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In this contribution, we discuss the modeling and model reduction framework known as the
Loewner framework. This is a data-driven approach, applicable to large-scale systems, which was
originally developed for applications to linear time-invariant systems. In recent years, this method
has been extended to a number of additional more complex scenarios, including linear parametric
or nonlinear dynamical systems. We will provide here an overview of the latter two, together with
time-domain extensions. Additionally, the application of the Loewner framework is illustrated by
a collection of practical test cases. Firstly, for data-driven complexity reduction of the underlying
model, and secondly, for dealing with control applications of complex systems (in particular, with
feedback controller design).
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1 Introduction: Data-driven modeling and control
The physical complexity of dynamical systems describing time-dependent processes stems from underlying
non-linearities, the coupling dynamics, or the large amount of degrees of freedom (variables or parameters).
The latter aspect is also related to enforcing specific accuracy requirements, that yield models of large dimension
which are hence challenging to use for control purposes or for numerical simulations.

Simulating such complex dynamical systems is currently a common feature of many numerical software
toolboxes, and is widely used both in industry and in academia. As numerical simulations become more
involved, processing of increased amounts of data is required. Consequently, the number of variables under
analysis is limited to the physical ones (even in the era of machine learning), while the rest are discarded.
Computing simplified, easy to use dynamical models is one purpose of the model approximation and reduction
discipline. Such models may then be used in a many query optimisation and simulation processes. That is why
it is of critical importance to construct reliable surrogate models. Model reduction typically refers to a class of
methodologies used for reducing the computational complexity of large-scale models of dynamical systems. The
goal generally is to approximate the original system with a smaller and simpler system with the same structure
and similar response characteristics as the original. For an overview of model reduction methods, we refer
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the reader to [1, 3, 15, 16], and to the references therein. In many practical scenarios, a complete mathematical
description of the dynamical system under study is not always available or not fully known. Instead of depending
only on physical laws (describing partial or ordinary differential equations), one can infer important properties
of the system directly from measured or computed data.

With the increasing emergence of data-driven applications in many fields of the applied sciences, the need
for incorporating measurements in the modeling and controlling stage has steadily grown over the last decades.
The main challenge consists in using the available data in order to effectively construct surrogate models or
controllers. In this latter case, the controller has to be designed based on experimental measurements, instead
of a model description. Model-based methods can hence be replaced by data-driven strategies that construct the
controller, directly from experimental data. Such techniques are also known as direct methods and can be useful
when control-oriented models are either too complex or too costly to obtain.

The Loewner Framework (LF) is a data-driven model identification and reduction technique that was originally
introduced in [38]. It is based on the Loewner-matrix interpolation method elaborated by the third author of the
current paper, more than 20 years earlier, in the seminal contribution [2]. Using only measured data, the LF
constructs surrogate models directly and with low computational effort. For recent tutorial papers on LF applied
to linear dynamical systems, we refer the reader to [7,33]. Extensions that use time-domain data were provided
in [11, 31] (for a Hankel matrix approach) as well as in [43] (for inferring transfer function measurements
from time series). The Loewner framework has been recently extended to certain classes of nonlinear systems,
such as bilinear systems in [6], and quadratic-bilinear systems in [24,25]. An adaptive extension of the original
Loewner-based method in [2], named the AAA (Adaptive-Antoulas-Anderson) algorithm, was recently proposed
in [42]; it is a data-driven rational approximation method that combines interpolation and least-squares (LS)
fitting.

In the first part of this contribution, the Loewner framework is mainly used as a model identification and
reduction tool. In the second part, the same framework is used for feedback controller design. In the proposed
setup, the reference controller is not computed by means of a given model, but using input-output data of the
system. Consequently, the Loewner framework is used for synthesizing a controller directly from measured
data, which shows that it is also a data-driven control tool. Data-driven control strategies consist in recasting the
control design problem as an identification one. By doing so, the model simplification process is shifted directly
to the controller design step. The Loewner-based data-driven control methodology was extensively studied in
recent years, starting with the original contribution [35] and subsequently with [28, 45, 46, 55].
The main philosophy of the Loewner framework is as follows: starting with frequency response measurements
(or, alternatively, with time-domain sequences of measured inputs and outputs), the data is arrange in a specific
matrix format. Then, the dominant characteristics of the model are extracted by means of an appropriate
projection (the SVD is the relevant tool here). Thus, simplified/reduced surrogate models can be computed
without access to the specific system’s description.

1.1 Notations
We denote by R the set of real numbers, C the set of complex numbers, C+ (C−) the open right (left) half plane,
D the open unit disk, 𝜕D its boundary and D the complementary of the closed unit disk, respectively. The
complex variable is denoted by 𝚤 =

√
−1. L2 (I) (I = 𝚤R or 𝜕D) denotes the set of functions that are square

integrable on I, while H2 (D) (resp. H2 (D)) is the subset of L2 (𝜕D) containing the functions analytic in D
(resp. D). LetH2 (C+), shortlyH2, (resp. H2 (C−)) be the subset of L2 (𝚤R) containing the functions analytic in
C+ (resp. C−). Similarly, L∞ (I) (I = 𝚤R or 𝜕D) denotes the set of functions that are bounded on I. H∞ (D)
(resp. H∞ (D)) denotes the subset of L∞ (𝜕D) containing the functions analytic in D (resp. D) andH∞ (C+),
shortly H∞, the subset of L∞ (𝚤R) of functions analytic in C+. The Fourier transform of a time-domain signal
𝑣 ∈ L2 (R) is denoted by 𝑣 = F (𝑣).

1.2 Organizational plan
The paper is organized as follows: after the introduction on data-driven modeling and control in Section 1,
we continue with an overview on the Loewner framework for data-driven modeling in Section 2 with various
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subsections that cover specific extensions of the framework. Section 3 contains three model reduction examples
in the Loewner framework, while Section 4 deals with the Loewner data-driven control rationale. This illustrates
how the Loewner tool can be effective for both model-based or data-driven control approaches. Finally, 5
contains the concluding remarks together with a short summary of the paper.

2 The Loewner framework for data-driven modeling: an overview

2.1 Generalities on the Loewner framework and model structures
The Loewner framework is a data-driven method aimed at building a time invariant differential algebraic equation
model / realization, with associated transfer function HI or H(J) (defined later). This model interpolates data
obtained from experimental measurements or the evaluation of a (collection of) transfer function(s). As made
clearer later in this section, according to the mathematical structure and nature of the underlying system, HI has
some specific properties.

In its original form presented in [38], H(𝑁 ) (J = {𝑁}) is a descriptor linear time invariant (LTI) dynamical
model with transfer function H(𝑁 ) : C → C𝑝×𝑚, where 𝑁 ∈ N denotes the number of collected data. We also
denote with H𝑛 the transfer function with Mc Millan degree 𝑛 (I = {𝑛}). A complete description of this case is
available in the recent surveys [10, 33]. Extension to parametric LTI (pLTI) model structure also exist [32]. In
this case, one obtains a multi-valued rational transfer function H(𝑁 ,𝑀 ) : (C × R) → C𝑝×𝑚 where J = {𝑁, 𝑀}
data are used (or H𝑟 ,𝑞 , where I = {𝑟, 𝑞}), where 𝑀 ∈ N is the number of data along the parameter variable
(and 𝑞 ∈ N is the rational order along the parameter). The resulting rational function both interpolates the
complex and real parametric variables. From a different perspective, extensions to nonlinear model structures
have also been investigated. Among them, one can mention the bilinear and/or quadratic forms, explored in
a series of papers [4–6, 24–26]. In these cases, the associated transfer function is a collection of multivariate
coupled infinite cascade of linear systems reading as H(𝑁1) : C → C𝑝×𝑚, H(𝑁1 ,𝑁2) : (C × C) → C𝑝×𝑚

and H(𝑁1 ,𝑁2 ,... ) : (C × C × . . . ) → C𝑝×𝑚 (J = {𝑁1, 𝑁2, . . . }). The Loewner interpolation framework seek
for function that interpolates the 𝑁1, 𝑁2, . . . data along each related multi-valued transfer functions H(𝑁1) ,
H(𝑁1 ,𝑁2 ,... ) (𝑁1, 𝑁2, · · · ∈ N). Similarly, we denote with H𝑟1 ,𝑟2 ,... the associated transfer function of order
𝑟1, 𝑟2, · · · ∈ N.

In all the cases mentioned here, the transfer function (or the set of transfer functions) is rational, and it
interpolates the data. In comparison to realization-driven model reduction, data-driven methods based on
rational interpolation construct models that match the original transfer function(s) at well chosen points in the
complex plane (also denoted as support points for barycentric representations [42]). As such, it provides a
generalization of the Padé method to an arbitrary (set of) point(s). Data-driven methods based on rational
interpolation benefits also from the fact that it only requires the transfer function evaluation, whereas projection
methods require the internal model (system matrices or operators). The latter are thus referred to as intrusive
methods, while the former are non-intrusive or data-driven ones.

In this section, an extensive review of the Loewner framework is provided, together with some of its extensions.
More specifically, section 2.2 presents the Loewner framework in its original form, leading to a linear time
invariant model. Extensions to linear parametric and to bilinear systems are sequentially illustrated in sections
2.3 and 2.5. As a direct extension, the time-domain Loewner, dealing with sampled time-domain data instead
of frequency domain data, is covered in section 2.4.

2.2 Loewner framework in the rational LTI case
The main ingredient of the Loewner framework are summarized next in the multi-input multi-output (MIMO)
rational LTI case. Let us consider that such system is a 𝑚 inputs 𝑝 outputs dynamical one described by a 𝑛-th
order differential algebraic equation (DAE) model S : (E,A,B,C, 0) which explicitly reads as

S :
{

E¤x(𝑡) = Ax(𝑡) + Bu(𝑡) , y(𝑡) = Cx(𝑡) where
E,A ∈ R𝑛×𝑛,B ∈ R𝑛×𝑚,C ∈ R𝑝×𝑛.

(1)
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Its associated transfer function H : C→ C𝑝×𝑚 is

H(𝜉) = C𝚽(𝜉)B where 𝚽(𝜉) = (𝜉E − A)−1 ∈ C𝑛×𝑛. (2)

Importantly, as any rational function, relation (2) can be characterized in its Lagrangian basis with distinct
Lagrange nodes (or support points) 𝜆𝑖 ∈ C. Then one can rewrite it in its rational barycentric formula as follows
(for 𝛼𝑖 ≠ 0),

H(𝜉) =
∑𝑛+1

𝑖=1 𝛽𝑖q𝑖 (𝜉)∑𝑛+1
𝑖=1 𝛼𝑖q𝑖 (𝜉)

where q𝑖 (𝜉) =
1

𝜉 − 𝜆𝑖
. (3)

Let this system generate the right (or column) data together with the left (or row) data, as follows

(𝜆𝑖 , r𝑖 ,w𝑖)
for 𝑖 = 1, . . . , 𝑛

}
and

{
(𝜇 𝑗 , l𝑇𝑗 , v

𝑇
𝑗
)

for 𝑗 = 1, . . . , 𝑛 , (4)

where w𝑖 = H(𝜆𝑖)r𝑖 and v𝑇
𝑗
= l𝑇

𝑗
H(𝜇 𝑗 ), with r𝑖 ∈ C𝑚×1, l 𝑗 ∈ C𝑝×1, w𝑖 ∈ C𝑝×1 and v 𝑗 ∈ C𝑚×1 (𝑚, 𝑝 ≥ 1). In

addition, we define the set of distinct interpolation points {𝑧𝑘 }𝑁𝑘=1 ⊂ C, leading to responses {Φ𝑘 }𝑁𝑘=1 ∈ C
𝑝×𝑚,

rearranged as follows (𝑁 = 𝑛 + 𝑛),

{𝑧𝑘 }𝑁𝑘=1 = {𝜆𝑖}𝑛𝑖=1 ∪ {𝜇 𝑗 }
𝑛

𝑗=1 and {Φ𝑘 }𝑁𝑘=1 = {w𝑖}𝑛𝑖=1 ∪ {v 𝑗 }
𝑛

𝑗=1. (5)

The method then consists in building the Loewner matrix L ∈ C𝑛×𝑛 and shifted Loewner matrix M ∈ C𝑛×𝑛
defined as follows, for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑛:

L( 𝑗 ,𝑖) =
v𝑇
𝑗
r𝑖 − l𝑇

𝑗
w𝑖

𝜇 𝑗 − 𝜆𝑖
=

l𝑇
𝑗

(
H(𝜇 𝑗 ) −H(𝜆𝑖)

)
r𝑖

𝜇 𝑗 − 𝜆𝑖
,

M( 𝑗 ,𝑖) =
𝜇 𝑗v𝑇𝑗 r𝑖 − 𝜆𝑖l𝑇𝑗 w𝑖

𝜇 𝑗 − 𝜆𝑖
=

l𝑇
𝑗

(
𝜇 𝑗H(𝜇 𝑗 ) − 𝜆𝑖H(𝜆𝑖)

)
r𝑖

𝜇 𝑗 − 𝜆𝑖
.

