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Abstract

We present quadratically convergent algorithms to compute the extremal value of
a real parameter for which a given rational transfer function of a linear time-invariant
system is passive. This problem is formulated for both continuous-time and discrete-
time systems and is linked to the problem of finding a realization of a rational transfer
function such that its passivity radius is maximized. Our new methods make use of
the Hybrid Expansion-Contraction algorithm, which we extend and generalize to the
setting of what we call root-max problems.
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1 Introduction

Robustness measures play an important role in systems and control. They provide margins
for the perturbations that one can allow on a given nominal dynamical system such that
the perturbed system still performs as desired. A classical example of such a measure is
the so-called distance to instability [Van85], which measures how much one can perturb a
stable matrix before destabilization is a possibility. A generalization of this is the com-
plex stability radius (better known by its reciprocal, the H∞ norm), which measures how
much (complex-valued) uncertainty in a dynamical system with input and output can be
tolerated before stability is no longer guaranteed [ZDG96, HP05]. Meanwhile, the real
structured stability radius and µ-value further restrict the uncertainty to be real-valued or
structured in a particular sense [HP90a, HP90b]. Such measures are often the subject of
optimization in robust control, since it is natural to desire that the robustness of mod-
els to uncertainty/perturbation be maximized. Furthermore, in the area of model order
reduction, the H∞ norm is one of the main indicators of how well a reduced-order surro-
gate mimics the behavior of a larger (and often computationally unwieldy) system [Glo84].
Numerical procedures for computing these robustness measures have been developed in
the last few decades and have historically been focused on linear time-invariant systems
described by their generalized state-space model.

In this paper, we consider a problem that is linked to maximizing the passivity ra-
dius [OVD05], which measures how much one can can perturb a passive system before
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it may lose passivity. A linear time-invariant system is said to be passive if it is stable
and the Hermitian part of its transfer function is positive definite on the imaginary axis.
More specifically, we propose new algorithms to compute the extremal value of a real
parameter for which a certain rational transfer function is passive, where the transfer func-
tion is defined by a parameterized linear time-invariant system in state-space form. The
computation of this extremal parameter value is also important, as it allows one to con-
struct certificates for the passivity of the parameterized passive systems. As discussed in
[MVD20b, MVD20a], these certificates play a crucial role in the solution of two important
problems: (i) finding a realization of a given passive system with optimal passivity radius
and (ii) finding the closest passive system to a given non-passive system. The first algo-
rithms to compute this extremal value were recently proposed in [MVD20b] and [MVD20a],
respectively, for the continuous- and discrete-time cases. Here we improve upon these tech-
niques by proposing better algorithms that have local quadratic convergence and are also
much faster and more reliable in practice. In the process, we also establish that the earlier
methods of [MVD20b, MVD20a] converge at least superlinearly. Finding a nearby passive
system to a non-passive one is another problem that has already been considered in the
literature (see [GS18] and [FGL20]), but it was suggested in [MVD20b, MVD20a] that
techniques like those developed in this paper could be applied to address that problem as
well.

A core part of our new methods (from which they derive their quadratic convergence) is
an iteration called Hybrid Expansion-Contraction (HEC). HEC was first conceived as a way
to approximate the H∞ norm of large-scale systems [Mit14, MO16] and was subsequently
extended to approximating the real structured stability radius [GGMO17]. However, HEC
and its convergence properties have only been described for these two specific settings, while
the structure of our problem of interest here is quite different. Unlike the H∞ norm, which
is computed by obtaining a global maximizer of a function in one real variable, the extremal
value we consider here for the optimization of passive systems is computed by iterating
over two real variables. Consequently, another contribution of this paper is to connect
these seemingly disparate things, namely, by (i) identifying that all of these problems are
actually specific instances of what we call root-max problems and (ii) generalizing HEC
and its convergence results to this new class. Besides enabling our new methods here,
we hope that this much more accessible and generalized presentation of HEC will both
increase awareness for identifying root-max problems and ease facilitation of new HEC-
based methods.

The paper is organized as follows. We first establish notation and preliminary material
in §2. Then, in §3, we introduce root-max problems and generalize HEC and its convergence
results to this problem class. In §4, we describe the continuous-time version of our passivity
radius problem and our corresponding new algorithm to solve it, while the discrete-time
case is handled in §5. Numerical experiments and concluding remarks are, respectively,
given in §6 and §7.

2 Preliminaries

We begin with notation. The set of Hermitian matrices in Cn×n is denoted by Hn, with
A ≻ 0 (A � 0) additionally signifying that A ∈ Hn is positive (semi-)definite. Λ(A)
denotes the spectrum of a matrix A and, when A is Hermitian, we additionally use the
shorthand λmin(A) to denote its smallest eigenvalue. Re (Z) and Im (Z), respectively,
denote the real and imaginary parts of a complex matrix Z, while the (conjugate) transpose
of a vector or matrix V is denoted by V T (V H). We use In for the n× n identity matrix.

The models that we consider here are given by their standard state-space form, which
means that their associated transfer functions are proper. In the continuous-time setting,
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the transfer function arises from the Laplace transform of the system

ẋ(t) = Ax(t) +Bu(t), x(0) = 0,
y(t) = Cx(t) +Du(t),

(2.1)

where A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m, and x(t), u(t), y(t) are vector-
valued functions denoting, respectively, the state, input, and output of the system. In the
discrete-time setting, the transfer function arises from the z-transform applied to

xk+1 = Axk +Buk, x0 = 0,
yk = Cxk +Duk,

(2.2)

where now xk, uk, and yk are vector-valued sequences denoting, respectively, the state,
input, and output of the system. In both cases, we denote these systems by four-tuples of
matricesM := {A,B,C,D} and their associated rational matrices

T (λ) := C(λIn −A)−1B +D and T H(λ) := BH(λIn −AH)−1CH +DH (2.3)

are, respectively, the associated transfer function and para-conjugate transfer function,
where the variable λ stands for the Laplace variable s in the continuous-time setting and
the delay operator z in the discrete-time case.

We restrict ourselves to systems which are minimal, i.e., the pair (A,B) is controllable
(for all λ ∈ C, rank

[
λIn −A B

]
= n), and the pair (A,C) is observable (i.e., (AH, CH) is

controllable). If the model is not minimal, one can always construct a minimal realization
by removing the uncontrollable and unobservable parts, which can be done in a backward
stable manner [VD81].

For rates of convergence, we use the notion of Q-quadratic and Q-superlinear conver-
gence, where “Q” stands for “quotient”; see [NW99, p. 619] for more details.

3 Root-max problems and Hybrid Expansion-Contraction

Let D1 ⊆ R be connected, D2 ⊂ RN be compact, and g : D1 × D2 → R be a continuous
function. Consider the root-finding problem, which we call a root-max problem:

f(ε) := max
x∈D2

g(ε, x) = 0, (3.1)

where ε ∈ D1, and for any fixed ε̂ ∈ D1, g(ε̂, x) is bounded above. If there exists εlb, ε0 ∈ D1

with f(εlb) < 0 ≤ f(ε0), then by continuity of g it is clear that (3.1) has at least one
root ε⋆ ∈ (εlb, ε0] ⊆ D1 such that f(ε⋆) = 0. Of course, if f(ε0) = 0 holds, then we can
take ε⋆ = ε0. Without loss of generality, we assume that εlb < ε0. While using f(εlb) < 0
and 0 ≤ f(ε0) is a convenient convention here, note that each of these can be modified to
be (non-)strict as desired.

Remark 3.1. In addition to (3.1), one can also equivalently consider a root-min problem,
in which case g(ε̂, x) must then instead be bounded below for any fixed ε̂ ∈ D1. For now,
we restrict to the root-max form with εlb < ε0, since HEC was originally developed using
this convention.

Many well-known distance measures can be written in the form of the root-max problem
given by (3.1) (or as a root-min problem). For example, the distance to instability, the H∞

norm, and the real stability radius all fall in this problem class. As we explain later, our
particular problem of interest, the optimization of the passivity radius of passive systems,
is also in this class.

A key component of the our new passivity-optimization methods here is the Hybrid
Expansion-Contraction (HEC) algorithm of [Mit14, MO16]. In [MO16, p. 997], HEC is de-
scribed as a quadratically convergent “adaptively positively or negatively damped Newton
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method” for approximating the H∞ norm of large-scale systems, where “positively or neg-
atively damped” means that HEC sometimes takes steps larger or smaller than the regular
Newton step, which is depicted in [MO16, Fig. 4]. In this large-scale setting, the strategy
for approximating the H∞ norm is to compute the unique root of a particular monotoni-
cally increasing function in one real variable; the reciprocal of this root is the H∞ norm. As
evaluating this function is also expensive, a scalable subroutine [GGO13] was designed to
instead efficiently a compute lower bound to it, which in practice, often coincides with the
true function value, and then a Newton-bisection-based outer iteration was proposed by
the authors to compute the root. However, as noted by Mitchell in [GGO13, Acknowledge-
ments] and described more fully in [MO16, Section 3.2], this root-finding-based algorithm
of [GGO13] can break down and may converge to arbitrarily bad approximations to the
H∞ norm which are not even locally optimal. Moreover, when this breakdown happens,
the convergence rate also degrades to linear. These problems arise precisely because the
function whose root is sought is not guaranteed to be computed accurately, and so using
a standard root-finding method as the outer iteration is fraught with danger. The HEC
algorithm overcomes these deficiencies by employing one-sided convergence enabled by a
key observation: when only lower bounds to the function value are guaranteed, if the com-
puted estimate is negative, the direction of the unique root cannot be determined, but if
the computed estimate is positive, one does know that the root lies to the left. Under
mild assumptions, HEC is guaranteed to converge to locally optimal approximations to
the H∞ norm by computing a decreasing sequence of upper bounds to the root, and in
practice [MO16, Section 8], HEC often converges to the true value of the H∞ norm.

