]. The cover Xχ(p) has 4 cusps, namely∞ and∞ conjugate
over K, above the cusp ∞ of X0(p) and cusps o and o defined over Q,
above the cusp o of X0(p). Mazur also showed that

(f) =
1

2
B2,χ((o)− (o)),

where Bn,χ is the generalized n-th Bernoulli number attached to χ
defined by

∞
∑

n=0

Bn,χ
Xn

n!
=

p
∑

r=1

χ(r)
XerX

epX − 1
.

The Fricke involution wp of Xχ(p) interchanges the cusps o and ∞
(resp. o and ∞). So the composite ŭ = u◦wp has a zero of order 1

2
B2,χ

at the cusp ∞ of Xχ(p). The following proposition provides further
details.

Proposition 1. We have Fourier expansions

ŭ(τ) = q
1
2
B2,χ

∞
∏

n=1

(1− qn)χ(n),

and
u(τ) = ε−hK

K (1−√
p qτ + . . . ),

where qτ = e2πiτ and τ lies in the Poincaré upper-half plane H. Actu-
ally,

u = ε−hK

K f,
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where f is the modular unit of Ogg and Ligozat.

Proof. Let η(τ) denote Dedekind’s eta-function

η(τ) = eπiτ/12
∞
∏

n=1

(1− e2πinτ ).

The Siegel function ga(τ) = ka(τ)η(τ)
2 has a product expansion

ga(τ) = −q
1
2
B2(a1)

τ e2πia2(a1−1)/2(1− qz)

∞
∏

n=1

(1− qnτ qz)(1− qnτ q
−1
z ),

where B2(X) = X2 − X + 1
6
is the second Bernoulli polynomial, and

qz = e2πiz with z ∈ C. So if we let ζp = e2πi/p, then

u(τ) =

p−1
2
∏

r=1

g(0,r/p)(τ)
χ(r)

=

p−1
2
∏

r=1

(

ζ
− r

2
p (1− ζrp)

∞
∏

n=1

(1− qnτ ζ
r
p)(1− qnτ ζ

−r
p )

)χ(r)

=





p−1
2
∏

r=1

ζ
−χ(r) r

2
p (1− ζrp)

χ(r)









∞
∏

n=1

p−1
2
∏

r=1

(1− qnτ ζ
r
p)

χ(r)(1− qnτ ζ
−r
p )χ(r)





= κf(τ),

where

κ =

p−1
2
∏

r=1

(ζ
− r

2
p − ζ

r
2
p )

χ(r) = ε−hK

K .

The last equality follows from the first equation in Théorème 1 of
Borevič and Šafarevič [3, p. 385], namely

hK = − 1

log εK

∑

(r,D)=1

0<r<D
2

χ(r) log sin
πr

D
,

specialized to the positive fundamental discriminant D = p, which is a
well-known consequence of the formula

L(1, χ) =
2hK√

p
log εK .

Here L(s, χ) is the Dirichlet L-series attached to χ

L(s, χ) =
∞
∑

n=1

χ(n)

ns
ℜ(s) > 0.
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Therefore u = ε−hK

K f , which is the third assertion in our proposition.
To prove the second assertion note that

f(τ) =

∞
∏

n=1

Ψ(qn),

where

Ψ(X) =

p−1
2
∏

r=1

(1−Xζrp)
χ(r)(1−Xζ−r

p )χ(r)

=

p−1
2
∏

r=1

(1−Xζrp)
χ(r)(1−Xζ−r

p )χ(−r)

=

p−1
∏

r=1

(1−Xζrp)
χ(r)

≡ 1− SpX (mod X2).

where Sp =
∑p

r=1 χ(r)ζ
r
p is the Gauß sum attached to χ. But we

assumed that p ≡ 1 (mod 4), so Sp =
√
p. Hence

f(τ) = 1−√
p qτ + . . . .

and the third assertion of our proposition implies that

u(τ) = ε−hK

K f(τ) = ε−hK

K (1−√
p qτ + . . . ).