(6)

Additionally, let W = [w1, · · · ,w𝑛] and V = [v1, · · · , v𝑛]𝑇 . Finally, let 𝚲 = diag (𝜆1, · · · , 𝜆𝑛), M =

diag
(
𝜇1, · · · , 𝜇𝑛

)
, R = [r1, · · · , r𝑛] and L = [l1, · · · , l𝑛]. The following Sylvester equations are hence satisfied

by the Loewner L and shifted LoewnerM matrices:

ML − L𝚲 = VR − LW and MM −M𝚲 = MVR − LW𝚲. (7)

Then, the descriptor realization1,

S (𝑁 ) :
{

E(𝑁 ) ¤x(𝑡) = A(𝑁 )x(𝑡) + B(𝑁 )u(𝑡) , y(𝑡) = C(𝑁 )x(𝑡) where ,
E(𝑁 ) ,A(𝑁 ) ∈ C𝑛×𝑛,B(𝑁 ) ∈ C𝑛×𝑚,C(𝑁 ) ∈ C𝑝×𝑛.

(8)

where E(𝑁 ) = −L, A(𝑁 ) = −M, B(𝑁 ) = V and C(𝑁 ) = W and which associated transfer function H(𝑁 ) : C→
C𝑝×𝑚

H(𝑁 ) (𝜉) = C(𝑁 )𝚽(𝑁 ) (𝜉)B(𝑁 ) where 𝚽(𝑁 ) (𝜉) = (𝜉E(𝑁 ) − A(𝑁 ) )−1 ∈ C𝑛×𝑛 (9)

tangentially interpolates H at the given support points and directions defined in (4), i.e. satisfies the conditions

H(𝑁 ) (𝜆𝑖)r𝑖 = H(𝜆𝑖)r𝑖 and l𝑇𝑗 H(𝑁 ) (𝜇 𝑗 ) = l𝑇𝑗 H(𝜇 𝑗 ). (10)

Note that H(𝑁 ) orS (𝑁 ) is an interpolant of the data without any reduction. It refers to the realization constructed
using the 𝑁 available data.

From now on, let us assume that 𝑛 = 𝑛, also referred to as the square case2. Moreover, assuming that
the number 𝑁 = 𝑛 + 𝑛 of available data is large enough, then it was shown in [38] that a minimal model H𝑟

1Note here that the capital subscript 𝑁 denotes the number of considered data.
2The term square refers to the square shape of the dynamic matrices A and E. More details can be found in [8].
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of dimension 𝑟 < 𝑛 = 𝑛 still satisfying the interpolatory conditions (10) can be computed by projecting the
realization (8), provided that the following holds (for 𝑘 = 1, . . . , 𝑁)3

rank(𝑧𝑘L −M) = rank( [L,M]) = rank( [L𝐻 ,M𝐻 ]𝐻 ) = 𝑟, (11)

where 𝑧𝑘 are as in (5). Let Y ∈ C𝑛×𝑟 (resp. X ∈ C𝑛×𝑟 ) be the matrix containing the first 𝑟 left (resp. right)
singular vectors of [L,M] (resp. [L𝐻 ,M𝐻 ]𝐻 ). Then, S𝑟 : (E𝑟 ,A𝑟 ,B𝑟 ,C𝑟 , 0) where

E𝑟 = Y𝐻E(𝑁 )X , A𝑟 = Y𝐻A(𝑁 )X , B𝑟 = Y𝐻B(𝑁 ) and C𝑟 = C(𝑁 )X, (12)

is a descriptor realization of H𝑟 , given as

H𝑟 (𝜉) = C𝑟𝚽𝑟 (𝜉)B𝑟 where 𝚽𝑟 (𝜉) = (𝜉E𝑟 − A𝑟 )−1 ∈ C𝑟×𝑟 , (13)

encoding a minimal Mc Millan degree equal to 𝜈 = rank(L). Note that if 𝑟 in (11) is greater than rank(L),
then H𝑟 may either have a direct feed-through term or a polynomial part. Finally, the number 𝑟 of singular
vectors composing Y and X used to project the system H𝑟 in (12) may be decreased to at the cost of imposing an
approximate interpolation of data, leading to the reduced order rational model. This allows a trade-off between
complexity of the resulting model and accuracy of the interpolation. The Loewner framework thus is a landmark
appropriate for identification, approximation and order reduction.

Let us close this first part with two linear differential algebraic equations examples where the Loewner
framework is applied. Both continuous and sampled-time cases are considered, highlighting how versatile this
landmark is. More detailed and didactic examples may be found in the surveys [10, 33].

Example 1 (Continuous-time rational and polynomial model interpolation) Let us consider the following
rational and polynomial (improper) model, H(𝑠) = 𝑠 + 1/(𝑠 + 1) = (𝑠2 + 𝑠 + 1)/(𝑠 + 1) which a realization
S : (E,A,B,C, 0) can be described as follows:

E =


0 1 0
0 0 1
0 0 1

 , A =


1 0 0
0 1 0
0 0 −1

 , B =


0
0
1

 and C𝑇 =


1
1
1

 . (14)

By sampling H with the following support points 𝜆𝑖 = {1, 3, 5, 7} and 𝜇 𝑗 = {2, 4, 6, 8} and tangential directions
r𝑖 = l 𝑗 = 1 for 𝑖, 𝑗 = 1, . . . , 4 = 𝑛 = 𝑛 (𝑁 = 8), leads to the measurements w𝑖 = {3/2, 13/4, 31/6, 57/8}
and v 𝑗 = {7/3, 21/5, 43/7, 73/9}. Constructing the Loewner matrices as in (6), one obtains a 4-th order
realization S𝑁 : (−L,−M,V,W). Following (11), the rank of the [L,M] matrix is equal to 𝑟 = 3. Practically,
by computing the SVD of the [L,M] matrix leads to the following normalized singular values 𝜎 = {1, 5.59 ·
10−2, 6.8804 · 10−4, 5.8311 · 10−17} and thus suggests to preserve the 𝑟 = 3 first columns of Y and X, as in (12).
After projection, this leads to a minimal order realization which related transfer function exactly recovers the
original H one, with Mc Millan degree of 𝜈 = 2 and associated realization 𝑟 = 3. In addition, computing the
singularities of the associated pencil (M,L) gives {−1,∞,∞}, being exactly the one of the original model H.
The singularity in −1 is related to the rational part of H, 1/(𝑠 + 1), being the finite dynamic mode. Then, the
two singularities in∞ are related to the impulsive (irrational part) and non-dynamic (direct feed-through term)
modes.

Example 2 (Interpolation in the sampled-time) Let us now consider the discrete-time model H(𝑧) = 𝑧/(𝑧 −
1/2), sampled with a constant period ℎ = 1 second. One may evaluate the function on the unit circle
centered in zero, being the projection of the imaginary axis classically considered in continuous-time. Then, by
choosing 𝜆𝑖 = {𝑒−𝚤0.1ℎ , 𝑒𝚤0.1ℎ , 𝑒−𝚤2ℎ , 𝑒𝚤2ℎ}, 𝜇 𝑗 = {𝑒−𝚤ℎ , 𝑒𝚤ℎ , 𝑒−𝚤3ℎ , 𝑒𝚤3ℎ} and tangential directions r𝑖 = l 𝑗 = 1 for
𝑖, 𝑗 = 1, . . . , 4 = 𝑛 = 𝑛 (𝑁 = 8), one respectively obtains w𝑖 and v 𝑗 (notice that the Nyquist pulsation, being
the maximal pulsation prior periodic frequency response is at 𝜔𝑁 = 𝜋/ℎ rad/s). By construction, the Loewner

3Note here that the lower subscript letter 𝑟 denotes the dimension of the realization instead of the number of data (in the capital case).
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matrices are complex of dimension 4 × 4. As data are provided in complex conjugate form, one may work with
real arithmetic instead of complex ones by projecting the data (see §2.5.4 [33] for details). Then, one obtains

𝚲 = blkdiag
( [

0.9950 −0.0998
0.0998 0.9950

]
,

[
−0.4161 −0.9093
0.9093 −0.4161

] )
,

R = [
√

2, 0,
√

2, 0] ,
W = [2.7869, 0.2768, 1.0254, 0.3859]

M = blkdiag
( [

0.5403 −0.8415
0.8415 0.5403

]
,

[
−0.9900 −0.1411
0.1411 −0.9900

] )
,

L = [
√

2, 0,
√

2, 0]𝑇 and
V = [1.4544,−0.8384, 0.9439,−0.0445]𝑇 ,

(15)

By then solving (7), one readily obtainsLandM and the associated 4-th order realizationS𝑁 : (−L,−M,V,W, 0).
Applying the rank revealing factorisation (11) and (12), one obtains the Mc Millan degree 𝜈 = rank(L) = 1 and
𝑟 = 2. This indicates a constant term. By applying the procedure detailed in [29], one may reconstruct the direct
term by the infinite eigenvalue computation of the (M,L) pencil (or zero eigenvalue of (L,M)). In this case
one finds 𝐷 = 1. By removing it from the raw data and re-compute the Loewner procedure one gets 𝜈 = 𝑟 = 1
and the sampled realization (E1,A1,B1,C1,D1) = (2.897, 1.448,−0.9632,−1.504, 1), which transfer function
H1 = (𝑧− 1.665× 10−16)/(𝑧− 0.5), recovering almost perfectly the original model H. Note that in this case, the
realization is a sampled one and time-domain dynamical equation reads E1x(𝑡𝑘+1) = A1x(𝑡𝑘 ) + B1u(𝑡𝑘 ) and
y(𝑡𝑘 ) = C1x(𝑡𝑘 ) + D1u(𝑡𝑘 ), where 𝑡𝑘+1 = 𝑡 + 𝑘ℎ.

