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1 Introduction

Our Universe is populated by massive astrophysical bodies (black holes, neutron stars and
stars) that rotate intrinsically — they carry spin. Along their trajectories through space
and time scattering events may occur that are mediated by the gravitational force. The
two scattered bodies will be deflected, their spins will be altered and the scattering process
will emit gravitational Bremsstrahlung, which could be detected in future-generation grav-
itational wave observatories on or near Earth. In this work we show that this astrophysical
system enjoys a hidden, extended (N = 2) supersymmetry that constrains the dynamics
of the spinning scattering process — at least to the order of spin-squared (or quadrupole)
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interactions. The supersymmetry is manifested by anti-commuting worldline vectors ψa at-
tributed to the spin tensor of the body (Sab ∼ ψ̄[aψb]). These fermionic degrees of freedom
are a natural ingredient in the recently developed worldline quantum field theory (WQFT)
description of massive spinning bodies [1–3]. The appearance of supersymmetry in such a
problem of genuine astrophysical interest was first realized in ref. [4] by studying hidden
symmetries of the charged spinning black hole (Kerr-Newman) solution.

The investigation of classical gravitational scattering has a long history in general rel-
ativity [5–10], being naturally performed in a post-Minkowskian (PM) perturbative expan-
sion in Newton’s constant G about a flat spacetime background (gµν = ηµν +

√
32πGhµν)

with the graviton field hµν . This unbound setup is different to the intensively studied post-
Newtonian (PN) expansion in both G and relative velocity (Gmr ∼ v

2) often used for binary
inspirals, i.e. massive bodies on bound orbits with separation r. The gravitational radiation
emitted in the inspiral finally leads to a merger and is now routinely detected in gravi-
tational wave observatories [11–14]. Even though Bremsstrahlung-emitting gravitational
scattering events appear to be out of reach for current gravitational wave observatories due
to their non-periodic signal and lower intensity [15–17] they represent interesting targets
for future searches, calling for precision calculations.

It has also been emphasized recently that gravitational scattering is relevant for the
study of binary inspirals. There exist various options for mapping between the bound and
unbound problems, including reconstructing a gravitational two-body potential [18–22], or
mapping directly between physical observables such as the scattering angle (unbound) and
periastron advance (bound) [23, 24]. The scattering problem per se is the natural habitat
for quantum field theory (QFT) that was largely designed to describe the scattering of
elementary particles in collider experiments. Applying the classical limit of such a pertur-
bative Feynman-diagrammatic expansion of the path integral of matter-coupled gravity in
a PM expansion has proven to be highly efficient, and there are two popular QFT-based
approaches.

The worldline effective field theory (EFT) formalism [25–27] models massive bodies as
point-like particles moving along their worldlines coupled to the gravitational field. Spin
effects are naturally incorporated by introducing a spin tensor and co-moving frame along
the worldline [28–30]. Similarly, finite-size and tidal effects may be systematically included
by coupling the worldline degrees of freedom to higher-dimensional operators dressed with
Wilson coefficients (or Love numbers) [31]. Integrating out the graviton fluctuations in the
path integral yields an effective action for the interaction of two spinning bodies — see
refs. [28, 29] for reviews of the PN framework. Impressively high orders in the PN [32–37]
and PM [38–41] expansions have also been established.

The second rapidly developing approach is the amplitudes-based formalism [19, 42–
47]. Massive elementary particles (scalars, spin-1/2 fermions, etc.) minimally coupled to
the gravitational field are the avatars of black holes, neutron stars or stars; their 2 → 2
quantum scattering amplitudes are constructed by employing modern innovations such as
generalized unitarity and the double copy, see [48–51] for reviews. Yet, the 2→ 2 amplitude
is only the starting point for a subtle classical limit [52–54]. This procedure then yields the
gravitational potential between two massive spinning bodies and observables such as the
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deflection and spin kick have been derived from it. A direct path from amplitudes to classi-
cal observables was introduced in ref. [52]. Nevertheless, the inclusion of spin poses certain
challenges, in particular going beyond spin-squared interactions [55] due to the known
hurdle of constructing an interacting higher-spin quantum field theory. Tidal and finite-
size effects have also been included [56–58]. Amplitudes-based approaches can employ the
powerful tools developed in collider physics and have led to impressively high-order calcula-
tions without spin [44–46, 54, 59–61] and first results with spin [55, 62] including radiation
effects [63–71]. A related variant of the amplitude approach is the heavy-particle EFT [72–
75], which enables a more straightforward classical limit of the amplitude from the outset.

The WQFT is a new formalism that unites these two approaches and clarifies their
interrelations [1–3]. The worldline path integral representation of a massive particle’s
graviton-dressed propagator corresponds to the EFT worldline theory’s path integral. In-
serting this into the QFT S-matrix (represented as a time-ordered correlation function) a
precise connection between the EFT and amplitudes-based approaches was given for the
spinless case [1], which involves the classical ~ → 0 limit. A key feature of the WQFT
approach — distinguishing it from the EFT approach — is that both the graviton field
hµν and the worldline fluctuations about straight-line backgrounds (in the scattering case)
are integrated out in the path integral. In short, the worldline degrees of freedom are also
quantized. This leads to an economic Feynman-diagram-based perturbative solution to the
equations of motion of the matter-graviton system.

In the WQFT, direct access to classical observables, such as the spinless particle deflec-
tion [1] and the time-domain asymptotic gravitational waveform [2, 3] emerging from the
scattering encounter, has been made. The approach is economic in the sense that (a) one
only computes the classically relevant contributions, circumventing the “super-classical”
subtleties of the amplitudes-based approach, and (b) there is no need to determine a
non-observable and gauge-dependent effective potential, thereafter solving the resulting
equations of motion perturbatively as is done in the EFT approach. In fact, the WQFT
formalism is to date the only approach used to successfully construct the asymptotic grav-
itational waveform of the QFT-based approaches with or without spin [2, 3].1

In this paper we report on the inclusion of spin degrees of freedom in the WQFT. As
mentioned above spin is introduced through anti-commuting worldline vectors, building
upon refs. [4, 78–80]. In those works it was shown that the higher-spin N/2 field equations
(in flat space) follow from quantizing an N -extended supersymmetric particle augmenting
the coordinate vector xµ(τ) by N anti-commuting vectors ψµ. In (generic) curved space-
times this is only possible up to N = 2 supersymmetry (or spin-1) as we will discuss in
section 2. This limits our approach to the gravitational scattering of spinning objects up
to interactions of quadratic order in spin (quadrupoles) at present. In our recent letter [3]
we have already used this formalism to establish the asymptotic waveform of a spinning
gravitational Bremsstrahlung event, extending the seminal work of Crowley, Kovacs and
Thorne [5–7] to the spinning case.

1See refs. [47, 76, 77] for work on the gravitational Bremsstrahlung integrand or the related problem in
electrodynamics in the amplitudes and EFT based approaches.
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Our spinning WQFT formalism innovates over existing approaches to classical spin
based on corotating-frame variables [28, 29] in the effective field theory (EFT) of compact
objects [25–27, 81, 82] — see refs. [83–85] for the construction of PM integrands and
refs. [30, 38] for the computation of worldline and spin deflections (shown to be in agreement
with the amplitude based results [55, 62]). The EFT approach was applied to radiation
also in the PN approximation [86–90] — see refs. [91, 92] for more traditional methods.
Other approaches to PM spin effects can be found in refs. [72, 73, 93–102].

This paper is organized as follows. In section 2 we review the supersymmetric world-
line formalism and give a detailed analysis of the N = 2 supersymmetric particle in a
curved background. In section 3 we show that this theory is equivalent to the traditional
description of spinning particles using spin and body-fixed frame fields, and explain how
finite-size effects may be incorporated while maintaining the supersymmetry up to the de-
sired quadratic-in-spin order. In section 4 we lay out the spinning WQFT and establish its
Feynman rules, the relationship of the eikonal phase of a scattering event to the free en-
ergy of the spinning WQFT and show the hidden supersymmetry properties of the eikonal
phase. Finally, in section 5 we compute a larger class of observables: the eikonal phase up
to 2PM (next-to-leading) order from which we derive the deflection and spin kick. We close
with concluding remarks and in the appendices give details of the N = 2 supersymmetry of
the gauge-fixed spinning WQFT action and on the computation of the necessary integrals
arising in section 5.

2 Supersymmetric worldline actions

Extending the WQFT to include spin calls for a worldline theory of a relativistic spinning
particle. In this section we review the first-order formulation of spinning particle actions
where spin is represented by anti-commuting vector fields. Our main focus is the N = 2
supersymmetric theory in a generic curved background, which represents massive spinning
bodies up to quadratic order in spin.

2.1 Putting spin on the worldline

To begin with recall the first-order formulation of the massless non-spinning particle in a
gravitational background:

S̃0 = −
∫

dτ
[
pM ẋ

M − eH
]
, with H = 1

2pMpNg
MN . (2.1)

The transition to the massive case is easily done through a dimensional reduction setting
pM = (pµ,m), which yields H = 1

2(p2 −m2). We work with mostly minus signature and
take the spacetime manifold to be M1,D−1 × S1. Eliminating the momentum through its
algebraic equations of motion, pµ = e−1ẋµ, yields the second-order action

S0 = −
∫

dτ
[
e−1

2 gµν ẋ
µẋν + e

2m
2
]
, (2.2)

which is the “Polyakov” formulation of the non-spinning worldline theory enjoying a local
reparametrization invariance τ → τ ′(τ) under which e transforms as e→ e τ̇ ′. One may also
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eliminate the einbein e using its algebraic equations of motion to arrive at the usual action
for a massive particle m

∫
ds. However, it is more convenient to choose the proper-time

gauge e = 1/m as this linearizes the graviton worldline interaction [1, 38].
In order to include spin for the particle one adds real anti-commuting vector fields

ψaα(τ) to the worldline degrees of freedom [78, 103, 104]. Here α = 1, . . .N is a flavor
index while a = 0, . . . , D−1 is the flat tangent space index related to the curved spacetime
index µ = 0, . . . , D − 1 via the vielbein eaµ(x), with gµν = eaµe

b
νηab as usual. Of particular

interest are the supersymmetric worldline theories which have been shown to describe the
propagation of relativistic quantum fields of spin 1/2 for N = 1 supersymmetry [103], spin 1
for N = 2 supersymmetry and generally spin N/2 for N -extended supersymmetry [78, 104]
in a flat spacetime background, respectively. The N -extended supersymmetric spinning
particle generalization of eq. (2.1) in a flat (D + 1)-dimensional spacetime background is2

S̃N = −
∫

dτ
[
pM ẋ

M + i

2ψ
A
α ψ̇

B
α ηAB − eH − iχαQα −

1
2fαβM

αβ
]

(2.3)

with the conserved charges

H = 1
2p

2 , Qα = p · ψα , Mαβ = iψα · ψβ . (2.4)

The Lagrange multipliers of the einbein e(τ), the N gravitinos χa(τ) and the O(N ) gauge
field fαβ(τ) enforce the conservation of these charges. This gauged theory may be thought
of as a locally supersymmetric worldline theory, i.e. N -extended 1D supergravity, super-
symmetrizing the reparametrization invariance of the spinless case eq. (2.1). Upon using
the Poisson (resp. Dirac) brackets for the worldline fields

{xM , pN}P.B. = δMN , {ψAα , ψBβ }P.B. = −iδαβ ηAB , (2.5)

one derives the N -extended supersymmetry algebra

{Qα, Qβ}P.B. = −2iδαβH , {H,Qβ}P.B. = {H,Mαβ}P.B. = 0 ,

{Mαβ , Qγ}P.B. = −2δγ[αQβ] , {Mαβ ,M
γδ}P.B. = −4δ[α

[γMβ]
δ] . (2.6)

The charges Mαβ generate an O(N ) R-symmetry algebra. Again, a dimensional reduction
of the theory from D+1 to D dimensions, thereby setting pM = (pµ,m = const) and (ψA =
ψaα, θα), yields the massive theory in D dimensions — as in the spinless case of eq. (2.2).

