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Abstract
We classify the symplectic automorphism groups for cubic fourfolds. The main inputs are the
global Torelli theorem for cubic fourfolds and the classification of the fixed-point sublattices
of the Leech lattice. Among the highlights of our results, we note that there are 34 possible
groups of symplectic automorphisms, with 6 maximal cases. The six maximal cases corre-
spond to 8 non-isomorphic, and isolated in moduli, cubic fourfolds; six of them previously
identified by other authors. Finally, the Fermat cubic fourfold has the largest possible order
(174,960) for the automorphism group (non-necessarily symplectic) among all smooth cubic
fourfolds.

1 Introduction

Cubic fourfolds are some of the most intensely studied objects in algebraic geometry in
connection to rationality questions and to constructing compact hyper-Kähler manifolds.
What sets the cubic fourfolds apart is that they are Fano fourfolds whose middle cohomology
is of level 2with h3,1 = 1 (i.e., of K3 type). Consequently, themoduli space of cubic fourfolds
behaves very similarly to the moduli space of polarized K3 surfaces. Specifically, Voisin [49]
proved a global Torelli theorem for cubic fourfolds. Later, Hassett [23] identified some natural
Noether–Lefschetz divisors Cd (for d ∈ Z+ with d ≡ 0, 2 (mod 6)) in the moduli space of
cubic fourfolds, and conjectured that the image of the periodmap is the complement of C2 and
C6. This was subsequently verified by the first author [32] and Looijenga [36]. More recently,
the second author [55] proved a stronger version of the Torelli theorem: the automorphisms
of cubic fourfolds are detected by (polarized) Hodge isometries.

The purpose of this paper is to use the period map to study and classify the possible
symplectic automorphism groups (Definition 2.7) for cubic fourfolds. The model for our
study is the well-known case of K3 surfaces. Namely, a consequence of the Torelli theorem
for K3 surfaces is that there is a close connection between the automorphism group Aut(Y )

B Zhiwei Zheng
zhengzw11@163.com

Radu Laza
radu.laza@stonybrook.edu

1 Stony Brook University, Stony Brook, NY 11794, USA

2 Max Planck Institute for Mathematics, Bonn, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-021-02810-x&domain=pdf
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of a K3 surface Y and the Hodge isometries on H2(Y , Z). Nikulin [42] started a systematic
investigation of the possible finite automorphism groups for K3 surfaces by means of lattice
theory [43]. This study culminated with the celebrated result of Mukai [41] relating the
classification of the finite groups of symplectic automorphisms acting on K3 surfaces with
certain subgroups of theMathieu groupM23. Kondō [29] simplifiedMukai’s proof by relating
this classification problem to the isometries of theNiemeier lattices. Kondō’s approach avoids
theLeech lattice (the uniqueNiemeier lattice containing no roots), but it turns out that a related
construction that involves only the Leech lattice L behaves more uniformly and adapts to
higher dimensions [15,27]. In particular, one sees that all the symplectic automorphism
groups G occurring are subgroups of the Conway group Co0(= O(L)) satisfying a certain
rank condition on the fixed-point sublattice L

G .
The higher dimensional analogue of the K3 surfaces are the hyper-Kähler manifolds

(simply connected, compact Kähler manifold, carrying a unique holomorphic symplectic 2-
form). Due to Verbitsky’s Torelli Theorem and recent results on Mori cones of hyper-Kähler
manifolds (e.g., [3]), the approach to automorphisms via lattices that works for K3 surfaces
can be extended to the case of hyper-Kähler manifolds of K3[n] type, leading to a flurry
of activity on the subject. In particular, we note the work of Mongardi [38,40] who started
a systematic study of the symplectic automorphisms of hyper-Kähler manifolds of K3[n]
type. Around the same time, Höhn and Mason [24] have completed the classification of the
fixed-point sublattices L

G of L with respect to subgroups G of Co0 (the case G is cyclic was
previously settled by Harada–Lang [20]). Using this classification, in subsequent work [25],
Höhn and Mason have completed Mongardi’s analysis for hyper-Kähler manifolds of K3[2],
obtaining an analogue of Mukai’s results in the 4-dimensional case. There are 15 maximal
groups [25, Table 2] that are listed in Table 1 in our paper.

The cubic fourfolds are intricately related to hyper-Kähler fourfolds of K3[2] type. Specif-
ically, Beauville–Donagi [4] proved that the Fano variety F(X) of lines on a smooth cubic

Table 1 Maximal rank Leech
pairs satisfying Condition 4.8

Number Order Group Discriminant form qK

1 29,160 34 : A6 3+29+1

2 20,160 L3(4) 2−2
II 3−17−1

3 5760 24 : A6 4−1
5 8+1

1 3+1

4 2520 A7 3+15+17+1

5 1944 31+4 : 2.22 2+2
2 3+3

6 1920 24 : S5 4−1
3 8+1

1 5−1

7 1344 23 : L2(7) 4+2
2 7+1

8 1152 Q(32 : 2) 8−2
6 3−1

9 720 S6 2−2
II 3+25+1

10 720 M10 2−1
3 4+1

7 3−15+1

11 660 L2(11) 11+2

12 576 24 : (S3 × S3) 4+1
7 8+1

1 3+2

13 360 A3,5 3−25−2

14 336 2 × L2(7) 2+2
II 7+2

15 144 32 : QD16 2+1
1 4+1

1 3−19−1
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fourfold is in fact a hyper-Kähler fourfold of K3[2] type. An interesting aspect here is that by
varying the cubic fourfold, one obtains a locally complete moduli space for polarized hyper-
Kähler manifolds of K3[2] type (i.e., 20 moduli vs. 19 moduli coming from K3 surfaces). In
the context of automorphism groups, this leads to the construction of exotic automorphisms
for hyper-Kähler manifolds of K3[2] type (i.e., not induced from K3 surfaces).

Via the Fano variety construction, the classification of automorphisms of cubic fourfolds
is closely related (but some differences arise due to the polarization) to the classification for
hyper-Kähler manifolds of K3[2] type, and the above mentioned results. In particular, we
note that Höhn–Mason [25, Table 11] have shown that 6 of the 15 maximal groups arising in
the classification of automorphisms for the K3[2] case are actually realized by some smooth
cubic fourfolds. In a different direction, using more geometric arguments, Fu [14] classified
all possible symplectic automorphism groups of cubic fourfolds which are cyclic of primary
(i.e., a power of a prime number) order. He also gave the corresponding normal forms for the
associated cubic fourfolds (for some earlier results and other examples see [17] and [38,39]).
Building on these results, we complete (and give a systematic account of) the classification
of the possible groups of symplectic automorphisms for cubic fourfolds. Specifically, we
classify all possible groups G = Auts(X) of symplectic automorphisms for cubic fourfolds,
and for many of them, we give the corresponding normal forms.

Notation 1.1 Wefollow the standardnotation fromgroup theory forfinite groups. For reader’s
convenience, we recall in Appendix B the relevant notation and definitions. Briefly, we
mention that pn corresponds to (Z/pZ)n , L p(k) corresponds to PGL(k, Fp), D2k is the
dihedral group of order 2k, Q8 is the quaternion group, QD16 (which is denoted �3a2 in
[25]) is the semidihedral group of order 16, M9, M10, M3,8 are the Mathieu groups (see
§B.2), Am,n is the subgroup of Sm,n := Sm × Sn ⊂ Sm+n consisting of elements of even
signature, and 31+4 is one of the extraspecial groups of order 35 = 243 (see B.3). We use
N : Q to denote a semidirect product N � Q that is not a direct product, and N .Q to denote
an extension of Q by N for which we are not sure whether it is split or not.

Theorem 1.2 Let X be a smooth cubic fourfold with symplectic automorphism group G =
Auts(X). Let S := SG(X) be the covariant lattice (i.e., the orthogonal complement of the
invariant sublattice of H4(X , Z) under the induced action of G). Then one of the following
situations holds:

(0) rank(S) = 0, G ∼= 1.
(1) rank(S) = 8, G ∼= 2 and S ∼= E8(2). For an appropriate choice of coordinates, X is

given by

X = V
(
F1(x1, x2, x3, x4) + x25 L1(x1, x2, x3, x4) + x5x6L2(x1, x2, x3, x4)

+x26 L3(x1, x2, x3, x4)
)
.

With respect to these coordinates, G is generated by g = 1
2 (0, 0, 0, 0, 1, 1).

(2) rank(S) = 12, G ∼= 22 or G ∼= 3.

(a) If G ∼= 22, for an appropriate choice of coordinates,

X = V
(
F1(x1, x2, x3) + x24 L1(x1, x2, x3) + x25 L2(x1, x2, x3)

+x26 L3(x1, x2, x3) + x4x5x6
)
,

and G is generated by g1 = 1
2 (0, 0, 0, 0, 1, 1) and g2 = 1

2 (0, 0, 0, 1, 1, 0).
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(b) If G ∼= 3, then X is either

X = V
(
F1(x1, x2, x3, x4) + x35 + x36 + x5x6L1(x1, x2, x3, x4)

)
,

in which case G is generated by g = 1
3 (0, 0, 0, 0, 1, 2), or

X = V
(
F1(x1, x2) + F2(x3, x4) + F3(x5, x6) + �i=1,2; j=3,4;k=5,6(ai jk xi x j xk)

)
,

with G generated by g = 1
3 (0, 0, 1, 1, 2, 2).

(3) rank(S) = 14, G ∼= 4 or S3.

(a) If G ∼= 4, for an appropriate choice of coordinates, the defining equations of the
corresponding cubic fourfolds belong to

Span{x1N1(x3, x4), x2N2(x3, x4), F1(x1, x2), x5x6L1(x1, x2),

x25 L2(x3, x4), x
2
6 L3(x3, x4)}.

With respect to these coordinates, G is generated by g = 1
4 (0, 0, 2, 2, 1, 3).

(b) If G ∼= S3, we can choose coordinate x1, . . . , x6 of C
6, such that the action of S3 on

(C6)∨ is by permuting (x1, x2), (x3, x4), (x5, x6) simultaneously, and the defining
equations of the corresponding cubic fourfolds are invariant under such an action.

(4) rank(S) = 15, G ∼= D8.
(5) rank(S) = 16, G ∼= A3,3, D12, A4, or D10.

(a) If G ∼= D12, then the defining equations of the corresponding cubic fourfolds either
belong to

Span{x21 x3, x21 x4, x1x2x3, x1x2x4, x22 x3, x22 x4, x33 ,
x23 x4, x3x

2
4 , x3x5x6, x

3
4 , x4x5x6, x

3
5 , x

3
6 },

while an order 6 element of G is 1
6 (3, 3, 0, 0, 2, 4), or belong to

Span{x31 , x1x22 , x1x3x5, x1x3x6, x2x4x5, x2x4x6, x33 , x3x24 , x35 , x25 x6, x5x26 , x36 },
while an order 6 element of G is 1

6 (0, 3, 2, 5, 4, 4). Moreover, a generic cubic fourfold
admitting such an order 6 automorphism has symplectic automorphism group D12.

(b) If G ∼= D10, then for an appropriate choice of coordinates,

X = V
(
F1(x1, x2) + x3x6L1(x1, x2) + x4x5L2(x1, x2) + x23 x5

+x3x
2
4 + x4x

2
6 + x25 x6

)
.

An order 5 element in G is g = 1
5 (0, 0, 1, 2, 3, 4). Moreover, any smooth cubic

fourfolds with a symplectic automorphism of order 5 have this form, and a generic
such cubic fourfold has symplectic automorphism group D10.

(6) rank(S) = 17, G ∼= S4 or Q8.
(7) rank(S) = 18, G ∼= 31+4 : 2, A4,3, A5, 32.4, S3,3, F21(∼= 7 : 3), Hol(5)1 or QD16.

(a) If G ∼= 31+4 : 2, then for an appropriate choice of coordinates, the defining equations
of the corresponding cubic fourfolds belong to

Span{monomialsinx1, x2, x3,monomialsinx4, x5, x6},
1 There is a typo in Höhn–Mason list [24]: they wrote Hol(4), and claimed it has order 20. The correct group
is Hol(5) ∼= AGL1(F5) ∼= 4 : 5.
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An element of order 3 in G is 1
3 (0, 0, 0, 1, 1, 1). Moreover, any smooth cubic fourfold

with a symplectic automorphism which can be diagonalized as 1
3 (0, 0, 0, 1, 1, 1) has

this form, and a generic such cubic fourfold has symplectic automorphism group
31+4 : 2.