2.3 Generalizations to parametric linear systems
The Loewner framework has been extended to parametric LTI (pLTI) systems, first in [9] and in a more detailed
manner in [32]4. In parametric model approximation and reduction, the aim is to construct reduced-order models
that match the response of the original model / data, along the dynamical parameter 𝜉 (usually complex) and
along the parameters 𝜌 (traditionally real). In what follows we will only show how the two variable case works,
i.e. with one single parameter 𝜌 ∈ R (for further extensions, see [32]). We construct models which are reduced
both with respect to the complex variable (or frequency) and to the real one (parameter). In this configuration
let us consider such a 𝑚 input 𝑝 output 𝜌-parametrized dynamical system described by a 𝑛-th order differential
algebraic equation (DAE) model denoted S(𝜌) : (E(𝜌),A(𝜌),B(𝜌),C(𝜌), 0) given as

S(𝜌) :
{

E(𝜌) ¤x(𝑡) = A(𝜌)x(𝑡) + B(𝜌)u(𝑡) , y(𝑡) = C(𝜌)x(𝑡) where
E(𝜌),A(𝜌) ∈ R𝑛×𝑛,B(𝜌) ∈ R𝑛×𝑚,C(𝜌) ∈ R𝑝×𝑛, 𝜌 ∈ R. (16)

with associated transfer function H : (C × R) → C𝑝×𝑚

H(𝜉, 𝜌) = C(𝜌)𝚽(𝜉, 𝜌)B(𝜌) where 𝚽(𝜉, 𝜌) = (𝜉E(𝜌) − A(𝜌))−1 ∈ C𝑛×𝑛. (17)

As for the Loewner case, let us assume that function (17) can be expressed in the Lagrange, using the distinct
Lagrange support points 𝜆𝑖 and 𝜋 𝑗 , as (for 𝛼𝑖 𝑗 ≠ 0)

H(𝜉, 𝜌) =
∑𝑛+1

𝑖=1
∑𝑚+1

𝑗 𝛽𝑖 𝑗q𝑖 𝑗 (𝜉, 𝑝)∑𝑛+1
𝑖=1

∑𝑚+1
𝑗=1 𝛼𝑖 𝑗q𝑖 𝑗 (𝜉, 𝑝)

where q𝑖 𝑗 (𝜉, 𝑝) =
1

(𝜉 − 𝜆𝑖) (𝜌 − 𝜋 𝑗 )
. (18)

Computation of the approximant is done in a similar way as for the non-parametric rational case: one seeks the
𝛽𝑖 𝑗 and 𝛼𝑖 𝑗 of the rational barycentric formula (18). Let us assume that the system H(𝜉, 𝜌) is sampled along the
dynamical parameter 𝜉 and the parametric one 𝜌 as follows

{𝑧𝑘 }𝑁𝑘=1 = {𝜆𝑖}𝑛𝑖=1 ∪ {𝜇 𝑗 }
𝑛

𝑗=1 and {𝑝𝑙}𝑀𝑙=1 = {𝜋𝑖}𝑚𝑖=1 ∪ {𝜈 𝑗 }
𝑚

𝑗=1. (19)

4The approach developed in [32] interpolates more combinations of frequencies and parameter than the one in [9], which interpolates an
extended Loewner matrix, leading to the coefficients of rational function given in Barycentric form.
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Each 𝑘 = 1, . . . , 𝑁 and 𝑙 = 1, . . . , 𝑀 provides H(𝑧𝑘 , 𝑝𝑙) = Φ𝑘,𝑙 . Thus the measurement matrix reads

Φ =

[
Φ(11) Φ(12)
Φ(21) Φ(22)

]
∈ C𝑁×𝑀 , (20)

where Φ(11) = Φ1,...,𝑛/1,...,𝑚 ∈ C𝑛×𝑚, Φ(12) = Φ1,...,𝑛/1,...,𝑚 ∈ C𝑛×𝑚, Φ(21) = Φ1,...,𝑛/1,...,𝑚 ∈ C𝑛×𝑚 and
Φ(22) = Φ1,...,𝑛/1,...,𝑚 ∈ C𝑛×𝑚. The rows correspond to frozen values of 𝑧𝑘 related to the dynamical (complex)
𝜉 parameter. The columns correspond to frozen 𝑝𝑙 values related to the (real) 𝜌 parameter. Similarly to the
non-parametric case mentioned in section 2.2, one may construct the following one variable Loewner matrices

L2 ∈ C𝑛𝑚×𝑛𝑚 associated to Φ(11) along 𝜆𝑖
⋃
𝜋 𝑗

L𝜆𝑖 ∈ C𝑚×𝑚 associated to the 𝑖-th row of [Φ(11) ,Φ(12) ] along 𝑝𝑙
L𝜋 𝑗
∈ C𝑛×𝑛 associated to the 𝑗-th column of [Φ𝐻

(11) ,Φ
𝐻
(21) ]

𝐻 along 𝑧𝑘
(21)

and the global two dimensional Loewner matrix L̂2 ∈ C(𝑛𝑚+𝑛𝑚+𝑛𝑚)×(𝑛𝑚)

L̂2 =


L𝜆
L𝜋
L2

 , where L𝜆 =


e𝑇1 ⊗ L𝜆1

...

e𝑇
𝑛
⊗ L𝜆𝑛

 and L𝜋 =


L𝜋1 ⊗ e𝑇1

...

L𝜋𝑛 ⊗ e𝑇
𝑚

 . (22)

As in the non-parametric case, one important step is the determination of the minimal rational orders 𝑛 and
𝑚 in (18) hidden in the data collection. Here again, this is computed by a rank revealing operation, namely
evaluating the null-space of the single variable Loewner matrices combinations

𝑟 = max
𝑙

rankL𝑝𝑙 and 𝑞 = max
𝑘

rankL𝑧𝑘 , (23)

where L𝑝𝑙 and L𝑧𝑘 are the one dimensional Loewner matrices associated to the 𝑘-th row and 𝑙-th column of Φ,
respectively. Then, one can simply set

(𝑛, 𝑚) = (𝑟 + 1, 𝑞 + 1), (24)

and partition the data (19)-(20), and reconstruct (22). The two dimensional Lowner matrices ensure rank L̂2 =

rankL2 = 𝑛𝑚 − (𝑛 − 𝑟) (𝑚 − 𝑞) = 𝑛𝑚 − 1. The coefficients 𝛼𝑖 𝑗 and 𝛽𝑖 𝑗 of the rational two variables barycentric
function interpolating the data, are obtained by computing the null-space of L̂2 as

c = ker L̂2 where c ∈ C(𝑟+1)×(𝑞+1) (25)

Note that it is usually preferred to work with real arithmetic, e.g. for model time domain simulation or control
design and analysis. In that case 𝑧𝑘 are compiled in a closed conjugate form and support points are doubled
(refer to §A.2 of [32] for detailed exposition). Note also that a trade-off between accuracy and complexity with
both the frequency and the parameter variables can be obtained by decreasing the order 𝑟 and 𝑞 below the one
given by (23).

Following the barycentric formulae, as exposed in [32] and [9], one may reconstruct the associated multi-
valued transfer function H𝑟 ,𝑞 : (C×R) → C𝑝×𝑚 as follows (where 𝑁𝑟 ,𝑞 = 𝑟 + 2𝑞 + 2 and 𝚽(𝜉, 𝜌) ∈ C𝑁𝑟,𝑞×𝑁𝑟,𝑞 )

H𝑟 ,𝑞 (𝜉, 𝜌) = C𝚽−1 (𝜉, 𝜌)B where 𝚽(𝜉, 𝜌) =


J𝜆,𝑟 (𝜉) 0 0
A J𝑇𝜋,𝑞 (𝜌) 0
B 0 [J𝜋,𝑞 (𝜌), 𝝉]

 , (26)

with B = [0, 𝝉, 0]𝑇 ∈ R𝑁𝑟,𝑞 and C = [0, . . . , 0,−1] ∈ R𝑁𝑟,𝑞 . Moreover, the following holds (for 𝑘 = 1, . . . , 𝑟 ,
𝑙 = 1, . . . , 𝑞 and w = vect(Φ(11) ))

A:,𝑘 =


c𝑘,1
...

c𝑘,𝑞+1

 , B:,𝑘 =


c𝑘,1w𝑘,1

...

c𝑘,𝑞+1w𝑘,𝑞+1

 and 𝝉𝑘 =

( 𝑞+1∏
𝑙=1,𝑙≠𝑘

𝜋𝑘 − 𝜋𝑙
)−1

(27)
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and with

J𝜂,𝑡 (𝑥) =

𝑥 − 𝜂1 𝜂2 − 𝑥
...

. . .

𝑥 − 𝜂1 𝜂𝑡+1 − 𝑥

 ∈ C
𝑡×(𝑡+1) . (28)

Notice that (26) only depends on the extended Loewner matrix null-space c, the considered support points
{𝜆𝑖}𝑟+1𝑖=1 and {𝜋 𝑗 }𝑞+1𝑗=1 and the response data matrix {Φ(11) }𝑟+1,𝑞+1𝑖, 𝑗=1 . To stick with traditional tools deployed
in simulation and control theory, one may also recover a descriptor realization S𝑟 ,𝑞 where all the parametric
dependency is contained in the A𝑟 ,𝑞 (𝜌) operator as [9]

S𝑟 ,𝑞 :
{

E𝑟 ,𝑞 ¤x(𝑡) = A𝑟 ,𝑞 (𝜌)x(𝑡) + B𝑟 ,𝑞u(𝑡) , y(𝑡) = C𝑟 ,𝑞x(𝑡) where ,
E𝑟 ,𝑞 ,A𝑟 ,𝑞 (𝜌) ∈ C𝑁𝑟,𝑞×𝑁𝑟,𝑞 ,B𝑟 ,𝑞 ∈ C𝑁𝑟,𝑞×𝑚,C𝑟 ,𝑞 ∈ C𝑝×𝑁𝑟,𝑞 .

(29)

Remark 1 (Minimal realization in the multi-parametric case) By inspecting (26), the realization is no longer
identical to the one in the single variable case. Indeed in (26), the resolvant 𝚽(𝜉, 𝜌) includes both the dynamic
and parametric variables, leading to a realization of order 𝑁𝑟 ,𝑞 instead of 𝑟 . Finding a minimal order realization
is actually an unsolved problem so far. It has been investigated and is an important research field that can also
be connected to the linear fractional transformation research one, largely used in the control community (see
e.g. realization and control works [37, 47]).

Remark 2 (SIMO and MISO cases) The SIMO and MISO cases can also be addressed following the very
same framework, by tangentially interpolating the data instead of the element-wisely (see §A.1 of [32] for
details).

Remark 3 (About the MIMO case) The parametric extension to the MIMO case is not solved yet. Indeed, the
tangential approach used in the non-parametric case and in most of multi-port interpolation frameworks [23,54]
is not applicable as is. Indeed, the realization construction is no longer applicable. An alternative approach
is presented in [36] but which "only" interpolates a part of the data, namely Φ(11) , forgetting Φ(12) and Φ(21) .
This latter work also considers the same number of inputs and outputs.

Example 3 (Reynolds parameter dependent linearized Navier-Stokes model) Let us consider a fluid-flow
configuration. It consists of a two-dimensional open square cavity flow problem where air flows from left
to right for three different Reynolds numbers. Such a configuration, illustrated on Figure 1 (top right), is
described in detail in the original work of [13] and in [49]. For simulation, Navier-Stokes equations are
used along a mesh composed of 193, 874 triangles, corresponding to 𝑛 = 680, 974 degrees of freedom for the
velocity variables along the 𝑥 and 𝑦 axis. After linearization around three fixed points for varying Reynolds
numbers 𝑅𝑒 = {4000, 5250, 6000} and discretization along the flow axis, three dynamical models {H𝑙}3𝑙=1 can
be described as a DAE realization of order 𝑛 = 680, 974 where the input u(𝑡) is the vertical pressure actuator
located upstream of the cavity and the output y(𝑡) is a shear stress sensor, located downstream of the cavity.
Such a continuous-time 𝑛-th order realization for 𝑙 = {1, 2, 3} S𝑙 : (E,A𝑙 ,B,C, 0) where the parameter is
the Reynolds number 𝑅𝑒. In [49], the IRKA approach [30] (being a realization based H2-oriented reduction
method) is used to sequentially approximate each realization with a low dimensional one. Then, the interpolation
along the parameter is done in a second step by interpolating each coefficients in the canonical basis of the
obtained realization.

Here instead, the parametric Loewner framework is applied. The frequency response of each configuration
along {𝑧𝑘 }𝑁𝑘=1 = 𝑧0

⋃{𝚤𝜔𝑘 ,−𝚤𝜔𝑘 }100
𝑘=1, where 𝑧0 ∈ R+ and 𝜔𝑘 logarithmically-spaced frequencies. Then, twenty

intermediate configurations between each Reynolds numbers 𝑅𝑒 = {4000, 5250, 6000} are constructed by linear
interpolation. We obtain {𝑧𝑘 }𝑁=201

𝑘=1 , {𝑝𝑙}𝑁=41
𝑙=1 and thus Φ ∈ C201×41. Our objective is to come up with a

parametrized linear model that is able to faithfully reproduce the original transfer function data on a particular
range of frequencies as well as on a target parameter range5.