The relevant question for our application is whether this theory may be embedded
in an arbitrary curved spacetime background whilst preserving supersymmetry. This is
only possible for N ≤ 2 describing a spin 0, 1/2 or spin 1 particle in a generic curved
background [78–80, 104, 105]. For the N = 4 spinning particle a consistent quantization
requires the backgound spacetime to be an Einstein manifold, i.e. Rµν = λgµν [106]. As
stated earlier, our focus is now the spinning N = 2 superparticle in a generic curved back-
ground, which allows us to describe spinning massive bodies up to quadratic order in spin.

2We take M = (µ,D) and A = (a,D) with an S1 in the (D + 1)th dimension.
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2.2 N = 2 spinning superparticle in a curved background

Following ref. [80] in order to prepare for the massive theory via dimensional reduction
we consider the N = 2 spinning superparticle in the curved background M1,D−1 × S1.
It is convenient to combine the two real Grassmann fields into one complex Grassmann
worldline field via ψA = 1√

2(ψA1 + iψA2 ) and ψ̄A = 1√
2(ψA1 − iψA2 ). We note the Poisson

(resp. Dirac) brackets

{xM , pN}P.B. = δMN , {ψA, ψ̄B}P.B. = −iηAB . (2.7)

The covariantization of the super-charges (2.4) takes the form

Q = ψa eµa(x)πµ + θm , Q̄ = ψ̄a eµa(x)πµ + θ̄ m , (2.8)

where we have split off the fifth dimension explicitly ψ5 := θ, p5 = m and introduced the
covariantized four-momentum

πµ := pµ − iωµabψ̄aψb , (2.9)

with the spin connection ωµab = eaν(∂µeνb+ Γνµλeλb). The Hamiltonian may now be derived
from the Poisson bracket {Q, Q̄}P.B.. Using {πµ, πν}P.B. = iRµνabψ̄

aψb and {ψµ, πν}P.B. =
Γµνρψρ one finds

{Q, Q̄}P.B. = −2i
[1

2(gµνπµπν −m2 −Rabcdψ̄aψbψ̄cψd)︸ ︷︷ ︸
H

]
− 2πµψ̄aψb Tµab︸ ︷︷ ︸

T

. (2.10)

Note that the last term T couples to the torsion tensor T νµρ := Γν[µρ], i.e. the antisymmetric
part of the affine connection that vanishes in Einstein gravity. In addition {Q,Q}P.B. = 0
vanishes due to the cyclic identity for the Riemann tensor. Finally, in the complex basis for
the Grassmann variables the internal R-symmetry turns into a U(1) symmetry generated
by the charge

J = ψ̄aψbηab − θ̄θ , (2.11)

which obeys {J,Q}P.B. = −iQ and {J, Q̄}P.B. = iQ̄.
In summary, the gauged first-order form of the N = 2 superparticle action in a curved

spacetime background takes the form

S̃ = −
∫

dτ
[
pµẋ

µ + iψ̄aψ̇bηab − iθ̄θ̇ − eH − iχ̄Q− iχQ̄+ a J
]

= −
∫

dτ
[
pµẋ

µ + iψ̄aψ̇bηab − iθ̄θ̇ −
e

2
(
gµνπµπν −m2 −Rabcdψ̄aψbψ̄cψd

)
− iπµ(χ̄ψµ − ψ̄µχ)− im(χ̄θ − θ̄χ) + a(ψ̄ · ψ − θ̄θ)

]
,

(2.12)
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with the einbein e, the complex gravitino χ and the U(1) gauge field a. Eliminating pµ by
its algebraic equations of motion yields the action

S = −
∫

dτ
[
e−1

2 gµν(ẋµ − iχ̄ψµ − iχψ̄µ)(ẋν − iχ̄ψν − iχψ̄ν)

+ iψ̄a(ψ̇a + ẋµωµabψ
b) + e

2Rabcdψ̄
aψbψ̄cψd + e

2m
2 + a(ψ̄aψa − θ̄θ)

− iθ̄θ̇ − im(χ̄θ + χθ̄)
]
. (2.13)

A number of comments are now in order. Firstly, this theory is invariant under lo-
cal reparametrization, supersymmetry and U(1) gauge symmetries under which both the
worldline fields xµ, ψa as well as e, χ, χ̄, a transform — see refs. [79, 80] for explicit formu-
lae. Secondly, as shown in ref. [79], one may add a Chern-Simons term for the gauge field
a to the action

SCS = s

∫
dτ a , s = const , (2.14)

which is invariant under the U(1) transformation δa = α̇, δψa = iαψa. Finally, one may
set the Lagrange multipliers χ and a to zero, yielding the constraints

χ̄ = 0 : gµνψ
µẋν + emθ = 0 , χ = 0 : gµνψ̄

µẋν + emθ̄ = 0 ,
a = 0 : ηabψ̄

aψb − θ̄θ = s . (2.15)

We shall see in section 3 that these may be related to the spin-supplementary condition
(SSC) as well as the conservation of the total spin in the traditional formulation of describ-
ing spinning compact objects.

The resulting second-order theory is then

SN=2 = −
∫

dτ
[
e−1

2 gµν ẋ
µẋν+iψ̄a(ψ̇a+ẋµωµabψb)+ e

2Rabcdψ̄
aψbψ̄cψd+ e

2m
2−iθ̄θ̇

]
. (2.16)

The fermionic extra dimensional contribution θ̄θ̇ is free and couples only to the other fields
via the constraints (2.15) — we drop it from now on. Moreover, it is convenient to further
make the gauge choice e = 1/m and rescale the fermions by

√
m:

ψa →
√
mψa , ψ̄a →

√
mψ̄a . (2.17)

This renders the mass-shell constraint as

ẋµẋµ = 1 +Rabcdψ̄
aψbψ̄cψd . (2.18)

Therefore, strictly speaking τ is not the proper time in this gauge. This gauge fixed
spinning worldline action (2.16) (setting e = 1/m and rescaling the fermions) is invariant
under the following global N = 2 supersymmetry transformations:

δxµ = ieµa(ε̄ψa + εψ̄a) ,
δψa = −εeaµ ẋµ − δxµωµabψb , δψ̄a = −ε̄eaµ ẋµ − δxµωµabψ̄b ,

(2.19)
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the analysis of which is relegated to appendix A. There is also a manifest global U(1)
symmetry

δaψ
a = ia ψa , δaψ̄

a = −ia ψ̄a , δax
µ = 0 , (2.20)

as well as the remnant of the reparametrization symmetry generated by H of eq. (2.10),
which is given by the commutator of two supersymmetries (2.19).

3 Comparison with a spinning compact body

In this section we demonstrate that the N = 2 spinning superparticle action (2.16) rep-
resents an alternative description of the classical physics of a spinning compact body
moving in a gravitational background, up to and including terms quadratic in the spin
(quadrupoles). For this we need to augment the spinning superparticle action by an addi-
tional term capturing finite-size effects and distinguishing black holes from (neutron) stars.
Surprisingly, supersymmetry is preserved in an approximate sense under this extension of
the theory and may be linked to the spin-supplementary condition (SSC).

3.1 Traditional worldline action

The traditional worldline action of a spinning compact body describes spin via a body-fixed
frame ΛAµ(τ) along the worldline using the flat indices A,B, . . . that are distinct from the
vielbein indices a, b, . . . from above. The first-order action takes the form [81, 82, 107]

Sspin = −
∫

dτ
[
πµẋ

µ + 1
2Sµν ΛAµ

DΛAν

Dτ︸ ︷︷ ︸
=: Ωµν

−λ(πµπµ −M2)− χµSµν
(
πν√
π2

+ Λ0ν

)]
. (3.1)

Here D
Dτ := ẋµ∇µ is the covariant derivative along the curve and the ortho-normal Lorentz

body-fixed frame ΛAµ satisfies gµνΛAµΛBν = ηAB. Using ΛAµ one may construct the
(antisymmetric) angular velocity tensor Ωµν as shown above. The Legendre dual of Ωµν is
the intrinsic angular momentum or spin tensor Sµν . The Lagrange multipliers λ and χµ
enforce the mass-shell constraints π2 = M2 and the spin-supplementary condition (SSC)
respectively; the latter arises from the necessity of constraining the antisymmetric Sµν to
carry only the physical rotational degrees of freedom of the compact body (i.e. three angles
in 4d). If we gauge fix the time-like component of the body-fixed frame Λ0

µ = πµ/
√
π2

then the SSC takes the covariant form Sµνπ
ν = 0. Instead, we find it more convenient to

gauge fix via the choice χµ = 0 for the Lagrange multiplier (analogous to fixing e above) so
we may drop the last term in the action, which approximately is equivalent to the covariant
SSC Sµνπ

ν = 0 +O(S3).
Starting at quadratic order in spins and linear order in curvature, the parity-invariant

mass-shell constraint π2 =M2 receives curvature couplings [107]

M2 = m2 − 1
4RµναβS

µνSαβ + CEEµνS
µρPρσS

νσ +O(S3) , (3.2)

– 8 –
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where CE is a Wilson coefficient induced by finite-size deformations (for a Kerr black hole
CE = 0).3 We have introduced the “electric” curvature tensor Eµν and projector Pµν as

Eµν = Rµανβπ
απβ/m2 , (3.3)

Pµν = gµν − πµπν/π2 . (3.4)

In four spacetime dimensions one may introduce the Pauli-Lubanski spin vector Sµ =
1
2ε
µναβSαβπν/m and the additional term takes the form CEEµνS

µSν . Finally, SµνSµν =
2s2 is a constant along the worldline.