To prove the first assertion of our proposition recall that the Fricke
involution wp of Xχ(p) is induced by the Möbius transformation

τ 7→ − 1

pτ

acting on the extended upper-half plane H∗ = H∪P1(Q), which is the
composition of the Möbius transformation attached to

S =

(

0 −1
1 0

)

∈ SL2(Z)

with the map τ 7→ pτ . But the basic properties K0 and K1 of Kubert
and Lang [7, p. 27] imply that for each α ∈ SL2(Z) and each τ ∈ H
we have

kaα(τ) = (cτ + d)ka(ατ).
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Therefore

ŭ(τ) =

p−1
2
∏

r=1

k(−r/p,0)(pτ)
χ(r)

=

p−1
2
∏

r=1

(

q
1
2
B2(

r
p
)p

τ (1− qrτ )

∞
∏

n=1

(1− qpn+r
τ )(1− qpn−r

τ )

)χ(r)

= q
1
2
B2,χ

τ

p−1
2
∏

r=1

(1− qrτ )
χ(r)

p−1
2
∏

r=1

∞
∏

n=1

(1− qpn+r
τ )χ(r)(1− qpn−r

τ )χ(−r)

= q
1
2
B2,χ

τ

∞
∏

n=1

(1− qnτ )
χ(n),

which is the first assertion of our proposition. �

For p = 5 we have 1
2
B2,χ = 1

5
and we may see from the above

proposition that in this case u is not an element of the function field of
the curve Xχ(p), but u

5 is in fact a Hauptmodul for Xχ(p). Moreover,
in this notation the Rogers-Ramanujan continued fraction becomes

(2) ŭ(τ) =
q1/5

1 +
q

1 +
q2

1 +
q3

1 +
. . .

.

3. A limit formula

For each n ∈ Z≥0 let pA(n) denote the number of partitions

n = λ1 + · · ·+ λr

with parts λi ∈ A such that λ1 ≤ λ2 ≤ · · · ≤ λr, for i = 1, 2, . . . , r.
In particular, consider the set of quadratic residues S+ and the set of
quadratic non-residues S− modulo p,

S± = {m ∈ Z>0 : χ(m) = ±1} ,

so that p±(n) = pS±
(n). Here as before, χ = ( ·

p
) is the Legendre

character attached to p.

Proposition 2. As before consider a prime p ≡ 1 (mod 4). We have
the limit

lim
t→0+

∑∞
n=0 p+(n)e

−2πnt

∑∞
n=0 p−(n)e

−2πnt
= εhK

K .
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0.3027...

Figure 1. Graph of t 7→ ŭ(it) near t = 0 for p = 13.

Proof. From the first part of Proposition 1 we have

1

ŭ
= q−

1
2
B2,χ

∏

m∈S+

1
1−qm

∏

m∈S−

1
1−qm

= q−
1
2
B2,χ

∑∞
n=0 p+(n)q

n

∑∞
n=0 p−(n)q

n
.

So the second part of Proposition 1 yields

lim
t→0+

ŭ(it) = lim
t→0+

u(wp(it)) = lim
t→∞

u(it) = ε−hK

K

and the proposition follows. �

The above proposition is a generalization of a limit formula due to
Schur[15, p. 321] for p = 5. It may be regarded as a consequence of
the Rogers-Ramanujan continued fraction, since the right-hand side of
Eq. (2) tends to

1

1 +
1

1 +
1

1 +
1

1 +
. . .

=
−1 +

√
5

2

as t → 0, and we know that ε−1
K = −1+

√
5

2
and that hK = 1 for the real

quadratic field K = Q(
√
5).

Remark 1. From the first two terms of the Fourier expansion of u(τ)
we may see that the real-analytic function h : R>0 −→ R>0 defined
by t 7→ ŭ(it) is a monotone concave function in a neighbourhood of
t = 0, as depicted in Figure 1 for p = 13. Moreover, the function h
is log-concave on R>0. This is an easy consequence of the fact that
the logarithmic derivative of u(τ) is, up to a positive scalar multiple,
the well-known Eisenstein series G2,χ(τ) of weight 2 attached to the
character χ. (Cf. Lang [8, p. 250].)