5Additional details and the data are available at https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Fluid_Flow_
Linearized_Open_Cavity_Model
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Figure 1: Top right: singular values drop of the one variable Loewner matrices (23). Top right: schematic view
of the geometry (with illustration of the control structure used in [47]). Middle and bottom frames:
frequency response gain and phase of the original sampled data (blue dots) and resulting parametric
model H60,20 for some parametric values (solid orange lines).
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On one hand, we form Loewner matrices by using measurements for varying frequency and constant parameter,
while on the other hand we use varying parameter and constant frequency. Figure 1 (top left) depicts the two
types of singular values. By investigating the drop in the singular values plot, we decide to use reduction orders
𝑟 = 30 and 𝑞 = 20 for building the two dimensional Loewner matrix. As we want to find a real valued rational
function rather than complex, the twice more support points are considered and realization size is increased.
The reduced linear parametric model which is sampled over the same frequency and parameter range as before.
When comparing to the original samples on Figure 1 (middle-bottom), the overall result is satisfactory, with a
model of complexity 𝑟 = 60 (instead of 𝑛 = 680, 974) an 𝑞 = 20 (instead of a collection), enforcing a drastic
memory saving, and hence, being a game changer for simulation and control design.

2.4 Generalization to discrete-time models from time-domain data
For an LTI SISO system, let the impulse response be denoted with: h = { · · · ℎ−2, ℎ−1, ℎ0, ℎ1, ℎ2, · · · }. The
associated system action S is given by the convolution sum:

S : u ↦−→ y = S(u) = h ∗ u, where (h ∗ u) (𝑡) =
∞∑︁

𝑘=−∞
ℎ𝑡−𝑘u(𝑘), 𝑡 ∈ Z. (30)

Here we restrict our attention to causal systems: h𝑘 = 0, 𝑘 < 0; furthermore it is assumed that u(𝑡) = 0, 𝑡 < 0.
Hence, one can write that

y(𝑡) = ℎ0u(𝑡) + ℎ1u(𝑡 − 1) + · · · + ℎ𝑘u(𝑡 − 𝑘) + · · · , 𝑡 ∈ Z+. (31)

In the formulation above, ℎ 𝑗 denotes the 𝑗 tℎ Markov parameter of the underlying system. In the time domain,
the data are samples of input and output signals

u𝑁 = [𝑢0, · · · , 𝑢𝑁−1], y𝑁 = [𝑦0, · · · , 𝑦𝑁−1], (32)

where, for simplicity, we have used the shortened expressions 𝑢𝑘 := 𝑢(𝑘) and 𝑦𝑘 := 𝑦(𝑘). The system
identification problem consists in recovering a discrete-time linear time invariant system compatible with the
data in (32). We seek a minimal realization (E,A,B,C,D):

S𝐷 : E x(𝑡 + 1) = Ax(𝑡) + B𝑢(𝑡), 𝑦(𝑡) = Cx(𝑡) + D𝑢(𝑡), (33)

where E,A ∈ R𝑛×𝑛,B,C𝑇 ∈ R𝑛×1, D ∈ R, and x(𝑡) ∈ R𝑛 is the state; with the transfer function

H(𝑧) = C(𝑧E − A)−1B + D =
𝑏𝑚𝑧

𝑚 + · · · + 𝑏1𝑧 + 𝑏0

𝑧𝑛 + · · · + 𝑎1𝑧 + 𝑎0
, 𝑚 ≤ 𝑛. (34)

The Markov parameters in (31) can be explicitly written in terms of matrices from the realization in (33), as
follows:

ℎ0 = D, ℎ𝑘 = CA𝑘−1B, ∀𝑘 ≥ 1. (35)

Moreover, another interpretation of Markov parameters is that they encode the behavior of the transfer function
in H(𝑧) in (34) at 𝑧 = ∞. More precisely, the values ℎ𝑘 ’s represent the coefficients of the following Laurent
series expansion of the transfer function H(𝑧):

H(𝑧) = ℎ0 + ℎ1𝑧
−1 + ℎ2𝑧

−2 + · · · + ℎ𝑘 𝑧−𝑘 + · · · (36)

The first step in formulating the data-driven identification problem is to assemble the available input-output data
into matrices with special format, i.e., Hankel matrices. Consequently, we introduce U𝑘 ∈ R𝑀×𝐿 , Y𝑘 ∈ R𝑀×𝐿

for any 𝑘 ≥ 0, as follows

U𝑘 =


𝑢𝑘 𝑢𝑘+1 · · · 𝑢𝑘+𝐿−1
𝑢𝑘+1 𝑢𝑘+2 · · · 𝑢𝑘+𝐿
.
.
.

.

.

.
. . .

.

.

.

𝑢𝑘+𝑀−1 𝑢𝑘+𝑀 · · · 𝑢𝑘+𝑀+𝐿−2


, Y𝑘 =


𝑦𝑘 𝑦𝑘+1 · · · 𝑦𝑘+𝐿−1
𝑦𝑘+1 𝑦𝑘+2 · · · 𝑦𝑘+𝐿
.
.
.

.

.

.
. . .

.

.

.

𝑦𝑘+𝑀−1 𝑦𝑘+𝑀 · · · 𝑦𝑘+𝑀+𝐿−2


. (37)

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2021-08-27



I. V. Gosea, C. Poussot-Vassal, A. C. Antoulas: Data-driven Loewner modeling and control 11

Theorem 1 The following results are given in [31]. If 𝑀 ≥ 𝑛 + rank U0, and 𝑧 ∈ C, then the following holds
true:

(a) rank [𝑧Y0 − Y1,U0] = 𝑛 + rank U0, and the rank decreases by one if 𝑧 is a pole.

(b) Let 𝚷U0 be the orthogonal projection onto the column space of U0. Then the system poles 𝑝 𝑗 are the
𝑛 finite generalized eigenvalues of the singular pencil

𝑧Q0 −Q1 = (I −𝚷U0 ) (𝑧Y0 − Y1), (38)

where rank Q0 = rank Q1 = 𝑛. It also follows that matrices Q0, Q1 have the same column and row spaces.

In order to be able to accurately extract system invariants (poles, residues, Markov parameters, etc.) from
input-output data, there are certain conditions that need to be imposed to sequence of control inputs applied. For
example, one of such conditions is the so-called persistence of excitation. However, as explained in [31], this
requirement of the input is not necessary when the initial conditions are zero, i.e. the system is at rest before the
input is applied: u(𝑡) = 0 and y(𝑡) = 0, for 𝑡 < 0. This assumption is equivalent to x(0) = 0.

Next, as explained in [31], there exists matrix Y, such that the matrix pencil (Q̂0, Q̂1), where Q̂0 = Y∗Q0,
Q̂1 = Y∗Q1, is regular (often Q̂0, Q̂1 can be taken as the leading 𝑛 × 𝑛 sub-matrices of Q0, Q1). The following
result in [31] gives a realization for a model of dimension 𝑛:

Theorem 2 For zero initial conditions, the system has a minimal realization

Ẽ = Q̂0, Ã = Q̂1, B̃ = q0, C̃ = [ℎ1, · · · , ℎ𝑛], D̃ = ℎ0,

where q0 is the first column of Q̂0 and the Markov parameters ℎ 𝑗 ’s are obtained by solving the following
linear system of equations 

𝑢0
𝑢1 𝑢0
...

. . .
. . .

𝑢𝑛 · · · 𝑢1 𝑢0



ℎ0
ℎ1
...

ℎ𝑛


=


𝑦0
𝑦1
...

𝑦𝑛


. (39)

In this case, the solution of a lower triangular system of equations is needed. It readily follows that the Markov
parameters can be computed for any input u. For more details on this procedure, we refer the reader to [31].

The result stated in Theorem 2 can indeed be further specialized for the case when of a very special input given
by u = [1, 0, · · · , 0]. Hence, when the input is an impulse, the output is a finite sequence of Markov parameters,
i.e., y = [ℎ0, ℎ1, · · · , ℎ𝑁−1]. The realization in Theorem 2 is hence modified appropriately, since the matrix
pencil is given by two Hankel matrices. Now, let S̃𝑛 be the new realization given by

Ẽ =


ℎ1 ℎ2 · · · ℎ𝑛
ℎ2 ℎ3 · · · ℎ𝑛+1
...

...
. . .

...

ℎ𝑛 ℎ𝑛+1 · · · ℎ2𝑛−1


, Ã =


ℎ2 ℎ3 · · · ℎ𝑛+1
ℎ3 ℎ4 · · · ℎ𝑛+2
...

...
. . .

...

ℎ𝑛+1 ℎ𝑛+2 · · · ℎ2𝑛


,

C̃ =
[
ℎ1, ℎ2, · · · , ℎ𝑛

]
, B̃ = C̃𝑇 , D̃ = ℎ0.

(40)

As in Section 2.2, we could further reduce the dimension of the fitted model in (40) by means of projection
(compressing the realization of order 𝑛 to one of order 𝑟 by means of orthogonal matrices computed using the
SVD). In this case, we talk about approximation, i.e. fitting a model which approximately explains the data.
Hence, let Y ∈ R𝑛×𝑟 (resp. X ∈ R𝑛×𝑟 ) be the matrix containing the first 𝑟 left and respectively, right singular
vectors of the Hankel matrix denoted in (40) by Ẽ. The reduced-order realization S̃𝑟 : (Ẽ𝑟 , Ã𝑟 , B̃𝑟 , C̃𝑟 , 0) is
computed as follows

Ẽ𝑟 = Y𝑇 ẼX , Ã𝑟 = Y𝑇 ÃX , B̃𝑟 = Y𝑇 B̃ , C̃𝑟 = C̃X, and D̃𝑟 = ℎ0. (41)
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Example 4 (A structural mechanics model) As a numerical test case, we consider the model of a building
(the Los Angeles University Hospital) from the SLICOT MOR benchmark collection. The building has 8 floors,
each having 3 degrees of freedom, i.e, displacements in x and y directions, and rotation. The original model is
hence a second-order linear system of dimension 𝑛0 = 24. It can be written equivalently as a first-order linear
system of dimension 𝑛 = 48. We slightly modify the original model by scaling the vector B ∈ R48 with 104.

The numerical treatment goes as follows: the original continuous-time LTI model of dimension 𝑛 = 48 is
discretized using a classical Backward Euler first order scheme. The simulation time horizon is [0, 5]s, while
the time step is Δ𝑡 = 4 · 10−3. The control input is chosen to be 𝑢(𝑡) = 1

10
(
cos(50𝑡) + 2 cos(20𝑡) + 3 cos(10𝑡)

)
.

Hence, by means of this time-domain simulation, we collect 𝑁 = 2001 measurements of the discretized input
and output, i.e.,as in 32. These values are depicted in the upper pane of Fig. 2. The Markov parameters are
extracted by following the approach in (39), and are depicted in the lower pane of Fig. 2 (there, the magnitude
of the error between the true Markov parameters and the estimated ones is shown in orange).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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input

output

200 400 600 800 1000 1200 1400 1600 1800

-0.1

0

0.1

0.2

0.3 True

Estimated

200 400 600 800 1000 1200 1400 1600 1800

10
-15

Figure 2: Samples of the input and output signals (up) and the true and recovered Markov parameters (down).
Next, form a 1000 × 1000 Hankel matrix as in (40). The decay of its singular values is displayed in the upper

pane of Fig. 3. Then, choose the truncation order 𝑟 = 20, and construct a realization of order 𝑟 as presented in
(41). Finally, convert this discrete-time model back to the continuous time, and compare the frequency response
of the original model of order 𝑛, with that of the reduced one of order 𝑟 (on a range of 500 frequency points
in the interval [100, 102]). The results (frequency responses and the approximation error) are presented in the
lower pane of Fig. 3. Indeed, the model is well approximated by means of the proposed method.
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Figure 3: Decay of the Hankel singular values (up) and frequency responses computations: original, reduced
and the approximation error (down).