3.2 Identification with the N = 2 spinning particle

Identification of the traditional action for a spinning compact body eq. (3.1) with theN = 2
supersymmetric worldline theory of eq. (2.16) is made by identifying the spin tensor using

Sµν = −2ieµaeνb ψ̄[aψb] . (3.5)

We have Sab = eaµe
b
νS

µν in a local Minkowski frame. So in a sense the worldline fermions
ψa are the quarks of the spin field Sab. This identification is well-motivated by noting that
the SO(1,3) Lorentz algebra:

{Sab, Scd}P.B. = ηacSbd + ηbdSac − ηbcSad − ηadSbc , (3.6)

follows from {ψa, ψ̄b}P.B. = −iηab and provides the normalization in eq. (3.5). Note that the
mass-shell constraint eq. (3.2) for CE = 0 directly maps with (3.5) to the Hamiltonian of the
N = 2 theory (2.12), i.e. the Kerr black hole. Upon (seemingly) sacrificing supersymmetry
the finite-size CE term may also be included by adding

HE := mCEEab ψ̄
aψb Pcdψ̄

cψd (3.7)

to the spinning superparticle Hamiltonian H in eq. (2.12). Using eq. (3.5) one can easily
show that this agrees with the corresponding term in the spinning particle action (3.1).
We will discuss the implications of this for SUSY at the end of this section.

How do we prove the equivalence of our N = 2 worldline SUSY theory (2.12), aug-
mented by eq. (3.7), with the traditional formulation of eq. (3.1)? Taking inspiration from
refs. [30, 81], we compare the Routhians R of the two theories. The Routhian to be con-
sidered is a Legendre transform of the Lagrangian with respect only to the spin degrees of
freedom: it is a Hamiltonian with respect to the spin, but a Lagrangian with respect to the
position of the particle. In the traditional spin formalism (3.1) switching to the Routhian
conveniently eliminates all dependence on angular velocity tensor Ωµν :

Rspin := −1
2Sab ΛaAΛ̇Ab − Lspin

= πµẋ
µ − 1

2ωµ,abẋ
µSab + λ(πµπµ −M2) ,

(3.8)

3In the literature one often finds CE → CE − 1.
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where we used that ΛaADΛAb
Dτ = ΛaA Λ̇Ab − ωµ

abẋµ. Comparing this to the spinning su-
perparticle action in eq. (2.12) augmented by the finite size term (3.7) the corresponding
N = 2 SUSY Routhian takes the form

RN=2 := −iηabψ̄aψ̇b − LN=2 − LE = pµẋ
µ + e (H +HE)

= πµẋ
µ + iωµ,abẋ

µψ̄aψb

− e

2
(
πµπ

µ −m2 +Rabcdψ̄
aψbψ̄cψd +mCEEab ψ̄

aψb Pcd ψ̄
cψd

)
,

(3.9)

having set θ = θ̄ = 0 and used the definition of πµ of eq. (2.9) in the last step. Upon
identifying λ = e

2 we have a perfect match Rspin = RN=2, thereby also reproducing the
finite-size term coupling to CE inM of Rspin. We also note that the evolution of a generic
function F (ψa, ψ̄a) of the spinors is given by Hamilton’s equation:

dF
dτ = {F,R}P.B. . (3.10)

Choosing F as Sµν we see that Rspin = RN=2 guarantees consistency of the spin tensor’s
equation of motion between these two descriptions.

From our perspective, the Routhian has now served its purpose and we will not need
it again. Our approach is therefore qualitatively different from other EFT-based meth-
ods, e.g. ref. [30], wherein one proceeds by solving Hamilton’s equation (3.10) for Sµν . In
that context, as we have discussed, the main benefit of the Routhian (3.8) over the La-
grangian (3.1) is that it does not depend on the angular velocity tensor Ωµν . However, by
introducing the Grassmann vector ψa at an early stage we have already gained this benefit.
We will therefore continue to profit from our use of a fully Lagrangian-based formalism, us-
ing the SUSY action (2.12) augmented by the SUSY-breaking term (3.7), treating position
and spin of the particles on an equal footing. This will allow us to perform calculations
using a set of Feynman rules, to be derived in section 4.

3.3 Approximate supersymmetry of the finite-size term

Finally, we discuss the implications of adding the SUSY-breaking finite-size term HE (3.7)
to the Hamiltonian. In fact, this term does preserve SUSY approximately in the sense
that the SUSY variation of it vanishes up to terms irrelevant for spin-squared interactions.
This may be seen from the bracket of HE with the (undeformed) supercharge Q: as HE is
quartic in fermions the leading term in the bracket is cubic in fermions and reads

{Q,HE}P.B. = mCE(Eµνπµ︸ ︷︷ ︸
=0

eνbψ
bPcdψ̄

cψd + Eabψ
a ψb πγPγρ︸ ︷︷ ︸

=0

eρdψ
d) +O(ψ5) , (3.11)

which vanishes by virtue of eqs. (3.3) and (3.4). Hence the full Hamiltonian H + HE is
approximately supersymmetric. The SUSY-violating terms O(ψ5) above will in turn receive
corrections from the SUSY variation of putative spin-cubed additions to the Hamiltonian.

In fact, one may also incorporate HE into the SUSY algebra (2.6) in this approximate
sense. Deforming the SUSY generators Q and Q̄ by O(ψ5) terms via

Q→ Q′ = Q+ ψ · π
π2 HE , Q̄→ Q̄′ = Q̄+ ψ̄ · π

π2 HE , (3.12)
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gives rise to the Poisson brackets

{Q′, Q̄′}P.B. = −2iH +
{
Q,

ψ̄ · π
π2 HE

}
P.B.

+
{
Q̄,

ψ · π
π2 HE

}
P.B.

+O(ψ6)

= −2i(H +HE) +O(ψ6) , (3.13)

and {Q′, Q′}PB = O(ψ6). Hence, we have an approximate closure of the N = 2 SUSY
algebra. As our analysis is valid only up to spin-squared order we may neglect these
higher-order fermionic terms and violations. This entails that the SUSY constraints —
alias SSC — hold only approximately for CE 6= 0, i.e. we have π · ψ = π · ψ̄ = 0 + O(ψ5)
and Sµνπν = 0 +O(S3). In appendix A we discuss the Lagrangian version of this result in
the gauge-fixed theory.

Finally, the U(1) R-symmetry is preserved by the finite-size extension. Having set the
Lagrange multiplier a to zero we also have the constraint ψ̄ ·ψ = s, which corresponds the
conservation of spin length SµνSµν = 2s2.

4 Spinning supersymmetric WQFT

In this section we use the N = 2 SUSY worldline action of section 2.2 to build a spinning
generalization of the WQFT formalism [1], valid up to quadratic order in the spins. For
each massive body i we start from the worldline action (2.16):

S(i) = −mi

∫
dτ
[1

2gµν ẋ
µ
i ẋ

ν
i + iψ̄i,a

Dψai
Dτ

+ 1
2Rabcdψ̄

a
i ψ

b
i ψ̄

c
iψ

d
i

]
, (4.1)

where Dψai
Dτ = ψ̇ai + ẋµωµ

abψi,b and include the finite-size corrections (3.7)

S
(i)
E := −miCE,i

∫
dτ Raµbν ẋµi ẋ

ν
i ψ̄

a
i ψ

b
i Pcd ψ̄

c
iψ

d
i , (4.2)

with two distinct Wilson coefficients CE,1 and CE,2. Note that the projector reads Pab =
ηab − eaµebν ẋµẋν/ẋ2 here. The two bodies interact via ordinary general relativity, appro-
priately described by the D-dimensional Einstein-Hilbert action and gauge-fixing term:

SEH = − 2
κ2

∫
dDx
√
−g R , Sgf =

∫
dDx

(
∂νh

µν − 1
2∂

µhνν

)2
, (4.3)

where κ =
√

32πG with Newton’s constant G; the harmonic gauge-fixing term enforces
∂νh

µν = 1
2∂

µhνν .
In order to describe a scattering encounter we expand the worldline fields about their

undeflected straight-line trajectories:

xµi (τ) = bµi + vµi τ + zµi (τ) , ψai (τ) = Ψa
i + ψ′

a
i (τ) , (4.4)

with the new fields zµi (τ) and ψ′ai (τ) as perturbations. We also introduce the constant part
of the spin tensor Sµνi (τ) in the local frame:

Sabi = −2iΨ̄[a
i Ψb]

i . (4.5)
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The bulk metric is expanded around a flat Minkowski vacuum:

gµν(x) = ηµν + κhµν(x) , (4.6)

using a mostly minus metric signature ηµν = diag(+1,−1,−1,−1). The corresponding
expansions of the vielbein eaµ and spin connection ωµab are

eaµ = ηaν
(
ηµν + κ

2hµν −
κ2

8 hµρh
ρ
ν +O(κ3)

)
, (4.7a)

ωµ
ab = −κ∂[ahb]µ −

κ2

2 h
ν[a
(
∂b]hµν − ∂νhb]µ + 1

2∂µh
b]
ν

)
+O(κ3) . (4.7b)

In this perturbative framework we no longer distinguish between curved µ, ν, . . . and tan-
gent a, b, . . . indices. The background parameters bµi , v

µ
i and Sµνi , along with the masses of

the two bodies mi, constitute the physical data regarding the scattering in question. We
may set b·vi = 0, where bµ = bµ2−b

µ
1 is the relative impact parameter, and vi·Ψi = vi·Ψ̄i = 0,

implying Sµνi viµ = 0, without loss of generality — more on this in section 4.4.
In the WQFT framework hµν(x), zµi (τi) and ψ′µi (τi) are promoted to quantum fields.

The quantum theory is defined by the partition function:

ZWQFT = eiχ := const×
∫
D[hµν ]

∫ 2∏
i=1

D[zi, ψ′i, ai, bi, ci]

× exp
[
i

(
SEH + Sgf +

2∑
i=1

(
S(i) + S

(i)
E + S

(i)
ghost

))]
,

(4.8)

where χ is the eikonal phase; the overall constant ensures that ZWQFT = 1 in the non-
interacting case (κ = 0), so χ = 0. The additional terms S(i)

ghost arise from the need to write
down a covariant path integral measure [108]:

D[x] = D[x]
∏

0≤σ≤T

√
−detgµν [x(τ)]

= D[x]
∫
D[a, b, c] exp

[
−i
∫ T

0
dτ
(1

2gµν(aµaν + bµcν)
)

︸ ︷︷ ︸
iSghost

]
,

(4.9)

which brings the “Lee-Yang” ghosts aµi (commuting) and bµi , c
µ
i (anti-commuting) into the

theory. On top, dimensional regularization of the path integral induces a finite counter term
in terms of the Ricci scalar evaluated along the worldline trajectory −1

2R[x(τ)] [108, 109].
However, both of these additions turn out to be irrelevant for the classical considerations
in this work. Observables are calculated as expectation values in the WQFT:〈

O(h, {xi, ψi})
〉

:= Z−1
WQFT

∫
D[hµν ]

∫ 2∏
i=1

D[zi, ψ′i, ai, bi, ci]O(h, {xi, ψi})

× exp
[
i

(
SEH + Sgf +

2∑
i=1

(
S(i) + S

(i)
E + S

(i)
ghost

))]
,

(4.10)

To straightforwardly compute both these observables and the eikonal phase χ in practice
we derive a set of momentum-space Feynman rules. These build on the non-spinning rules
already derived in ref. [1], and have already been presented in ref. [3].