Fix k ∈ Z and define p(k)(n) = p
(k)
A (n) by the formal power series

equality
∞
∑

n=0

p(k)(n)Xn = (1−X)k
∏

a∈A

1

1−Xa
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Following Bateman and Erdős [2], we say that a subset A ⊂ Z>0 satis-
fies property Pk if |A| > k and if gcd(A \ S) = 1, for each S ⊂ A such
that |S| = k. Note that p(k)(n) is the k-th difference of p(n) if k > 0,
the −k-th order summatory function of p(n), and p(0)(n) = p(n).

Lemma 1. If A is an infinite subset of Z>0 such that gcd(A) = 1, then
for each positive integer h we have the limit

lim
n→∞

p(0) + · · ·+ p(n + h)

p(0) + · · ·+ p(n)
= 1.

Proof. From Bateman and Erdős [2, p. 10], the corollary after Theorem
6 says that for each positive integer h we have

p(k−1)(n + h)− p(k−1)(n)

h
= (1 + o(1)) p(k)(n).

For k = 0 the assumption gcd(A) = 1 yields

(3)
p(n+ 1) + · · ·+ p(n+ h)

p(n)
= (1 + o(1))h,

for each positive integer h. But from Theorem 5 of Bateman and
Erdős [2, p. 7] we know that

lim
n→∞

p(k+1)(n)

p(k)(n)
= 0,

provided A is infinite and such that property Pk holds. In particular,
for k = −1 we see that property Pk is trivially satisfied and we thus
have the limit

lim
n→∞

p(n)

p(0) + · · ·+ p(n)
= 0

This limit together with Eq. (3) yield

lim
n→∞

p(n+ 1) + · · ·+ p(n+ h)

p(0) + · · ·+ p(n)
= 0,

which gives

lim
n→∞

p(0) + · · ·+ p(n+ h)

p(0) + · · ·+ p(n)
= 1 + lim

n→∞

p(n+ 1) + · · ·+ p(n + h)

p(0) + · · ·+ p(n)
= 1

and the proposition follows. �

Now we shall prove Theorem 1. From the appendix, for all large
enough n we have

(4) p−(n) < p+(n).

But Lemma 1 yields
∑µ

m=0 p+(m)
∑ν

n=0 p+(n)
→ 1 as µ, ν → ∞ with

µ

ν
→ 1.

Hence the limit formula of Proposition 2 satisfies all the hypothesis of
Theorem 3.2 of Sato [14, p. 85] and Theorem 1 follows.
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Remark 2. If we replace Inequality 4 by the weaker condition

p−(n) = O(p+(n)),

then Sato’s ratio Tauberian theorem still applies here.

4. A conjecture and some open questions

Given k ∈ Z, let p(k)(n) be as in Section 3 and for each n ∈ Z≥0

define

ρ(k)(n) =
p(k+1)(n)

p(k)(n)
=

p(k)(n)− p(k)(n− 1)

p(k)(n)
.

Note that the corollary of Theorem 5 of Bateman and Erdős [2, p. 9]
says that if A has property Pk then

p(k)(n) → ∞
and

ρ(k)(n) → 0,

as n → ∞. They also show that if A satisfies property Pk+1, then
p(k)(n) is eventually strictly increasing. But the question of the mono-
tonicity of ρ(k)(n) has not been raised before. This is an interesting
question, as the eventual monotonicity of ρ(k)(n) is a natural general-
ization of the log-concavity of p(n) for all large enough n. Indeed, we
have

ρ(k)(n) > ρ(k)(n + 1)

if and only if

0 < p(k)(n)2 − p(k)(n− 1)p(k)(n+ 1).