2.5 Extensions to nonlinear systems
Consider a nonlinear system described by the following equations

S𝑁 :

{
¤x(𝑡) = f (x(𝑡)) + g(x(𝑡))u(𝑡),
y(𝑡) = Cx(𝑡),

(42)

where 𝑡 > 0, x(0) = x0 and the nonlinear functions f, g : R𝑛 → R𝑛 are assumed to be analytic in x(𝑡). We also
assume that the output depends linearly on the variable x(𝑡), i.e., y(𝑡) = Cx(𝑡).

In this section, we will focus on a recent extension of the Loewner framework to reducing bilinear systems. The
motivation for this choice is that any smooth, nonlinear system with analytical nonlinearities can be approximated
by a bilinear system. This is accomplished by means of a technique, commonly known as Carleman linearization
(see [18, 52]). Since this is based on Taylor expansion and truncation, the resulting bilinear system will
approximate the original nonlinear system depending on the number of terms kept in the expansion. In many
practical applications, approximating the original system is sufficient for a large variety of tasks. We proceed by
writing the truncated Taylor series for the non-linear functions f and g, where 𝑁 represents the truncation index,
i.e. {

f (x) = ∑𝑁
𝑘=1 F𝑘x(𝑁 ) = F1x + F2x(2) + . . . + F𝑁 x(𝑁 ) ,

g(x) = ∑𝑁−1
𝑘=0 G𝑘x(𝑘) = G0 +G1x + . . . +G𝑁−1x(𝑁−1) .

(43)

where G0 ∈ R𝑛×1,F 𝑗 ,G 𝑗 ∈ R𝑛
𝑗×𝑛 𝑗

, 𝑗 > 1. Here, F1,G1 denote the Jacobian matrices of f and g, respectively,
and F𝑘 ,G𝑘 denote the matrices of higher derivatives. Moreover x(𝑘) denotes the Kronecker product of the state
variable x with itself (k times). The next step is to introduce a new state variable x⊗ (𝑡) as

x⊗ (𝑡) =
[

x(𝑡) x(2) (𝑡) . . . x(𝑁 ) (𝑡)
]𝑇 ∈ R𝑛(𝑁 ) ,
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where 𝑛(𝑁 ) = 𝑛 + 𝑛2 + ... + 𝑛𝑁 = 𝑛𝑁−𝑛
𝑛−1 . This is obtained by concatenating all higher powers of vector x (up to

𝑁). In this way, by computing derivatives of x(𝑘) , we obtain a bilinear system with the following realization{
¤x⊗ (𝑡) = A⊗x⊗ (𝑡) + N⊗x⊗ (𝑡)u(𝑡) + B⊗u(𝑡),

y = C⊗x⊗ (𝑡), (44)

where x⊗ (0) = 0 and the matrices A⊗,N⊗ ∈ R𝑛(𝑁 )×𝑛(𝑁 ) ,B⊗,
(
C⊗

)𝑇 ∈ R𝑛(𝑁 ) are as in Section 2.1.1 of [27]. In
what follows, we employ a more generic definition of bilinear systems SB = (C,E,A,N,B), characterized by:

S𝐵 : E¤x(𝑡) = Ax(𝑡) + Nx(𝑡)u(𝑡) + Bu(𝑡), y(𝑡) = Cx(𝑡), (45)

where E, A, N ∈ R𝑛×𝑛, B ∈ R𝑛×𝑚, C ∈ R𝑝×𝑛 and x ∈ R𝑛, u, y ∈ R. The matrix E is assumed to be non-singular.
Also, for simplicity of exposition, we will discuss only the SISO case. More details on bilinear system model
order reduction can be found in [14, 17, 21]. Bilinear systems as in (45) are equivalent an infinite collection of
coupled linear time-varying systems of the form:

E¤x1 (𝑡) = Ax1 (𝑡) + Bu(𝑡), E¤x𝑖 (𝑡) = Ax𝑖 (𝑡) + Nx𝑖−1 (𝑡)u(𝑡), 𝑖 ≥ 2. (46)

The time-varying factor appears only in the matrices that scale the control input u(𝑡) at each level 𝑖 ≥ 2. Based
on (46), the solution of (45) is decomposed as x(𝑡) = ∑∞

𝑖=1 x𝑖 (𝑡). Furthermore, the input-output representation
of the bilinear system SB can be expressed in terms of the Volterra series representation ([21, 52]). Moreover,
considering xℓ−1 (𝑡) in the ℓtℎ equation as a pseudo-input for 𝑙 = 1, 2, . . ., the frequency-domain behavior is
described by a series of generalized transfer functions as given also in [6, 21, 52]:

Hℓ (𝑠1, 𝑠2, . . . , 𝑠ℓ) = C𝚽(𝑠1) N𝚽(𝑠2) N · · · N𝚽(𝑠ℓ) B, (47)

where the resolvent of the pencil (A,E) is denoted by 𝚽(𝜉) = (𝜉E − A)−1. The characterization of bilinear
systems by means of the rational functions in (47) suggests that reduction of such systems can be performed by
means of the Loewner framework. In what follows, we will review some highlights of the procedure originally
presented in [6]. We use the concept of multi-tuples, composed of multiple interpolation points corresponding
to evaluations of the transfer functions in (47). For simplicity, we will assume that one set of right multi-tuples
𝝀, and one set of left multi-tuples 𝝁 with the same number of interpolation points (denoted with 𝑘), are given as

𝝀 = {{𝜆1}, {𝜆2, 𝜆1}, . . . , {𝜆𝑘 , . . . , 𝜆2, 𝜆1}} ,
𝝁 = {{𝜇1}, {𝜇1, 𝜇2}, . . . , {𝜇1, 𝜇2, . . . , 𝜇𝑘 }} .

(48)

For the tuples in (48), we introduce the associated generalized controllability and observability matrices, denoted
with R ∈ C𝑛×𝑘 , and respectively with O ∈ C𝑘×𝑛, as in [6], i.e.:

R = [ 𝚽(𝜆1)B, 𝚽(𝜆2)N𝚽(𝜆1)B, · · · , 𝚽(𝜆𝑘 )N𝚽(𝜆𝑘−1)N · · · N𝚽(𝜆1)B] ,

O =


C𝚽(𝜇1)
C𝚽(𝜇1)N𝚽(𝜇2)

...

C𝚽(𝜇1)N𝚽(𝜇2)N · · · N𝚽(𝜇𝑘 )


. (49)

As shown in [6], the matrices R and O defined in (49), satisfy the following generalized Sylvester equations:

AR + NR SR + B R = ER 𝚲

O A + SL O N + L C = MO E.
(50)

2.5.1 The generalized Loewner pencil

Given the above notations, we introduce the following matrices, i.e., the generalized Loewner matrix L, and the
generalized shifted Loewner matrixM

L = −O ER ∈ C𝑘×𝑘 , M = −O AR ∈ C𝑘×𝑘 . (51)
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In addition we define the quantities

T = O NR ∈ C𝑘×𝑘 , V = O B ∈ C𝑘 and W = CR ∈ C1×𝑘 . (52)

Note that L and M as defined above are indeed Loewner matrices, that is, they can be expressed as divided
differences of appropriate transfer function values of the underlying bilinear system; the following equalities
hold:

L( 𝑗 , 𝑖) =
H 𝑗+𝑖−1 (𝜇1, . . . , 𝜇 𝑗 , 𝜆𝑖−1, . . . , 𝜆1) −H 𝑗+𝑖−1 (𝜇1, . . . , 𝜇 𝑗−1, 𝜆𝑖 , . . . , 𝜆1)

𝜇 𝑗 − 𝜆𝑖

M( 𝑗 , 𝑖) =
𝜇 𝑗H 𝑗+𝑖−1 (𝜇1, . . . , 𝜇 𝑗 , 𝜆𝑖−1, . . . , 𝜆1) − 𝜆𝑖H 𝑗+𝑖−1 (𝜇1, . . . , 𝜇 𝑗−1, 𝜆𝑖 , . . . , 𝜆1)

𝜇 𝑗 − 𝜆𝑖
,

(53)

while V( 𝑗 , 1) = H 𝑗 (𝜇1, . . . , 𝜇 𝑗−1, 𝜇 𝑗 ), W(1, 𝑖) = H𝑖 (𝜆𝑖 , 𝜆𝑖−1, . . . , 𝜆1), and
T( 𝑗 , 𝑖) = H 𝑗+𝑖 (𝜇1, . . . , 𝜇 𝑗−1, 𝜇 𝑗 , 𝜆𝑖 , 𝜆𝑖−1, . . . , 𝜆1). This result shows that all quantities of the bilinear Loewner
surrogate model can be indeed computed using only data, and the realization is written concisely as

Ê = −L, Â = −M, N̂ = T, B̂ = V, Ĉ =W. (54)

It was shown in [6], that the bilinear model of dimension 𝑘 in (54) matches a total of 2𝑘 + 𝑘2 transfer function
values of the original bilinear system of dimension 𝑛.

If necessary, the model given is (54) is further reduced similarly to the classical linear case, e.g., as in (12).
This is done by projecting with special matrices using the singular value decay of the Loewner pencil involved.
This provides a useful indicator for choosing the truncation order ([6]).

Example 5 (An illustrative example) Given a SISO bilinear system as in (45), given by (C,E,A,N,B) of
order 𝑛, consider the tuples of left and right interpolation points:

[
{𝜇1} {𝜇1, 𝜇2}

]
,
[
{𝜆1}, {𝜆2, 𝜆1}

]
.

The generalized observability and controllability matrices are

O =

[
C(𝜇1E − A)−1

C(𝜇1E − A)−1N(𝜇2E − A)−1

]
,

R =
[
(𝜆1E − A)−1B, (𝜆2E − A)−1N(𝜆1E − A)−1B

]
.

The Loewner model matrices can be written in terms of data as:

L =

[ H1 (𝜇1)−H1 (𝜆1)
𝜇1−𝜆1

H2 (𝜇1 ,𝜆1)−H2 (𝜆2 ,𝜆1)
𝜇1−𝜆2

H2 (𝜇1 ,𝜇2)−H2 (𝜇1 ,𝜆1)
𝜇2−𝜆1

H3 (𝜇1 ,𝜇2 ,𝜆1)−H3 (𝜇1 ,𝜆2 ,𝜆1)
𝜇2−𝜆2

]
= −OER,

M =

[
𝜇1H1 (𝜇1)−𝜆1H1 (𝜆1)

𝜇1−𝜆1

𝜇1H2 (𝜇1 ,𝜆1)−𝜆2H2 (𝜆2 ,𝜆1)
𝜇1−𝜆2

𝜇2H2 (𝜇1 ,𝜇2)−𝜆1H2 (𝜇1 ,𝜆1)
𝜇2−𝜆1

𝜇2H3 (𝜇1 ,𝜇2 ,𝜆1)−𝜆2H3 (𝜇1 ,𝜆2 ,𝜆1)
𝜇2−𝜆2

]
= −OAR,

T =

[
H2 (𝜇1, 𝜇2) H3 (𝜇1, 𝜆2, 𝜆1)

H3 (𝜇1, 𝜇2, 𝜆1) H4 (𝜇1, 𝜇2, 𝜆2, 𝜆1)

]
= ONR,

V =

[
H1 (𝜇1)

H2 (𝜇1, 𝜇2)

]
= OB, W =

[
H1 (𝜆1) H2 (𝜆2, 𝜆1)

]
= CR .

The surrogate bilinear system constructed as in (54) matches eight transfer function values (47) of the original
system, namely:

two of H1 : H1 (𝜇1), H1 (𝜆1),
three of H2 : H2 (𝜇1, 𝜇2), H2 (𝜇1, 𝜆1), H2 (𝜆2, 𝜆1),

two of H3 : H3 (𝜇1, 𝜇2, 𝜆1), H3 (𝜇1, 𝜆2, 𝜆1), and
one of H4 : H4 (𝜇1, 𝜇2, 𝜆2, 𝜆1).