– 12 –



J
H
E
P
0
1
(
2
0
2
2
)
0
2
7

4.1 Feynman rules

As the Feynman rules originating from the Einstein-Hilbert action (4.3) are fairly conven-
tional we do not dwell on them here; the graviton is simply re-expressed in momentum
space as

hµν(x) =
∫
k
eik·xhµν(−k) , (4.11)

where
∫
k :=

∫ dDk
(2π)D (the negative sign convention gives Feynman vertices with outgoing

momenta). Spatial integration
∫

dDx in eq. (4.3) gives rise to momentum-conserving delta
functions at each n-point momentum-space graviton vertex; also including the gauge-fixing
term Sgf we read off the graviton propagator from the two-point function:

k

µν ρσ = i
Pµν;ρσ
k2 + iε

, Pµν;ρσ := ηµ(ρησ)ν −
1

D − 2ηµνηρσ . (4.12)

The Feynman iε prescription used here is consistent with purely conservative scattering,
and will be sufficient at the 2PM order we shall be working at.

Next we consider the supersymmetric worldline action (4.1). The quadratic terms in
zµi and ψ′i

µ are
S(i)

∣∣∣
quadratic

= −mi

∫
dτ ηµν

[1
2 ż

µ
i ż

ν
i + iψ̄′µi ψ̇

′ν
i

]
. (4.13)

Writing the worldline fields in energy space,

zµi (τ) =
∫
ω
eiωτzµi (−ω) , ψ′i

µ(τ) =
∫
ω
eiωτψ′i

µ(−ω) , (4.14)

where
∫
ω :=

∫ dω
2π , we read off the two worldline propagators:

ω

µ ν = −i η
µν

2mi

( 1
(ω + iε)2 + 1

(ω − iε)2

)
, (4.15)

ω

µ ν = −i η
µν

2mi

( 1
ω + iε

+ 1
ω − iε

)
. (4.16)

As explained in ref. [1], the choice of iε prescription determines the precise interpretation
of the background parameters: with advanced or retarded prescriptions bµi,±∞, vµi,±∞ and
Ψµ
i,±∞ are identified with the undeflected particle trajectories in the limit τ → ±∞. To

leading order in G the time-symmetric iε prescription used here averages over these two
possibilities, hence Ψµ

i = 1
2(Ψµ

i,+∞ + Ψµ
i,−∞) +O(G2), vµi = 1

2(vµi,+∞ + vµi,−∞) +O(G2) and
bµi = 1

2(bµi,+∞ + bµi,−∞) +O(G2).
Finally, we read off interaction vertices from the supersymmetric worldline action (4.1)

and finite-size term (4.2). The worldline fields are written in energy space (4.14); as the
graviton coupling to the worldline implicitly depends on zµi we re-write it thus:

hµν(xi(τ)) =
∫
k
eik·(bi+viτ+zi(τ))hµν(−k) =

∞∑
n=0

in

n!

∫
k
eik·(bi+viτ) (k · zi(τ))n hµν(−k)

=
∞∑
n=0

in

n!

∫
k,ω1,...,ωn

eik·bie
i(k·vi+

∑n

j=1 ωj)τ

 n∏
j=1

k · zi(−ωj)

hµν(−k) . (4.17)
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Integration of the actions over proper time gives rise to energy-conserving delta functions
δ−(ω) := 2πδ(ω), and we read off Feynman vertices from the interaction terms. The simplest
vertex is the single-graviton source (suppressing the i subscripts):

hµν(k)
= −imκ2 eik·bδ−(k · v) (4.18)

×
(
vµvν + i(k · S)(µvν) − 1

2(k · S)µ(k · S)ν + CE
2 vµvν(k · S · S · k)

)
,

where (k · S)µ := kνSνµ, representing the linearized (in hµν) stress-energy tensor. In
the non-spinning case (Sµν = 0) this precisely reproduces the corresponding vertex of
ref. [1]; for a Kerr black hole (CE = 0) the expression is consistent with an exponential
representation of the linearized stress-energy tensor [93, 98, 100] apparently valid to all
orders in spin:

hµν(−k)Tµν(k) = meik·bδ−(k2)δ−(k · v)(v · ε)2 exp
(
i
k · S · ε
v · ε

)
(4.19)

= meik·bδ−(k2)δ−(k · v)εµεν
(
vµvν + i(k · S)(µvν) − 1

2(k · S)µ(k · S)ν
)

+O(S3) ,

where the on-shell graviton is hµν(k) = δ−(k2)εµεν .
As the higher-point vertices become rapidly more complicated we provide only the ones

required to compute the 2PM eikonal phase in section 4.3. Firstly, the graviton coupling
to a single deflection mode is

hµν(k)

zρ(ω)
= mκ

2 eik·bδ−(k · v + ω) (4.20)

×
(

2ωv(µδν)
ρ + vµvνkρ + i(k · S)(µ(kρvν) + ωδν)

ρ ) + 1
2kρ(k · S)µ(S · k)ν

+ CE
2
( (

2ωv(µδν)
ρ + vµvνkρ

)
(k · S · S · k)− ω2kρ(S · S)µν + 2ω2(k · S · S)(µδν)

ρ

))
,

which again reproduces the non-spinning case when Sµν = 0. The coupling to a single
Grassmann-odd vector is

hµν(k)

ψ′ρ(ω)
= −imκeik·bδ−(k · v + ω) (4.21)

×
(
k[ρδ

(µ
σ]

(
vν) − i(S · k)ν)

)
+ iCE

(
v(µkλ + ωδ

(µ
λ

)(
vν)k[ρ + ωδ

ν)
[ρ

)
Sλσ]

)
Ψ̄σ .

The vertex with an outgoing ψ̄′ρ(ω) line is the same, except with Ψ̄σ → Ψσ. Finally, we
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require the two-graviton emission vertex from the worldline:

hµ1ν1(k1) hµ2ν2(k2)
= −mκ

2

4 ei(k1+k2)·bδ−((k1 + k2) · v) (4.22)

×
(

(k1 · S)µ2vµ1ην1ν2 − Sµ1µ2

(
vν1kν2

1 −
1
2k1 · vην1ν2

)
+ i

(
(S · k1)µ1(S · k1)µ2 + 1

2(S · k2)µ1(S · k1)µ2 − 1
2S

µ1µ2(k1 · S · k2)
)
ην1ν2

+ i

4k1 · k2Sµ1ν2Sµ2ν1 − ikν2
1 (S · (k1 + k2))µ1Sµ2ν1

+ i CE

((
2k1 · v(S · S · (k1 + k2))µ2vµ1 − 1

2(k1 · v)2(S · S)µ1µ2

− 1
2(k1 · S · S · k2)vµ1vµ2

)
ην1ν2 − 1

2k1 · k2(S · S)ν1ν2vµ1vµ2

+ kν2
1 (S · S · k2)ν1vµ1vµ2 − kν2

1 (S · S · k1)µ2vµ1vν1 − kν2
1 (S · S · k2)µ2vµ1vν1

− (S · S)µ2ν2

(
k1 · vkν1

2 −
1
2k1 · k2v

ν1

)
vµ1

))
+ (1↔ 2) ,

which is implicitly symmetrized on (µ1, ν1) and (µ2, ν2).

4.2 Recursive properties

The Feynman rules (4.18), (4.20) and (4.21) satisfy recursive properties:

hµν(k)

zρ(0)
= ∂

∂bρ
hµν(k)

, (4.23a)

hµν(k)

ψ′ρ(0)
= ∂

∂Ψρ

hµν(k)
. (4.23b)

In ref. [1] (the non-spinning case) the first relationship was generalized to n points:

hµν(k)

zρ1(ω1)
...
zρn(ωn)
zρn+1(0)

= ∂

∂bρn+1

hµν(k)

zρ1(ω1)
...
zρn(ωn)

. (4.24)

In words: a vertex with (n+1) external zµ particles, and ωn+1 = 0, is given by a derivative
with respect to the impact parameter bµ of the corresponding n-point vertex. We claim
this continues to hold when spin is included, and that eq. (4.23b) generalizes similarly,
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regardless of what other external lines are present on the vertex. In the non-spinning case
we confirmed this recursive property using an analytic expression for the worldline vertices:

hµν(k)

zρ1(ω1)
...
zρn(ωn)

= in−1mκeik·bδ−
(
k · v +

n∑
i=1

ωi

)
(4.25)

×

1
2

(
n∏
i=1

kρi

)
vµvν +

n∑
i=1

ωi

 n∏
j 6=i

kρj

v(µδν)
ρi +

n∑
i<j

ωiωj

 n∏
l 6=i,j

kρl

 δ(µ
ρi δ

ν)
ρj

.
With the inclusion of spin, however, we no longer have such a compact expression and
therefore argue differently.

At the Lagrangian level these properties follow straightforwardly from

∂L(i)(τ)
∂bµi

= ∂L(i)(τ)
∂zµi (τ) ,

∂L(i)(τ)
∂Ψµ

i

= ∂L(i)(τ)
∂ψ′µi (τ)

, (4.26)

where S(i) + S
(i)
E =

∫
dτ L(i)(τ) (we are now ignoring the ghosts). The former is true

simply because the Lagrangian L(i) depends on bµi and zµi only implicitly via xµi (τ) =
bµi + τvµi + zµi (τ); the latter because L(i) depends on spin only via ψµi (τ) = Ψµ

i + ψ′µi (τ)
(and its complex conjugate). In energy space the action therefore generically depends on
xµi (ωj) = δ−(ωj)bµi − iδ−′(ωj)v

µ
i + zµi (ωj) and ψµi (ωj) = δ−(ωj)Ψµ

i + ψ′µi (ωj) for the collection
of energies {ωj}. So, in this case a derivative with respect to the background parameter
bµi or Ψµ

i is equivalent to one with respect to the corresponding perturbation zµi (ωj) or
ψ′µi (ωj), if we set ωj = 0 (as implied by the delta function). In the next section we use
these properties to obtain observables from the eikonal phase χ.