This monotonicity question has been settled for the case A = Z>0

and k = 0 by DeSalvo and Pak [4], as they proved that the classical
partition function p(n) is log-concave for all n > 25. Moreover, we
may also see that the monotonicity of ρ(−1)(n) for all large enough n is
equivalent to having the sequence

(5)

{

1

p(ν)

ν
∑

n=0

p(n)

}∞

ν=0

eventually strictly increasing. Eq. (5) is the key condition of the con-
verse of Stolz-Cesàro theorem due to Păltănea [13] which (together
with Theorem 1) yields Petersson’s partition limit formula. Consider-
ing the Tauberian condition T2 of the conjecture due to Grosswald [5,
pp. 55-56], we propose the following.

Conjecture 1. If A ⊂ Z>0 is such that Pk+1, Pk+2, . . . , then ρ(k)(n) is
eventually strictly decreasing.
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With the help of PARI/GP [17] we obtained strong numerical evi-
dence supporting Conjecture 1 for p(n) = p±(n) in the range p ≤ 1987,
with |k| ≤ 5 and n ≤ 10000 and also for the classical partition function
p(n), with |k| ≤ 10 and n ≤ 100000.

As described by Iwasawa [6, p. 61], there is a remarkable non-
archimedean analogue of

L(1, χ) = −Sp

p

p−1
∑

r=1

χ(r) log |1− ζrp |

known as Leopoldt’s formula. Moreover, Siegel functions have natu-
ral rigid-analytic avatars. It seems to be an interesting open question
whether there are analogues of Proposition 2 (which is a generaliza-
tion of a limit formula due to Schur) and of Petersson’s limit partition
formula within this realm.
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Appendix A. By Florian Luca

Here, we show how equation (1) follows from Meinardus’ scheme [10]
(see also [1]).

Let us recall Meinardus’ scheme. Let A ⊆ N be a set of positive
integers. Put

pA(n) = #{(λ1, . . . , λk) : λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1, λ1 + · · ·+ λk = n,

λi ∈ A, i = 1, . . . , k}
for the number of partitions of n with parts from A. Writing {an}n≥1

for the characteristic function of A; that is, an = 1 if n ∈ A and an = 0
otherwise, the generating function of pA is

∏

n≥1

(1− e−nτ )−an = 1 +
∑

n≥1

pA(n)e
−nτ , with Re(τ) > 0.

Meinardus, in his 1954 paper [10], makes the following assumptions:

(i) Let

D(s) =
∞
∑

n=1

ann
−s, where s = σ + it.
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Assume that D(s) is convergent for σ > α > 0. Assume further
that D(s) can be analytically continued up to σ = −c0, where
0 < c0 < 1. Assume that for σ ≥ −c0, D(s) is holomorphic
except for s = α where it has a pole of order 1 with residue A.
Assume further that in this region, we have

D(s) = O(|t|c1)
as t → ∞ for some c1 > 0.

(ii) For τ = y + 2πix with y > 0 put

g(τ) =
∑

n≥0

ane
−nτ .

Assume that for |arg(τ)| > π/4, |x| ≤ 1/2, one has

Re(g(τ)− g(y)) ≤ −c2y
−ε

for y sufficiently small, where c2 > 0 and ǫ > 0 are some positive
real numbers.

Under (i) and (ii), Meinardus proves that
(6)

pA(n) = Cnχen
α

α+1 (1+ 1
α)(AΓ(α+1)ζ(α+1))

1
α+1

(1 +O(n−χ1)) as n → ∞,

where

C = eD
′(0)(2π(1 + α))−1/2(AΓ(α + 1)ζ(α+ 1))

1−2D(0)
2(1+α) ;

χ =
2D(0)− 2− α

2(1 + α)
.

He also gives some estimates for χ1 which we don’t need. Well, let
us apply it to our case. For us, an = χ(n) in the case of p+ and

an = −χ(n) in the case of p−, where χ(n) =

(

n

p

)

is the Legendre

character modulo p. Putting again

L(s, χ) =
∑

n≥1

χ(n)

ns
,

one sees easily that

D+(s) =
∑

n≥1
χ(n)=1

n−s =
1

2

∑

n≥1
p∤n

1 + χ(n)

ns
=

1

2

(

ζ(s)(1− p−s) + L(s, χ)
)

,

and similarly

D−(s) =
1

2

(

ζ(s)(1− p−s)− L(s, χ)
)

.