(b) If G ∼= F21, then for an appropriate choice of coordinates,

X = V
(
x21 x2 + x22 x3 + x23 x4 + x24 x5 + x25 x6 + x26 x1 + ax1x3x5 + bx2x4x6

)
.

The automorphisms g1 = 1
7 (1, 5, 4, 6, 2, 3) and g2 : xi �−→ xi+2 generate F21.

Moreover, any smooth cubic fourfold with symplectic automorphism of order 7 has
this form, and a generic such cubic fourfold has symplectic automorphism group F21.

(c) If G ∼= QD16, for an appropriate choice of coordinates, the defining equations of the
corresponding cubic fourfolds belong to

Span{x31 , x1x22 , x2x23 , x2x24 , x1x3x4, x4x25 , x3x26 , x2x5x6}.
An element of order 8 in G is g = 1

8 (0, 4, 2, 6, 1, 3). Moreover, any smooth cubic
fourfold with a symplectic automorphism of order 8 has this form, and a generic such
cubic fourfold has symplectic automorphism group QD16.

(8) rank(S) = 19, G ∼= 31+4 : 2.2, A6, L2(7), S5, M9, N72(∼= 32 : D8), or T48(= M3,8 ∼=
Q8 : S3).2 Except for the case G ∼= 31+4 : 2.2, 1-parameter families of cubics with auto-
morphism group G can be obtained by smoothing fake cubic fourfolds (they correspond
to K3 surfaces of degree 2 or 6) with maximal symplectic symmetry, see Sect. 5.5.

(9) rank(S) = 20, G ∼= 34 : A6, A7, 31+4 : 2.22, M10, L2(11) or A3,5. More information
on these cases is included in Theorem 1.8.

For each group G among the 34 groups appeared above, the corresponding lattice S is
unique up to isomorphism. Those 34 lattices S are primitive sublattices of the Leech lattice.
The dimension of themoduli space of cubic fourfoldswith associated pair (G, S) (see Sect. 2.2
and 4.1.2 for the precise definition of this moduli space) is 20 − rank(S).
(Here, Fi , Ni , Li denote cubic, quadric, and linear polynomials respectively. We denote by
1
n (k1, . . . , k6) the diagonal matrix (ζ k1 , . . . , ζ k6) ∈ SL(6), where ζ is a primitive n-root of
unity.)

Remark 1.3 The 6maximal cases of Theorem 1.2(9) were already identified byHöhn–Mason
[25, Table 11] (including explicit realizations for each case), but it is not shown that they are
the only possible cases for rank(S) = 20. This is indeed the case, but as we note in Theorem
1.8 below, in two of the six cases there are two non-isomorphic cubic fourfolds realizing the
pair (G, S).

Remark 1.4 A direct corollary of Theorem 1.2 is that the possible orders n of symplectic
automorphisms g for smooth cubic fourfolds are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15. Further-
more, we obtain all geometric realizations for cubic fourfolds with a given order n symplectic
automorphism (see Sect. 4.3, esp. Theorem 4.17). This is a strengthening of results of Fu
[14] (see also [17]) who discussed the primary order case.

Let us briefly review the key ingredients for the proof of Theorem 1.2. Suppose G is a
finite group acting symplectically on a smooth cubic fourfold X . Then G acts on the middle
cohomology H4(X , Z), which in turn determines the covariant lattice SG(X). Following

2 The notation N72 and T48 was introduced by Mukai [41] in his classification of symplectic automorphism
groups for K3 surfaces.
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Mongardi (with the main ideas going back to Nikulin and Kondō), we see that the pair
(G, SG(X)) can be embedded into (Co0, L). More precisely, there is a primitive embedding
of SG(X) into the Leech lattice L such that the action of G on SG(X) extends to a faithful
action on L with G acting trivially on the orthogonal complement of SG(X) in L (see
Proposition 3.4 and Lemma 4.2). This leads to the abstract notion of Leech pair (S,G)

(Definition 3.3). Our classification theorem is essentially equivalent to the classification of
Leech pairs that can arise from groups of symplectic automorphisms of cubic fourfolds. In the
context of the work ofMongardi and Höhn–Mason, the main difference is that we are dealing
with polarized hyper-Kähler manifolds of K3[2] type (specifically, F(X) is of K3[2] type
with a degree 6 polarization). Instead of dealing directly with the natural polarization, we are
using the so-called Kondō–Scattone trick. Namely, we note that the primitive cohomology
�0 = H4(X , Z)prim of a cubic fourfold X admits a unique primitive embedding into the
Borcherds lattice (i.e., II26,2, the unique even unimodular lattice of signature (26, 2)) with
orthogonal complement E6 (Lemma 2.12). This allows us to view X (or equivalently F(X))
as being E6 Borcherds polarized.3 Using this perspective, we are able to formulate a lattice
theoretic criterion (Theorem 4.5) for a Leech pair (G, S) to arise as (G, SG(X)) for G =
Auts(X) for a smooth cubic fourfold X . Finally, using this criterion, the classification of
fixed-point sublattices in L [20,24], and a case by case analysis, we are able to complete the
proof of Theorem 1.2. One complication that we deal with is the possibility that a Leech pair
(G, S) (which is compatible with the E6 Borcherds polarization) might lead to some fake
cubic fourfolds, i.e., either singular cubics (with ADE singularities) or degenerations to the
secant to the Veronese surface (see [32]). These form the divisors C6 and C2 excluded from
the image of the period map (see Theorem 2.3). Geometrically and motivically, the divisors
C6 and C2 are naturally associated with K3 surfaces Y (or hyper-Kähler Y [2]) of degree 6 and
2 respectively. It turns out (see Sect. 5.5) that any symplectic automorphism of a K3 surface
of degree 2 or 6 can be lifted to an automorphism of a singular cubic fourfold X0, which can
then be smoothed, while preserving the automorphism. In particular, all rank(S) = 19 cases
of Theorem 1.2(8), except for the 31+4 : 2.2 case, can be recovered by starting with a K3
surface of degree 2 or 6 with a maximal group of symplectic automorphisms.

Remark 1.5 (Automorphisms of low degree K3 surfaces) TheKondō–Scattone trick can also
be applied to polarized K3 surfaces. Namely, the primitive middle cohomology of a degree d
K3 surface can be embedded (up to a Tate twist) into the Borcherds lattice. The complement
of this embedding is a rank 7 positive lattice M with discriminant form (− 1

d ). For the low
degree cases, degree 2, 4, and 6, M can be chosen to be E7, D7, and E6 ⊕ A1 respectively.
Similarly, the elliptic K3 surfaces can be viewed as E8 Borcherds polarized. For these cases,
our arguments can be easily adapted. In particular, in Sect. 5, we discuss briefly the case of
K3 surfaces of degree 2 and 6, as they are closely related to cubic fourfolds.

Remark 1.6 (Automorphisms of low dimensional cubics) The possible automorphism groups
for cubic surfaces were classified by Segre [46] (see [26] for amodern and corrected account).
From our perspective, the salient point is that, for smooth cubic surfaces (and similarly cubic
threefolds), the induced action of the automorphism groups on the middle cohomology is
faithful. This realizes the automorphismgroup of a cubic surface as a subgroup ofW (E6). The
maximal groups of automorphisms for cubic threefolds were classified recently by Wei–Yu

3 This should be understood in the context of M-polarized K3 surfaces in the sense of Dolgachev [11], but
here we use the Borcherds lattice, instead of the K3 lattice, as the ambient lattice. Regarding the K3 surfaces
(or hyper-Kähler manifolds) as being Borcherds polarized is a powerful arithmetic trick well-known to experts.
The first author learned about it fromKondō long time ago. Presumably, the first use of this construction occurs
in the thesis of Scattone [45].
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[50] via direct geometric methods (see also [17,18], [1] for some earlier results). More in the
spirit of this paper, using the period map of Allcock–Carlson–Toledo [2], the classification of
the automorphisms groups for cubic threefolds can be related to the Suzuki sporadic group
Suz (N.B. an index 6 extension of Suz is isomorphic to the centralizer of an order 3 element
in Co0; see [51]).

We note that once a Leech pair (G, S) as in Theorem 1.2 is specified, one obtains a moduli
space M(G,S) (see Sect. 4.1.2) of dimension 20 − rank(S) parametrizing cubic fourfolds
X with G ⊂ Auts(X). However, it is not necessary that this moduli space is irreducible.
This corresponds to S having different primitive embeddings into the primitive lattice �0

for cubic fourfolds (the existence of the embedding S ↪→ �0 is essentially the content of
Theorem 1.2). It is thus a natural question to study the uniqueness of the embedding S ↪→ �0

for the pairs (G, S) listed in Theorem 1.2. The analogous question for (unpolarized) K3
surfaces was studied by Hashimoto [22] (for polarized symplectic involutions, see [48]).
Here, we are restricting ourselves to the maximal cases (i.e., rank(S) = 20), as those are
the most interesting cases. For instance, these cases give interesting examples of maximal
algebraic cubics (in the sense of maximal possible rank for the group of algebraic cycles
H4(X , Z) ∩ H2,2(X); equivalently the transcendental lattice T is negative definite of rank
2). We obtain a somewhat surprising result: while there are 6 groups that occur (cf. Theorem
1.2(9)), there are 8 cubic fourfolds (automatically isolated in moduli) corresponding to them.
Six out of the eight cases are identified in [25, Table 2]; we are not able to give equations for
the remaining two special cubics (cases X2(A7) and X2(M10) below).

Notation 1.7 We denote by abc the rank 2 quadratic form

(
a b
b c

)
. We write −(abc) :=

(−a)(−b)(−c).

Theorem 1.8 Let (G, S) be a Leech pair such that rank(S) = 20 and there exists a smooth
cubic fourfold X with G = Auts(X) and (G, S) ∼= (G, SG(X)). We denote by T the orthog-
onal complement of S in H4

0 (X , Z). Then we have only the following possibilities:

(1) G ∼= 34 : A6, the corresponding cubic fourfold is the Fermat one

X(34 : A6) = V (x31 + x32 + x33 + x34 + x35 + x36)

and T = −(636) = A2(−3). Moreover, this is the only smooth cubic fourfold with a
symplectic automorphism of order 9. In this case Aut(X)/Auts(X) ∼= 6.

(2) G ∼= A7, there are two smooth cubic fourfolds with symplectic action of G. One of them
is

X1(A7) = V (x31 + x32 + x33 + x34 + x35 + x36 − (x1 + x2 + x3 + x4 + x5 + x6)
3)

with T = −(2118) and Aut(X1)/Auts(X1) ∼= 2. The other one, denoted X2(A7), has
T = −(18318) and admits no non-symplectic automorphisms.

(3) G ∼= 31+4 : 2.22, the cubic fourfold is

X(31+4 : 2.22) = V (x31 + x32 + x33 + x34 + x35 + x36 − 3(
√
3 + 1)(x1x2x3 + x4x5x6))

and T = −(606) = (A1 ⊕ A1)(−3). Moreover, this is the only smooth cubic fourfold
with a symplectic automorphism of order 12. In this case Aut(X)/Auts(X) ∼= 4.

(4) G ∼= M10, there are two smooth cubic fourfolds with symplectic action of G, and both
of them have T = −(12030). See Equation (4.3) for an explicit description of one such
cubic fourfold, which is denoted by X1(M10). The other one is denoted by X2(M10).
Both X1(M10) and X2(M10) have no non-symplectic automorphisms.
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(5) G ∼= L2(11), the cubic fourfold is

X(L2(11)) = V (x31 + x22 x3 + x23 x4 + x24 x5 + x25 x6 + x26 x2)

and T = −(221122) = A2(−11). Moreover, this is the only smooth cubic fourfold with
a symplectic automorphism of order 11. In this case Aut(X)/Auts(X) ∼= 3.

(6) G ∼= A3,5, the cubic fourfold is

X(A3,5) = V (x31 + x32 + x33 + x34 + x35 + x36 + x37 + x38 ) ∩ V (x1 + x2 + x3)

∩V (x4 + x5 + x6 + x7 + x8)

and T = −(10510) = A2(−5). Moreover, this is the only smooth cubic fourfold with a
symplectic automorphism of order 15. In this case Aut(X)/Auts(X) ∼= 6.