In the general context of root-max problems, HEC often converges to roots of (3.1),
but it does not actually guarantee this. Instead, HEC generically converges to what we
call a pseudoroot of (3.1), which will be defined momentarily; in [Mit14, MO16], no name
was given for this concept as it was not needed in that context.

3.1 The HEC algorithm and its convergence properties

We now generalize the convergence properties of HEC to our root-max problem given
by (3.1). At a very high level, the proofs we give below for the convergence guarantees
of HEC often follow the arguments given by Mitchell and Overton for specifically for
approximating the H∞ norm [MO16, Section 4]. However, our new generalization here
makes these convergence results significantly easier to understand and allows them to be
applied to other settings. We define gx : D1 → R and gε : D2 → R as follows:

gx(ε) := g(ε, x), where x ∈ D2 is fixed, (3.2a)

gε(x) := g(ε, x), where ε ∈ D1 is fixed. (3.2b)

Remark 3.2. To avoid this section from becoming significantly more technical, we assume
that for all ε ∈ D1 that function gε is differentiable. However, the guaranteed convergence of
HEC to pseudoroots (Theorem 3.6) does not critically rely on differentiability of gε(x), and
this result can be adapted to the case of gε(x) being nonsmooth at stationary points. That
said, the quadratic convergence of HEC (Theorem 3.8) does require additional smoothness
assumptions.

Remark 3.3. The HEC algorithm requires a root-finding method and optimization solver.
For simplicity, we assume that such methods are deterministic and converge exactly. De-
terministic means that the methods return the same answer for the same initial data. Exact
convergence for optimization means that a solver converges to stationary points, i.e., where
the norm of the gradient is zero. Finally, HEC requires, in theory and practice, an op-
timization solver which is monotonic, i.e., it always increases the value of the objective
function being maximized at successive iterates. As most unconstrained solvers do this by
design, this is a mild requirement.
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Algorithm 1 Hybrid Expansion-Contraction (HEC)

Input: εlb, ε0 ∈ D1 and x0 ∈ D2 such that f(εlb) < 0 ≤ g(ε0, x0) ≤ f(ε0)
Output: (ε̃, x̃) such that g(ε̃, x̃) = 0 and x̃ is a stationary point of gε̃(x)

1: for k = 0, 1, 2, . . . do
2: // Contraction: deterministic root-finding method initialized at εk
3: ε̂k ← a root of gxk

(ε) with ε̂k ∈ (εlb, εk]
4: if xk is a stationary point of gε̂k(x) then
5: (ε̃, x̃)← (ε̂k, xk)
6: return
7: end if
8: // Expansion: deterministic optimization method initialized at xk

9: xk+1 ← a stationary point of gε̂k(x) with gε̂k(xk+1) > gε̂k(xk)
10: εk+1 ← ε̂k
11: end for

Note: If the conditional statement in line 4 is never satisfied, then by Theorem 3.6, HEC produces two
infinite sequences {εk} and {xk}, with the former converging to ε̃ and the latter having at least one cluster
point, any of which we denote as x̃. Contraction must use a root-finding method with bracketing, e.g.,
Newton-bisection, to ensure a root in the given bracket (εlb, εk] is found. The inequality in the expansion
phase is guaranteed by simply initializing optimization at xk and using a monotonic optimization solver.
Finally, HEC can begin with either an expansion or contraction phase, and which is more convenient may
depend on the particular application.

Definition 3.4. Given ε̃ ∈ D1 and x̃ ∈ D2, (ε̃, x̃) is a pseudoroot of (3.1) if g(ε̃, x̃) = 0
and x̃ is a stationary point of gε̃(x).

Defining pseudoroot in terms of a stationary point of gε̃(x), as opposed to a local
maximizer, which might seem more intuitive, is intentional. The reason for this is subtle
and requires more context to explain, so we defer this discussion to Remark 3.7. As we see
in the following simple result (whose proof we omit as it is elementary), pseudoroots are
intimately related with roots of (3.1).

Lemma 3.5. Let ε̃ ∈ D1, x̃ ∈ D2, and (ε̃, x̃) be a pseudoroot of (3.1). Then ε̃ is a root
of (3.1) if and only if x̃ is a global maximizer of gε̃(x). Otherwise, 0 < f(ε̃).

We now give an overview of HEC. By construction, HEC generates a monotonically
decreasing sequence {εk} → ε̃. For xk ∈ D2 fixed with gxk

(εk) ≥ 0, first note that we have

gxk
(εlb) ≤ f(εlb) < 0 ≤ gxk

(εk) ≤ f(εk).

The one-parameter contraction phase reduces εk by finding a root ε̂k ∈ (εlb, εk] of gxk
(ε).

By the inequalities above, there must be at least one root in this bracket. If gxk
(εk) = 0, the

contraction phase simply returns ε̂k = εk. Otherwise, bisection can be used to find a root in
(εlb, εk). But if gxk

(ε) is sufficiently smooth at ε̂k, then, e.g., Newton’s or Halley’s method
could find it with far fewer iterations. Of course, these faster root-finding methods are not
guaranteed to converge and gxk

(ε) may not be always be sufficiently smooth, which is why
it is instead critical to combine both approaches, e.g., Newton-bisection. By employing
bracketing and bisection, convergence to a root of gxk

(ε) is ensured, but the ability to also
take Newton (or Halley) steps, assuming that they fall inside the current bracket, can yield
a quadratic (or cubic) rate of convergence when sufficient smoothness holds. Subsequently,
for ε̂k ∈ D1 now fixed and gε̂k(xk) = 0, the multi-parameter expansion phase attempts
to maximize gε̂k(x) by initializing an optimization solver at xk. If optimization returns
xk+1 = xk, there is nothing to do, e.g., when xk is a stationary point of gε̂k(x). Otherwise,
by employing a monotonic solver, optimization will converge to a stationary point xk+1

5
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Figure 1: Illustration of HEC of converging to a pseudoroot (ε̃, x̃) of (3.1), where ε̃ is
also a root of (3.1). At iteration k, HEC has found the global maximizer xk of gεk(x).
The contraction phase, denoted by ‘C’ above, computes εk+1 = ε̂k ≤ εk, which is a root
of gxk

(ε). The subsequent expansion phase, denoted by ‘E’ above, then computes the
global maximizer xk+1 of gεk+1

(x). The dashed curve x(ε) denotes a continuous path of
maximizers of gε(x) as ε is varied, where x(ε̃) corresponds to the pseudoroot (ε̃, x̃).

of gε̂k(x) (typically a maximizer) such that gε̂k(xk+1) > 0. Beyond monotonicity of the
solver, HEC does not specify a specific optimization method, though fast methods should
be used when possible. This process of alternating between root finding (contraction) and
optimization (expansion) is repeated in a loop and it converges to a pseudoroot of (3.1).

In Algorithm 1, we provide pseudocode for HEC for computing pseudoroots of the
root-max problem given by (3.1). Fig. 1 depicts HEC converging to a pseudoroot (ε̃, x̃),
where ε̃ is indeed a root of f(ε) and x̃ is a maximizer of gε̃(x). We now formally state the
convergence results of HEC.

Theorem 3.6 (Convergence of HEC). Given valid initial data, Algorithm 1 generates the
sequences {εk} converging monotonically to a limit ε̃ and {xk} with at least one cluster
point, where (ε̃, x̃) is a pseudoroot of (3.1).

Proof. We assume that conditional statement in line 4 of Algorithm 1 is never met, as oth-
erwise the theorem clearly holds. Since the algorithm ensures that {εk} is a monotonically
decreasing sequence which is bounded below by εlb, it must converge to a limit ε̃, and so
it follows that ε̂k = εk+1 converges to the same limit. By construction, for all k ≥ 1, the
algorithm also ensures that gεk(xk) > 0 with xk being a stationary point of gεk(x). Now
suppose that g(εk, xk) does not converge to zero. Then there is a subsequence {xki

} for
which g(εki

, xki
) is bounded below by some γ > 0. Thus, by taking a further subsequence

if necessary, we may assume without loss of generality that xki
converges to a limit x̃.

By continuity of g, it follows that g(εki
, xki

) converges to g(ε̃, x̃) ≥ γ. However, since ε̂ki

also converges to ε̂, then g(ε̂ki
, xki

) must converge to the same limit g(ε̃, x̃), which is a
contradiction, since by definition of the contraction step, gxki

(ε̂ki
) = 0 must hold for all i.

Thus g(εk, xk) must converge to zero. Although the sequence {xk} may not converge, it is
bounded since D2 is a compact subset of RN , and so {xk} must have at least one cluster
point. As ‖∇gεk(xk)‖ = 0 holds for all k ≥ 1, clearly ‖∇gε̃(x̃)‖ = 0 also holds, and so x̃ is
also a stationary point of gε̃(x), hence (ε̃, x̃) is a pseudoroot of (3.1).
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Figure 2: Illustration of HEC of encountering two different paths of stationary points, x1(ε)
and x2(ε), with HEC eventually converging to a pseudoroot (ε̃, x̃) of (3.1) on path x1(ε),
but ε̃ is not a root of (3.1). Note that paths of stationary points do not necessarily need to
contain a pseudoroot (intersect with the x-axis), and although HEC may encounter and/or
oscillate between multiple such paths as the algorithm converges, this does not affect the
convergence result for HEC described by Theorem 3.6. For more details, see the caption
of Fig. 1.