Example 6 (Viscous (bi)linearized Burgers’ equation model) We choose as a numerical test-case example,
a discretized model of the viscous Burgers’ equation (previously presented also in [6]). The original partial
differential equation is given by
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𝜕𝑣(𝑥, 𝑡)
𝜕𝑡

+ 𝑣(𝑥, 𝑡) 𝜕𝑣(𝑥, 𝑡)
𝜕𝑥

=
𝜕

𝜕𝑥

(
𝜈
𝑣(𝑥, 𝑡)
𝜕𝑥

)
, (𝑥, 𝑡) ∈ (0, 1) × (0, 𝑇) , (55)

subject to the initial and boundary conditions given by
𝑣(𝑥, 0) = 𝑓 (𝑥), 𝑥 ∈ [0, 1], 𝑣(0, 𝑡) = 𝑢(𝑡), 𝑣(1, 𝑡) = 0, 𝑡 > 0 .

The above system occurs in the area of fluid dynamics where it can be used for modeling gas dynamics and
traffic flow. The solution 𝑣(𝑥, 𝑡) can be interpreted as a function describing the velocity at (𝑥, 𝑡). In general, the
viscosity coefficient 𝜈(𝑥, 𝑡) might depend on space and time as well.

Some simplifications are performed, and the viscosity coefficient 𝜈(𝑥, 𝑡) = 𝜈 is assumed to be constant.
Furthermore, a zero initial condition on the system, i.e., 𝑓 (𝑥) = 0, is considered. Finally, we assume that the
left boundary is subject to a control.

Start with a spatial discretization of equation (55), using an equidistant step size ℎ = 1
𝑛+1 where n denotes

the number of interior points of the interval (0, 1). By using first-order derivative approximations schemes, a
nonlinear model is obtained (with quadratic-bilinear nonlinearities). Next, use the Carleman bilinearization
technique to approximate this 𝑛thorder nonlinear system with a bilinear system of order N = 𝑛2 + 𝑛.

Denote with 𝚺𝐵 the 4970tℎ order initial bilinear system obtained by means of the Carleman bilinearization.
The first step is to collect samples from generalized bilinear transfer functions up to order two; the 400
interpolations points are chosen logarithmically spaced in the interval [10−3, 103]𝚤. Next, we construct the
bilinear Loewner matrices as presented in this section, and display the singular value decay in the upper pane of
Fig. 4. We construct a reduced-order model of order 𝑟 = 32; the poles are depicted in the lower pane of Fig. 4.
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Figure 4: The first 100 singular values of the Loewner matrices (up) and the poles of the reduced-order model
(down).

Finally, perform a time-domain simulation for a control input given by 𝑢(𝑡) = 1
5 (cos(2𝜋𝑡) + sin(20𝜋𝑡)𝑒−𝑡/5),

and on a chosen time span of [0, 10]s. The observed outputs for both the original and of the reduced-order
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bilinear systems are displayed in the upper pane of Fig. 5, while the approximation error is depicted in the lower
pane of Fig. 5.
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Figure 5: Time-domain simulations: the observed outputs (up) and the approximation error in the time domain
(down).

3 Examples of model reduction of large-scale systems
In this section, we will demonstrate how Loewner-based rational approximation and reduction features have
been successfully applied on real-life industrial problems. First, two benchmarks sequentially involving a
generic business jet aircraft model and measurements data obtained by Dassault-Aviation, a French aircraft
supplier, are considered (see [40, 41, 48, 50]). Second, a benchmark involving a simplified open channel model
constructed by Electricité De France, the French electricity supplier is involved (see [19]). More specifically,
a gust oriented model described by an non-rational transfer function is considered (section 3.1), then ground
vibration experimental data (in section 3.2) and finally, linear partial differential equations (in section 3.3).

3.1 Gust load oriented generic business jet aircraft model
An important aircraft design criterion concerns the so-called gust load envelope monitoring. Prior to any test or
exploitation, aircraft structural integrity should be guaranteed. One important certificate is to preserve and limit
the worst case loads along the wings in response to vertical gust episodes. To this aim, it is standard to consider
vertical gust disturbances w, modelled through the so-called "1-cosine" profiles [50]. The gust load envelope
is simply the worst case load responses along the wing span in reaction to the set of many differently chosen
time-domain vertical wind gust profiles affecting the aircraft structure. In the preliminary conception step, the
aircraft is designed by experts so that the wings support a given nominal load envelope, dictated by physical
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considerations such as desired aircraft manoeuvrability, gust, and many other manufacturing constraints. The
larger the supported loads are, the larger the structural stiffeners and mass reinforcements should be. The
aircraft mass is consequently bigger and its consumption during flight increased. In this context, gust load
alleviation (GLA) control function plays an important role in the aircraft conception: it is aimed at lowering
the loads envelope and thus at reducing the aircraft overall mass, consumption and emissions (see [50] for
details). To achieve this GLA function, as illustrated in Figure 6, model-based control design approaches are
usually preferred. In this section, following [50], we illustrate through a generic business jet aircraft model
constructed by Dassault-Aviation, how the Loewner framework is a pivotal tool used in the industry to simplify
the complexity of these dynamical models, prior control design and analysis.

Aicraft aeroelas-
tic and fluid model

Actuators Sensors
Computational

delay 𝜏𝑚
y

z

u

w

Flight
controller

GLA controller

Generic BizJet aircraft H

Figure 6: Closed-loop architecture of the GLA problem. The complete aeroservoelastic dynamical aircraft
model H includes the "Flight controller", "Actuators", "Sensors" and "Computational delay 𝜏𝑚". The
"GLA controller" is GLA function to be computed. Signals w, u, z and y denote the exogenous inputs,
control inputs, performance outputs and measurements, respectively. Then ℎ denotes the sampling
time for the GLA.

At each flight and mass configuration, a gust load oriented linear dynamical model considering aerodynamical,
structural and actuator dynamics is constructed. Generic aircraft models have the following continuous-time
realization

S :


Ex(𝑡) = A0x(𝑡) + A1x(𝑡 − 𝜏1) + A2x(𝑡 − 𝜏2) + B𝑢u(𝑡) + B𝑤w(𝑡) ,
y(𝑡) = C0x(𝑡) + C1x(𝑡 − 𝜏𝑚) where ,
E,A0,A1,A2 ∈ R𝑛×𝑛,B𝑢 ∈ R𝑛×𝑛𝑢 ,B𝑤 ∈ R𝑛×𝑛𝑤 ,C0,C1 ∈ R𝑝×𝑛.

(56)

where x(𝑡) ∈ R𝑛, u(𝑡) ∈ R𝑛𝑢 , w(𝑡) ∈ R𝑛𝑤 (𝑚 = 𝑛𝑢 + 𝑛𝑤 ) and y(𝑡) ∈ R𝑝 are the internal variables, control
input, exogenous gust input and output signals, respectively. In the considered case, 𝑛𝑢 = 3, 𝑛𝑤 = 1 (𝑚 = 4),
𝑝 = 5 and 𝑛 ≈ 500. The presence of internal delays is caused by the physical restitution of the gust impact over
the fuselage at three different locations which are function of the aircraft velocity. Moreover, due to the model
construction method (see e.g. [51] or [50]), the E matrix may also be rank deficient. Here, due to the additional
double derivative and delay structure added to accurately describe the gust disturbance effect along the fuselage,
rank E = 𝑛 − 6. Following (56), the gust load model transfer associated function H, from [u𝑇 ,w𝑇 ]𝑇 to y thus
reads,

H(𝑠) =
(
C0 + C1𝑒

−𝜏𝑚𝑠
) (
𝑠E − A0 − A1𝑒

𝜏1𝑠 − A2𝑒
𝜏2𝑠

)−1B ∈ C𝑝×𝑚 (57)
We seek a simplified rational model description to be used in place of (57) for fast simulation, control design

and (modal) analysis while avoiding dealing with an infinite number of eigenvalues and transcendental equations
related to the resolvant 𝚽(𝑠) =

(
𝑠E−A0 −A1𝑒

𝜏1𝑠 −A2𝑒
𝜏2𝑠

)−1. The first step in the process consists in gridding
the interpolation (support points) along the imaginary axis and collecting the associated response as follows
(with 𝑛 = 𝑛 = 𝑛 = 500, 2𝑛 = 𝑁 and 𝜔𝑖 ≠ 𝜔 𝑗 ):

{𝑧𝑘 }𝑁𝑘=1 = {𝚤𝜔𝑖 ,−𝚤𝜔𝑖}𝑛/2𝑖=1 ∪ {𝚤𝜔 𝑗 ,−𝚤𝜔 𝑗 }𝑛/2𝑗=1 and
{Φ𝑘 }𝑁𝑘=1 = {Φ𝑖 ,−Φ𝑖}𝑛/2𝑖=1 ∪ {Φ 𝑗 ,−Φ 𝑗 }𝑛𝑗=1.

(58)
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where 𝜔𝑖 , 𝜔 𝑗 ∈ R+ are the frequencies at which one evaluates each transfer H. In our application 𝜔𝑖 and 𝜔 𝑗 are
selected to be logarithmically spaced.

Remark 4 (About a Padé delay approximation) One option is to replace the delays with a Padé approxima-
tion, which preserves the gain but modifies the phase. While this is classically used in many applications, it is,
to the authors experience, not the most accurate way to deal with internal and external delays. Indeed, Padé
often results in significant error in the phase, which can be inappropriate for flexible structures. In addition, the
use of Padé will drastically increase the model internal dimension which in turn is not appropriate for model
reduction. Therefore, the accuracy / complexity ratio is not in favour of Padé approximation (see also Figure 7).

Figure 7 illustrates the transfer function from the gust disturbance to a wing bending moment output, used
to monitor the gust envelope. It compares the responses of the original irrational model H with its rational
approximate H𝑛 constructed with Loewner and its rational approximation HPadé obtained with Padé.

Figure 7: Top: frequency response gain (left) and impulse response (right). Bottom: frequency phase response.
Comparison of the original model with the rational approximation obtained by Loewner interpolation
and Padé.

Figure 7 emphasises the good performance of the rational model obtained by Loewner after reducing the
complexity of the model (internal variable reduced). Most interestingly, the phase is much well captured by
the Loewner approach than with Padé, using even less internal variables. In [50], this rational model is then
used for frequency-limited reduction and GLA controller synthesis, leading to an impressive load envelope
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reduction which is not achievable without the use of a Loewner interpolatory approach. This result emphasizes
the importance of the Loewner framework for aircraft consumption reduction objective.

3.2 Ground vibration tests on Business jet aircraft
We continue on the business aircraft benchmark provided by Dassault-Aviation. Now we move from the gust
load problem to the vibration one. While the former is more related to (the low frequency) structure and
consumption issues, the latter is related to (the medium frequency) fatigue and comfort issues. Anti-vibration
controllers are usually designed using model-based approaches in order to reduce the undesirable amplifications
of the aerodynamical effects on the fuselage around some specified frequencies (see [48] for details). After such
a model-based design and validation step, Ground Vibration Tests (GVT) are performed to validate the control
performance, but also to validate the model.

The benchmark considered here illustrates the generic business jet GVT, performed on a Falcon 7X at Istres,
France, in 2015 [40, 41]6. The first step consists in designing an anti-vibration controller aimed at attenuating
the vibrations at the passenger cabin and specified fatigue locations in response to aerodynamics turbulence
occurring at specified frequencies. At the next step Dassault-Aviation engineers implemented the control law on
the real business jet aircraft. Then, using shakers applied at some aircraft locations, the structure was excited,
thus simulating aerodynamic disturbances. Hundreds of sensors were positioned on the aircraft and used for
analysis7. Figure 8 (top) shows the frequency response of the data collected from a single-input and 100-outputs;
this is compared with the frequency response of a rational model of minimal complexity constructed, in open
loop e.g. without anti-vibration devices. The singular values drop is also illustrated in Figure 8 (bottom). In
both cases, the truncation and rank computation are performed via SVD8.