Remark 1.9 The transcendental lattice T for cubic fourfolds with nontrivial symplectic auto-
morphisms is relatively small (of rank at most 22 − rank(S)). It follows that except the case
of symplectic involutions (i.e. Theorem 1.2(1)), T embeds into the K3 lattice (E8)

2 ⊕ U 3

(cf. [33, Prop. 2.5, Cor. 2.9]). Thus, a priori, the cubics with large group of symplectic auto-
morphisms are not interesting from the perspective of the standard rationality conjectures
(we refer to [33] and [44] for further discussion on the subject). Nonetheless, they are Hodge
theoretically interesting as the cases of Theorem 1.8 give examples of maximally algebraic
cubics (i.e., with maximal rank for H2,2(X)∩H4(X , Z)) for which the transcendental lattice
is explicitly known.

Structure of the paper

In Sect. 2,we introduce and briefly review the properties of the periodmap for cubic fourfolds.
Additionally, in Sect. 2.4, we review the notion of Borcherds marking for cubic fourfolds. In
the following Sect. 3, we review the necessarymaterial on the Leech lattice, Niemeier lattices,
and Conway group. These two review sections (specific to our situation) are complemented
by two appendix sections, which cover very standard material, but which nonetheless might
be helpful to the reader. Specifically, in Appendix A, we collect results in lattice theory
(mostly due to Nikulin) which are essential in our arguments. In Appendix B, we review
some basic facts and notation for finite groups.

Themain content of the proof of Theorem1.2 is discussed in Sects. 3 and 4. First, following
Mongardi’swork,we introduce the notion ofLeechpair (Definition 3.3), andgive a key lemma
(Lemma 3.4). We then focus on the polarized case. In particular, we establish a criterion
(Theorem 4.5) for a Leech pair (G, S) to arise from a group of symplectic automorphisms
for some cubic fourfold X . In §4.5 we prove Theorem 1.8 using methods from lattice theory.

The remaining two sections are complementing our main classification result. Namely,
in Sect. 5, we partially discuss the completely analogous (and somewhat easier) situation
for K3 surfaces of degree 2 and 6. Finally, while the focus of this paper is on symplectic
automorphisms,wemake some comments on the non-symplectic case in Sect. 6. In particular,
we determine the full automorphism groups of the 8 maximal cases of Theorem 1.8 (see
Proposition 6.12). This allows us to distinguish geometrically the two cases of Theorem
1.8(2) with Auts(X) ∼= A7 (i.e., one has an anti-symplectic involution, while the other does
not). As a consequence of this classification, we also conclude that the maximal possible
order of automorphism group for a cubic fourfold is 174,960, which is reached only by the
Fermat cubic fourfold (an analogous result for K3 surfaces was obtained by Kondō [30]).

After the posting of our manuscript, we have learned of the work of Ouchi [44], who
explores the interplay between automorphisms of cubic fourfolds and the automorphisms of
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the associated K3 category (the Kuznetsov component). We thank Ouchi for sharing an early
version of his work, and for some comments on our paper. We are also grateful to S. Mukai
for sharing with us some of his partial work on the classification of automorphisms of cubic
fourfolds (from late eighties). As a consequence, we have updated some of our notation (and
added some remarks) to be aligned with Mukai’s work. While preparing a final revision of
our paper, Höhn explained to us a strategy for obtaining the equations for all the maximal
cases of Theorem 1.8. We expect details to appear elsewhere. Finally, we are very grateful to
the anonymous referee for numerous detailed comments which helped us improve the paper.

2 Automorphisms and periods

In this section we review some well-known facts, which are the starting point of our classi-
fication of the automorphism groups for cubic fourfolds. First, the Global Torelli Theorem
(Theorem 2.3 and Proposition 2.4) allows one to reduce the classification of automorphisms
for cubic fourfolds to the classification of automorphisms of Hodge structures, which in turn
is essentially a lattice theoretic question. Classically, this approach was successfully applied
to the case of K3 surfaces (Nikulin, Mukai, Kondō and others). More recently, it was (par-
tially) adapted to the case of hyper-Kähler manifolds of K3[n] type. The Fano variety F(X) of
a cubic fourfold X is a hyper-Kähler of K3[2] type. Thus, the classification of automorphisms
of X is closely related to the classification of automorphisms of F(X). We review this in
Sect. 2.3 below. Finally, the difference to most of related work that we cite is that we need
to keep track of the polarization. It turns out that it is better to keep track of a “Borcherds
polarization” instead of the natural polarization of X (or equivalently F(X)). We introduce
this notion in Sect. 2.4.

2.1 Periods for cubics

Let X be a smooth cubic fourfold. The middle cohomology group H4(X , Z), with the natural
intersection pairing, is a unimodular odd lattice � of signature (21, 2) (uniquely specified
by these conditions). Let ηX ∈ H4(X , Z) be the square of the hyperplane class of X . The
primitive cohomology H4(X , Z)prim = 〈ηX 〉⊥ carries a polarized Hodge structure of K3
type (i.e., Hodge numbers (0, 1, 20, 1, 0)). As lattice, H4(X , Z)prim ∼= �0 where �0 :=
(E8)

2 ⊕ U 2 ⊕ A2 (with A2 and E8 the standard root lattices, and U the hyperbolic plane).
Similarly to the well-known case of K3 surfaces, the period domain for Hodge structures on
H4(X , Z)prim is the 20-dimensional type IV period domain

D = {x ∈ P((�0)C)
∣∣(x, x) = 0, (x, x) < 0}+

(where the superscript + indicates a choice of one of the two connected components).
Associated to the lattice �0, there are several natural groups:

(1) O(�0) the automorphism group of lattice �0;
(2) Õ(�0) the subgroup of O(�0) which acts trivially on the discriminant group A�0(=

(�0)
∨/�0 ∼= 3);

(3) O+(�0) the subgroup ofO(�0)which preserves the spinor norm on�0 (or equivalently
preserves D);

(4) O∗(�0) := O+(�0) ∩ Õ(�0).

The global monodromy group � for cubic fourfold is O∗(�0) (cf. Beauville [5]). Since
� = O∗(�0) is an arithmetic group, � acts properly discontinuously on D. The resulting
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analytic variety D/� is in fact a quasi-projective variety; we refer to it as the global period
domain for cubic fourfolds.

Definition 2.1 (i) A norm 2 vector v in�0 is called a short root. The set of short roots in�0

determines a �-invariant hyperplane arrangement H6 in D. Let C6 := H6/� ⊂ D/�

be the associated Heegner divisor.
(ii) A norm 6 vector v in �0 with divisibility 3 is called a long root. The set of long roots

in �0 determines a �-invariant hyperplane arrangement H2 in D. Let C2 := H2/� ⊂
D/�.

Remark 2.2 It is well known that there exists a single {±1} × �-orbit of short and long
roots respectively, and thus C6 and C2 are irreducible divisors. Furthermore, �(= O∗(�0))

is generated by reflections in short roots [5], and � has index 2 in Õ(�0) with Õ(�0)/�

generated by the class of a reflection in a long root.

Let M be the moduli space of smooth cubic fourfolds. It is a quasi-projective 20-
dimensional variety, which can be constructed by GIT (see [31] for a full GIT analysis).
By associating with a cubic fourfold X , the Hodge structure on its middle cohomology, one
obtains a period map

P : M −→ D/�.

Voisin [49] proved that the Global Torelli Theorem is valid for cubic fourfolds. It follows
thatP is an open embedding. For the purpose of this paper, it is important to understand also
the image of the period map P(M) ⊂ D/�. This type of question was first investigated
by Hassett [23]. In particular, he defined certain Heegner divisors Cd in D/� (indexed by
d ∈ Z+ with d ≡ 0, 2 (mod 6)) corresponding to cubic fourfolds containing additional
Hodge classes. The relevant divisors here are C2 = H2/� and C6 = H6/� as defined
above. Geometrically, C6 corresponds to singular cubic fourfolds, while C2 correspond to
degenerations of cubics to the secant variety of the Veronese surface in P

5. The image of the
period map misses the divisors C2 and C6. Conversely, as shown by Laza [32] and Looijenga
[36], any period outside these two divisors is realized for some smooth cubic fourfold.

Theorem 2.3 (Voisin, Hassett, Laza, Looijenga) The period map for cubic fourfolds gives
an isomorphism of quasi-projective varieties

P : M ∼−→ (D \ (H2 ∪ H6)) /�. (2.1)

We note that both sides of (2.1) have natural orbifold structures. For instance, since any
smooth cubic fourfold is GIT stable [31], the moduli space of smooth cubic fourfolds is a
smooth Deligne–Mumford stackMwith quasi-projective coarse moduli spaceM. A natural
question is whether the period map P identifies the two sides of (2.1) as orbifolds. This
is equivalent to the strong global Torelli theorem, i.e., the statement that any isomorphism
between the polarized Hodge structures of two smooth cubic fourfolds is induced by a unique
isomorphism between the two cubic fourfolds. Using the fact that automorphisms of cubic
fourfolds X are induced by linear transformations of the ambient projective spaceP

5, and that
Aut(X) acts faithfully on the middle cohomology H4(X , Z) (e.g., [28, Proposition 2.16]),
the second author [55] has verified the Strong Global Torelli Theorem.

Proposition 2.4 [55] Let X1 and X2 be two smooth cubic fourfolds. Assume that there is an
isomorphism

ϕ : H4(X2, Z) ∼= H4(X1, Z)
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of polarized Hodge structures (in particular ϕ(ηX2) = ηX1). Then, there exists a unique
isomorphism f : X1 ∼= X2 such that ϕ = f ∗. In particular, for any smooth cubic fourfold
X,

Aut(X) ∼= AutHS(H
4(X , Z), ηX ), (2.2)

where AutHS stands for group of Hodge isometries.

Remark 2.5 Wenote that while the periodmap extends to an isomorphism of quasi-projective
varieties

MADE ∼= (D \ H2)/�

whereMADE is the moduli space of cubics with ADE singularities (see [31,32]), the orbifold
structure along the discriminant divisor is different. Simply, a general cubic fourfold with a
node (i.e., A1 singularity) has no automorphism, while on the periods side, there is a Z/2
stabilizer corresponding to the reflection in a short root.

2.2 Moduli space of lattice-polarized cubic fourfolds

Let M be a positive definite lattice with a fixed primitive embedding into the primitive cubic
lattice�0. Assume thatM does not contain short or long roots. Inspired byDogachev’s theory
of M-polarized K3 surfaces (cf. [11]), we define a moduli space MM of cubic fourfolds
containing a specified lattice M as a sublattice of the lattice of primitive algebraic cycle. We
note however that there is a slight difference to [11], namely for our purposes it is better to
view MM as a subspace of the moduli space of cubic fourfolds M (in particular, it can be
non-normal). In contrast, Dolgachev’s moduli space is a locally symmetric variety of type
DM/�M , and in particular normal. As explained below, MM is essentially the image in M
of DM/�M .

As a set, MM is the subspace of M consisting of smooth cubic fourfolds X with an
embedding M ⊆ H2,2(X) ∩ H4(X , Z)prim ⊂ H4(X , Z)prim ∼= �0 such that the composi-
tion M ⊂ �0 is equivalent to the fixed embedding. The image P(MM ) of MM under the
period map is a closed subset of (D \ (H2 ∪ H6)) /� (in fact, it is the Noether-Lefschetz
cycle associated with M ↪→ �0). In particular, the space MM admits a natural structure of
a quasi-projective variety.

The variety MM may be not normal. In any case, the normalization of MM is (the
complement of someHegneer divisors in) a locally symmetric varietyDM/�M , whereDM is
the type IV domain associatedwith the transcendental lattice T = M⊥

�0
, and�M an arithmetic

group acting on DM . We refer to [54, Proposition A.5] for further details. In particular,
dimMM = 20 − rank(M). Furthermore, if M ⊂ M ′ ⊂ �0 (primitive embeddings) then
MM ′ ⊂ MM (i.e., the more algebraic cycles, the smaller the moduli). The moduli of cubic
fourfoldsM corresponds to M = ∅, and the Hassett divisors Cd correspond to rank(M) = 1.
(Equivalently, as in Hassett’s work, one can consider the full lattice of algebraic cycles
M̃ = Sat(M ⊕ 〈η〉)� ⊂ � ∼= H4(X , Z). Here, it is more convenient to work with the
primitive lattices M and �0.)