Remark 3.7. Stationary points of gε̂k(x) computed in the expansion phases will typically
be maximizers, and some optimization solvers can guarantee convergence to maximizers
(under appropriate assumptions). However, while Theorem 3.6 guarantees that HEC con-
verges to a pseudoroot (ε̃, x̃) of (3.1), it does not guarantee that x̃ is a local maximizer
of gε̃(x), just that it is a stationary point. Nevertheless, whenever the expansion phases
consistently return local maximizers, we do observe in practice that x̃ is also a local maxi-
mizer; see [MO16, GGMO17]. While it seems unlikely that x̃ would only be stationary, we
do not believe it is impossible; e.g., it is easy to imagine that the functions gεk(x) shown
in Fig. 1 could instead converge to a function gε̃(x) that is constant in an interval about x̃.

Although Fig. 1 depicts HEC only encountering a single continuous path x(ε) of global
maximizers of gε(x), note that, per Theorem 3.6, HEC may actually encounter multiple
such paths of stationary points as it progresses, and that these paths can consist of global
or local maximizers (or sometimes even both). For example, Fig. 2 shows a depiction
where x1(ε) and x2(ε) are two separate continuous paths of local maximizers of gε(x) and
HEC encounters both paths. Again, encountering multiple such paths does not affect the
convergence result of Theorem 3.6. However, to show that the sequence {εk} generated by
HEC converges quadratically to ε̃, it will be simpler to assume that HEC eventually only
encounters a single continuous path of local maximizers, like as is shown in Fig. 1.

Theorem 3.8 (Quadratic convergence of HEC). Suppose that Algorithm 1 converges as
described in Theorem 3.6 but that the sequence {xk} only has a single cluster point x̃

and x̃ lies on an open continuous path x(ε) of stationary points of gε(x) with x̃ = x(ε̃).
If g(ε, x) and x(ε) are both twice continuously differentiable, respectively, at (ε̃, x̃) and ε̃,
x̃ is a local maximizer of gε̃(x), and

∂
∂ε
g(ε, x̃) 6= 0, then the sequence {εk} converges to ε̃

Q-quadratically.

Proof. We begin by defining function

h(ε) := g(ε, x(ε)), (3.3)
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noting that since (ε̃, x̃) being a pseudoroot, h(ε̃) = g(ε̃, x̃) = 0. Since the sequence {xk}
only has one cluster point, there also exists some K such that for all k ≥ K, all of the
following properties hold:

(i) point xk lies on x(ε) with xk = x(εk), and so h(εk) = gxk
(εk),

(ii) h′(εk) = g′xk
(εk) 6= 0,

(iii) h(ε) and gxk
(ε) are twice continuously differentiable at εk.

By our assumptions, all of these statements also hold at ε̃. The agreement of the first
derivatives in (ii) follows from the envelope theorem (or more generally, [RW98, Theo-
rem 10.31]), since maximizers of gε(x) do not occur at ∞ as D2 is compact.

Having established the needed properties above, we now consider the corresponding
Newton steps for h(ε) and gxk

(ε) at εk, which also must coincide, i.e.,

εNk := εk −
h(εk)

h′(εk)
= εk −

gxk
(εk)

g′xk
(εk)

. (3.4)

However, Algorithm 1 sets εk+1 := ε̂k, where gxk
(ε̂k) = 0. Separately applying Taylor’s

theorem to h(ε) and gxk
(ε), we have

0 = h(ε̃) = h(εk) + h′(εk)(ε̃− εk) +
1
2h

′′(ξk)(ε̃− εk)
2

for some ξk ∈ [ε̃, εk] and

0 = gxk
(ε̂k) = gxk

(εk) + g′xk
(εk)(ε̂k − εk) +

1
2g

′′
xk
(ηk)(ε̂k − εk)

2

for some ηk ∈ [ε̃, εk]. Dividing these equations by the derivative factors, subtracting the
first from the second, and using (3.4) along with εk+1 = ε̂k, we obtain

εk+1 − ε̃ = ck(ε̃− εk)
2 + dk(εk+1 − εk)

2 (3.5)

where

ck =
h′′(ξk)

2h′(εk)
and dk = −

g′′xk
(ηk)

2g′xk
(εk)

.

To establish quadratic convergence, we need to bound εk+1− εk in terms of ε̃− εk. To this
do, consider the Taylor expansions of h(ε) and gxk

(ε) but with only the first two terms,
i.e.,

0 = h(ε̃) = h(εk) + h′(ζk)(ε̃− εk)

for some ζk ∈ [ε̃, εk] and

0 = gxk
(ε̂k) = gxk

(εk) + g′xk
(τk)(ε̂k − εk)

for some τk ∈ [ε̃, εk]. As h(εk) = gxk
(εk) and εk+1 = ε̂k, it follows that

εk+1 − εk

ε̃− εk
=

h′(ζk)

g′xk
(τk)

, (3.6)

which converges to 1 as k → ∞, since h′(ζk) and g′xk
(τk) both1 converge to h′(ε̃) 6= 0.

Dividing (3.5) by (εk − ε̃)2 and taking the absolute value yields

|εk+1 − ε̃|

(εk − ε̃)2
=

∣∣∣∣∣ck + dk

(
εk+1 − εk

εk − ε̃

)2
∣∣∣∣∣ .

By (3.6), the squared term on the right converges to 1 as k → ∞, while ck and dk also
converge since their numerators are bounded and their denominators each converge to
h′(ε̃) 6= 0. Thus, Algorithm 1 converges Q-quadratically.

1Note that in [MO16, p. 1000], there is a typo: in the second to last line of the proof of Theorem 4.4,
g′ukvk

(εk) actually should be g′ukvk
(τk).
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Remark 3.9. Theorem 3.8 is independent of how fast the contraction and expansion sub-
problems are solved, respectively, by some root-finding method and optimization solver. The
critical thing for quadratic convergence of HEC is that the expansion phase returns local
maximizers of gxk

(ε), so that the derivatives of h(ε) and gxk
(ε) coincide at εk. Per [MO16,

Section 4.3], if the expansion phases are only solved inexactly, but this inexactness goes
to zero in the limit, then HEC still converges at least Q-superlinearly; for more details,
see [Mit14, Sections 3.1 and 3.2] and [DES82]. This can be practical, since if the expan-
sion phases are particularly expensive to solve and require many iterations of optimization,
it can be significantly faster to run HEC using this early contraction strategy. Trading
off quadratic for superlinear convergence generally only results in a slight increase the to-
tal number of HEC iterations, which is typically more than compensated by much cheaper
expansion phases; see [MO16, Section 8]

Remark 3.10. If HEC converges to a finite number of cluster points of {xk}, rather than
a unique one as supposed in Theorem 3.8, then it is easy to see that if the other conditions
of Theorem 3.8 hold for any subsequence {xki

} converging to a particular cluster point,
then {εki

} must converge at least quadratically. Thus, if these other conditions also hold
for any subsequence to any of the finitely many cluster points, then we expect that the rate
of convergence of {εk} should still be quadratic.

4 Continuous-time passive systems

Returning to the optimization of passive systems, we first consider the continuous-time
case where the finite-dimensional state-space model M := {A,B,C,D} is given by (2.1)
and its corresponding transfer function T (s) (2.3) is proper and minimal. Furthermore,
for the remainder of the paper, we consider passive transfer functions T (s) (so m = p).
We begin with the theoretical background defining the passivity optimization problem we
wish to solve, which as we will show, is equivalent to a root-min problem.

4.1 Passivity of continuous-time proper parameterized systems

The material here in this subsection is mostly drawn from [MVD20b] but is recalled here
in a concise way so that we can easily refer to it. We also briefly recall definitions and
properties following [Wil72] and refer to the literature for proofs and more details.

Given T (s), consider the following rational function of s ∈ C:

Φ(s) := T H(−s) + T (s),

which coincides with twice the Hermitian part of T (s) on the imaginary axis:

Φ(iω) = [T (iω)]H + T (iω).

Definition 4.1. The transfer function T (s) is

1. passive if Φ(iω) � 0 for all ω ∈ R∪ {∞} and A is stable, i.e., its eigenvalues are in
the closed left half-plane, with any occurring on the imaginary axis (infinity included)
being semi-simple,

2. strictly passive if Φ(iω) ≻ 0 for all ω ∈ R ∪ {∞} and A is asymptotically stable,
i.e., its eigenvalues are in the open left half-plane.

Using the matrix

Wc(X,M) :=

[
−AHX −XA CH −XB

C −BHX DH +D

]
, (4.1)

we have the following necessary and sufficient conditions for passivity of a finite-dimensional
continuous-time system in state-space form; see [Wil72].

9



Theorem 4.2. LetM := {A,B,C,D} with transfer function T (s) be minimal and proper.
Then T (s) is (strictly) passive if and only if there exists an X ∈ Hn such that X ≻ 0 and
Wc(X,M) � 0 (Wc(X,M) ≻ 0).

In [MVD20b], the following class of systems, parameterized by ξ ∈ R, was considered:

Mξ := {Aξ, B, C,Dξ} = {A+ ξ
2In, B, C,D − ξ

2Im}, (4.2a)

Tξ(s) := C(sI −Aξ)
−1B +Dξ = C((s− ξ

2 )In −A)−1B +D − ξ
2Im, (4.2b)

Φξ(s) := T
H

ξ (−s) + Tξ(s). (4.2c)

An important problem is to compute the values of ξ for which these systems are passive or
strictly passive. The following theorem, which is a combination of [MVD20b, Theorem 4.5
and Lemma 6.2], classifies these values of ξ. Note that strict passivity of T (s) implies
regularity of Φ(s), since Φ(∞) is then regular. Thus, Φξ(s) is also guaranteed to be regular
for almost all ξ, since Φξ(∞) is regular for almost all ξ.