4.3 Observables from the eikonal phase

The eikonal phase χ is a scalar with a privileged role in the WQFT, containing knowledge
of both the classical impulse 〈∆pi,µ〉 and spin kick 〈∆Si,µν〉. To recover these observables
we use the recursive properties of the worldline vertices (4.26); from the action S = SEH +
Sgf +

∑2
i=1

∫
dτ L(i)(τ) these may be re-expressed as

∂S

∂bµi
=
∫ ∞
−∞

dτ
(
∂L(i)

∂xµi (τ) −
d
dτ

∂L(i)

∂ẋµi (τ)

)
−
[
pi,µ

]τ=∞
τ=−∞︸ ︷︷ ︸

∆pi,µ

, (4.27a)

∂S

∂Ψµ
i

=
∫ ∞
−∞

dτ
(
∂L(i)

∂ψµi (τ) −
d
dτ

∂L(i)

∂ψ̇µi (τ)

)
+ imi

[
ψ̄i,µ

]τ=∞
τ=−∞︸ ︷︷ ︸

∆ψ̄i,µ

, (4.27b)

where pi,µ = −∂L(i)

∂ẋµi
and imiψ̄i,µ = ∂L(i)

∂ψ̇µi
. As the first terms define the classical (Euler-

Lagrange) equations of motion for xµi and ψµi , their expectation values in the WQFT
vanish. Therefore, by taking derivatives of the free energy −i logZWQFT = χ of eq. (4.8)
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with respect to bµi , Ψµ
i and Ψ̄µ

i and using eq. (4.27) we see that4

〈∆pi,µ〉 = − ∂χ
∂bµi

, (4.28a)

imi〈∆ψi,µ〉 = ∂χ

∂Ψ̄µ
i

= −2iΨν
i

∂χ

∂Sµνi
, (4.28b)

imi〈∆ψ̄i,µ〉 = ∂χ

∂Ψµ
i

= −2iΨ̄ν
i

∂χ

∂Sµνi
. (4.28c)

We have used the fact that χ depends on Ψµ
i and Ψ̄µ

i only implicitly via Sµνi = −2iΨ̄[µ
i Ψν]

i .
The expectation value of the spin kick ∆Sµνi is therefore recovered as

〈∆Sµνi 〉 = −2iΨ̄[µ
i 〈∆ψ

ν]
i 〉 − 2i〈∆ψ̄[µ

i 〉Ψ
ν]
i

= 4
mi
Sρ[µ
i

∂χ

∂Si,ν]
ρ .

(4.29)

For any field perturbed around a background expectation value, the expected “kick” of
that field is therefore extracted from the eikonal phase by taking a derivative with respect
to the corresponding background parameter.

In the special case of aligned spins to the scattering plane we can also determine the
scattering angle θ, given in terms of the momentum impulse as

sin
(
θ

2

)
= |∆pi|2p∞

, p∞ = m1m2
E

√
γ2 − 1 , (4.30)

where |∆pi| :=
√
−〈∆pi〉2, p∞ is the center-of-mass momentum, the total energy is E =√

m2
1 +m2

2 + 2γm1m2 and γ = v1 · v2. From the eikonal phase the scattering angle is
directly recovered as

sin
(
θ

2

)
= − 1

2p∞
∂χ

∂|b|
. (4.31)

Using these relations, in sections 5.2 and 5.3 we will calculate the momentum impulse, spin
kick and aligned-spin scattering angle at 1PM and 2PM order respectively.

4.4 Background field symmetries

Invariance of the action under the SUSY transformations (2.19) (see appendix A for de-
tails), the U(1) symmetry (2.20) and translation invariance along the worldline has physical
consequences for these observables derived from the eikonal phase. After integrating out
the worldline fluctuations zµi and ψ′µi , for each transformation there is a flat-space remnant
of these symmetries on the background parameters:

δbµi = ξiv
µ
i + iε̄iΨµ

i + iεiΨ̄µ
i , (4.32a)

δvµi = 0 , (4.32b)
δΨµ

i = −εivµi − iαiΨ
µ
i , (4.32c)

δΨ̄µ
i = −ε̄ivµi + iαiΨ̄µ

i , (4.32d)
4Fermionic derivatives act to the right.
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for constant shift parameters ξi, εi, ε̄i and αi. Hence the eikonal phase χ depending only
on the background parameters will be invariant under

δχ = ∂χ

∂bµi
δbµi + ∂χ

∂Ψµ
i

δΨµ
i + ∂χ

∂Ψ̄µ
i

δΨ̄µ
i = 0 (4.33)

for both i = 1, 2. For each parameter we recover a constraint:

ξi : 0 = vµi 〈∆pi,µ〉 , (4.34a)
εi : 0 = 〈∆pi,µ〉Ψ̄µ

i +miv
µ
i 〈∆ψ̄i,µ〉 , (4.34b)

ε̄i : 0 = 〈∆pi,µ〉Ψµ
i +miv

µ
i 〈∆ψi,µ〉 , (4.34c)

αi : 0 = Ψ̄µ
i 〈∆ψi,µ〉+ 〈∆ψ̄i,µ〉Ψµ

i . (4.34d)

These four constraints respectively imply conservation of p2
i , pi ·ψ̄i, pi ·ψi and ψi ·ψ̄i between

initial and final asymptotic states, i.e. the energy/mass, conserved supercharges and spin
length.5

How do we re-interpret the latter three constraints in terms of the classical spin tensors
Sµνi ? Using 〈∆Sµνi 〉 = −2iΨ̄[µ

i 〈∆ψ
ν]
i 〉 − 2i〈∆ψ̄[µ

i 〉Ψ
ν]
i we have

mivi,µ〈∆Sµνi 〉+ 〈∆pi,µ〉Sµνi = −i(〈∆pi,µ〉Ψ̄µ
i +miv

µ
i 〈∆ψ̄i,µ〉)Ψ

ν
i

− i(〈∆pi,µ〉Ψµ
i +miv

µ
i 〈∆ψi,µ〉)Ψ̄

ν
i

− imi(vi · Ψ̄i〈∆ψνi 〉+ vi ·Ψi〈∆ψ̄νi 〉) .
(4.35)

Therefore, pi,µSµνi is conserved only if, in addition to eqs. (4.34b) and (4.34c), we choose
vi · Ψi = vi · Ψ̄i = 0. This is consistent with our observation in section 3 that the N = 2
SUSY theory agrees with the spinning particle action only when we use the covariant SSC:
πi,µS

µν
i = 0, which is implied by πi · ψi = πi · ψ̄i = 0. Meanwhile,

Si,µν〈∆Sµνi 〉 = 2Ψi · Ψ̄i(Ψ̄µ
i 〈∆ψi,µ〉+ 〈∆ψ̄i,µ〉Ψµ

i ) , (4.36)

so preservation of the spin lengths tr(Si · Si) = −2s2
i is guaranteed by eq. (4.34d).

One should note that the background symmetries (4.32) are gauge fixed by our previous
requirements that b · vi = 0 and vi · Ψi = vi · Ψ̄i = 0, the latter implying vi,µSµνi = 0. In
terms of the shifts (4.32) these constraints are achieved using

εi = vi ·Ψi , ε̄i = vi · Ψ̄i , αi = 0 ,

ξ1 = b · (γv2 − v1)− v1 · S2 · v2 + γv1 · S1 · v2
γ2 − 1 ,

ξ2 = b · (v2 − γv1) + v1 · S1 · v2 − γv1 · S2 · v1
γ2 − 1 .

(4.37)

However, no information is lost: full dependence on terms of the form b · vi and vi,µSµνi is
restored to the eikonal phase by shifting

Sµνi → S
µν
i + 2(vi · Si)[µv

ν]
i ,

bµ → bµ + ξ2v
µ
2 − ξ1v

µ
1 + Sµν2 v2,ν − Sµν1 v1,ν ,

(4.38)

with ξi as given above.
5Although the true supercharges Qi = πi · ψi, Q̄i = πi · ψ̄i involve the covariantized momentum πi,µ =

pi,µ − iωµabψ̄ai ψbi , the spacetime is asymptotically flat so ωµab = 0 at the boundary.
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Given our imposition of these background constraints, in order to truly “check” the
background symmetries of the eikonal phase one should calculate it without making these
requirements a priori. Up to the 2PM order described in section 5 we have done so, as a
separate calculation which involved generalizing the Feynman rules in section 4.1 to the
inclusion of such terms. Notice also that the background field symmetries (4.32) continue
to apply when CE,i 6= 0: although local SUSY is spoiled by the presence of additional
curvature couplings in the action, approximate SUSY persists up to spin-squared effects as
discussed in section 3.3. So we continue to expect conservation of energy, spin length, and
the SSC. In ref. [2] the same approximate SUSY was also seen acting on the leading-PM
waveform 〈hµν(k)〉.

5 The eikonal phase and derived observables

In this section we compute the eikonal phase χ = −i logZWQFT up to 2PM order, and
from it derive the momentum impulse 〈∆pµi 〉, spin kick 〈∆Sµνi 〉 and aligned-spin scattering
angle θ using the relationships established in section 4.3.

5.1 2PM eikonal phase

Up to 2PM order the eikonal phase is given as the sum of four vacuum diagrams in the
WQFT:

iχ = (5.1)

+ + + +

+O(G3) ,

where mirror diagrams (1 ↔ 2) are left implicit and we sum over both directions of the
arrowed line (representing a propagating spin mode ψ′ai ). Explicit expressions are obtained
using the Feynman rules given in section 4.1. For example, the 1PM contribution only
involves the graviton source vertex (4.18) and has the explicit form

q↑

1

2

= i
κ2m1m2

4

∫
q
eiq·bδ−(q · v1)δ−(q · v2) Pµν;ρσ

q2 + iε
(5.2)

×
(
vµ1 v

ν
1 − i(q · S1)µvν1 −

1
2(q · S1)µ(q · S1)ν + CE,1

2 vµ1 v
ν
1 (q · S1 · S1 · q)

)
×
(
vρ2v

σ
2 + i(q · S2)ρvσ2 −

1
2(q · S2)ρ(q · S2)σ + CE,2

2 vρ2v
σ
2 (q · S2 · S2 · q)

)
,
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where we discard all terms above O(S2); bµ = bµ2 − bµ1 and we integrate over the off-
shell momentum q of the exchanged graviton. Similar expressions are easily assembled for
the other diagrams; for a worldline propagator of either type (zµ or ψ′µ) we perform a
one-dimensional integral

∫
ω over the intermediate energy ω.