2.3 The hyper-Kähler fourfold associated with a cubic fourfold X

For a smooth cubic fourfold X , the Fano variety F(X) of lines on X is a smooth hyper-
Kähler fourfold, deformation equivalent to K3[2] (cf. [4]). There is a natural polarization on
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F(X) induced from the Plücker embedding F(X) ↪→ Gr(1, P
5) ⊂ P(∧2(C6)). Since any

automorphism of X is linear, there is a natural group homomorphism

Aut(X) −→ Aut(F(X)).

Conversely, the following holds (e.g., [14, Corollary 2.3]):

Proposition 2.6 The homomorphism Aut(X) −→ Aut(F(X)) is injective with image the
subgroup preserving the Plücker polarization on F(X).

An automorphism of a hyper-Kähler manifold sends H2,0 to H2,0, hence induces a scalar
action on H2,0. If the scalar is the identify, the automorphism is called symplectic. Otherwise,
it is called non-symplectic. Adapting this to the case of cubic fourfolds, wemake the following
definition:

Definition 2.7 An automorphism of a smooth cubic fourfold X is called symplectic, iff the
induced automorphism on F(X) is symplectic. Equivalently, an automorphism of X is sym-
plectic iff the induced action on H3,1(X) is the identity. We denote the group of symplectic
automorphisms of X by Auts(X).

Remark 2.8 In view of Theorem 2.3 and Proposition 2.4, it is clear that essential arithmetic
input in the classification of automorphisms of cubic fourfolds is the primitive cohomology
lattice �0 = H4(X , Z)prim ∼= A2 ⊕ (E8)

2 ⊕ U 2. Let us note that the associated hyper-
Kähler F(X) has the same primitive lattice. More precisely, H2(F(X), Z) carries a natural
quadratic form, the so-called Beauville–Bogomolov quadratic form. With respect to this
form, there is a natural lattice isometry H2

0 (F(X), Z)(−1) ∼= H4
0 (X , Z), which is also an

isomorphism of Hodge structures (see [4, Proposition 6]). In particular, via this isomorphism
H2,0(F(X)) maps to H3,1(X), justifying our definition above. In summary, the discussion
of this subsection says that the classification of the automorphisms of cubic fourfolds is
essentially equivalent to the classification of automorphisms of degree 6 (the degree of the
Plücker polarization) polarized hyper-Kähler manifolds of K3[2] type.

Remark 2.9 One should note that there is a subtle difference to the case of K3 surfaces.
While for K3 surfaces the full cohomology lattice H2(S, Z) is even unimodular, the full
cohomology lattice for cubic fourfolds H4(X , Z) is odd unimodular. If one prefers to work
with hyper-Kählermanifolds of K3[2] type, we note that the full cohomology lattice (w.r.t. the
Beauville–Bogomolov form) is even, but not unimodular (it is (up to sign) A1⊕(E8)

2⊕U 3).

2.4 Borcherds polarizations

In view of Nikulin’s theory [43], it is preferable to work with even unimodular lattices
(compare Remark 2.9). The smallest (with definite orthogonal complement) even unimodular
lattice that contains the primitive cubic lattice �0 is the Borcherds lattice B, i.e., the unique
even unimodular lattice II26,2 ∼= (E8)

3 ⊕U 2 of signature (26, 2). (Here, we prefer to denote
it B and call it the Borcherds lattice in honor of Borcherds, who studied the automorphic
forms on the associated type IV symmetric domain.)

Remark 2.10 Even in the K3 case, the embedding of the primitive cohomology lattice for
a polarized K3 surface into the Borcherds lattice B turns out to be a powerful arithmetic
trick (the geometric reason why it works is not yet completely understood). As examples of
applications of this artifice (that we baptized Kondō–Scattone trick), we mention Scattone’s
work [45] on the Baily–Borel compactification for polarized K3 surfaces, Kondō’s work
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[29] on symplectic automorphisms, and the Gristsenko–Hulek–Sankaran work [19] on the
Kodaira dimensions on the moduli spaces of K3 surfaces.

Remark 2.11 We recall that there exist 24 even unimodular lattices of rank 24, called the
Niemeier lattices (see Sect. 3.1 below). What is relevant to note here is that these lattices
are intricately related to the Borcherds lattice B. Namely, for any Niemeier lattice N , we
have B ∼= N ⊕ U 2. Conversely, the classification of the Niemeier lattices follows from the
classification of isotropic vectors in the hyperbolic lattice II25,1 (see [8]), or equivalently the
type II boundary components (i.e., rank 2 totally isotropic subspaces inB) of the Baily–Borel
compactification for the Borcherds period domain.

Returning to cubic fourfolds, in analogy with the work of M-polarized K3 surfaces of
Dolgachev [11], we can view a cubic fourfold as being Borcherds E6-polarized (i.e., �0

admits a primitive embedding into B with orthogonal complement E6). More interestingly,
the periods missing from the image of the period map for cubic fourfolds (see Theorem
2.3), i.e., the divisors C2 and C6, correspond to E7 and E6 + A1 Borcherds polarizations
respectively. This allows a more uniform view on “singular” cubic fourfolds (i.e., singular
cubics, or degenerations to the Veronese surface) – simply X is singular if it acquires an
additional root (i.e., the existing “algebraic” lattice E6 is enlarged to either E7 or E6 + A1

by adding a root). This is of course equivalent to the more classical view of Hassett [23]
where H4

alg,prim = H4(X , Z)prim ∩ H2,2 acquires a short root (equivalently, in terms of
Borcherds polarizations E6 ⊂ E6 + A1) or long root (case E7). From either perspective, the
transcendental lattices for the two cases C2 and C6 are

�2 := 〈2〉 ⊕ (E8)
2 ⊕U 2, and

�6 := 〈6〉 ⊕ (E8)
2 ⊕U 2

respectively, where the transcendental lattice for Borcherds R-polarized objects is defined as
R⊥
B
. One recognizes�2 and�6 (up to a sign) as the primitive lattices for K3 surfaces of degree

2 and 6 respectively. There is indeed a close geometric relationship between degree 6 (and
respectively degree 2) K3 surfaces and singular cubic fourfolds (respectively degenerations
to the Veronese surface); see [23,32].

From the perspective of this paper, the relevant fact is the following easy proposition (see
[32, §6]).

Proposition 2.12 (i) There is a unique primitive embedding of �0 into B, with orthogonal
complement E6; in another words, �0 ⊕ E6 can be saturated as B in a unique way.

(ii) There is a uniqueprimitive embeddingof�6 intoB, with orthogonal complement A1⊕E6;
in another words, �0 ⊕ A1 ⊕ E6 can be saturated as B in a unique way.

(iii) There is a unique primitive embedding of �2 into B, with orthogonal complement E7;
in another words, �0 ⊕ E7 can be saturated as B in a unique way.

3 Automorphisms and the Conway group

Via the Global Torelli Theorem, we have reduced the study of automorphisms for cubic
fourfolds to the study of automorphisms of Hodge structures. This is in turn a question about
the symmetries (satisfying certain properties) of the underlying cohomology lattice L .
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Notation 3.1 For a lattice L with action by a group G ⊂ O(L), we call LG := {x ∈ L
∣
∣gx =

x,∀g ∈ G} the invariant sublattice, and SG(L) := (LG)⊥L the covariant lattice.4

In the case of a finite group of symplectic automorphisms G acting on the cohomology
lattice L of a K3 surface, Nikulin made two key observations:

(i) the covariant lattice SG(L) is a definite lattice (this is equivalent to the symplectic
condition), and

(ii) SG(L) does not contain any e f f ective algebraic cycle (in fact, the symplectic condition
implies that the algebraicity is automatic). In particular, for K3 surfaces, by Riemann–
Roch, SG(L) (which is negative definite in this case) should not contain any −2 classes
(or equivalently roots).

The same holds for hyper-Kähler manifolds of K3[n] type (e.g., by involving Markman’s
theory of prime exceptional divisors) and for cubic fourfolds (i.e., there is no norm 2 vector
in SG(L); e.g., as a consequence of Theorem 2.3). Normally, one would try to classify SG(L)

and its embeddings into the cohomology lattice L . However, using Nikulin’s theory, Kondō
made the observation that (in the geometric situations considered here: K3s, K3[n], or cubics)
SG(L) embeds into one of the Niemeier lattices N , and furthermore G extends to an isometry
of N (thus G ⊂ O(N )). Niemeier lattices N show up here since they are the smallest even
unimodular definite lattices N containing SG(L) for any G. The lattice N being definite
is important as the associated orthogonal group O(N ) is finite. Kondō [29] successfully
applied this approach to the classification of symplectic automorphisms for K3 surfaces.
Kondō avoids the Leech lattice L (namely, he noted that A1 ⊕ SG(L) embeds into N for K3
surfaces, and thus N �= L), but in fact, since SG(L) contains no roots, it is possible to embed
it into the Leech lattice L (cf. [15,27]). Considering embeddings into the Leech lattice L

leads to a more uniform behavior. Note however that there is a trade-off here: we deal with
a single larger group Co0 := O(L) versus 23 smaller groups O(N ) for N �= L. With the
advent of more powerful computational tools, and a better understanding of the Leech lattice
(esp. relevant here is [24]), we can work throughout with the Leech lattice.

In this section, we briefly review the Leech lattice, the Conway group, and introduce the
key concept (due to Mongardi, but with origins going back to Nikulin) of Leech pair. We
then close with the Höhn–Mason [24] classification of the fixed-point lattices for the Leech
lattice L. The material here is standard (and applies equally to K3s and K3[n]s); we will
apply it in the following section to the actual classification of the automorphisms of cubic
fourfolds.

3.1 The Leech lattice and the Conway group

We recall the following classification result of Niemeier.

Theorem 3.2 (Niemeier) Up to isometry, there exist 24 even unimodular positive definite
lattices N of rank 24. Let R ⊂ N be the sublattice spanned by the roots (i.e., norm 2 vectors)
of N . Then R is of one of the following 24 types: ∅, 24A1, 12A2, 8A3, 6A4, 6D4, 4A5 ⊕
D4, 4A6, 2A7⊕2D5, 3A8, 4D6, 2A9⊕D6, 4E6, A11⊕D7⊕E6,2A12,3D8, A15⊕D9, D10⊕
2E7, A17 ⊕ E7, 2D12, A24, 3E8, D16 ⊕ E8, D24. In particular, R uniquely determines N.

A lattice N as in the theorem is called a Niemeier lattice. In all but one of the cases N is
spanned (over Q) by roots. The remaining case, i.e., the Niemeier lattice containing no roots,

4 Some authors call the quotient M/SG (M) the covariant lattice, since it is the maximal quotient such that
the induced action of G on it is trivial.
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is called the Leech lattice, and we denote it by L. The automorphism group of the Leech
lattice is the Conway group

Co0 := O(L).

The center of Co0 is just μ2 = {±id}, and the quotient

Co1 := Co0/Z(Co0)

is one of the largest sporadic simple groups. In fact,

|Co0| = 222 · 39 · 54 · 72 · 11 · 13 · 23(∼ 8 · 1018).
Aswewill see below, a groupG of symplectic automorphisms for K3 surfaces, hyper-Kähler
manifolds of type K3[n], or cubic fourfolds can be realized as a subgroup of the Conway
group Co0. Thus, only the prime factors 2, 3, 5, 7, 11, 13, and 23 can occur in ord(G). For
K3 surfaces, only the primes p ≤ 7 can occur, while for cubics all primes p ≤ 11 occur
(compare Theorem 4.15). In particular, the Fano variety F(X) of a cubic fourfold X admitting
an order 11 symplectic automorphism will give an example of an exotic automorphism (i.e.,
not induced from K3 surfaces) on a hyper-Kähler of K3[2] type (see [38, §4.5]).