Theorem 4.3. LetM := {A,B,C,D} with transfer function T (s) be minimal and proper.
Then, for any ξ ∈ R, the parameterized systemMξ with transfer function Tξ(s), as defined
in (4.2), is also minimal and

Ξ := sup
−∞<ξ<∞

{ξ : Tξ(s) is strictly passive} = max
−∞<ξ<∞

{ξ : Tξ(s) is passive} (4.3)

is bounded. Moreover, Tξ(s) is strictly passive for ξ ∈ (−∞,Ξ), passive but not strictly
passive for ξ = Ξ, and non-passive for ξ ∈ (Ξ,+∞).

Proof. The minimality of the shifted transfer functions is well known. The rest of the
proof is based on the fact that passivity of Tξ(s) is linked to the inequality Wc(X,M) �
ξ diag(X, Im) for some X ≻ 0, and that strict passivity of Tξ(s) is linked to the strict

inequality Wc(X,M) ≻ ξ diag(X, Im) for some X ≻ 0. Consequently, for all ξ̃ < ξ, Tξ(s)
being passive implies that Tξ̃(s) is strictly passive, and if Tξ(s) is strictly passive, then Tξ̃(s)
is also strictly passive in an open neighborhood about ξ. This proves that the interval for
ξ corresponding to strictly passive systems and non-passive systems are both open and
connected, and that there is a single boundary point Ξ that must be passive, but not
strictly passive. The boundedness of Ξ follows from the minimality of the realization for
Tξ(s). We refer to [MVD20b] for the details.

By computing Ξ, we can ascertain whetherMξ is (strictly) passive or non-passive for
all ξ ∈ R. For a given value of ξ, by Definition 4.1, Mξ corresponds to a strictly passive
system if and only if Φξ(s) is positive definite over the entire iω axis, with ω =∞ included,
and Aξ is asymptotically stable. Checking stability is straightforward, while checking the
positive definiteness condition is more involved. For ξ, ω ∈ R, consider

γ(ξ, ω) := λmin(Φξ(iω)) and
γξ(ω) := γ(ξ, ω) where ξ ∈ R is fixed,

γω(ξ) := γ(ξ, ω) where ω ∈ R is fixed.
(4.4)

Clearly, Φξ(iω) ≻ 0 if and only if γξ(ω) > 0, and at ω = ∞, this is simply equivalent
to DH

ξ + Dξ ≻ 0, with limω→∞ γξ(ω) = λmin(D
H

ξ + Dξ) > 0. If Aξ is asymptotically
stable, then Tξ(s) has no poles on the imaginary axis, and so neither does Φξ(s); hence,
γξ(ω) is a continuous function. Thus, if DH

ξ + Dξ ≻ 0 and Aξ is asymptotically stable,
then γξ(ω1) ≤ 0 if and only if detΦξ(iω2) = 0 for ω1, ω2 ∈ R, with ω1 = ω2 not necessarily
holding. Summarizing, we have the following necessary and sufficient algebraic continuous-
time conditions for the strict passivity of Tξ(s):

(C1) Aξ = A+ ξ
2In is asymptotically stable,
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(C2) DH

ξ +Dξ = DH +D − ξIm ≻ 0 (positive definiteness at ω =∞),

(C3) detΦξ(iω) 6= 0 for all ω ∈ R (implying positive definiteness for all finite ω provided
that (C1) and (C2) also hold).

A bracket containing Ξ can be easily computed. A simple lower bound on Ξ is

Ξlb := λmin(Wc(In,M)), (4.5)

as clearly
Wc(In,MΞlb

) = Wc(In,M)− ΞlbIn+m � 0

holds, and so by Theorems 4.2 and 4.3, TΞlb
(s) is passive. Meanwhile, (C1) and (C2) will

no longer be satisfied if ξ is too large: (C1) holds if and only if ξ < −2α(A), where α(A)
is the spectral abscissa of A, and (C2) holds if and only if ξ < λmin

(
DH +D

)
. Thus, a

simple upper bound for Ξ is

Ξub := min
{
−2α(A), λmin

(
DH +D

)}
. (4.6)

Let us now look at ξ ∈ [Ξlb,Ξub), where for this half open interval, Aξ is asymptotically
stable and DH

ξ +Dξ is positive definite. Therefore, in order to verify the strict passivity
of Tξ(s), one only needs to verify condition (C3), i.e., that detΦξ(iω) 6= 0 for all ω ∈ R.
This condition can be checked via the following result forMξ, which is well known in the
literature for general systemsM.

Theorem 4.4. Let ξ ∈ R andMξ and Φξ(s) be as defined in (4.2). Then, for any ω ∈ C

(not R) such that iω 6∈ Λ(Aξ), detΦξ(iω) = 0 if and only if

(i) det(Mξ − ωN) = 0 and

(ii) if DH

ξ +Dξ is nonsingular, det(Hξ − iωI2n) = 0,

where the regular Hermitian pencil Mξ − λN is defined by matrices

Mξ :=

[
0 Aξ B

AH

ξ 0 CH

BH C DH

ξ+Dξ

]
and N :=

[
0 iIn 0

−iIn 0 0
0 0 0

]
, (4.7)

while the Hamiltonian matrix

Hξ :=
[
Aξ 0

0 −AH

ξ

]
−
[

B
CH

]
(DH

ξ+Dξ )
−1

[C −BH ]. (4.8)

Proof. Writing

Mξ − ωN :=

[
0 Aξ−iωIn B

AH

ξ+iωIn 0 CH

BH C DH

ξ+Dξ

]
,

and using the Schur identity of determinants with respect to the leading 2n × 2n block,
which by assumption is nonsingular, we obtain that

det(Mξ − ωN) = det
[

0 Aξ−iωIn

AH

ξ+iωIn 0

]
det Φξ(iω).

As iω 6∈ Λ(Aξ), we have (i), and since Φξ(iω) is regular, Mξ−λN must be a regular pencil.
Meanwhile, for (ii), (Hξ−iωI2n)

[
0 −In
In 0

]
is the Schur complement of Mξ−ωN with respect

to the trailing m × m block, which requires the additional assumption that DH

ξ + Dξ is
nonsingular. Via the Schur identity of determinants, we have that

det(Mξ − ωN) = det(DH

ξ +Dξ) det
(
(Hξ − iωI2n)

[
0 −In
In 0

])
.
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Corollary 4.5. Let ξ ∈ [Ξlb,Ξub) and let γξ(ω) be as defined in (4.4), where ω ∈ R. Then
γξ(ω) has at most 2n real zeros, all of which must be finite.

Proof. If γξ(ω) = 0, then detΦξ(iω) = 0. Since ξ ∈ [Ξlb,Ξub), (C1) and (C2) both hold,
and so the assumptions of Theorem 4.4 are met. Hence, detΦξ(iω) = 0 if and only if
det(Hξ − iωI2n) = 0. Finally, as Hξ ∈ C2n×2n, it has 2n (finite) eigenvalues.

Given the bracket [Ξlb,Ξub], Theorem 4.4 immediately leads to a bisection method for
computing Ξ [MVD20b, p. 144]. For any ξ ∈ [Ξlb,Ξub), (C3) can be verified by computing
the eigenvalues of either Mξ − λN or Hξ (the pencil form is preferred numerically, since it
only has a linear dependence on ξ). Via the following result, Mehrmann and Van Dooren
also proposed a second improved algorithm for computing Ξ [MVD20b, p. 146].

Theorem 4.6. Let γ(ξ, ω) and γξ(ω) be the real functions defined in (4.4), where ξ, ω ∈ R.
Then γ(ξ, ω) is continuous on the domain [Ξlb,Ξub)×R and γξ(ω) has the following prop-
erties:

(i) if ξ ∈ [Ξlb,Ξ), then γξ(ω) > 0 for all ω,

(ii) if ξ = Ξ, then γξ(ω) ≥ 0 with γξ(ω) = 0 for at least one value of ω,

(iii) if ξ ∈ (Ξ,Ξub) with Ξ < Ξub, then γξ(ω) < 0 holds on a subset of R consisting of
non-overlapping open bounded intervals.

Proof. This was proven in [MVD20b, Theorem 5.1] except for the claim in (iii) that the
intervals are bounded, which follows directly from Corollary 4.5.

Mehrmann and Van Dooren’s improved method computes a monotonically decreasing
sequence {ξk} → Ξ, where the initial estimate is ξ0 = Ξub−τ for some small tolerance τ > 0.
On the kth iteration, via Theorem 4.4 and computing the eigenvalues of Mξk − λN , the
bounded intervals where γξk(ω) < 0 are obtained. Taking ω̂ to be the midpoint of the
largest of these intervals with γξk(ω̂) < 0 holding, ξk+1 is obtained by setting it to the
smallest value of ξ such that γω̂(ξ) = 0; this is done by computing all the eigenvalues
of a matrix pencil closely related to Mξk − λN (and of the same order). This process is
continued in a loop until convergence to Ξ; see [MVD20b, section 5] for more details.

4.2 An HEC-based algorithm for computing the continuous-time Ξ

By Theorem 4.6, Ξ defined in (4.3) can instead be computed via this root-min problem:

f(ξ) = min
ω∈D2

γ(ξ, ω) = 0, (4.9)

where ξ ∈ D1 = [Ξlb,Ξub], D2 ⊂ R is compact, and γ(ξ, ω) is defined in (4.4). If ξ 6= Ξub,
by Corollary 4.5 and Theorem 4.6, D2 can be taken to be compact, since for all other values
of ξ ∈ D1, γξ(ω) has at most 2n zeros, which are all finite, and minimizers of γξ(ω) that
occur where γξ(ω) is negative clearly must lie between these zeros. Since Aξ is asymptot-
ically stable for all ξ < Ξub, it follows that γξ(ω) is also bounded below (and above) for
all ξ < Ξub. Thus, (4.9) meets the criteria to be a valid root-min problem, and so we can
use HEC to find pseudoroots of it.