So, we see that hypothesis (i) of Meinardus’ scheme is fulfilled for both
D+(s) and D−(s) with α = 1, A = (1 − p−1) since for σ > −1/2,
ζ(s) is holomorphic except for a single pole at s = 1 with residue 1
and L(s, χ) is holomorphic. Condition (ii) is also fulfilled by standard
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results about vertical growth of ζ(s) and L(s, χ). Furthermore, since
ζ(0) = −1/12, and L(0, χ) = 0 (because p ≡ 1 (mod 4)), we get that

D+(0) =
1

2

(

(−1/12)(1− p−0) + L(0, χ)
)

= 0,

and similarly D−(0) = 0. So, the “main” terms of p+(n) and p−(n) in
(6) coincide up to the constants C+ and C−, that is
(7)
p+(n)

p−(n)
= (1 + o(1))

C+

C−
= (1 + o(1))eD+(0)′−D−(0)′ as n → ∞,

where C+ = D′
+(0) and C− = D−(0)

′. Now

D+(s)
′ =

1

2

(

ζ ′(s)(1− p−s) + ζ(s)(log p)p−s + L′(s, χ)
)

.

Evaluating in s = 0, we get

D+(0)
′ =

1

2
ζ(0) log p+

1

2
L′(0, χ) = − log p

24
+

1

2
L(0, χ)′.

A similar argument shows that

D−(0)
′ = − log p

24
− 1

2
L(0, χ)′,

so
D+(0)

′ −D−(0)
′ = L(0, χ)′.

Since L(0, χ)′ = (
√
p/2)L(1, χ), it follows that

D+(0)
′ −D−(0)

′ = (
√
p/2)L(1, χ)

which is positive (by the proof of Dirichlet’s theorem on primes in
progressions). In fact, by the class number formula the above difference
is hk log εK and we recover Petersson’s limit from (7).

In particular, the inequality

p+(n) > p−(n) holds for all n > n0(p).

One may wonder if the fact that the inequality p+(n) > p−(n) holds
might be due to the fact that 1 is a quadratic residue and being
the smallest positive integer it likely contributes to a lot of elements
counted by p+(n). Well, let us test it. Let p1,+(n) be the number of
partitions of n with parts that are > 1 but quadratic residues modulo
p. Then

D1,+(s) = D+(s)− 1,

so D+,1(0) = D+(0)− 1 = −1. It thus follows that

χ1,+ =
2D1,+(0)− 3

4
= −5

4
while χ− =

2D−(0)− 3

4
= −3

4
,

therefore

p1,+(n)

p−(n)
= (1 + o(1))c3n

−1/2 as n → ∞,
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where c3 := C1,+/C−. The above asymptotic shows that the inequality
p1,+(n) < p−(n) holds for large n. So, indeed, if we eliminate the 1’s
from the partitions of p+(n) we get a number of partitions much smaller
(in fact, of a smaller order of magnitude asymptotically) than p−(n),
whereas p+(n) and p−(n) are of the same order or magnitude, which
can be indeed interpreted by saying that the fact that the inequality
p+(n) > p−(n) holds for large n is driven by the contribution of the 1’s
in the p+(n) side.

References

[1] G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its
Applications, vol. 2, Cambridge University Press, 1998, Reprint of the 1976
original.
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Centro de Ciencias Matemáticas, UNAM, Address, Morelia, Mexico

Email address : florian.luca@wits.ac.za

http://pari.math.u-bordeaux.fr/

	1. Introduction
	2. Two Fourier expansions
	3. A limit formula
	4. A conjecture and some open questions
	Acknowledgments
	Appendix A. By Florian Luca
	References