3.2 Leech pairs

As already mentioned, the study of symplectic automorphisms on K3s and K3[n]’s leads to
the following notion (first formalized in the thesis of Mongardi [38]):

Definition 3.3 A pair (G, S) consisting of a finite groupG acting faithfully on an even lattice
S is called a Leech pair, if it satisfies the following conditions:

(i) S is positive definite,
(ii) S does not contain any 2-vector,
(iii) G fixes no nontrivial vector in S,
(iv) the induced action of G on the discriminant group AS is trivial.

The condition (iv) of the Definition 3.3 should be understood as saying that given a
primitive embedding S ↪→ L into a unimodular lattice L , the action of G on S extends to L
in such a way that, the restriction of the extended action to S⊥

L is trivial. The condition (iii)
complements this by saying that S is the covariant lattice for the action of G on L . Note then
that the smallest unimodular lattice satisfying the first 2 conditions of the definition above
is the Leech lattice L. Obviously, any sublattice of the Leech lattice will also satisfy (i) and
(ii) of the definition. Thus choosing a subgroup G ⊂ Co0(= O(L)), the associated covariant
lattice SG(L) in L will give an example of Leech pair (G, SG(L)). The next proposition
says the converse: under a mild condition on S (satisfied in the geometric context relevant
to this paper), any Leech pair (S,G) is obtained as a covariant lattice in L. This argument
seems to occur first in [15, Appendix B] (see also [27, Prop. 2.2]; related arguments go back
to Scattone [45] and Kondō [29]). For completeness, we sketch the proof. Recall that for
a lattice S, we denote by AS the associated discriminant group, and by l(AS) the minimal
number of generators in AS , see Sect. A.3 for more details.

Proposition 3.4 For a Leech pair (G, S) the following two statements are equivalent:

(i) rank(S) + l(AS) ≤ 24,
(ii) There exists a primitive embedding of S into the Leech lattice L.
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Once these two condition are fulfilled, there is an action of G onLwith (G, S) ∼= (G, SG(L)).

Proof Assume (ii), and denote by K the orthogonal complement of the given primitive
embedding of S into L. Then l(AS) = l(AK ) ≤ rank(K ) = 24− rank(S). Thus (ii) implies
(i).

Now assume (i). Since l(AS) ≤ 24 − rank(S) < rank(L ⊕ U ) − rank(S), by Nikulin’s
existence Theorem A.8, there exists a primitive embedding S ↪→ L ⊕ U . Denote by N the
orthogonal complement of S in L ⊕ U . Then N has signature (25 − rank(S), 1). Thus NR

intersects with the positive cone of L ⊕U . Since S contains no 2-vector, NR intersects with
one of the chambers of the positive cone of L ⊕U .

Let w ∈ U be primitive and isotropic. The vector w ∈ L ⊕ U is called a Weyl vector.5

We call a vector v ∈ L ⊕ U with (v, v) = 2 and (v,w) = −1 a Leech root. By [8, Chap.
27], the automorphism group of L ⊕ U is generated by reflections with respect to Leech
roots. Therefore, there exists a chamber C0 given by C0 = {x ∈ (L ⊕ U ) ⊗ R

∣
∣(x, v) >

0, for any Leech root v}. By adjusting the embedding S ↪→ L ⊕ U via an automorphism of
L ⊕ U , we may assume that NR intersects with C0, hence G leaves the chamber C0 stable.
By [7], G fixes the Weyl vector w. Equivalently, w ∈ N . Then we have:

S ↪→ w⊥ −→ w⊥/〈w〉 ∼= L

which gives rise to a primitive embedding of S into the Leech lattice L. The group action of
G on S extends to an action on L with (G, S) ∼= (G, SG(L)). ��
Corollary 3.5 For a Leech pair (G, S) satisfying the statements in Lemma 3.4, there is an
embedding G ↪→ Co0, with image avoiding −id unless rank(S) = 24.

3.3 Höhn–Mason classification of saturated Leech pairs

In view of the discussion above, to classify the Leech pairs relevant to the classification of
automorphisms, one can proceed by considering subgroups G ⊂ Co0 and the associated
covariant lattices SG(L). The only issue is that there might be several groups G leading to
the same covariant lattice. For the classification of automorphism groups, we are interested
in the maximal cases (i.e., in G = Auts(X) and not subgroups G ′ ⊂ G that happen to have
the same invariant/covariant lattice). The following two definitions formalize this idea.

Definition 3.6 A Leech pair (G, S) is called saturated, if G is the maximal group acting
faithfully on S and trivially on the discriminant group AS .

Let G be a finite group acting on the Leech lattice L. One can consider the (point-wise)
stabilizer G ′ of L

G . Obviously, G ⊆ G ′, L
G = L

G ′
, and G ′ is the largest group stabilizing

L
G . The induced action of G ′ on ASG (L)

∼= ALG is trivial. Conversely, every automorphism
of SG(L)which trivializes ASG (L) can be extended to an automorphism of L which stabilizes
L
G . Thus G ′ is equal to the automorphism group of SG(L) trivializing the discriminant. The

Leech pair (G, SG(L)) is saturated if and only if G = G ′.

Definition 3.7 Let (G1, S1) and (G2, S2) be two Leech pairs. We say (G1, S1) ≤ (G2, S2)
if G1 is a subgroup of G2 and S1 = SG1

2 . We call (G1, S1) a sub-pair of (G2, S2). Two

5 Up to conjugacy by O(I25,1), the choice of a primitive isotropic vector w in I25,1 ∼= L ⊕ U is equivalent
to the choice of the isometry type of a Niemeier lattice N ∼= 〈w〉⊥/〈w〉 (N.B. N ⊕U ∼= I25,1). Intrinsically a
Weyl vector in I25,1 is the primitive isotropic vector with the associated Niemeier lattice N equal to the Leech
lattice.
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sub-pairs (G1, S1), (G2, S2) of a Leech pair (G, S) are conjugate if there exists g ∈ G such
that gG1g−1 = G2 and gS1 = S2.

We denote by A the set of conjugacy classes of sub-pairs of (Co0, L). There is a natural
poset structure onA . Denote byAsat the sub-poset ofA consisting of saturated Leech pairs.
A fixed-point sublattice of L is the invariant sublattice L

G for some G ⊂ Co0. It is clear
that associating with (G, S) ∈ A the fixed-point sublattice L

G gives rise to a one-to-one
correspondence between Asat and the set of (Co0-)orbits in the set of fixed-point sublattices
of the Leech lattice L. The fixed-point sublattices of L were classified by Höhn and Mason
[24]. This classification will play a key role for us. For further reference, we mention:

Theorem 3.8 (Höhn–Mason) Under the action of Co0, there are exactly 290 orbits on the
set of fixed-point sublattices of L. In another word, |Asat | = 290.

Remark 3.9 Harada and Lang [20] classified all fixed-point sublattices K which are induced
by actions of cyclic groups G ∼= n on the Leech lattice. The information contained in [20] is
sometimes richer and more handy than that in [24].

4 The case of cubic fourfolds

In this section, we are classifying the symplectic automorphism groups of smooth cubic four-
folds. First, following the standard argument for K3 surfaces and hyper-Kähler manifolds,
we establish that a group G acting symplectically on a cubic X , determines a Leech pair
(G, S = SG(X)), which further can be embedded into the Leech lattice L (Corollary 4.3).
Since S arises from a cubic fourfold X , it is clear that S embeds into the primitive lattice
�0. By Theorem 2.3 (we use the surjectivity part), this condition is essentially a sufficient
one. We state this in terms of the Borcherds polarization (see Sect. 2.4) as an iff criterion
in Theorem 4.5. Using this criterion, the actual classification (Sect. 4.4) is accomplished by
using the Höhn–Masson [24] (see also [20]) classification of the fixed-point sublattices in the
Leech lattice, and Fu’s classification [14] of automorphism groups of primary orders. The
uniqueness of embeddings in the maximal cases (Theorem 1.8) is discussed in Sect. 4.5.

4.1 Leech pairs associated to symplectic automorphisms on cubic fourfolds and K3
surfaces

A finite group of symplectic automorphisms on a K3 surface, on a hyper-Kähler manifold of
K3[n] type, or on a cubic fourfold leads to a Leech pair. The argument essentially goes back to
Nikulin [42], and was refined recently in the context of groups of symplectic automorphisms
for hyper-Kähler manifolds (see esp. [27] and [38]). We review the situation for the cases
relevant to us: cubic fourfolds and polarized K3 surfaces.

Notation 4.1 Let X be a smooth cubic fourfold, and G ⊂ Auts(X). We denote by SG(X)

the covariant lattice for the induced action of G on H4(X , Z). Similarly, if Y is a smooth
algebraic K3 surface, and G ⊂ Auts(Y ) a finite group, we denote by SG(Y ) the covariant
lattice for the induced action of G on H2(Y , Z)(−1).

Lemma 4.2 Let X be either a smooth cubic fourfold or an algebraic K3 surface with an
action of a finite group G ⊂ Auts(X). Then (G, SG(X)) is a Leech pair.
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Proof The assumption that the action of G is symplectic implies that SG(X) ⊂ H2,2(X) ∩
H4(X , Z)prim . By Hodge index Theorem, SG(X) is positive definite, and by Theorem 2.3,
SG(X) contains no short roots (i.e., the period point avoids C6). Since G acts trivially on
the invariant cohomology H4(X , Z)G and SG(X) = (H4(X , Z)G)⊥, it follows that G acts
trivially on ASG (X). Finally, since Aut(X) acts faithfully on H4(X), it is clear that G acts
faithfully on SG(X). We conclude that (G, SG(X)) is a Leech pair (cf. Definition 3.3).

The argument for K3 surfaces is similar (and due to Nikulin), except for invoking
Riemann–Roch to prove that there is no norm 2 vector (corresponding, via our scaling,
to a −2 class) in SG(X). ��
Corollary 4.3 Let X be either a smooth cubic fourfold or an algebraic K3 surface with a
faithful action of a finite group G ⊂ Auts(X). There exists a primitive embedding of SG(X)

into L, and hence an embedding of G into Co0 with image avoiding −id.

Proof By Lemma 4.2, (G, SG(X)) is a Leech pair. Since SG(X) has a primitive embedding
into a unimodular lattice of rank 23 (or 22) for cubic fourfolds (or K3 surfaces respectively),
the rank condition of Proposition 3.4 is satisfied; the claim follows. ��

Let us now discuss the role of the polarization. If X is a cubic fourfold, any automorphism
f is induced from a linear automorphism of the ambient projective space, and thus ϕ = f ∗
preserves the class η ∈ H4(X , Z) (recall η is the square of a hyperplane class). It follows
that there is a primitive embedding

SG(X) ↪→ �0, (4.1)

where �0 is the primitive cohomology (recall �0 ∼= A2 ⊕ (E8)
2 ⊕U 2).

For K3 surfaces Y , the situation is similar, but there is a subtle difference. Namely, under
the assumption that Y is algebraic (i.e., NS(Y ) contains an ample class h), andG is finite, any
automorphism ϕ ∈ G will preserve some ample class h′ (e.g., obtained by “averaging” h).
This is the set-up of the classical results of Nikulin and Mukai. However, when talking about
polarized K3 surfaces, we will fix an ample class h on Y and insist that the automorphism f
preserves h (i.e., f ∗h = h in cohomology). With this assumption, we have again a primitive
embedding

SG(X) ↪→ �d

where d = h2 ∈ 2Z+, and �d = (〈h〉⊥
H2(Y ,Z)

)(−1) is the primitive cohomology (we twist
the form by −1 to get consistency with the cubic fourfold case).

Remark 4.4 We are not aware of a systematic study of the symplectic automorphisms in the
polarized case for any degree (in Sect. 5 below, we will partially discuss the degree 2 and
6 cases as they are tightly connected to the cubic fourfold case). One situation where the
polarized case was studied is the symplectic involutions. We recall that Nikulin proved that
there is a single class of symplectic involutions for algebraic K3 surfaces (with notation as
above, SG(X) ∼= E8(2)). Thepolarized symplectic involutionswere classifiedbyvanGeemen
and Sarti [48]; a richer picture emerges (as one needs to keep track of the embedding of E8(2)
into �d , versus the unimodular K3 lattice).