Remark 4.7. For a root-min problem, the initialization requirements for HEC, using the
notation of (3.1) and Algorithm 1, are εlb, ε0 ∈ D1 and x0 ∈ D2 such that f(ε0) ≤
g(ε0, x0) ≤ 0 < f(εlb). For computing Ξ, it will also be more convenient to use the
convention that f(ε0) ≤ g(ε0, x0) < 0 ≤ f(εlb) holds.

Remark 4.8. We wish to compute Ξ to a desired relative accuracy, but when Ξ = 0, this
notion does not make sense. To avoid providing technical implementation details regarding
this, for sake of simplicity, we assume that neither Ξ nor any estimate for Ξ that our
algorithm encounters is zero.
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First note that 0 ≤ f(Ξlb) always holds. If we have a ξ0 ∈ [Ξlb,Ξub) and ω0 ∈ R such
that γ(ξ0, ω0) < 0, then the initialization conditions of HEC are met, and so HEC can be
used to compute a pseudoroot (ξ̃, ω̃) of (4.9) with both ξ̃ ∈ [Ξlb, ξ0) and Ξ ≤ ξ̃ holding.
To determine whether estimate ξ̃ is sufficiently close to Ξ, we do the following. For some
relative tolerance τ ∈ (0, 1), we set ξ = ξ̃ − τ |ξ̃| (we assume that Ξlb < ξ, as otherwise
we are done) and then compute the real eigenvalues of Mξ − λN . If this matrix pencil
has no real eigenvalues, then by Theorem 4.4, we know that γξ(ω) has no zeros, and so

by Theorem 4.6, ξ < Ξ must hold. Thus, Ξ ∈ (ξ̃, ξ], and so ξ must agree with Ξ to the
desired number of digits.2 Otherwise, if Mξ − λN does have real eigenvalues, then γξ(ω)
has zeros, and if γξ(ω) < 0 holds on at least one of the intervals derived from these zeros,
then Ξ < ξ holds by Theorem 4.6. Updating ω0 to be the midpoint of one of these intervals
where γξ(ω) < 0, obviously γξ(ω0) < 0 holds, and so HEC can be restarted to find a new

pseudoroot (ξ̂, ω̂) of (4.9) with ξ̂ ∈ [Ξ, ξ). This process of running HEC and computing the
real eigenvalues of Mξ − λN to find regions where γξ(ω) is negative is repeated in a loop
until estimate ξ, which is decreasing monotonically, becomes sufficiently close to Ξ.

For initializing our new algorithm, it is required that we always choose ξ < Ξub; e.g.,
evaluating Tξ(iω) requires inverting iωI−Aξ, and this matrix may not always be invertible
when ξ = Ξub. Choosing ξ0 = Ξub− τ |Ξub| as our first estimate suffices, as this still allows
us to obtain Ξ to the desired accuracy. Again, we assume that Ξlb < ξ0, as otherwise we
are done. The user provides some ω0 ∈ R as an initial guess for HEC. If γξ0(ω0) < 0 holds,
then our algorithm as described above can begin. Otherwise, we must find another point
where γξ0(ω) is negative. This can be done in multiple ways. We can evaluate γξ0(ω) on
a grid and/or randomly chosen points. We could also initialize some optimization solver
at these points to try to find a minimizer ω̃ of γξ0(ω) such that γξ0(ω̃) < 0. If, after some
reasonable amount of effort, such a point has not been found, we then resort to computing
the eigenvalues of Mξ0 − λN in order to obtain all the zeros of γξ0(ω). Then, as described
above, we can determine if there exists a point where γξ0(ω) is negative. Since evaluat-
ing γξ0(ω) is much cheaper than computing the eigenvalues of Mξ0 − λN (we elaborate on
this momentarily), it is generally beneficial in terms of the overall runtime to first try a
decent number of points, possibly with optimization. This also increases the chances that
the first pseudoroot (ξ̃, ω̃) of (4.9) found by HEC also provides its root, i.e., ξ̃ = Ξ; in this
case, our algorithm only computes the eigenvalues of Mξ − λN for a single value of ξ. In
contrast, recall that the earlier algorithm of Mehrmann and Van Dooren (described at the
end of §4.1), on every iteration, requires computing the eigenvalues of Mξ − λN plus the
eigenvalues of a second related matrix pencil with the same order (2n+m).

Pseudocode of our new algorithm for continuous-time Ξ is given in Algorithm 2. In
practice, we observe that HEC is only restarted a handful of times, often just one. By
construction of the valid data to initialize HEC on every iteration of Algorithm 2, it follows
from Theorem 3.6 that HEC is indeed guaranteed to compute a pseudoroot of (4.9) on
every iteration. Under mild assumptions that generally hold in practice, we now show
that Algorithm 2 has local quadratic convergence to pseudoroots of (4.9).

Theorem 4.9 (Quadratic convergence of Algorithm 2). Let (ξ̃, ω̃) be any pseudoroot
of (4.9) computed by HEC within Algorithm 2. If

(i) after some point, HEC only generates iterates that lie on a single continuous path of
local maximizers ω(ξ),

(ii) ω̃ is a local maximizer of γξ̃(ω),

(iii) ∂
∂ξ
γ(ξ, ω̃) 6= 0,

2Note that when ξ̃ is only sufficiently close to Ξ (and not equal), it does not necessarily follow that ω̃

is close to the global minimizer(s) of γΞ(ω).
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Algorithm 2 HEC-based algorithm for continuous-time Ξ

Input: M, ω0 ∈ R, τ ∈ (0, 1), Ξlb (4.5), and Ξub (4.6)
Output: ξ such that |Ξ− ξ| ≤ τ |Ξ| for continuous-time Ξ forM

1: ξ ← Ξub − τ |Ξub|
2: if ξ ≤ Ξlb then
3: return
4: end if
5: find negative ← γξ(ω0) ≥ 0 // a boolean variable
6: while true do
7: if find negative then
8: Ω← {ω ∈ R : det(Mξ − ωN) = 0 and γξ(ω) = 0}
9: if ∃ω1, ω2 ∈ Ω s.t. γξ(w) < 0 ∀ω ∈ (ω1, ω2) then

10: ω0 ← 0.5(ω1 + ω2) // (C3) holds, ω1 < ω2

11: else
12: return // γξ(ω) ≥ 0 ∀ω ∈ R and ξ ≈ Ξ to tolerance
13: end if
14: end if
15: // γξ(ω0) < 0 and Ξ ∈ [Ξlb, ξ) so run HEC with this initial data

16: (ξ̃, ω̃)← a pseudoroot of (4.9) obtained by HEC with Ξ ≤ ξ̃ < ξ

17: ξ ← ξ̃ − τ |ξ̃|
18: find negative ← true

19: end while

Note: Per Remark 4.8, for simplicity of the pseudocode, we assume that Ξ 6= 0 and ξ 6= 0 never holds;
if not, a second tolerance is needed. When the matrices defining M are all real, there is symmetry, i.e.,
γ(ξ,−ω) = γ(ξ, ω), and so the search domain for ω can be reduced from R to ω ∈ [0,∞). While taking
advantage of this symmetry does not affect the asymptotic work complexity, it can nevertheless reduce the
constant factors to speed up the overall run time.

(iv) γ(ξ, ω) is twice continuously differentiable at (ξ̃, ω̃), and

(v) ω(ξ) is twice continuously differentiable at ξ̃,

all hold, then Algorithm 2 converges to pseudoroot (ξ̃, ω̃) Q-quadratically. Furthermore, if
in addition to (ii), γ(ξ̃, ω̃) corresponds to a simple eigenvalue of Φξ̃(iω̃) and ∇2γξ̃(ω̃), the
Hessian of γξ̃(ω) evaluated at ω̃, is invertible, then (iv) and (v) are automatically satisfied.

Proof. Conditions (i)–(v) implying the quadratic convergence of HEC is simply a trans-
lation of Theorem 3.8 to the setting of (4.9). For the second part of the theorem, if
γ(ξ̃, ω̃) corresponds to a simple eigenvalue, then γ(ξ, ω) is analytic near (ξ̃, ω̃). The path
of local maximizers of γξ(ω) as ξ varies that contains ω̃ can be characterized by the equal-

ity ∇γ(ξ, ω) = 0 in a neighborhood about (ξ̃, ω̃). Thus, by the implicit function theorem,
if ∇2γξ̃(ω̃) is invertible, ∇γ(ξ, ω(ξ)) = 0, where ω(ξ) is analytic.