An important practical consideration is our use of the constant spinors Ψµ
i : in general,

we prefer final results to be expressed in terms of the physically relevant antisymmetric spin
tensors Sµνi = −2iΨ̄[µ

i Ψν]
i . This motivates our writing the interaction vertices (4.18)–(4.21)

in terms of Sµν wherever possible — so that most of the graphs in eq. (5.1) depend on Ψµ
i

only via Sµνi . The only exception is the third diagram, which carries an overall factor Ψ̄µ
1 Ψν

1
due to the spinor vertex (4.21) (appropriately contracted with the rest of the expression).
Manifest dependence on Sµν1 is only recovered once the counterpart diagram with the
arrowed line pointing in the opposite direction is included: except for its overall dependence
on Ψµ

1 the expression is identical, and we recover Ψ̄µ
1 Ψν

1 +Ψµ
1 Ψ̄ν

1 = iSµν1 as an overall factor.
As the techniques used to integrate these expressions are now well-established (see

e.g. refs. [38, 110]) we relegate those details to appendix B, and here simply present our
results. As explained in section 4.3, χ =

∑∞
n=1G

nχ(n) depends only on the orthogonal
components of bµ and Sµνi with respect to the velocities vµi , so we set b · vi = 0 and
(vi · Si)µ = 0 (the covariant SSC) without loss of generality. At 1PM order the various
D-dimensional contributions are6

χ(1)
∣∣∣
S0

1S
0
2

=
2π2−D2 Γ(D2 − 2)((D − 2)γ2 − 1)m1m2

(D − 2)|b|D−4
√
γ2 − 1

, (5.3a)

χ(1)
∣∣∣
S1S0

2
=

4π2−D2 Γ(D2 − 1)γm1m2

|b|D−3
√
γ2 − 1

b̂ · S1 · v2 , (5.3b)

χ(1)
∣∣∣
S1S2

=
2π2−D2 Γ(D2 − 1)m1m2

|b|D−2(γ2 − 1)3/2 (5.3c)

×
(
(γ2 − 1)

(
γ tr(S1 · S2)− (D − 2)(b̂ · S1 · v2 b̂ · S2 · v1 − γb̂ · S1 · S2 · b̂)

)
− v2 · S1 · S2 · v1

)
,

χ(1)
∣∣∣
S2

1S
0
2

=
2π2−D2 Γ(D2 − 1)m1m2

(D − 2)|b|D−2(γ2 − 1)3/2 (5.3d)

×
(
(γ2 − 1)

(
(D − 2)2(b̂ · S1 · v2)2 + (D − 2)b̂ · S1 · S1 · b̂− 2s2

1
)

+
(
D − 1− γ2(D − 2)

)
v2 · S1 · S1 · v2

− CE,1
(
(D − 2)γ2 − 1

)(
(γ2 − 1)

(
(D − 2)b̂ · S1 · S1 · b̂− 2s2

1
)

+ v2 · S1 · S1 · v2
))
,

where b̂µ := bµ/|b|, |b| =
√
−b · b and we recall that γ = v1 · v2. As the 2PM results are

6The zeroth-order-spin contribution (5.3a) is logarithmically divergent in D = 4 dimensions — this pole
is unphysical and affects neither the impulse nor spin kick.
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more involved we provide them here only in D = 4 dimensions:

χ(2)
∣∣∣
S0

1S
0
2

= 3π(5γ2 − 1)(m1 +m2)m1m2

4|b|
√
γ2 − 1

, (5.4a)

χ(2)
∣∣∣
S1S0

2
= πγ(5γ2 − 3)(4m1 + 3m2)m1m2

4|b|2(γ2 − 1)3/2 b̂ · S1 · v2 , (5.4b)

χ(2)
∣∣∣
S1S2

= π(m1 +m2)m1m2
4|b|3(γ2 − 1)5/2 (5.4c)

×
(
(γ2 − 1)(γ(5γ2 − 3)(2 tr(S1 · S2) + 3b̂ · S1 · S2 · b̂)
− 9(5γ2 − 1)b̂ · S1 · v2 b̂ · S2 · v1)− 3(3γ2 − 1)v2 · S1 · S2 · v1

)
,

χ(2)
∣∣∣
S2

1S
0
2

= πm1m2
64|b|3(γ2 − 1)5/2 (5.4d)

×
(
8(γ2 − 1)((13γ4 − 42γ2 + 21)m1 − 4(3γ2 − 1)m2)s2

1

− 6(γ2 − 1)((29γ4 − 66γ2 + 29)m1 − 4(3γ2 − 1)m2)b̂ · S1 · S1 · b̂
+ 24(γ2 − 1)((31γ2 − 11)m1 + 3(5γ2 − 1)m2)(b̂ · S1 · v2)2

− 6((49γ4 − 90γ2 + 33)m1 + 4(5γ4 − 9γ2 + 2)m2)v2 · S1 · S1 · v2

+ 4CE,1(γ2 − 1)((125γ4 − 138γ2 + 29)m1 + 2(45γ4 − 42γ2 + 5)m2)s2
1

− 3CE,1(γ2 − 1)((155γ4 − 174γ2 + 35)m1 + 4(30γ4 − 29γ2 + 3)m2)b̂ · S1 · S1 · b̂
− 3CE,1((95γ4 − 102γ2 + 23)m1 + 4(15γ4 − 13γ2 + 2)m2))v2 · S1 · S1 · v2

)
.

We have confirmed agreement between these four-dimensional results and refs. [55, 62].7 For
the full D-dimensional expressions at 2PM order we refer the reader to the supplementary
material of this paper.

5.2 1PM observables

The impulse, spin kick and aligned-spin scattering angle are derived from the eikonal phase
χ using

〈∆pi,µ〉 = − ∂χ
∂bµi

, 〈∆Sµνi 〉 = 4
mi
Sρ[µ
i

∂χ

∂Si,ν]
ρ , sin

(
θ

2

)
= − 1

2p∞
∂χ

∂|b|
, (5.5)

where p∞ is the centre-of-mass momentum (4.30). Care should be taken with these deriva-
tives as the 1PM eikonal phase given in eq. (5.3) depends only on the (D− 2)-dimensional
orthogonal components of bµ = bµ2 − bµ1 and Sµνi with respect to the velocities vµi . As
explained in section 4.3, full dependence on terms of the form b · vi and (vi · Si)µ is restored
to the eikonal phase using the SUSY shifts in eq. (4.38), after which the derivatives (5.5)
may be taken without issue. One may then safely re-impose b · vi = 0 and (vi · Si)µ = 0 on
the resulting physical observables. Notice that eq. (5.5) implies conservation of momen-
tum 〈∆pµ2 〉 = −〈∆pµ1 〉 as all dependence on bµi comes via the relative impact parameter
bµ = bµ2 − b

µ
1 (we are free to choose a spacetime origin). At higher-PM orders this implies

7We find it simplest to compare our expressions with covariant scattering amplitudes before the Fourier
transform with respect to qµ is taken.
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that the scattering is conservative, i.e. by this procedure we miss radiation-reaction effects
for which 〈∆pµ2 〉 6= −〈∆p

µ
1 〉.

The O(G) part of the impulse 〈∆pµ1 〉 =
∑∞
n=1G

n〈∆pµ1 〉(n) is given by

〈∆pµ1 〉(1)
∣∣∣
S0

1S
0
2

=
4π2−D2 Γ(D2 − 1)((D − 2)γ2 − 1)m1m2

(D − 2)|b|D−3
√
γ2 − 1

b̂µ , (5.6a)

〈∆pµ1 〉(1)
∣∣∣
S1S0

2
= −

4π2−D2 Γ(D2 − 1)γm1m2

|b|D−2
√
γ2 − 1

(
(D − 2)b̂ · S1 · v2 b̂

µ + (S1 · v2)µ
)
, (5.6b)

〈∆pµ1 〉(1)
∣∣∣
S1S2

=
4π2−D2 Γ(D2 )m1m2

|b|D−1
√
γ2 − 1

(
b̂ · S1 · v2(v1 · S2)µ + b̂ · S2 · v1(v2 · S1)µ

+
(
γDb̂ · S1 · S2 · b̂−Db̂ · S1 · v2b̂ · S2 · v1 + γ tr(S1 · S2)− v2 · S1 · S2 · v1

γ2 − 1

)
b̂µ

+ γ(b̂ · S1 · S2 · P12)µ + γ(P12 · S1 · S2 · b̂)µ
)
, (5.6c)

〈∆pµ1 〉(1)
∣∣∣
S2

1S
0
2

=
2π2−D2 Γ(D2 − 1)m1m2

|b|D−1
√
γ2 − 1

(
− 2(D − 2)b̂ · S1 · v2(v2 · S1)µ

+
(

(D − 2)D(b̂ · S1 · v2)2 +Db̂ · S1 · S1 · b̂+ D − 1− (D − 2)γ2

γ2 − 1 v2 · S1 · S1 · v2

− 2s2
1

)
b̂µ + 2(b̂ · S1 · S1 · P12)µ − CE,1

(
(D − 2)γ2 − 1

)(
2(b̂ · S1 · S1 · P12)µ

+
(
Db̂ · S1 · S1 · b̂+ tr(S1 · P12 · S1)

)
b̂µ
))

, (5.6d)

and 〈∆pµ2 〉 = −〈∆pµ1 〉. These expressions are manifestly orthogonal to vµi , as required by
eq. (4.34a), which is apparent given our use of the projector Pµν12 to the (D−2)-dimensional
space orthogonal to these velocities:

Pµν12 = ηµν + 1
γ2 − 1

[
vµ1 v

ν
1 − 2γv(µ

1 v
ν)
2 + vµ2 v

ν
2

]
. (5.7)

The O(G) part of the spin kick 〈∆Sµν1 〉 =
∑∞
n=1G

n〈∆Sµν1 〉(n) is

〈∆Sµν1 〉
(1)
∣∣∣
S1

1S
0
2

=−
8π2−D2 Γ(D2 −1)m2

|b|D−3
√
γ2−1

(5.8a)

×
((b̂ ·S1)[µv1

ν]

D−2 +γ(v2 ·S1)[µb̂ν]−γ(b̂ ·S1)[µv2
ν]
)
,

〈∆Sµν1 〉
(1)
∣∣∣
S2

1S
0
2

=
8π2−D2 Γ(D2 −1)m2

|b|D−2
√
γ2−1

(5.8b)

×
(
−(S1 ·S1 · b̂)[µb̂ν]−(D−2)b̂ ·S1 ·v2

(
(S1 ·v2)[µb̂ν]−(S1 · b̂)[µv2

ν]
)

+ γ(S1 ·S1 ·v2)[µv1
ν]

(γ2−1)(D−2) + 1+(D−2)γ2−D
(γ2−1)(D−2) (S1 ·S1 ·v2)[µv2

ν]

+CE,1
(
(D−2)γ2−1

)(
(S1 ·S1 · b̂)[µb̂ν]− (S1 ·S1 ·v2)[µ(γv1−v2)ν]

(γ2−1)(D−2)

))
,
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〈∆Sµν1 〉
(1)
∣∣∣
S1

1S
1
2

=
4π2−D2 Γ(D2 −1)m2

|b|D−2
√
γ2−1

(5.8c)

×
(
γ(D−2)

(
(S1 · b̂)[µ(S2 · b̂)ν]−(S1 ·S2 · b̂)[µb̂ν])− (S1 ·v2)[µ(S2 ·v1)ν]

γ2−1

− (S1 ·S2 ·v1)[µ(γv1−v2)ν]

γ2−1 −2γ(S1 ·S2)[µν]

−(D−2)
(
(S1 · b̂)[µv2

ν]−(S1 ·v2)[µb̂ν])b̂ ·S2 ·v1

)
.

The other components are 〈∆Sµν1 〉(1)|S0
1S

1
2

= 〈∆Sµν1 〉(1)|S0
1S

2
2

= 0; 〈∆Sµν2 〉(1) is recovered
by simple relabelling. Finally, the O(G) part of the scattering angle θ =

∑∞
n=1G

nθ(n)

emerging in the case of aligned spins is

θ(1) =
2π2−D2 (D − 3)Γ(D2 − 1)E

|b|D−3(γ2 − 1)

(
2(D − 2)γ2 − 2
(D − 3)(D − 2) + 2γ

√
γ2 − 1s1 + s2

|b|

+
(
(D − 2)γ2 − 3

4D + 2
)(s1 + s2)2

|b|2
− D − 4

4
(s1 − s2)2

|b|2

−
(
(D − 2)γ2 − 1

)(CE,1s2
1 + CE,2s

2
2

|b|2

))
.