4.1.1 A criterion for Leech pairs to arise from symplectic automorphisms

So far we have discussed how a finite group of symplectic automorphisms G ⊂ Auts(X)

leads to a Leech pair (G, SG(X)), which in turn can be classified by Höhn–Mason [24]
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results. Now we are interested in the converse, given a Leech pair (G, S), when does it come
from a symplectic automorphism group G acting on X? By Global Torelli Theorem (and
surjectivity of the period map), this becomes a question about embeddings of lattices. For
instance, note that (4.1) is a necessary condition if X is a cubic fourfold. In fact, by Theorem
2.3 (and Proposition 2.6), (4.1) is essentially also sufficient, but some care is needed as S
needs to avoid both short roots (automatic since (G, S) is a Leech pair) and long roots. To
deal with both cases uniformly, it is better to view a smooth cubic fourfold X as being E6

Borcherds polarized (see Sect. 2.4). Based on these considerations, we obtain the following
key result which allows us to go back and forth between geometry (automorphisms of X )
and arithmetic (fixed-point sublattices of the Leech lattice L).

Theorem 4.5 (Criterion for Leech pairs associated with cubic fourfolds) Let (G, S) be a
Leech pair. The following are equivalent:

(i) There exists a smooth cubic fourfold X with a faithful and symplectic action of G such
that (G, S) ∼= (G, SG(X)),

(ii) There exists a faithful action of G on the Leech lattice L with (G, S) ∼= (G, SG(L)) and
K = L

G, such that there exists a primitive embedding of E6 into K ⊕U 2,
(iii) There exists an embedding of S ⊕ E6 into the Borcherds lattice B, such that the image of

S is primitive.

Proof (i) �⇒ (i i): From Corollary 4.3, there exists a primitive embedding S ↪→ L with an
extension of the G-action on L such that L

G is the orthogonal complement of S in L. We
have now two ways to embed S into B, explicitly:

S ↪→ �0 ↪→ �0 ⊕ E6 ⊂ B

and

S ↪→ L ↪→ L ⊕U 2 ∼= B.

Clearly, both embeddings are primitive (e.g., �0 ⊂ B is primitive by Proposition 2.12, and
S is primitive in �0 by (4.1)). By Nikulin’s results (see Theorem A.9), we know that there
is a single conjugacy class of primitive embeddings S ↪→ B. Therefore, we can choose the
isomorphism L ⊕U 2 ∼= B, such that the following diagram commutes:

S L L ⊕U 2

�0 �0 ⊕ E6 B

∼=

We have K = S⊥
L
, giving S⊥

B
∼= K ⊕U 2. On the other hand, E6 ∼= (�0)

⊥
B
, thus E6 ⊂ S⊥

B
∼=

K ⊕U 2. Since E6 does not admit any overlattice, E6 embeds primitively into K ⊕U 2.
(i i) �⇒ (i i i): There is the embedding:

S ⊕ E6 ↪→ S ⊕ K ⊕U 2 ⊂ L ⊕U 2 ∼= B

Notice that S has primitive image in L, hence also has primitive image in B.
(i i i) �⇒ (i): The action of G on S induces trivial action on (AS, qS), hence extends to

an action on B such that its restriction to the orthogonal complement of S is trivial. Since
S ⊂ B is primitive (by assumption), we get S = SG(B) (recall SG(B) = (BG)⊥ = (S⊥)⊥).
On the other hand, we note that G acts trivially on E6 ⊂ B (since by construction E6 ⊂
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S⊥
B
). We view �0 as the orthogonal complement of E6 in B (cf. Proposition 2.12). Via this

identification, the G action on B induces a G action on �0. By construction S ↪→ �0

(primitive, as S is primitive in B), and clearly (G, S) ∼= (G, SG(�0)). We can choose a
Hodge structure H on �0 of type (0, 1, 20, 1, 0) (i.e., H is a decomposition of �0,C with the
obvious properties) such that H2,2 ∩ �0 = S (i.e., S is the algebraic lattice). Assuming that
S contains neither short nor long roots, the Global Torelli Theorem (Theorem 2.3) says that
there exists a smooth cubic fourfold with H4(X , Z)prim ∼= H (as Hodge structures). Finally,
by Proposition 2.4, we conclude that X has a faithful and symplectic action of G such that
(G, SG(X)) ∼= (G, S).

It remains to prove that S ⊂ �0 contains no short or long roots of �0 (see Definition
2.1). By assumption S is a sublattice of the Leech lattice L, so it contains no short roots (i.e.,
norm 2 vectors). Assume now S contains a long root δ, i.e., (δ, δ) = 6 and div�0(δ) = 3.
Since B is obtained by gluing E6 and �0, we conclude that δ and E6 span a E7 lattice
in B. More precisely, there exists ε ∈ E6 (with ε2 = 12 and divE6(ε) = 3) such that
(δ + ε)/3 ∈ B. Since G acts on S without fixed nonzero vector, there exists g ∈ G such
that gδ �= δ. We distinguish two cases, either gδ = −δ or not. Assume first gδ = −δ; then
g((δ+ε)/3) = (−δ+ε)/3 ∈ B.We conclude v = 2δ/3 ∈ B, but this is a contradiction due to
the fact that (δ, δ) = 6 (v will not have integral norm). Thus, we can assume that δ′ = gδ is a
long root non-proportional to δ. Consider the lattice M = SatB(〈δ, δ′, E6〉) ⊂ SatB(S⊕ E6).
Then M is a positive definite rank 8 lattice containing two sublattices SatB(〈δ, E6〉) and
SatB(〈δ′, E6〉) of type E7. Clearly, M ∼= E8 (first, the root sublattice of M is of type E8 as it
is strictly larger than E7, then E8 ⊂ M forces equality for reasons of rank and determinant).
It is well known that E6 admits a unique embedding in E8 with orthogonal complement A2.
We get A2 ⊂ S = (E6)

⊥
SatB(S⊕E6)

(using the primitivity of S in B). In particular, S contains
some short roots, contradicting the fact that (G, S) is a Leech pair. ��

4.1.2 Moduli of cubics associated with a Leech pair (G, S)

We denote by Acub the sub-poset of A consisting of Leech pairs isomorphic to (G, SG(X))

for some smooth cubic fourfold X with G = Auts(X). It is clear that such a Leech pair
(G, SG(X)) is saturated. Therefore we have Acub ⊂ Asat . Our purpose is to determine the
poset Acub. We now discuss the geometric loci (“moduli”) associated with the elements of
this poset. By studying the minimal and maximal loci, in Sects. 4.2 and 4.3 respectively, we
will be able to complete the proof of our main Theorem 1.2.

Suppose we have a faithful action of a finite group G on P
5
x1,...,x6 which preserves a

smooth cubic fourfold V (F0(x1, . . . , x6)). The action is equivalent to a group embedding
G ↪→ PGL(6, C). Denote by G̃ the preimage of G in SL(6, C). Let λ : G̃ → C

× be the
character of G̃ satisfying that g(F0)(:= F0◦g−1) = λ(g)F for any g ∈ G̃. LetVλ be thevector
space of all cubic polynomials F(x1, . . . , x6) such that g(F) = λ(g)F for any g ∈ G̃. Denote
by Vsm

λ the subset of Vλ consisting of polynomials which defines smooth cubic fourfolds.
Define a group Nλ := {a ∈ SL(6, C)

∣∣aGa−1 = G and λ(aga−1) = λ(g),∀g ∈ G̃}. Then
Nλ is a reductive group acting on Vλ and Vsm

λ . With respect to this action, all points in Vsm
λ

are stable (namely, have closed orbits and finite stabilizer groups). We define FG to be the
GIT quotient of PVsm

λ by Nλ. We regard FG as the moduli space of smooth cubic fourfolds
with the specified group action of G on P

5.
In Sect. 2.2 we have defined the moduli space MM of cubic fourfolds associated with a

specified lattice embedding M ↪→ �0. The normalization of MM is an arithmetic quotient
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DM/�M (minus some Heegner divisors). From [54, Theorem 1.1], we have the following
result which illustrates the relation between FG and MM :

Proposition 4.6 Suppose G is a finite group acting faithfully and symplectically on a smooth
cubic fourfold X ⊂ P

5, and S = SG(X). LetFG be themoduli space of smooth cubic fourfolds
preserved by the group action of G on P

5. Let MS be the moduli space of smooth cubic
fourfolds associated with the embedding S = SG(X) ⊂ H4(X , Z)0 ∼= �0. Let (DS \H)/�S

be the normalization of MS, where H is a �S-invariant hyperplane arrangement in DS

induced by restricting the H2 and H6 hyperplane arrangements (see Definition 2.1) to DS.
Then the period map for cubic fourfolds gives rise to a natural isomorphism

FG ∼= (DS \ H)/�G ,

where �G is a subgroup of �S of finite index. In particular, dim Vλ − dim Nλ = dimF =
dimMS = 20 − rank(S).

Let (G, S) be a Leech pair with saturation (G ′, S) ∈ Acub. For any primitive embedding
of S into �0 with the orthogonal complement containing neither short roots nor long roots,
we have a moduli space MS of smooth cubic fourfolds with this specified S-polarization.
There may be more than one such primitive embeddings of S up to conjugacy of �0, hence
there may be more than one moduli spaces MS . We define M(G,S) to be the union of all
possible MS . This is a closed subvariety of M (the moduli of cubic fourfolds) which only
depends on the saturation of (G, S). For a Leech pair (G, S) whose saturation does not
belong to Acub, we simply define M(G,S) to be the empty set. While M(G,S) is nonempty,
its dimension is equal to 20 − rank(S). Proposition 4.6 allows us to calculate dimM(G,S)

once a corresponding group action of G on P
5 is known. This idea for the calculation of

dimM(G,S) is used in proof of Theorem 1.2.

Remark 4.7 In Theorem 1.2, our classification is about saturated pairs, but in the arguments
below it is convenient not to require (G, S) to be saturated.

It is clear that the moduli spacesM(G,S) have a natural poset structure that matches with the
poset structure on Acub. Theorem 1.2 is organized by the dimensions of M(G,S)(�= ∅) (or
equivalently rank(S)).

4.2 Themaximal Leech pairs for cubic fourfolds

We now note that the Leech pairs arising from automorphisms of cubic fourfolds satisfy
an easy necessary condition (in terms of the rank of covariant lattice and the rank of the
discriminant group). In order to simplify the relation to the Höhn–Mason classification [24],
we state the condition in terms of the fixed-point sublattice K in the Leech lattice L.

Condition 4.8 Let (G, S) be a Leech sub-pair of (Co0, L), and K = S⊥
L
. We require K to

satisfy the following conditions:

(i) rank(K ) ≥ 4 (or equivalently rank(S) ≤ 20);
(ii) for every prime number p �= 3, αp(K )(:= rank(K ) − l p(AK )) ≥ 2, and α3(K ) ≥ 1

(in particular α(K ) = rank(K ) − l(AK ) ≥ 1).

Proposition 4.9 The equivalent conditions in Theorem 4.5 imply Condition 4.8.
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Proof Since S embeds into �0 which has signature (20, 2), the rank condition is clear.
Assume now that (G, S) is a Leech pair with a primitive embedding of S into L, and K is the
orthogonal complement of S in L. By Theorem 4.5, there exists a primitive embedding of E6

into K ⊕U 2. Denote byM the orthogonal complement of E6 in K ⊕U 2.We have a saturation
E6 ⊕ M ↪→ K ⊕ U 2. By Nikulin’s glueing theory, there exists an isotropic subspace H of
AE6 ⊕ AM , such that AK ∼= H⊥/H . Since M is primitive in K ⊕U 2, there is no nontrivial
element in H ∩ AM . Therefore, we have either H = 0 or H = {(x, f (x))

∣
∣x ∈ AE6}, where

f : AE6 −→ AM is an isometry onto f (AE6) equipped with −qM .
Assume first that the glueing group H is trivial, then AK = AE6 ⊕ AM . Since AE6

∼= Z/3,
we conclude l p(AM ) = l p(AK ) for p �= 3 and l3(AM ) = l3(AK ) − 1. Otherwise, we have
H = {(x, f (x))

∣
∣x ∈ AE6 , f (x) ∈ AM , qE6(x) = −qM ( f (x))} ∼= Z/3. We have an

isometry

AK ∼= H⊥/H ∼= AM/ f (AE6).