Under the smoothness assumptions of Theorem 4.9, in a neighborhood of the pseudoroot
in question, the contraction and expansion phases within HEC can also be solved with
fast convergence rates. Moreover, even if these assumptions do not hold, an extension of
the analysis of Boyd and Balakrishnan [BB90] shows that near any minimizer, γξ(ω) is
twice continuously differentiable with Lipschitz second derivative, even if the minimizer is
associated with an eigenvalue of Φξ(iω) of multiplicity greater than one; for more details,
see [MO21]. Thus, the expansion phases can always be solved quickly using secant or
Newton’s method, and any use of the early contraction technique discussed in Remark 3.9
should be limited, e.g., only in initial iterations when one cannot necessarily expect to be
sufficiently close to the fast convergence regime.
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For the contraction and expansion phases, we now describe how to compute the first
and second derivatives of γξ(ω) and γω(ξ) defined in (4.4). Given a Hermitian ma-
trix H(t) depending on t ∈ R, formulas for the first and second derivatives of a simple
eigenvalue of a can be found in, e.g., [Lan64, OW95]. These formulas also need H ′(t)
and H ′′(t), so we present the first and second matrix derivatives of Φξ(iω) here. Letting

Zk := C((iω − ξ
2 )In −A)−kB, we have that

∂
∂ξ
Tξ(iω) =

1
2 (Z2 − Im), ∂2

∂ξ2
Tξ(iω) =

1
2Z3, (4.10a)

∂
∂ω
Tξ(iω) = −iZ2,

∂2

∂ω2 Tξ(iω) = −2Z3, (4.10b)

and so

∂
∂ξ
Φξ(iω) =

1
2 (Z2 + ZH

2 )− Im, ∂2

∂ξ2
Φξ(iω) =

1
2 (Z3 + ZH

3 ), (4.11a)

∂
∂ω

Φξ(iω) = −iZ2 + iZH

2 ,
∂2

∂ω2Φξ(iω) = −2(Z3 + ZH

3 ). (4.11b)

Note that by using a Hessenberg factorization of A, per [Lau81], Tξ(iω) and Zk can be
transformed to equivalent systems where the inverses inside of them, for any values of ξ
and ω, can be applied to a vector in just O(n2) work instead of O(n3). Thus, Φξ(iω)
and its matrix derivatives given in (4.11) can be obtained in O(mn2 +m2n) work. Using
the convention that computing the eigenvalues and eigenvectors of a matrix is an atomic
operation with cubic complexity, the total cost to compute γ(ξ, ω) and its first and second
derivatives with respect to ξ and ω is O(mn2 +m2n+m3) work.

The cost of Algorithm 2 is dominated by computing the of zeros γξ(ω). Since HEC
generally converges quickly, as do its expansion and contraction phases, we can consider
its number of evaluations of γ(ξ, ω) as a constant. Hence, in Algorithm 2, HEC does
O(mn2 +m2n+m3) work. Meanwhile, finding the zeros of γξ(ω) involves computing all
the eigenvalues of Mξ − λN , which itself is O((n + m)3) work. Thus, for all but the
smallest values of n, the HEC portion of Algorithm 2 should only be a fraction of the cost
to compute the eigenvalues of Mξ − λN .

The “improved” algorithm of Mehrmann and Van Dooren has the same asymptotic
work complexity as our method, but the hidden constant factor is much larger. This is
partly because on each iteration, their algorithm solves two large eigenvalue problems of
order 2n+m. However, it also often requires more iterations than Algorithm 2 does. While
Mehrmann and Van Dooren did not analyze the convergence properties of their method, our
new framework of root-max problems and HEC also shows that their method converges at
least Q-superlinearly under generic conditions. To see this, note that on each iteration, their
method computes a single point where γξ(ω) < 0 holds (as opposed to finding a minimizer),
but in the limit, these single points do converge to a minimizer of γξ(ω) as ξ → Ξ. In other
words, their algorithm can also been seen as an HEC iteration with a very aggressive early
contraction scheme. Per Remark 3.9, such an iteration converges at least superlinearly.

5 Discrete-time passive systems

We now present the discrete-time analogues of the optimization problem and our new
algorithm given in §4.

5.1 Passivity of discrete-time proper parameterized systems

The material in this subsection closely follows [MVD20a]. For z ∈ C, we now consider

Φ(z) := T H(z−1) + T (z),

which coincides with twice the Hermitian part of T (z) on the unit circle:

Φ(eiω) = [T (eiω)]H + T (eiω).
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Definition 5.1. The transfer function T (z) is

1. passive if Φ(eiω) � 0 for all ω ∈ (−π, π] and A is stable, i.e., its eigenvalues are in
the closed unit disk, with any occurring on the unit circle being semi-simple,

2. strictly passive if Φ(eiω) ≻ 0 for all ω ∈ (−π, π] and A is asymptotically stable, i.e.,
its eigenvalues are in the open unit disk.

The necessary and sufficient conditions for passivity in the discrete-time case (see [MVD20a])
now make use of the linear matrix function

Wd(X,M) :=




X XA XB

AHX X CH

BHX C DH +D


 . (5.1)

Theorem 5.2. LetM := {A,B,C,D} with transfer function T (z) be minimal and proper.
Then T (z) is (strictly) passive if and only there exists an X ∈ Hn such that X ≻ 0 and
Wd(X,M) � 0 (Wd(X,M) ≻ 0).

In [MVD20a], the following class of parametric systems was considered:

Mξ := {Aξ, Bξ, Cξ, Dξ} =
{

A
1−ξ

, B
1−ξ

, C
1−ξ

, D−ξIm
1−ξ

}
, (5.2a)

Tξ(z) := Cξ(zIn−Aξ)
−1Bξ +Dξ =

1
1−ξ

(
C((1−ξ)zIn −A)−1B +D − ξIm

)
, (5.2b)

Φξ(z) := T
H

ξ (z−1) + Tξ(z). (5.2c)

where ξ ∈ (−∞, 1) and it is again important to compute for which values of ξ these systems
are passive or strictly passive. The following theorem was given in [MVD20a], in a slightly
modified form; we omit its proof as it is similar to that of Theorem 4.3. Note that strict
passivity of T (z) again implies regularity of Φ(z), since it is regular for any point on the
unit circle. Moreover, Φξ(z) is then also regular for almost all ξ since it is an analytic
perturbation of Φ(z).

Theorem 5.3. LetM := {A,B,C,D} with transfer function T (z) be minimal and proper.
Then, for ξ ∈ (−∞, 1), the parameterized system Mξ with transfer function Tξ(z), as
defined in (5.2), is also minimal and

Ξ := sup
−∞<ξ<1

{ξ : Tξ(z) is strictly passive} = max
−∞<ξ<1

{ξ : Tξ(z) is passive} (5.3)

is bounded. Moreover, Tξ(z) is strictly passive for ξ ∈ (−∞,Ξ), passive but not strictly
passive for ξ = Ξ, and not passive for ξ ∈ (Ξ, 1).

By Definition 5.1, Mξ is strictly passive if and only if Φξ(z) ≻ 0 holds over the entire
unit circle and Aξ is asymptotically stable. Stability is again straightforward to check, but
checking the positive definiteness condition is a little more subtle in the discrete-time case.
For ξ, ω ∈ R, now consider

γ(ξ, ω) := λmin(Φξ(e
iω)) and

γξ(ω) := γ(ξ, ω) where ξ ∈ R is fixed,

γω(ξ) := γ(ξ, ω) where ω ∈ R is fixed,
(5.4)

where Φξ(z) is defined in (5.2). Clearly Φξ(e
iω) ≻ 0 is equivalent to γξ(ω) > 0, and γξ(ω)

is continuous if Aξ is asymptotically stable, as then Φξ(z) cannot have any poles on the
unit circle. Hence, if Aξ is asymptotically stable and Φξ(e

iω̃) ≻ 0 for some ω̃ ∈ (−π, π],
then Φξ(e

iω) ≻ 0 for all ω ∈ (−π, π] if and only if detΦξ(e
iω) has no zeros. Thus, Tξ(z) is

strictly passive if and only if the following conditions all hold:

(D1) Aξ = A
1−ξ

is asymptotically stable,
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(D2) Φξ(e
iω̃) ≻ 0 (positive definiteness at a unimodular point, say, eiω̃ = 1),

(D3) detΦξ(e
iω) 6= 0 for all ω ∈ (−π, π] (implying positive definiteness on the entire unit

circle provided that (D1) and (D2) also hold).

In contrast to its continuous-time analogue (C2), note that (D2) does not require that
DH

ξ +Dξ be positive definite (or even invertible).
A bracket containing the discrete-time Ξ is as follows. Again using the relation between

the linear matrix inequalities ofM andMξ, with X = 2In, we can choose

Ξlb := 1
2 (λminWd(2In,M)) (5.5)

as a lower bound on Ξ, since it follows that

(1− Ξlb)Wd(2In,MΞlb
) = Wd(2In,M)− 2ΞlbI2n+m � 0,

holds and so by Theorems 5.2 and 5.3, we have that TΞlb
(z) is passive. Meanwhile,

Ξub := 1− ρ(A) (5.6)

is an upper bound, where ρ(A) is the spectral radius of A, since obviously Aξ is asymptot-
ically stable if ξ < Ξub.

Given ξ ∈ [Ξlb,Ξub), (D1) must always holds, so to verify strict passivity of Tξ(z)
we need to check that (D2) and (D3) also both hold. Checking (D2) is simple. If
λmin(Φξ(e

iω̃)) ≤ 0 for any ω̃ ∈ R, then Tξ(z) is not strictly passive, and there is no
need to check (D3). Otherwise, since Aξ is asymptotically stable, if λmin(Φξ(e

iω̃)) > 0, we
have that Tξ(z) is strictly passive if and only if (D3) holds, which can be checked via the
following result.3

Theorem 5.4. Let ξ ∈ (−∞, 1) and Mξ and Φξ(z) be as defined in (5.2). Then, for any
z 6= 0 ∈ C such that z 6∈ Λ(Aξ) and z−1 6∈ Λ(AH

ξ ), the latter of which follows automatically
if |z| = 1, detΦξ(z) = 0 if and only if

(i) det(Mξ − zNξ) = 0 and

(ii) if D̃ξ is nonsingular, det(Sξ − zTξ) = 0,

where D̃ξ := DH +D − 2ξIm, the regular pencil Mξ − λNξ is defined by

Mξ :=

[
0 A B

(ξ−1)In 0 0

BH C D̃ξ

]
and Nξ :=

[
0 (1−ξ)In 0

−AH 0 −CH

0 0 0

]
, (5.7)

while the symplectic pencil Sξ − λTξ is defined by

Sξ :=
[

(ξ−1)In 0

−BD̃
−1

ξ
BH A−BD̃

−1

ξ
C

]
and Tξ :=

[
(BD̃

−1

ξ
C−A)H CHD̃

−1

ξ
C

0 (1−ξ)In

]
. (5.8)

Proof. Writing

Mξ − zNξ :=

[
0 A+(ξ−1)zIn B

zAH+(ξ−1)In 0 zCH

BH C D̃ξ

]
,

and using the Schur identity of determinants with respect to the leading 2n × 2n block,
which by assumption is nonsingular, we obtain that

det(Mξ − zNξ) = det
[

0 A+(ξ−1)zIn

zAH+(ξ−1)In 0

]
det((1− ξ)Φξ(z)).