6Flight test have been performed in 2017, validating the results.
7https://drive.google.com/file/d/1H2GqlYkiny_PZND2ekB6swSetoGcmFTK/view shows a video that illustrates the kinematic

effect of the control law acting on the tail surface to reduce the vibrations.
8Notice that other methods can be considered such as CUR, EV, see e.g. [33].
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Figure 8: Top: singular value frequency response of the data (blue circles) the minimal Mc Millan degree rational
function (solid orange) and reduced 30-th order rational model (dashed black). Bottom: singular values
drop of the Loewner pencil.

Additional information may be found in [40, 41] or in §2.4.7 of [44]. In this industrial challenging case, one
important feature of the Loewner framework illustrated here is to be able to recover the transfer function from
raw data, and perform modal (residue) analysis. In the considered industrial application, such a feature allows
engineers to re-adjust the theoretical models accordingly to the collected real data, detect some new phenomena
and re-adjust the control law. This step contributes to the quest for a so-called digital twin.

3.3 Hydroeletricity open-channel benchmark
In this third example, we consider a model representing the level ℎ of an open-channel as a function of the inflow
𝑞𝑖 and outflow 𝑞𝑜 inputs. Such a model is used by hydro-electricity engineers from Electricité De France to
monitor the level of a river in order to control the available energy (note that in real applications, these model
come in a network). One important feature of open-channels is that they can be viewed as easily available energy
tanks. Indeed, unlike windmills or nuclear factories, energy is available on demand, and unlike solar panels,
energy (water) can be stored. In France, in May 2021, the hydraulic energy represented about 10% of the total
produced energy9. Well understanding the underlying dynamics in view of energy management is therefore
crucial in the global warming frame.

9https://www.rte-france.com/eco2mix/la-production-delectricite-par-filiere.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2021-08-27

https://www.rte-france.com/eco2mix/la-production-delectricite-par-filiere


I. V. Gosea, C. Poussot-Vassal, A. C. Antoulas: Data-driven Loewner modeling and control 22

Mathematically such models for such benchmarks belong to the class of linear partial differential equations
(PDE). Such a models come from the so-called Saint-Venant equations, used to model the dynamics of open
channel flow (see [19] for a detailed description). They consist of two nonlinear hyperbolic PDEs. For a channel
of length 𝐿 and bottom slope 𝐼, we have

𝜕𝑆

𝜕𝑡
+ 𝜕𝑄
𝜕𝑥

= 0 (mass conservation)
𝜕𝑄

𝜕𝑡
+ 𝜕 (𝑄

2/𝑆)
𝜕𝑥

+ 𝑔𝑆 𝜕𝐻
𝜕𝑥

= 𝑔𝑆(𝐼 − 𝐽) (momentum conservation),
(59)

where 𝑥 ∈ [0, 𝐿] is the spatial variable, 𝑡 the time variable, 𝐻 (𝑥, 𝑡) the water depth, 𝑆(𝑥, 𝑡) the wetted area,
𝑄(𝑥, 𝑡) the discharge, 𝑔 the gravity acceleration and 𝐽 the Manning-Strickler friction10.

These equations are quite complex to simulate and analyse. Under mild assumptions a linearization around an
equilibrium point (𝑄0, 𝐻0), detailed in [19], expresses the variation relations (𝑞, ℎ), between inflow (𝑞𝑒, being
𝑞 at 𝑥 = 0), outflow (𝑞𝑠 , being 𝑞 at 𝑥 = 𝐿) and the water depth (ℎ, at a given measurement point 𝑥) as follows,

ℎ(𝑥, 𝑠) = G𝑒 (𝑥, 𝑠)𝑞𝑒 (𝑠) −G𝑠 (𝑥, 𝑠)𝑞𝑠 (𝑠), (60)

where

G𝑖 (𝑥, 𝑠) =
𝜆1 (𝑠)𝑒𝜆2 (𝑠)𝐿+𝜆1 (𝑠)𝑥 − 𝜆2 (𝑠)𝑒𝜆1 (𝑠)𝐿+𝜆2 (𝑠)𝑥

𝐵0𝑠(𝑒𝜆1 (𝑠)𝐿 − 𝑒𝜆2 (𝑠)𝐿)
and

G𝑜 (𝑥, 𝑠) =
𝜆1 (𝑠)𝑒𝜆1 (𝑠)𝑥 − 𝜆2 (𝑠)𝑒𝜆2 (𝑠)𝑥

𝐵0𝑠(𝑒𝜆1 (𝑠)𝐿 − 𝑒𝜆2 (𝑠)𝐿)
.

(61)

Clearly G𝑖 and G𝑜 yield a non-rational infinite dimensional model. For a frozen measurement point 𝑥 = 𝑥𝑚,
then one has

ℎ𝑥𝑚 (𝑠) = H(𝑠)u(𝑠) = G𝑖 (𝑥𝑚, 𝑠)𝑞𝑖 (𝑠) +G𝑜 (𝑥𝑚, 𝑠)𝑞𝑜 (𝑠). (62)

where u(𝑠) contains the two inputs 𝑞𝑖 (𝑠) and 𝑞𝑜 (𝑠) and where H is now a one output two inputs complex-valued
transfer function. Figure 9 illustrates the approximation features and accurate reconstruction of the open-channel
phenomenon. To obtain this result, we consider complex conjugated points {𝑧𝑘 }𝑁𝑘=1 = {𝚤𝜔𝑘 ,−𝚤𝜔𝑘 }𝑁 /2𝑘=1 (where
𝑛 = 𝑛 = 300 = 𝑁/2) sampled between 10−4 and 101.5 in logarithmic space. Then, the responses

H(𝑠) and H̃(𝑠) = H(𝑠) 𝑠

(𝑠 + 10−2) (𝑠 + 10−3)
, (63)

are computed. Dealing with H remains standard with the framework presented so far. By approximating
H̃ removes the integral action and enforces roll-off in high frequency, and thus allows to deal with limited
energy functions (H̃ ∈ H2). Therefore, the resulting interpolated model should be post processed as H̃𝑛 ←
H𝑛
(𝑠+10−2) (𝑠+10−3)

𝑠
to recover the original one.

10Numerical values of this model are provided at https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/
Hydro-Electric_Open_Channel
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Figure 9: Top: frequency response comparison between the original irrational model an two approximated
Loewner models. Bottom left: Singular values drop of the Loewner pencil for the two models. Bottom
right: eigenvalues of the resulting minimal order rational approximation.

As illustrated on Figure 9, both approaches lead to a perfect matching of the irrational transfer. Interestingly,
working with H̃ instead of H leads to a model with all singularities on the left hand side plus the 0 one. Working
with the shifted function H̃ illustrates how one can perform grey box identification by simply shifting the original
data. Here, the integral action (physically known from open-channel models) is removed and added afterward.
The trick of working with H2 functions instead of H∞ ones (as H is) is more numerical than theoretical as is
avoids bad conditioning of exact 0 singularities and focusing on low dynamics first. Moreover, in the similar
flavour, one may also remove the delay part of such a transfer by pre-multiplying by 𝑒𝑠𝜏 , where 𝜏 ∈ R+ is the

estimated delay of the function, and thus dealing with H̃(𝑠) = H(𝑠) 𝑠𝑒𝑠𝜏

(𝑠 + 10−2) (𝑠 + 10−3)
instead. This feature

is relevant for real-life applications.
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4 Control in the Loewner framework
Let us now deviate from the original purpose of the Loewner framework, initially introduced to provide solutions
to the identification, approximation and reduction problems through the lens of rational function construction.
Here instead, such a framework is used for feedback controller design. More specifically it is used as in some
traditional loop shaping methods, to fit a reference controller [20,22,39,57]. However, in the proposed setup, the
reference controller is not computed by means of a model but rather involving input-output data of the system.

4.1 Data-driven control, virtual reference model and Loewner framework
In this section, the Loewner framework will be used for synthesizing a controller directly from measured data.
Hence, this a data-driven control (DDC) framework11. Data-driven control consists in recasting the control
design problem as an identification one. Major advantages of this strategy are: (i) it provides a controller
tailored to the actual system and (ii) that is not dependent of the underlying mathematical model description.
This change of paradigm shifts the model identification / simplification process to the controller directly.

The considered technique belongs to the so-called reference model approaches and more specifically relies
on the definition of a so-called ideal controller, derived from a reference model. Recently [35, 55] moved the
formulation in the frequency-domain, with the use of the Loewner framework as the identification tool, allowing
to skip the controller complexity selection thanks to its rank properties (see section 2). The Loewner data-driven
control (L-DDC) is thus a combination of determining the ideal controller from frequency-domain data via a
reference model and the use of the Loewner framework [38] to construct a reduced order controller. Such an
interpolatory-based data-driven control design solves problems faced by practitioners: (i) the controller design is
directly obtained using open-loop raw data collected on the experimental setup, (ii) without any prior controller
structure or order specification. This approach has proven to be effective on infinite dimensional systems [28],
for digital control [55], experimental application [45] and relates to data-driven stability analysis [46].

4.2 The L-DDC rationale at a glance
The L-DDC procedure boils down to two steps: first deriving the ideal controller definition and second the
controller identification via interpolation in the Loewner framework (in [28] the use of Loewner in this context
is compared with AAA and VF). We recall the mains steps in the SISO case. Following Figure 10, the objective
is to find a controller K ∈ C that minimizes the difference between the resulting closed-loop and a given user-
defined reference model M ∈ C. This is made possible through the definition of the ideal controller K★, being
the LTI controller that would have given the desired reference model behaviour if inserted in the closed-loop.
The latter is defined as K★ = H−1M(𝐼 −M)−1. In the data-driven case, this definition may be recast as a discrete
set of equations (where {𝑧𝑘 }𝑁𝑘=1 ∈ C, 𝑘 = 1, . . . , 𝑁)

K★(𝑧𝑘 ) = H(𝑧𝑘 )−1M(𝑧𝑘 ) (𝐼 −M(𝑧𝑘 ))−1, (64)

where H(𝑧𝑘 ) is the evaluation of the considered model, if available. In an experimental context, one usually
considers sampling H at 𝑧𝑘 = 𝚤𝜔𝑘 (𝜔𝑘 ∈ R+). In this case input-output measurements are given as H(𝚤𝜔𝑘 ) =
y(𝚤𝜔𝑘 )/u(𝚤𝜔𝑘 ), where u and y are the Fourier transform of u and y, respectively. Finding a controller K that fits
K★(𝑧𝑘 ) can be considered to be an identification problem. Thus, in the Loewner framework, the control design
boils down to finding a rational function K interpolating (64).

11The reader may notice that DDC methods have a long history dating to the proportional, integral, derivative (PID) tuning method by
Ziegler-Nichols in early 40’s or the self tuning regulator by Åström in the 90’s (see e.g. §3 of [34] for more details and references).
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K(𝜉) H(𝜉)

M(𝜉)

ur e y 𝜺

Figure 10: Data-driven control problem formulation: M is the reference model (objective) and K the controller
to be designed.

In what follows, two L-DDC applications are illustrated. The first one involves experimental data and
considers the design of a reference tracking controller applied on a pulsed fluidic actuator (in short, PFA), see
section 4.3, [45]). The second case considers a numerical benchmark representing the boundary control a wave
equation, described by an infinite dimensional equation. For this latter case, equivalence with a model-based
approach is also illustrated (see also [46]).