Thus, l p(AM ) = l p(AK ) for p �= 3 and l3(AM ) = l3(AK ) + 1.
In any case, we get

l p(AK ) = l p(AM ) ≤ rank(M) = rank(K ) − 2

for p �= 3, and

l3(AK ) ≤ l3(AM ) + 1 ≤ rank(M) + 1 = rank(K ) − 1

hence Condition 4.8. ��
Remark 4.10 To understand the restriction imposed by Condition 4.8 on Leech pairs, let
us consider the case G ∼= 2 (i.e., symplectic involutions). According to [20] (also [24]),
there are three nontrivial conjugacy classes of involutions in Co0 = O(L). The fixed-point
sublattices K in the three cases are E8(2), D

+
12(2), and BW16 (the Barnes–Wall lattice), while

the covariant lattices SG(L) = K⊥
L
are BW16, D

+
12(2), and E8(2) respectively. For E8(2) and

D+
12(2), we have rank(K ) = l(K ) (this holds true whenever K = K ′(n) for some integral

lattice K ′, n ∈ Z>1), while BW16 obviously satisfies Condition 4.8. We conclude that the
only possible Leech pair arising from symplectic involutions on cubic fourfolds is (2, E8(2)).
To conclude that there is a unique class of symplectic involutions, we would need to prove
that there exists a unique primitive embedding of E8(2) in�0. In this particular case, a direct
geometric argument (via a diagonalization of the involution) is easier. This concludes item
(1) of Theorem 1.2.

In Sect. 3.3, we have defined a natural posetA on the set of Leech pairs in (Co0, L).We are
now interested in identifying the maximal Leech pairs (G, S) arising from cubic fourfolds.
As noted above, these pairs satisfy Condition 4.8. Focusing on the maximal rank cases, by
inspecting [24], we note that there are 15 Leech pairs (G, S) ∈ Asat with rank(S) = 20
(or equivalently rank(K ) = 4) and satisfying Condition 4.8. In fact, these cases precisely
coincide with those of [25, Table 9]. For reader’s convenience, we list them (sometimes
corrected6) in Table 1 below.

Remark 4.11 In Table 1, the items in the last column represent discriminant forms of the
invariant sublattices of the actions of G on the Leech lattice. See [8, Page 379–380] and also
our Appendix A for an explanation of the notation of discriminant forms.

6 There are some typos in the listing of the discriminant forms in [24]. For example, the discriminant form
corresponds to case of M10 is listed as 2

+1
5 4+1

1 3−15+1 in [24], but this is not allowed in the Conway–Sloane
[8] notation. See also Sect. A.2.
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Remark 4.12 The group Q appearing in item 8 is a group of order 128, see [25, Theorem 5.1,
Case 5(b)]. We expect that the semi-direct product 32 : QD16 appearing in item 15 is in fact
isomorphic to M2,9 (see §B.2).

It turns out that the 15 groups listed in Table 1 occur as maximal groups of symplectic
automorphisms for some hyper-Kähler manifold of K3[2] type (algebraic, but not polarized).
Specifically, the following result holds.

Theorem 4.13 (Höhn–Mason [25, Theorem 8.7]) A finite group acts symplectically on a
hyper-Kähler manifold of type K3[2] if and only if it is a subgroup of a group in Table 1.

We are interested in the maximal rank cases that can occur for cubic fourfolds, or equiv-
alently the saturated Leech pairs (G, S) for which M(G,S) �= ∅ and dimM(G,S) = 0. Höhn
and Mason [25, Table 11] have identified six cases that do occur for cubic fourfolds, and in
fact they gave explicit equations of cubic fourfolds realizing these groups of automorphisms.
Using our Criterion 4.5, we prove the converse: these six cases are all the maximal rank
possibilities for cubic fourfolds. Note however (see Sect. 4.5 below) that in two of the cases,
there are two distinct embeddings of S into �0, leading to two more isolated cubic fourfolds
with large symmetry in addition to the six cubics found by Höhn and Mason.

Theorem 4.14 Let X be a smooth cubic fourfold, and G = Auts(X). Assume that
rank(SG(X)) = 20, then the Leech pair (G, SG(X)) corresponds to one of the entries 1,
4, 5, 10, 11 and 13 in Table 1.

Proof By Theorem 4.5, we need to determine for which (G, S) among the 15 candidates,
there exists an embedding of S ⊕ E6 into the Borcherds lattice B for which the image of S is
primitive. There are two possibilities for such an embedding S⊕ E6 ⊂ B. Either S⊕ E6 ⊂ B

is primitive or not. If S ⊕ E6 ⊂ B is not primitive, there exists a coindex 3 saturation S̃ of
S ⊕ E6, in which S is primitive. Then S̃ embeds primitively into B. Since S ⊕ E6 (or S̃)
has rank 26, and B is the unique even unimodular lattice of signature (26, 2), by Nikulin’s
theory, we conclude that S⊕ E6 (or S̃ respectively) embeds primitively into B iff there exists
a negative definite rank 2 even lattice T with discriminant form qT = −qS⊕E6 (or qT = −qS̃
respectively). By Theorem A.8, such a lattice T exists iff four conditions are satisfied. The
first condition on the signature is automatically satisfied here. The remaining conditions are
on the discriminant form qT (that is determined by S ⊕ E6 or the index 3 overlatice S̃ of
S⊕E6). We do a case by case analysis of the 15 possibilities from Table 1. The computations
are standard manipulations with finite groups, and finite quadratic forms, we list only the
essential details. (For a prime p, Zp denotes the ring of p-adic integers.)

(1) The discriminant form of S ⊕ E6 is 3+29−1 ⊕ 3+1. There is a nontrivial saturation S̃
of S ⊕ E6 with discriminant form 3−19−1. There exists a negative rank 2 even lattice
T with discriminant form 3+19+1. Thus there exists a primitive embedding of S̃ into B

with orthogonal complement T .
(2) The discriminant form of S ⊕ E6 is 2−2

II 3+27+1. There is no nontrivial saturation of
S ⊕ E6. Since 32 × 7 is a square in Z2, there does not exist a negative rank 2 even lattice
with discriminant form 2−2

II 3+27−1. Thus there does not exist embedding of S⊕ E6 into
B.

(3) The discriminant form of S ⊕ E6 is 4
+1
3 8−1

7 3−1 ⊕ 3+1. There is a nontrivial saturation S̃
of S ⊕ E6 with discriminant form 4+1

3 8−1
7 . By the third condition in Nikulin’s criterion,

there does not exist a negative rank 2 even lattice with discriminant form 4−1
5 8+1

1 nor
4−1
5 8+1

1 3−1 ⊕ 3+1. Thus there does not exist embedding of S ⊕ E6 into B.
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(4) The discriminant form of S ⊕ E6 is 3−15+17−1 ⊕ 3+1. There is a nontrivial saturation
S̃ of S ⊕ E6 with discriminant form 5+17−1. There exists a negative rank 2 even lattice
T with discriminant form 5+17+1. Thus there exists a primitive embedding of S̃ into B

with orthogonal complement T . Since 5 × 7 = 35 is not a square in Z3, there exists a
negative rank 2 even lattice T ′ with discriminant form 3−25+17+1. Thus there exists a
primitive embedding of S ⊕ E6 into B with orthogonal complement T ′.

(5) The discriminant form of S ⊕ E6 is 2
+2
6 3−3 ⊕ 3+1. There is a nontrivial saturation S̃ of

S ⊕ E6 with discriminant form 2+2
2 3+2. Since 2 × 2 = 4 is obviously a square in Z3,

there exists a negative rank 2 even lattice T with discriminant form 2+2
6 3+2. Thus there

exists a primitive embedding of S̃ into B with orthogonal complement T .
(6) The discriminant form of S⊕E6 is 4

+1
5 8−1

7 5−1⊕3+1, and there is no nontrivial saturation
of S⊕ E6. Since 5× 3 = 15 ≡ −1 (mod 8), there is no negative rank 2 even lattice with
discriminant form 4−1

3 8+1
1 3−15−1. Thus there does not exist embedding of S ⊕ E6 into

B.
(7) The discriminant form of S ⊕ E6 is 4

+2
6 7−1 ⊕ 3+1 and there is no nontrivial saturation

of S⊕ E6. Since 3× 7 = 21 ≡ −3 (mod 8), there is no negative rank 2 even lattice with
discriminant form 4+2

2 3−17+1. Thus there does not exist embedding of S ⊕ E6 into B.
(8) The discriminant form of S ⊕ E6 is 8

−2
2 3+1 ⊕ 3+1 and there is no nontrivial saturation

of S ⊕ E6 with S primitive. Since 3 × 3 = 9 ≡ 1 (mod 8), there is no negative rank 2
even lattice with discriminant form 8−2

6 3+2. Thus there is no embedding of S ⊕ E6 into
B with primitive image of S.

(9) The discriminant form of S ⊕ E6 is 2
−2
II 3+25−1 ⊕ 3+1. There is a nontrivial saturation

S̃ of S ⊕ E6 with discriminant form 2−2
II 3−15−1. Since 3× 5 = 15 ≡ −1 (mod 8), there

is no negative rank 2 even lattice with discriminant form 2−2
II 3+15+1. Thus there is no

primitive embedding of S̃ into B.
(10) The discriminant form of S ⊕ E6 is 2−1

5 4+1
1 3+15+1 ⊕ 3+1 and there is no nontrivial

saturation of S ⊕ E6. Since 2× 4× 5 = 40 ≡ 1 is a square in Z3, there exists a negative
rank 2 even lattice T with discriminant form 2−1

3 4+1
7 3+25+1. Thus there exists a primitive

embedding of S ⊕ E6 into B with orthogonal complement T .
(11) The discriminant form of S ⊕ E6 is 11+2 ⊕ 3+1, and there is no nontrivial saturation of

S ⊕ E6. Since 3 is a square in Z11 (notice that 52 ≡ 3 (mod 11)), there exists a negative
rank 2 even lattice T with discriminant form 3−111+2. Thus there exists a primitive
embedding of S ⊕ E6 into B with orthogonal complement T .

(12) The discriminant form of S ⊕ E6 is 4
−1
1 8−1

7 3+2 ⊕ 3+1. There is a nontrivial saturation
S̃ of S ⊕ E6 with discriminant form 4−1

1 8−1
7 3−1. Since 3 is not congruent to ±1 modulo

8, there is no negative rank 2 even lattice with discriminant form 4+1
7 8+1

1 3+1. Thus there
is no embedding of S̃ into B.

(13) The discriminant form of S⊕E6 is 3−25−2⊕3+1. There is a unique nontrivial saturation
S̃ of S ⊕ E6 with discriminant form 3+15−2. Since 3 is not a square in Z5, there exists
a negative rank 2 even lattice T with discriminant form 3−15−2. Thus there exists a
primitive embedding of S̃ into B with orthogonal complement T .

(14) The discriminant form of S ⊕ E6 is 2
+2
II 7+2 ⊕ 3+1, and there is no nontrivial saturation

of S ⊕ E6. Since 2 × 2 × 3 = 12 is not a square in Z7, there is no negative rank 2 even
lattice with discriminant form 2+2

II 3−17+2. Thus there is no embedding of S ⊕ E6 into
B.

(15) The discriminant form of S ⊕ E6 is 2−1
7 4−1

7 3+19+1 ⊕ 3+1, and there is no nontrivial
saturation of S ⊕ E6. Since l3(2

−1
7 4−1

7 3+19+1 ⊕ 3+1) = 3, there is no negative rank 2
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even lattice with discriminant form the opposite of 2−1
7 4−1

7 3+19+1 ⊕ 3+1. Thus there is
no embedding of S ⊕ E6 into B.

The proposition follows. ��

4.3 Cubics with special groups of automorphisms (cyclic, Klein, and S3)

Theorem 4.14 classifies the 0-dimensional moduli spaces M(G,S). The top dimensional
moduli spacesM(G,S) will correspond to small groupsG. In particular, theminimal elements
in the poset Acub can be determined by considering cyclic groups G of prime orders. The
cubics with a symplectic automorphism of prime order were studied previously, especially
by Fu [14] (see also [17]), who classified all the possibilities for symplectic automorphisms
of primary order.