3The generalized eigenvalue problem given by the matrices in (5.7) is denoted Γ (ξ, ω) in [MVD20a,
p. 1263], but note that its bottom right block, DH+D−ξIm, contains a typo; it should be DH +D − 2ξIm,

which we denote D̃ξ in Theorem 5.4.
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As z 6∈ Λ(Aξ) and z−1 6∈ Λ(AH

ξ ) we have (i), and since Φξ(z) is regular, Mξ − λNξ must
be a regular pencil. For (ii), we again apply the Schur identity of determinants, now with
respect to the trailing m ×m block, which is possible by our additional assumption that
D̃ξ is nonsingular:

det(Mξ − zNξ) = det D̃ξ det
([

0 A+(ξ−1)zIn

zAH+(ξ−1)In 0

]
−
[

B
zCH

]
D̃−1

ξ [BH C ]
)
.

Clearly det(Mξ − zNξ) can only be zero if and only if the last determinant above is zero.
Multiplying the matrix inside this determinant by

[
0 In
In 0

]
from the left and rearrang-

ing terms yields Sξ − zTξ. This matrix pencil is easily verified as symplectic, i.e., for
J :=

[
0 In

−In 0

]
, SH

ξ JSξ = TH

ξ JTξ holds.

Corollary 5.5. Let ξ ∈ [Ξlb,Ξub) and let γξ(ω) be as defined in (5.4), where ω ∈ (−π, π].
Then γξ(ω) has at most 2n real zeros.

Proof. If ω is a zero of γξ(ω), then det Φξ(e
iω) = 0. As ξ ∈ [Ξlb,Ξub), ρ(Aξ) < 1 holds,

and so the assumptions of Theorem 5.4 are met. Hence, detΦξ(e
iω) = 0 if and only if

det(Mξ − eiωNξ). The proof is completed by noting that rankNξ ≤ 2n.

Using Theorem 5.4, Mehrmann and Van Dooren proposed a bisection method to com-
pute discrete-time Ξ, and via the following result, a discrete-time analogue of their improved
procedure we described in §4.1; for more details, see [MVD20a, section 7].

Theorem 5.6. Let γ(ξ, ω) and γξ(ω) be the real functions defined in (5.4), where ξ, ω ∈ R.
Then γ(ξ, ω) is continuous on the domain [Ξlb,Ξub)× (−π, π] and γξ(ω) has the following
properties:

(i) if ξ ∈ [Ξlb,Ξ), then γξ(ω) > 0 for all ω,

(ii) if ξ = Ξ, then γξ(ω) ≥ 0 with γξ(ω) = 0 for at least one value of ω,

(iii) if ξ ∈ (Ξ,Ξub) with Ξ < Ξub, then γξ(ω) < 0 holds on a subset of (−π, π] consisting
of non-overlapping open intervals or on all of (−π, π].

Proof. Statements (i) and (ii) follow from [MVD20a], while (iii) follows from the facts that
γξ(ω) is continuous, and by Corollary 5.5, it can have at most 2n zeros.

Remark 5.7. For any ξ ∈ (Ξ,Ξub), note that γξ(ω) always has at least two zero-crossings
in the continuous-case setting, while the discrete-time version of γξ(ω) may not have any,
i.e., γξ(ω) < 0 can hold for all ω ∈ (−π, π]. This is why it is necessary to check that both
(D2) and (D3) hold at each estimate ξ encountered when computing discrete-time Ξ, but
in the continuous-time case, only (C3) needs to be checked at each estimate. Note that
the descriptions of the discrete-time algorithms in [MVD20a, section 7] do not make this
important distinction clear.

5.2 An HEC-based algorithm for computing discrete-time Ξ

By Theorem 5.6, Ξ defined in (5.3) can be computed via this root-min problem:

f(ξ) = min
ω∈D2

γ(ξ, ω) = 0, (5.9)

where now ξ ∈ D1 = [Ξlb,Ξub], D2 = (−π, π] is obviously compact, γ(ξ, ω) is defined
in (5.4), and γξ(ω) is bounded below. Our continuous-time HEC-based algorithm and
results from §4.2 extend to the discrete-time setting and work similarly, so for brevity, we
only focus on the key points and differences.

Pseudocode for our new algorithm for discrete-time Ξ is given in Algorithm 3. Per Re-
mark 5.7, the need to check that both (D2) and (D3) hold on each iteration means that the
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Algorithm 3 HEC-based algorithm for discrete-time Ξ

Input: M, ω0 ∈ (−π, π], τ ∈ (0, 1), Ξlb (5.5), and Ξub (5.6)
Output: ξ such that |Ξ− ξ| ≤ τ |Ξ| for discrete-time Ξ forM

1: ξ ← Ξub − τ |Ξub|
2: if ξ ≤ Ξlb then
3: return
4: end if
5: find negative ← γξ(ω0) ≥ 0 // a boolean variable
6: while true do
7: if find negative then
8: if γξ(0) < 0 then
9: ω0 ← 0 // (D2) does not hold

10: else
11: Ω← {ω ∈ (−π, π] : det(Mξ − eiωNξ) = 0 and γξ(ω) = 0}
12: if ∃ω1, ω2 ∈ Ω ∪ {minΩ + 2π} s.t. γξ(w) < 0 ∀ω ∈ (ω1, ω2) then
13: ω0 ← 0.5(ω1 + ω2) // (D2) and (D3) hold, ω1 < ω2

14: else
15: return // γξ(ω) ≥ 0 ∀ω ∈ (−π, π] and ξ ≈ Ξ to tolerance
16: end if
17: end if
18: end if
19: // γξ(ω0) < 0 and Ξ ∈ [Ξlb, ξ) so run HEC with this initial data

20: (ξ̃, ω̃)← a pseudoroot of (5.9) obtained by HEC with Ξ ≤ ξ̃ < ξ

21: ξ ← ξ̃ − τ |ξ̃|
22: find negative ← true

23: end while

Note: See Remark 4.8 and Algorithm 2 for more details on tolerances and symmetry. In line 12,
Ω ∪ {minΩ + 2π} is used so that the “wrap-around” interval, i.e., [maxΩ,minΩ + 2π] is not missed.

pseudocode is a bit more complicated than for continuous-time Ξ. As such, one might con-
clude that the problem of computing Ξ is trickier in the discrete-time case; however, as we
explain in the numerical results, it seems that the exact opposite is true, due to a numerical
issue that only arises in the continuous-time case. To implement HEC for Algorithm 3, we
make use of the first and second derivatives of γξ(ω) and γω(ξ) defined in (5.4). To that
end, we provide the discrete-time analogues of the matrix derivatives given in (4.10), as
the remaining computations are readily apparent. Letting Zk := C((1− ξ)eiωIn −A)−kB,
we have that

∂
∂ξ
Tξ(e

iω) =
Tξ(e

iω)+eiωZ2−Im
1−ξ

, ∂2

∂ξ2
Tξ(e

iω) = 2
1−ξ

(
e2iωZ3 +

∂Tξ(e
iω)

∂ξ

)
, (5.10a)

∂
∂ω
Tξ(e

iω) = −ieiωZ2,
∂2

∂ω2 Tξ(e
iω) = eiωZ2 − 2(1− ξ)e2iωZ3. (5.10b)

In Algorithm 3, the costs to run HEC and compute zeros of γξ(ω) are the same as in
the continuous-time setting discussed in §4.2. Theorem 4.9 also extends, i.e., under mild
assumptions that generally hold in practice, Algorithm 3 converges quadratically to pseu-
doroots of (5.9). Relatedly, Mehrmann and Van Dooren’s improved algorithm [MVD20a,
section 7] for discrete-time Ξ also converges at least superlinearly.
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6 Numerical experiments

We implemented the continuous- and discrete-time versions of our new HEC-based method
and the improved midpoint-based iteration of Mehrmann and Van Dooren. In this section,
for brevity, we use HEC to refer to former (Algorithms 2 and 3) and MP (for midpoint)
to refer to the latter. All codes were implemented with relative tolerances and set to com-
pute Ξ to 14 digits. Experiments were done using MATLAB R2021a on a 2020 MacBook
Pro with a quad-core Intel Core i5 1038NG7 CPU and 16 GB of RAM running macOS
10.15.7. Code and data to reproduce all experiments is included in the supplementary
material.