(5.9)

To specify aligned spins we have inserted

Sµν1 = 2s1
b[µ(γv1 − v2)ν]

|b|
√
γ2 − 1

, Sµν2 = 2s2
b[µ(v1 − γv2)ν]

|b|
√
γ2 − 1

, (5.10)

with the normalizations ensuring that tr(Si · Si) = −2s2
i . The aligned-spin tensors live in

the subspace spanned by bµ, vµ1 and vµ2 , which together with the SSC (vi · Si)µ = 0 defines
them uniquely. This definition ensures planar dynamics and includes the conventional
definition in four spacetime dimensions.

5.3 2PM observables

The 2PM momentum impulse and spin kick are again derived from the eikonal phase by
taking derivatives with respect to the background parameters bµi and Sµνi (5.5); however,
an additional subtlety is the interpretation of these background parameters (and vµi ). In
general, we prefer to express observables in terms of bµ±∞, vµi,±∞ and Sµi,±∞ taken in the
far past or future:

xµi (τ) −−−−→
τ→±∞

bµi,±∞ + τvµi,±∞ , (5.11a)

Sµνi (τ) −−−−→
τ→±∞

Sµνi,±∞ . (5.11b)

With the time-symmetric worldline propagators (4.15) the currently used background pa-
rameters are bµ = 1

2(bµ+∞ + bµ−∞) + O(G2), vµi = 1
2(vµi,+∞ + vµi,−∞) + O(G2) and Sµνi =
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1
2(Sµνi,+∞ + Sµνi,−∞) + O(G2). To leading order in G the transition is straightforwardly ac-
complished using 〈∆bµ〉, the momentum impulse 〈∆pµi 〉 = mi(vµi,+∞ − v

µ
i,−∞) and the spin

kick 〈∆Sµνi 〉 = Sµνi,+∞ − S
µν
i,−∞:

bµ±∞ = bµ ± 〈∆b
µ〉

2 +O(G2) , (5.12a)

vµi,±∞ = vµi ±
〈∆pµi 〉
2mi

+O(G2) , (5.12b)

Sµνi,±∞ = Sµνi ±
〈∆Sµνi 〉

2 +O(G2) . (5.12c)

Using 0 = vµi 〈∆pi,µ〉 (4.34a) it also follows that γ±∞ = γ +O(G2). Given our 1PM results
in section 5.2 we lack only the 1PM expression for 〈∆bµ〉; those results are unaffected as
the parameters differ by terms O(G).

Conservation of angular momentum at 1PM order 〈∆Jµν〉 = J µν+∞−J
µν
−∞ = 0 gives us

an O(G) expression for 〈∆bµ〉. The total angular momentum at future/past infinity is

J µν±∞ =
2∑
i=1

mi

(
2b[µi,±∞v

ν]
i,±∞ + Sµνi,±∞

)

= 2(b1,±∞ + b2,±∞)[µP ν] + 2q[µ
±∞b

ν]
±∞ +

2∑
i=1

miSµνi,±∞ ,
(5.13)

where Pµ := 1
2(m1v

µ
1,±∞ + m2v

µ
2,±∞) and qµ±∞ := 1

2(m1v
µ
1,±∞ −m2v

µ
2,±∞). We note that

〈∆pµ1 〉 = −〈∆pµ2 〉 = qµ+∞ − q
µ
−∞ due to conservation of linear momentum. To isolate the

term depending on the relative impact parameter bµ = bµ2 − b
µ
1 we introduce a projector to

the (D − 1)-dimensional space orthogonal to Pµ:

Λµν := δµν −
PµPν
P 2 . (5.14)

In effect, contraction with this projector specializes us to the spacelike components of J µν±∞
in the center-of-mass frame:

(Λ · J±∞ · Λ)µν = 2(Λ · q±∞)[µ(Λ · b±∞)ν] +
2∑
i=1

mi(Λ · Si,±∞ · Λ)µν . (5.15)

Contracting ΛµρΛνσ〈∆Jρσ〉 = 0 with qµ = 1
2(m1v

µ
1 −m2v

µ
2 ) we rearrange to find an O(G)

expression for 〈∆bµ〉:

〈∆bµ〉(1) = Λµν

q · Λ · q

(
−qνbρ〈∆p1,ρ〉(1) +

2∑
i=1

mi〈∆Si,νρ〉(1)Λρσqσ

)
, (5.16)

having inserted the expressions for bµ±∞, vµi,±∞ and Sµνi,±∞ (5.12). We have also used
the requirement that b±∞ · vi,±∞ = 0, which using eq. (5.12) implies Pµ〈∆bµ〉 = 0 and
qµ〈∆bµ〉 = −bµ〈∆pµ1 〉.

Our preference is to re-express observables in terms of background parameters taken in
the far past τ → −∞; the switch should be performed only after taking derivatives of the
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eikonal (5.5). The 2PM observables then pick up corrections from the 1PM observables in
section 5.2. As the results are quite lengthy we provide them here only in D = 4 dimensions
up to linear order in spin; for the full D-dimensional quadratic-in-spin expressions we refer
the reader to the accompanying supplementary material. Firstly, the momentum impulse:

〈∆pµ1 〉(2)
∣∣∣
S0

1S
0
2

= m1m2
|b|2

(3π(5γ2 − 1)(m1 +m2)
4
√
γ2 − 1

b̂µ (5.17a)

− 2(2γ2 − 1)2

(γ2 − 1)2
(
(γm1 +m2)vµ1 − (γm2 +m1)vµ2

))
,

〈∆pµ1 〉(2)
∣∣∣
S1

1S
0
2

= m1m2
|b|2

(
b̂ · S1 · v2
|b|

(
− 3πγ(5γ2 − 3)

4(γ2 − 1)3/2 (4m1 + 3m2)b̂µ (5.17b)

+ 16γ2(2γ2 − 1)m1 + 2γ(12γ2 − 5)m2
(γ2 − 1)2 vµ1 −

16γ(2γ2 − 1)m1 + 2(8γ4 − 1)m2
(γ2 − 1)2 vµ2

)
− 2(4γ2 − 1)m2 + 8γ(2γ2 − 1)m1

γ2 − 1
(b̂ · S1)µ

|b|
+ πγ(5γ2 − 3)(4m1 + 3m2)

4(γ2 − 1)3/2
(v2 · S1)µ

|b|

)
.

Here, and from this point on, the −∞ subscripts on b̂µ−∞, vµi,−∞ and Sµνi,−∞ should be
considered implicit. The O(G2) part of the spin kick is

〈∆Sµν1 〉
(2) = m2

2
|b|2(γ2 − 1)

(
4(b̂ · S1)[µb̂ν] − 16γb̂ · S1 · v2(2γv2 − v1)[µb̂ν] (5.18)

− 16γ2(v2 · S1)[µv2
ν] + πγ(5γ2 − 3)(4m1 + 3m2)

2
√
γ2 − 1m2

(
(b̂ · S1)[µv2

ν] − (v2 · S1)[µb̂ν]
)

− π(5γ4 + 6γ2 − 3)m1 + 3π(3γ2 − 1)m2

2
√
γ2 − 1m2

(b̂ · S1)[µv1
ν]

+ 4(2γ2 − 1)2m1 + 4γ(4γ2 − 3)m2
(γ2 − 1)m2

(v2 · S1)[µv1
ν]
)

When expressed in terms of the new background parameters, different relationships are
satisfied by these observables:

m2
i v

2
i = (miv

µ
i + 〈∆pµi 〉)

2 , (5.19a)
(Sµνi )2 = (Sµνi + 〈∆Sµνi 〉)

2 , (5.19b)
mivi,µSµνi = (mivi,µ + 〈∆pi,µ〉)(Sµνi + 〈∆Sµνi 〉) . (5.19c)

However, the interpretation is still the same: supercharges are conserved between initial

– 25 –



J
H
E
P
0
1
(
2
0
2
2
)
0
2
7

and final states. Lastly, the 2PM scattering angle in D = 4 is

θ(2) = E(m1 +m2)
|b|2

(3π(5γ2 − 1)
4(γ2 − 1) + πγ(5γ2 − 3)

2(γ2 − 1)3/2

(3m2 + 4m1
m1 +m2

s1
|b|

+ (1↔ 2)
)

+ 3π
2(γ2 − 1)2|b|2

[(95γ4 − 102γ2 + 15)m1 + 4
(
15γ4 − 15γ2 + 2

)
m2

8(m1 +m2) s2
1 + (1↔ 2)

− CE,1
(125γ4 − 138γ2 + 29)m1 + 2(45γ4 − 42γ2 + 5)m2

16(m1 +m2) s2
1 + (1↔ 2)

+ (20γ4 − 21γ2 + 3)s1s2

])
, (5.20)

where the specialization to aligned spins was given earlier (5.10). The spin-free part of our
2PM scattering angle in D dimensions (provided in the supplementary material) agrees
with earlier results [110, 111].

Finally, we have observed that the 2PM eikonal phase χ presented in section 5.1 is
invariant under the transformations between intermediate and past background param-
eters (5.12) — unlike the momentum impulse 〈∆pµ1 〉 and spin kick 〈∆Sµν1 〉 presented
above. One may therefore freely replace bµ → bµ±∞, vµi → vµi,±∞ and Sµνi → Sµνi,±∞ in
the expressions (5.3) and (5.4) without changing their validity. However, one should then
exercise caution when deriving physical observables: the simple derivatives of the eikonal
phase (5.5) apply only to the “averaged” background parameters, rather than those defined
at past/future infinity (5.12). Instead, following the approach conjectured in refs. [55, 62], it
is appropriate to include terms quadratic in the eikonal phase. Noting that the shifts (5.12)
cannot be considered instances of the background field symmetries discussed in section 4.4
(e.g. the background symmetries (4.32) leave vµi invariant) the additional invariance here
suggests the existence of a larger class of conserved quantities than those limited here to
the individual worldlines. We leave this tantalizing question for future work.

6 Conclusions

The N = 2 supersymmetric worldline action provides an alternative description of a com-
pact spinning object up to terms quadratic in spin O(S2) (quadrupoles). Using this equiv-
alence we have shown how quadratic-in-spin effects may be incorporated into the world-
line quantum field theory (WQFT) prescription for scattering massive bodies in a curved
background [1]. The classical spin tensors Sabi = −2iψ̄[a

i ψ
b]
i (in a local frame eµa) are consid-

ered composite fields, built from the complex Grassmann-valued vectors ψai living on each
worldline i. Conveniently, this provides for a Lagrangian worldline formalism that involves
neither a body-fixed frame nor angular velocity tensor. The technology was previously used
to obtain the far-field time-domain waveform from a scattering of two massive bodies (black
holes, neutron stars or stars) to leading order in G [3]; here we elaborated on it further.

While Kerr black holes are privileged, and represented by the unique N = 2 super-
symmetric theory, finite-size effects may also be incorporated starting at O(S2) by adding
terms that only preserve SUSY approximately (up to O(ψ5)). The conserved supercharges
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have natural physical interpretations: conservation of energy, spin length and the spin-
supplementary condition (SSC) pµSµν = 0 along each worldline. While these are con-
served locally in the supersymmetric theory, with the inclusion of finite-size effects they
are only conserved approximately up to O(S3). The analogue can be seen in ref. [3], where
the time-domain waveform is approximately supersymmetric when finite-size effects are
included and exactly supersymmetric in the Kerr-black hole case.