4.3 Pulsed fluidic actuator
The design of active closed-loop flow controllers constitutes an important field of research in fluid mechanics
(see e.g. [53,56]). The possible objectives are to maintain laminarity or delay transition to turbulence, decrease
turbulence level, reduce noise, increase lift and decrease drag, enhance mixing and heat release, etc. Without
detailing the methodology employed in each case, in most cases, both the sensor(s) and the actuator(s) are
supposed to be lumped and ideal (i.e. sensors deliver instantaneous accurate measurements and actuators deliver
the exact control signals with no delay, no noise, continuous control signal and unbounded intervals). These
developments are relevant for academic and methodological purposes. However, to move towards experimental
applications and real-life validations, it is essential to consider realistic set-ups. Considering the actuator-sensor
combination is necessary and is the core contribution of [45], where the L-DDC is applied on a PFA. PFA are
on/off actuators that blow air to modify the pressure in a flow setup. They are typically used to control fluidic
phenomena. The control setup considered is schematized on Figure 11

Controller K(𝑧)

𝑓𝑠2

PWM

𝑓𝑠1 = 𝑁 𝑓𝑠2

𝑓𝑠1 = 𝑁 𝑓𝑠2

Average

𝑓𝑠2

u(𝑡𝑘 ) y(𝑡𝑘/𝑁 )r(𝑡𝑘 ) e(𝑡𝑘 ) u(𝑡𝑘/𝑁 ) y(𝑡𝑘 )

Figure 11: PFA control setup. Controller K(𝑧) is the sampled-time control law to be computed (sampled at
𝑓𝑠2), Pulsed Width Modulation (PWM) block transforms the continuous signal into on/off values
(sampled at frequency 𝑓𝑠1) and Average block is a down-sampling function providing the mean value
of the input signal. The system is illustrated by its top view photo, where the left side represents the
PFA and the right side, the Pressure Sensor (PS).

After exciting the PFA using a pseudo random binary sequence u(𝑡𝑘/𝑛), output data y(𝑡𝑘/𝑛) are collected.
The corresponding frequency responses u and y are computed and transfer function values H(𝚤𝜔𝑘 ) are thus
obtained. Applying (64) with 𝑧𝑘 = 𝚤𝜔𝑘 and the Loewner approach, it leads to a singular value decay indicating
that a first or third order model is sufficient to recover the main dynamics (see Figure 12).
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Figure 12: Top: gain of the frequency responses of the ideal controller K★ evaluated at the available frequencies
(blue dots) an of the estimated controller K̃r (𝑠) of order 𝑟 = 1 (solid orange) and 𝑟 = 3 (dotted
black). Middle: closed-loop response estimation using controller K1 and K3 of the averaged output
y(𝑡𝑘 ) (solid orange an dotted black) based on the measured data. Time-domain response to a variable
reference trajectory r(𝑡𝑘 ) (dashed black), averaged control signal u(𝑡𝑘 ) (dotted blue) and averaged
output (solid orange).
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One important result is the ability of the L-DDC to construct, directly from raw open-loop data, a control law
performing well on an experimental setup. Relevant in this context is that the L-DDC structure and complexity
is almost automatically chosen by the Loewner framework, and no pole pre-assignment is required.

4.4 Transport phenomena benchmark
Finally, let us consider the case of a one dimensional transport equation controlled at its left boundary through
a second order actuator. This model is used in [46] or [28] and detailed in §2, Example 7 of [44]. This
phenomenon is represented by a linear PDE with constant coefficients interconnected with a second order linear
ODE actuator, as described in (65).

𝜕𝑦̃(𝑥, 𝑡)
𝜕𝑥

+ 2𝑥
𝜕𝑦̃(𝑥, 𝑡)
𝜕𝑡

= 0 (transport equation)
𝑦̃(𝑥, 0) = 0 (initial condition)

𝑦̃(0, 𝑡) =
1
√
𝑡
𝑢̃ 𝑓 (0, 𝑡) (boundary control input)

𝜔2
0

𝑠2 + 𝑚𝜔0𝑠 + 𝜔2
0
𝑢(0, 𝑠) = 𝑢 𝑓 (0, 𝑠) (actuator model),

(65)

where 𝑥 ∈ [0 𝐿] (𝐿 = 3) is the spatial variable. Then, 𝜔0 = 3 and 𝑚 = 0.5 are the input actuator parameters.
The scalar input of the model is the vertical force applied at the left boundary, i.e. at 𝑥 = 0. We denote the input
ũ(0, 𝑡) in the time-domain or u(0, 𝑠) in the complex one. Similarly, the output at location 𝑥 is given as ỹ(𝑥, 𝑡)
for the time-domain and y(𝑥, 𝑠) in the complex one. Such a transport equation set may be used to represent a
simplified one dimensional wave equation used in telecommunications, traffic jams prediction, etc.

By applying the Laplace transform, one obtains the transfer function from the input u(0, 𝑠) to the output
y(𝑥, 𝑠):

y(𝑥, 𝑠) =
√
𝜋
√
𝑠
𝑒−𝑥

2𝑠
𝜔2

0

𝑠2 + 𝑚𝜔0𝑠 + 𝜔2
0
u(0, 𝑠) = G(𝑥, 𝑠)𝑢(0, 𝑠). (66)

Relation (66) links the (left boundary) input to the output through an irrational transfer function G(𝑥, 𝑠) for
any value 𝑥12. Let us now consider that one single sensor is available and is located at 𝑥𝑚 = 1.9592 along
the 𝑥-axis13. The transfer from the same input u(0, 𝑠), denoted by u(𝑠) to y(𝑥𝑚, 𝑠) denoted by y(𝑠) then reads
y(𝑠) = y(𝑥𝑚, 𝑠) = G(𝑠, 𝑥𝑚)u(0, 𝑠) = H(𝑠)u(𝑠), where H(𝑠) is now a SISO complex-valued irrational transfer
function.

4.4.1 A model-driven approximation and control

By Loewner interpolation, the transfer function H can be approximated by a rational function H𝑟 (𝑟 = 33). Then,
standard feedback synthesis methods can be applied. In this example, the hinfstruct function (embedded in
the MATLAB Robust Control Toolbox) has been used [12]. It allows designing fixed structure controllers
while minimising some H∞-norm oriented performance criterion. Starting from H𝑟 , let us first define the
following generalised plant T = H𝑟W𝑜, where W𝑜 is the weighting filter defining the output signals on
which the H∞-norm optimisation will be performed. W𝑜 is constructed to define the desired closed-loop
performances attenuation and its bandwidth which share a similar architecture as the one on Figure 10. Using
the same notation, the performance transfer from r to e, is defined as Tre = H𝑟W𝑜. In the case considered,
one aims at tracking the reference signal r and limiting the control action u. One can then construct 𝑊𝑜 =

blkdiag
(
𝑊𝑒,𝑊𝑢

)
= blkdiag

(
10 𝑠+1

𝑠
, 𝑠+10
𝑠+1000

)
describing performance output z = blkdiag

(
𝑊𝑒e,𝑊𝑢u

)
. The 𝑊𝑒

weighting filter has been chosen to weight the sensitivity function and guarantee no steady-state error (e.g. roll-
off in low frequencies) and a bandwidth around 10−1 rad/s. 𝑊𝑢 is used to weigh the actuator action in high

12Interestingly, the exact time-domain solution of (65), along 𝑥, is given by ỹ(𝑥, 𝑡) = 𝑢̃𝑡−𝑥2
𝑓
/
√
𝑡 , where ũ 𝑓 is the output of the second

order actuator transfer function, in response to 𝑢.
13In the rest of the chapter, 𝑥 will be discretized with 50 points from 0 to 𝐿 = 3, and 𝑥𝑚 has been chosen to be located at 𝑥 ( b50 × 2/3c) .
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frequencies (here the actuator will roll-off above 10rad/s). Notice that this is also a fairly standard way of
weight selection. The H∞ control design consists in finding the controller K, mapping e to u, such that,
K := arg minK̃∈K | |F𝑙

(
Trz, K̃

)
| |H∞ , where F𝑙 (·, ·) is the lower fractional operator defined as (for appropriate

partitions of 𝑀 and 𝐾) by F𝑙 (𝑀, 𝐾) = 𝑀11 + 𝑀12𝐾 (𝐼 − 𝑀22𝐾)−1𝑀21 [37]. Moreover, it is possible to define
the class K of K to be restricted to the filtered proportional integral (PI), meaning that one is seeking K with
the following form, K(𝑠) = (𝑘 𝑝 + 𝑘𝑖 1

𝑠
) 1
𝑠/𝑎+1 , where 𝑘 𝑝 , 𝑘𝑖 , 𝑎 ∈ R. After optimisation, one obtains 𝑘 𝑝 = 0.1914,

𝑘𝑖 = 0.0251 and 𝑎 = 5667.2 (note also that in this case, the optimal attenuation reached is 𝛾∞ = 66.9558) 14.

4.4.2 Data-driven control

Let us now apply the L-DDC rationale, instead of a model based control design. As explained in §6.1-6.2 of
[34], the reference model choice is a key factor for the L-DDC success, as for any other model reference control
procedure. Indeed, the latter should not only represent a desirable closed-loop behaviour, but also achievable
dynamics of the considered system (i.e. the ideal controller should not internally destabilise the plant). A
reference model is said to be achievable by the plant if the corresponding ideal controller internally stabilises the
plant. Here let us skip this point and focus on the equivalence of model vs. data-based design. Let the reference
model M be the closed-loop rational function obtained by the previous approach interconnecting H𝑟 with the
obtained filtered PI control law obtained in the above section.

By computing the ideal controller through (64), we again compute the Loewner pencil, leading to a minimal
realization with 𝑛 = 42. Obviously, such a control order is prohibitive for classical control applications. The
singular values decay indicates that an order 𝑟 = 2 is enough to catch the main dynamics of the underlying
controller. One obtains K𝑟 (𝑟 = 2) with transfer function

K2 (𝑠) =
1082.7(𝑠 + 0.1313)

𝑠(𝑠 + 5656) , (67)

being very close to the numbers obtained by the model-based approach15. The controller and resulting close-loop
frequency response gains are illustrated on Figure 13.

14The optimisation is done using the hinfstruct routine, allowing minimising the closed-loop interconnection of Trz with K̃. In general,
we seek for | |F𝑙

(
Trz, K

)
| |H∞ = 𝛾∞ ≤ 1. Here, we simply aim to reaching stability and tracking performances.

15The model based approach yield to 1084.9(𝑠+0.1313)
𝑠 (𝑠+5667)
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Figure 13: Top: frequency response of the controller (ideal, model-based and data-driven). Bottom: open-loop
vs. closed-loop frequency responses.

Interestingly, with reference to Figure 13, K𝑟 perfectly recovers the model-based requested performances of
M with a controller of rational order two (indeed, we expected to observe this result since we knew from the
model-based approach presented in Section 4.4.1 that a rational control of order leading to this performance is
achievable).

This example demonstrates how the Loewner framework can be effectively used, either for model-based, or for
data-driven control. Interestingly, by choosing the closed-loop performances M obtained with the model-based
approach, the controller K𝑟 exactly recovers the original properties, while skipping the model construction step
and the order selection. This property reduces the model construction step and allows a quick design of the
controller. However, this main advantage is balanced by the fact that in the model-based approach, the stability
assessment is usually carried out using the approximate model, here H𝑟 . The latter being very accurate, the
eigenvalues computation is traditionally enough for concluding stability, robustness. On the contrary, in the
second data-driven approach, stability cannot be analysed as easily. However, [46] suggests an approach based
on the combination of Loewner with optimalH∞ projections.
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5 Summary and Conclusions
In this work, we have provided an inventory of selected extensions and applications of the Loewner framework.
The main philosophy of this approach is as follows: use the available data to construct a model or a controller; if
needed, apply compression techniques to reduce the complexity of the model or of the controller. The Loewner
framework was shown to be applicable for reducing large-scale dynamical systems from computational fluid
dynamics (such as the linearized Navier-Stokes model with more than half a million degrees of freedom),
to data-driven modeling in aeronautics applications, and to various benchmarks described by complicated
dynamics (characterized by irrational transfer functions, having multiple delays, with many input or output
ports, with nonlinear terms etc.). The key observation here is that one can accomplish all of these successful
endeavours by having access only to compressed data (transfer function measurements, Markov parameters,
etc.), and nothing else. Moreover, the Loewner data-driven control approach was shown to faithfully recover the
performance attained by other classical model-based control approaches. Thus, one advantage is the data-driven
characteristic, and another is the robustness of the approach. The Loewner framework is hence a valid alternative
to intrusive methodologies, and can be successfully used when data are available.
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