6.1 Implementation details

We first discuss implementing Algorithm 1. The expansion phase was implemented using
fmincon, while the contraction phase was implemented using a our own Halley-bisection
root-finding code; first and second derivative information is used in both. Due to rounding
errors, it may be that contraction phase sometimes computes a root ε̂k of gxk

(ε) such that
gxk

(ε̂k) < 0, instead of gxk
(ε̂k) ≥ 0, which is required at every iteration (for a root-max

problem). However, if this occurs, it suffices to just perturb the computed root by a small
multiple of the Halley step to correct the sign; a more complicated workaround involving
shifting the root problems is suggested in [MO16, section 7] and [GGMO17, Appendix A],
but we do not recommend that. Algorithm 1 is terminated at an approximate pseudoroot
once both εk and xk are no longer changing significantly with respect to their respective
previous values; this condition is checked twice per iteration, after the contraction phase
and after the expansion phase. Since in the context of computing Ξ, the expansion phases
can be solved quickly, we did not use early contraction.

For our purposes here, we simply used eig for all eigenvalues problems, though it is
advisable to use structure-preserving solvers for numerical robustness; e.g., see [BBMX99].
To compute zeros of γξ(ω), we used the pencils given by the matrices in (4.7) and (5.7)
and respectively identified their real and unimodular eigenvalues using a tolerance.4 Note
that if γξ(ω) has a minimizer or maximizer ω̂ such that γξ(ω̂) = 0 (or approximately
equal), then this corresponds to a (nearly) multiple eigenvalue (with multiplicity at least
two) of the pencil given by (4.7) or (5.7), as appropriate. This always happens as any
of the methods approach Ξ, and it is generally also true at computed pseudoroots and
at ω = 0 when the problems have symmetry. Due to rounding errors, such eigenvalues,
even when computed via a structure-preserving solver, may not be detected as (close to)
real or unimodular. If this happens, a zero of γξ(ω) will be missed, which in turn can cause

any of the algorithms to stagnate. Fortunately, a robust fix is easy: if (ξ̃, ω̃) is the most
recent computed pseudoroot, simply explicitly add ω̃ as a zero of γξ(ω); a similar fix is also
necessary for MP. For more details, see [BLO03, pp. 371–373], where this fix was proposed
in the context of computing the pseudospectral abscissa.

For continuous-time Ξ, there is an additional numerical difficulty when computing the
zeros of γξ(ω) when ξ ≈ Ξub. Although these zeros must be finite, they still may be
arbitrarily far away from the origin, and so there may be large errors in the imaginary
parts of the corresponding computed real eigenvalues of Mξ − λN . Mehrmann and Van
Dooren recommended using a tolerance so that the first estimate ξ tested was sufficiently
far away from Ξub to help avoid such problems. However, we have observed that even a
relatively large perturbation may still be insufficient to avoid failure of MP. Our MP code
uses ξ0 = Ξub− |Ξub|10

−4, but only small perturbations are done for subsequent estimates
in order to obtain the desired 14-digit accuracy; of course, if Ξ ≈ Ξub, high accuracy may
not be possible with MP. In contrast, our HEC-based method is much less susceptible to

4If A, B, C, and D are all real, then eig returns real eigenvalues of (4.7) without any rounding error
in their imaginary parts; otherwise, the imaginary part may be nonzero numerically.
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Table 1: MP and HEC compared on two continuous-time (cont.) and one discrete-time
(disc.) examples. For Random, MP was tested in two configurations: MP-fail with
ξ0 = Ξub − |Ξub|10

−5 and MP with ξ0 = Ξub − |Ξub|10
−4. The number of iterations is

shown in the “iters.” column; the average number of iterations of Algorithm 1 is also given
in parentheses for HEC. The number of eigenvalue problems solved is shown under the
“# eig (order, type)” columns, separated into the number of order 2n+m matrix pencils
“(2n+m, P)” and the number of order m matrices “(m, M)”. The overall running time
in seconds is given under “time (sec.)”, while the computed estimates for Ξ is given in the
rightmost column.

# eig (order, type)

Alg. iters. (2n+m, P) (m, M) time (sec.) Ξ estimate

Random (n = 200, m = 10, cont.) — [Ξlb,Ξub] = [−25.56407,−10.90965]

MP-fail 1 1 1 0.440 −10.9097612001839
MP 14 27 49 8.892 −14.4073741346323
HEC 2(5.0) 2 78 0.909 −14.4073741346323

RLC (n = 200, m = 1, cont.) — [Ξlb,Ξub] = [−32.1267, 2.022606]

MP 4 8 18 2.360 0.562483988863916
HEC 1(4.0) 2 41 0.767 0.562483988863891

ISS (n = 228, m = 3, disc.) — [Ξlb,Ξub] = [−3.007437, 3.117278 × 10−6]

MP 15 29 550 8.490 −9.37320364701040 × 10−5

HEC 2(4.0) 1 97 0.374 −9.37320364699013 × 10−5

this issue, since even if only one root of γξ(ω) is detected, it generally can still be used to
start Algorithm 1. Even if this root is a stationary point, a small perturbation to the left or
right generally yields a point for starting Algorithm 1. More generally, structure-preserving
eigensolvers can be used or one can increase the allowed amount of rounding error in the
imaginary part of an eigenvalue in proportion with the magnitude of the eigenvalue.

Finally, in line 8 of Algorithm 3 when checking (D2), instead of always checking the
sign of γξ(0), after the first pseudoroot has been computed we check γξ(ω̃ + 1

2π). If this is
negative, we set ω0 ← ω̃ + 1

2π in line 9. The reason is because if the previous pseudoroot
has ω̃ = 0, γξ(ω̃) < 0 almost always holds due to rounding error even though it should be
exactly zero. Shifting by, e.g., 1

2π, ensures that (D2) is checked at a new point; note that
shifting by π or 2π would not ensure this.

6.2 Experiments

We begin with a randomly generated continuous-time example with complex matrices
(denoted Random) to illustrate (i) when our method encounters at least two pseudoroots
before converging (see Fig. 3a) and (ii) the aforementioned difficulty of computing zeros
of γξ(ω) when ξ ≈ Ξub (see Fig. 4a). In Table 1, we see that MP is about ten times slower
than HEC. Although HEC required more computations of λmin(Φξ(e

iω)), it only needed to
solve two of the large eigenvalue problems involving Mξ − λN . Meanwhile, MP required
27 solves with the pencils and took 14 iterations to converge. HEC converged to Ξ at
its second pseudoroot, and Algorithm 1 on average took 5.0 iterations to converge to a
pseudoroot.

Our second continuous-time example is the electric RLC circuit model used in [BGVD20].
We refer to Fig. 3b and Table 1 for the complete performance details, but note that HEC
was over three times faster than MP for this RLC example, with both methods converging
faster and with less work than on the random example.
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Figure 3: The pseudoroots (ξ̃, ω̃) and corresponding estimates ξ̃ for Ξ computed by HEC
until convergence with ξ̃ ≈ Ξ.

To compare the discrete-time methods, we used the ISS model from the SLICOT bench-
mark examples.5 Since ISS is a continuous-time model, we converted it to a minimal
discrete-time one by calling c2d using a sampling time of 0.001 followed by minreal. In
Fig. 3b and Table 1, we see that HEC was almost 23 times faster than MP, again due to
the great disparity in the number of large generalized eigenvalue problems solved. In fact,
for ISS, HEC also solved far fewer smaller standard eigenvalues problems as well. From
Table 1 and Fig. 4b, we also see that MP did not quite compute Ξ to the requested 14-digit
accuracy, while HEC apparently did. This slight inaccuracy is the result of MP solving root
problems via solving eigenvalue problems, but such errors can be larger; see the caption
of Fig. 4b for more details.

While we have established that MP converges at least superlinearly, an examination of
its iterates (not shown) seems to indicate that it too may converge quadratically like HEC.
However, as demonstrated by Random and ISS, where MP respectively required 14 and 15
iterations, MP can incur many iterations before it gets near its faster convergence regime.
The key problem on these examples is that MP chooses the largest interval where γξ(ω) < 0
holds to determine how to reduce estimate ξ. But this can be a particularly bad strategy
if γξ(ω) has a zero very far away from the origin, as is the case for both Random and ISS
when ξ ≈ Ξub. While one could consider altering this strategy to improve performance,
such an MP variant would still be slower than HEC and also still have the aforementioned
numerical issues.

7 Conclusion

Using Hybrid Expansion-Contraction, we have presented faster and more numerically ro-
bust algorithms to compute Ξ, the extremal real value for which a given parametric linear
time-invariant system is passive, a problem which is linked to maximizing the passiv-
ity radius. Our new methods outperform the existing algorithms of Mehrmann and Van
Dooren, and for large-scale problems, we also note that with a sparse eigenvalue solver,
Hybrid Expansion-Contraction can be used alone to efficiently estimate Ξ, which the earlier
methods cannot do. We hope that our generalization of Hybrid Expansion-Contraction,
its convergence guarantees, and identification of root-max problems will help facilitate new
fast and robust numerical methods for other quantities, for both small-scale and large-scale
problems.

5Available at http://slicot.org/20-site/126-benchmark-examples-for-model-reduction .
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Figure 4: On the left, MP was initialized with ξ0 = Ξub − |Ξub|10
−5. In this case, γξ0(ω)

has two zeros at approximately −41.6 and 460600.9, but the latter is not detected due
to rounding errors when computing the eigenvalues of Mξ0 − λN . Consequently, MP
erroneously terminates at ξ0 with no digits of accuracy but does converge properly when
initialized with ξ0 = Ξub − |Ξub|10

−4. On the right, we see that eigenvalue computations
used in MP to compute the smallest roots of γω(ξ) incurs more rounding errors than our
HEC-based approach. See [BM19, section 9.2] for an example where half of the precision
can be lost when solving root problems using these eigenvalue techniques.
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[GGMO17] N. Guglielmi, M. Gürbüzbalaban, T. Mitchell, and M. L. Overton. Approximating the real
structured stability radius with Frobenius-norm bounded perturbations. SIAM J. Matrix
Anal. Appl., 38(4):1323–1353, 2017.
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