Our main result is an explicit expression for the D-dimensional eikonal phase χ =
−i logZWQFT up to O(G2) (2PM order), where ZWQFT is the partition function of the
WQFT. This was obtained as a sum of tree-level vacuum diagrams integrated over the
momenta (or energies on the worldlines) of internal lines. From the eikonal phase we showed
how one may derive three key observables: the momentum impulse 〈∆pµ1 〉 = −〈∆pµ2 〉, spin
kicks 〈∆Sµνi 〉 and (for aligned spins) the scattering angle θ. In D = 4 dimensions these
observables agree with previous results [30, 62]. The requirements of energy conservation
and preservation of both the spin-supplementary condition (SSC) and spin length follow
naturally from the supersymmetry. Another important subtlety is the interpretation of
background parameters bµi , v

µ
i and Sµνi : in the eikonal phase these are defined at an

intermediate point of the scattering, and an interpolation is needed to relate them to those
in the far past (τ → −∞).

Our work offers numerous follow-up opportunities, which we will explore enthusias-
tically. Naturally, one wonders about the prospects for extending the formalism beyond
quadratic order in the spins. As explained in section 2.1, in a flat spacetime background
there exist N -supersymmetric worldline theories with real Grassmann-valued vectors ψaα(τ)
carrying flavor indices α = 1, . . . ,N that generically describe the propagation of spin-N/2
particles [78, 103, 104]. The main obstacle is generalizing these theories to an arbitrary
curved spacetime background whilst preserving supersymmetry. Yet we have seen that
perturbative deformations of the supercharges yielding an approximate supersymmetry
are possible; it would be worthwhile to revisit the issue under these premises. Fortu-
nately, the higher spin limitation does not exist in gauge theories: the so-called

√
Kerr

theory [112], which enjoys a complex worldsheet description [102], is a natural candidate
for study. Given ongoing research on the double copy in WQFT [113], this could provide
a window on higher spins for the Kerr black hole and is left for future work.

We also see excellent prospects for applying the spinning WQFT formalism to higher-
PM order calculations. As explained in ref. [1] we are not limited to using the eikonal
phase: we can also compute 〈∆pµi 〉 directly by drawing graphs with an outgoing deflection
mode zµi ; similarly we can obtain 〈∆ψµi 〉, and therefore 〈∆Sµνi 〉 via eq. (4.29), by drawing
graphs with an outgoing ψ′µi line. There already has been excellent progress at 3PM order
in the non-spinning case [39, 71, 75, 114] including radiation reaction effects [41, 60].

Finally, in the non-spinning case a link between scalar-graviton S-matrix elements and
operator expectation values in the WQFT has been formally provided by a worldline path
integral “Feynman-Schwinger” representation of the graviton-dressed scalar propagator [1].
We would like to extend this link to include spin effects — again, gauge theory will provide
a useful starting point given that the n-dressed electron propagator is already known [115,
116] (see refs. [117–119] for comprehensive reviews). In gravity, such a dressed propagator
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is not currently known, and when obtained will provide for a complete theoretical map
between the different PM-based approaches to spinning black hole scattering.
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A Supersymmetry

The relevant part of the e = 1/m gauge-fixed N = 2 worldline action in curved space (2.16)
reads

S = −m
∫

dτ
[1

2gµν ẋ
µẋν + iψ̄aψ̇a + iẋµωµabψ̄

aψb + 1
2Rabcdψ̄

aψbψ̄cψd
]
. (A.1)

and we now want to prove its SUSY invariance. The SUSY transformations of xµ, ψa and
ψ̄a were quoted in eq. (2.19):

δxµ = ieµa(ε̄ψa + εψ̄a) , δψa = −εeaµ ẋµ − δxµωµabψb , (A.2)

and are augmented by

δeaµ = ∂νe
a
µ δx

ν , δωµab = ∂νωµab δx
ν , δRabcd = ∂νRabcd δx

ν . (A.3)

In order to show the invariance of the action S we analyze the variation δS order-by-order
in the fermions ψa. At linear order only the variations of the first three terms in eq. (A.1)
contribute and one finds

δS|lin = −m
∫
dτ

(
gµν ẋ

µiε̄ψ̇ν − ẋµeaµ iε̄ψ̇a +
[1

2e
ρ
a∂ρgµν − ω(µν)a

]
iε̄ψaẋµẋν + c.c

)
. (A.4)

Using 1
2e
ρ
a∂ρgµν − ω(µν)a = −gρ(µ∂ν)e

ρ
a the last term is rewritten as −gρµẋµ( d

dτ e
ρ
a)iε̄ψa.

Noting that the first two terms combine to the same expression, but an opposite sign,
we see the vanishing of the linear in ψa variation δS|lin. At cubic order one picks up
contributions only from the last three terms in eq. (A.1) and finds

δS|cubic = −m
∫
dτ [∂ρωµab − ∂µωρab − ωµac ωρcb + ωρac ωµ

c
b +Rµρab]iẋµδxρψ̄aψb , (A.5)

which vanishes identically using the spin-connection based definition of the Riemann-tensor.
At quintic order one merely considers the variation of the last term in eq. (A.1). Here the
three types of contributions conspire to yield

δS|quintic = (A.6)

= −m
∫
dτ [∂µRabcd + ωµa

eRebcd + ωµb
eRaecd + ωµc

eRabed + ωµd
eRabce] δxµψ̄aψbψ̄cψd ,
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which constitutes the covariant derivative of the Riemann-tensor ∇µRabcd. By virtue of
∇µeaν = 0 we need to show the vanishing of the term ∇µRανβρ ψµψνψρ (and analogously
for ψ → ψ̄). Using the cyclicity of the Riemann tensor in its last three indices, Rανβρ =
−Rαβρν −Rαρνβ , and the anti-commuativity of the ψ’s we have

∇µRανβρ ψµψνψρ = 1
2∇µRαβνρ ψ

µψνψρ . (A.7)

This expression vanishes by virtue of the Biancchi identity ∇µRαβνρ + ∇νRαβρµ +
∇ρRαβµν = 0.

For completeness, let us now also look at the supersymmetry variation of the finite-size
term (4.2) relevant for (neutron) stars:

SE = −mCE

∫
dτ Raµbν ẋµẋνψ̄aψb Pcd ψ̄c ψd . (A.8)

Varying this under (A.2) we produce terms of order three and five in the worldline fermions
ψa. The order-five terms would also receive contributions from putative order-six terms
(yielding spin3 effects) in the effective worldline theory that we have not considered. Hence,
of relevance here are only the order-three terms in the supersymmetry variation of (A.8),
which in fact come close to vanishing: varying the first two fermions in SE yields zero due
to Rρµbν ẋµẋν ẋρ = 0. One is left with

δSE
∣∣∣
ψ3

= mCE

∫
dτ Raµbν ẋµẋνψ̄aψb gρσ(ε̄ Pρσψρẋσ + ε Pρσψ̄

ρẋσ) . (A.9)

The terms in the bracket vanish by virtue of the projector property: Pρσẋσ = 0. Hence
the finite-size term SE is supersymmetric approximately, i.e.

δSE = O(ψ5) . (A.10)

As we would need to include a new layer of ψ6 terms in order to describe spinning massive
objects at the spin-cubed order, the SUSY variation of these not-considered terms would
induce O(ψ5) terms which would talk to the above.

B Integrals

To integrate the 1PM contribution to the eikonal phase χ given in eq. (5.2) we require
expressions for the following class of D-dimensional Fourier transforms:

Iµ1µ2...µn
ν (D) :=

∫
q
eiq·b δ−(q · v1)δ−(q · v2)|q|νqµ1qµ2 · · · qµn , (B.1)

where |q|2 = −q · q and n ≤ 2;8 the ν 6= −1 generalization becomes relevant at 2PM order.
The scalar integral is straightforwardly evaluated in a (D−2)-dimensional space orthogonal
to vµ1 and vµ2 (see e.g. ref. [1]) with the well-known result:

Iν(D) = 2ν

π(D−2)/2
√
γ2 − 1

Γ(D−2+ν
2 )

Γ(−ν
2 ) (−b · P12 · b)−

D−2+ν
2 , (B.2)

8An O(Sα) contribution generically requires integrals with rank n = α.
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where the projector Pµν12 to the (D − 2)-dimensional space orthogonal to vµi was given in
eq. (5.7). The generalization to higher-rank integrals follows easily by taking derivatives
with respect to bµ:

Iµ1µ2...µn
ν (D) = (−i)n ∂n

∂b(µ1∂bµ2 · · · ∂bµn)
Iν(D) . (B.3)

It is important not to impose b · vi = 0 until after these derivatives have been taken —
hence our use of the projector Pµν12 .

To integrate the various contributions appearing at 2PM order we additionally require
full knowledge of the following family of integrals:

Jµ1µ2...µn
ν1,ν2,ν3 (D) :=

∫
`

δ−(` · v1)
(`2 + iε)ν1((`− q)2 + iε)ν2(` · v2 + iε)ν3

`µ1`µ2 · · · `µn , (B.4)

with vµ1 ↔ vµ2 related by symmetry and n ≤ 3. The scalar integral is straightforwardly
evaluated by choosing the rest frame of the first body, vµ1 = (1,0), and performing the
resulting (D − 1)-dimensional one-loop integral:

Jν1,ν2,ν3(D) = (−i)2ν1+2ν2+ν3(4π)
1−D

2

( 4
γ2 − 1

) ν3
2

Γν1,ν2,ν3(D − 1) |q|D−1−2ν1−2ν2−ν3 ,

(B.5)
where

Γν1,ν2,ν3(D) :=
Γ(ν1 + ν2 + ν3

2 −
D
2 )Γ(ν3

2 )
2Γ(ν1)Γ(ν2)Γ(ν3)

Γ(D2 − ν1 − ν3
2 )Γ(D2 − ν2 − ν3

2 )
Γ(D − ν1 − ν2 − ν3) . (B.6)

When ν3 = 0 we use Γ(ν3
2 ) = 2Γ(ν3).9 Higher-rank integrals are expanded on a basis of

tensors living in the (D − 1)-dimensional space orthogonal to vµ1 : namely Pµν1 , Pµν1 v2,ν ,
and qµ, where Pµν1 := ηµν − vµ1 vν1 is the projector orthogonal to vµ1 . The coefficients are
found by contracting an ansatz with these tensors, and for example with n = 1 one can
easily show that

Jµν1,ν2,ν3 = qµ

2|q|2
(
|q|2Jν1,ν2,ν3 − Jν1−1,ν2,ν3 + Jν1,ν2−1,ν3

)
+ Pµν1 v2,ν

γ2 − 1 Jν1,ν2,ν3−1 , (B.7)

which holds in any dimension D. Similar relations hold for n = 2 and n = 3.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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