Theorem 4.15 (Fu [14, Theorem 1.1]) Let X = V (F) ⊂ P
5 be a smooth cubic fourfold with

a symplectic action by a cyclic group G = 〈g〉 of primary order. We can choose coordinates
(x1, x2, . . . , x6) on P

5, and a generator g ∈ G, such that (g, F) belongs to one of the
following cases:

(0) ord(g) = 1, g = id, dim(F) = 20, and F any smooth cubic.
(1) ord(g) = 2, g = 1

2 (0, 0, 0, 0, 1, 1), dim(F) = 12, and

F = F1(x1, x2, x3, x4) + x25 L1(x1, x2, x3, x4) + x5x6L2(x1, x2, x3, x4)

+x26 L3(x1, x2, x3, x4);
(2) ord(g) = 4, g = 1

4 (0, 0, 2, 2, 1, 3), dim(F) = 6, and

F ∈ Span{x1N1(x3, x4), x2N2(x3, x4), F1(x1, x2), x5x6L1(x1, x2),

x25 L2(x3, x4), x
2
6 L3(x3, x4)};

(3) ord(g) = 8, g = 1
8 (0, 4, 2, 6, 1, 3), dim(F) = 2, and

F ∈ Span{x31 , x1x22 , x2x23 , x2x24 , x1x3x4, x4x25 , x3x26 , x2x5x6};
(4) ord(g) = 3, g = 1

3 (0, 0, 0, 0, 1, 2), dim(F) = 8, and

F = F1(x1, x2, x3, x4) + x35 + x36 + x5x6L1(x1, x2, x3, x4);
(5) ord(g) = 3, g = 1

3 (0, 0, 1, 1, 2, 2), dim(F) = 8, and

F = F1(x1, x2) + F2(x3, x4) + F3(x5, x6) + �i=1,2; j=3,4;k=5,6(ai jk xi x j xk);
(6) ord(g) = 3, g = 1

3 (0, 0, 0, 1, 1, 1), dim(F) = 2, and

F ∈ Span{monomialsinx1, x2, x3,monomialsinx4, x5, x6};
(7) ord(g) = 9, g = 1

9 (0, 6, 3, 1, 4, 7), dim(F) = 0, and

F ∈ Span{x21 x2, x22 x3, x23 x1, x24 x5, x25 x6, x26 x4};
(8) ord(g) = 9, g = 1

9 (0, 3, 6, 1, 1, 4), dim(F) = 0, and

F ∈ Span{x21 x2, x22 x3, x23 x1, x24 x5, x4x25 , x34 , x35 , x36 };
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(9) ord(g) = 5, g = 1
5 (0, 0, 1, 2, 3, 4), dim(F) = 4, and

F = F1(x1, x2) + x3x6L1(x1, x2) + x4x5L2(x1, x2) + x23 x5 + x3x
2
4 + x4x

2
6 + x25 x6;

(10) ord(g) = 7, g = 1
7 (1, 5, 4, 6, 2, 3), dim(F) = 2, and

F = x21 x2 + x22 x3 + x23 x4 + x24 x5 + x25 x6 + x26 x1 + ax1x3x5 + bx2x4x6;
(11) ord(g) = 11, g = 1

11 (1, 9, 4, 3, 5, 0), dim(F) = 0, and

F ∈ Span{x21 x2, x22 x3, x23 x4, x24 x5, x25 x1, x36 }.
Moreover, in all situations, the generic members of the defined families of cubic fourfolds
are smooth.

Remark 4.16 For further reference, we give the condition for a diagonal matrix g =
1
n (w1, . . . , w6) ∈ GL(6) to act symplectically on a cubic X = V (F). Denote by w =
(w1, . . . , w6) ∈ (Z/n)6 the set of weights. Then a simple application of Griffiths’ residue
calculus (see [14, Lemma 3.2]) gives that g acts symplectically on X iff

|w| ≡ 2 degw(F) (mod n) (4.2)

where |w| = ∑6
i=1 wi and degw(F) = ∑6

i=1 wiαi for somemonomial xα1
1 . . . xα6

6 occurring
with non-zero coefficient in F (N.B. since V (F) is stabilized by g, degw(F) is well defined
in Z/n). For most of the cases above, |w| = degw(F) = 0 (equivalently g ∈ SL(6)), but this
does not always hold (e.g., in the case ord(g) = 9 above).

From the lattice theoretic approach (our main approach in this paper), Fu’s classification
is closely related to Harada–Lang classification [20] of fixed-point sublattices in the Leech
lattice with respect to cyclic groups (see Remark 4.10 for the case of involutions). In fact,
using the lattice theoretic approach and [20], we can improve Fu’s result. Specifically, the
following holds:

Theorem 4.17 Let G be a cyclic group acting symplectically on some smooth cubic fourfold
X (i.e., G ⊂ Auts(X)). Then, the order of |G| is one of the following:

|G| ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15}
Furthermore, the following holds:

(1) (Primary Cases). For the cases |G| = pk, we have the following correspondences among
Fu’s classification, Harada-Lang classification and Höhn–Mason classification.

Case in Theorem 4.15 (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Case in [20] 1A 2A 4C 8E 3B 3B 3C 9C 9C 5B 7B 11A
Case in [24] 1 2 9 55 4 4 35 101 101 20 52 120

The saturated group 1 2 4 QD16 3 3 31+4 : 2 34 : A6 34 : A6 D10 F21 L2(11)

(2) (Composite Cases). There are 4 Leech pairs (G, S) occurring for cubic fourfolds with G
cyclic of order n divisible by two distinct primes.

(3) (Maximal Cases). A cubic fourfold with a symplectic automorphism of order 9, 11, 12,
or 15 is isolated in moduli (i.e., dimM(G,S) = 0).
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Case in [20] −6D 6E −12H 15D
Case in [24] 35 18 109 128

The saturated group 31+4 : 2 D12 31+4 : 2.22 A3,5

Remark 4.18 The maximal cases in item (3) above are in fact unique. This is proved in
Sect. 4.5 below. Thus, considering cubic fourfolds with a symplectic action by a cyclic group
of order ≥ 9 gives four of the maximal cases listed in Theorem 1.8.

Proof Harada–Lang [20] classified the conjugacy classes of cyclic subgroups in the Conway
group Co0 and their associated fixed lattices K (recall S = K⊥

L
). The necessary Condition

4.8 says (in particular) that rank(K ) ≥ 4 and that K is not divisible as a lattice (otherwise
we would have K = K ′(n) for some integral, not necessarily even, lattice K ′ and integer
n ≥ 2, which is impossible as in this situation rank(K ) = l(AK )). Inspecting the list of [20]
in the primary order case gives an easy match with the list of Theorem 4.15 (essentially, there
is only one possibility for (G, S) once the order of G and the rank of S are specified). The
pairs (G, S) are not saturated, but the knowledge of K (essentially, rank and discriminant)
suffices to identify the relevant case in Höhn–Mason [24] list, and to find the saturated pair
(G ′, S) (with G ⊂ G ′).

Assuming that n = |G| has at least 2 prime divisors, and that K is a non-divisible lattice of
rank at least 4, leaves only the following cases in [20]:−6D , 6E ,−10E ,−12H , 14B and 15D .
As before, for each case we can associate a unique saturated Leech pair from [24]. Using
Theorem 4.5 (our main criterion), cases −10E and 14B cannot arise from cubic fourfolds,
while the others can occur. Finally, the cases −12H and 15D correspond to maximal cases
(i.e., rank(K ) = 4, or equivalently rank(S) = 20). Considering also the cases of order 9 and
11 identified in Theorem 4.15, we obtain item (3) (compare also with Theorem 4.14). ��
Remark 4.19 Let us comment on the two apparent repetitions in the matching of the cases in
Theorem 4.17. First, the two order 9 cases (case (8) and (9)) correspond to a unique cubic
fourfold, in fact the Fermat cubic fourfold

X = V (x31 + · · · + x36 ) ⊂ P
5,

which has Auts(X) = 34 : A6. The fact that we list two cases of order 9 in Theorem 4.15
corresponds to the existence of two non-conjugate cyclic subgroups of order 9 in 34 : A6

(induced from the two conjugacy classes of order 3 elements in A6). For reference, we note
(cf. [20, Case 9C ]) that the fixed-point lattice K is

⎛

⎜⎜
⎝

4 1 1 2
1 4 1 2
1 1 4 −1
2 2 −1 4

⎞

⎟⎟
⎠

which has discriminant form 3+29+1. The cases (4) and (5) of order 3 lead to the same
Leech pair (G, S) (with K = S⊥

� being the Coxeter–Todd lattice), but in this case the two (8-
dimensional) families of cubics are different, due to the fact that S has two different primitive
embeddings into the lattice �0(= A2 ⊕ (E8)

2 ⊕U 2). The other order 3 case (namely (6)) is
easily distinguished; it corresponds to K being E∗

6 (3) which has discriminant form 3+5.

Remark 4.20 Let us also note that the order 6 case −6D in fact coincides with the case 3C .
This is clear by noticing that they both correspond to case 35 in [24] (with saturated group
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31+4 : 2). This also follows by inspecting [20]; in both cases K = E∗
6 (3) (N.B. E

∗
6 is not an

integral lattice, thus scaling by 3 does not contradict our non-divisibility assumption on K ).

Remark 4.21 The order 11 case is very interesting, as 11 cannot occur as a prime order for
symplectic automorphisms of K3 surfaces (and thus this example can be used to construct
exotic automorphisms for hyper-Kähler’s of K3[2] type; e.g. [38, §4.5]). The equation of the
unique cubic with an order 11 symplectic automorphism is well known, namely

X = V (x31 + x22 x3 + x23 x4 + x24 x5 + x25 x6 + x26 x2).

From our perspective, this corresponds to case (11A) in [20]. The saturated Leech pair is
(PSL(2, F11), S) and the fixed-point lattice K is

⎛

⎜
⎜
⎝

4 0 2 −1
0 4 −1 2
2 −1 4 −1

−1 2 −1 4

⎞

⎟
⎟
⎠

which has discriminant form 11+2.

In view of Theorem 4.17, we note that the only cyclic case that needs further investigation
is G ∼= 6 (the primary cases are covered by Theorem 4.15, while the maximal cases are
discussed later in Sect. 4.5). According to Theorem 4.17, there are two order 6 cases relevant
for us (6E and −6D). However, the case −6D was already covered by Theorem 4.15 (cf.
Remark 4.20). The last cyclic group case is handled by the following result.

Lemma 4.22 Let X be a smooth cubic fourfold with a symplectic automorphism of order 6.
Suppose the moduli of cubic fourfolds with such an automorphism has dimension greater
than 2 (i.e., dimM(G,S) > 2). Then for an appropriate choice of coordinates, the defining
equation for X either belongs to

Span{x21 x3, x21 x4, x1x2x3, x1x2x4, x22 x3, x22 x4, x33 , x23 x4, x3x24 , x3x5x6, x34 , x4x5x6, x35 , x36 },
while the order 6 automorphism is 1

6 (3, 3, 0, 0, 2, 4), or belongs to

Span{x31 , x1x22 , x1x3x5, x1x3x6, x2x4x5, x2x4x6, x33 , x3x24 , x35 , x25 x6, x5x26 , x36 },
while the order 6 automorphism is 1

6 (0, 3, 2, 5, 4, 4). In both cases, the correspondingmoduli
spaces F have dimension 4. They both correspond to the case 6E in [20], and the associated
saturated group is D12.

Proof Denote by ρ the order 6 automorphism. Since the moduli space of cubic fourfolds with
such an automorphism has dimension geater than 2, the order 3 automorphism ρ2 belongs
to cases (4) or (5) in Theorem 4.15. Thus, we can choose coordinates (x1, x2, . . . , x6) such
that ρ2 = 1

3 (0, 0, 0, 0, 1, 2) or
1
3 (0, 0, 1, 1, 2, 2), meanwhile ρ3 has two −1 on the diagonal.

Denote by F = F(x1, . . . , x6) a defining equation for X . Then F is a linear combination of
ρ-invariant monomials in x1, . . . , x6. Since X is smooth, there exists a ρ-invariant monomial
divisible by x2i for any i = 1, 2, . . . , 6 .

If ρ2 = 1
3 (0, 0, 0, 0, 1, 2), then a ρ2-invariant monomial divisible by x25 must be x35 .

Therefore x35 is ρ-invariant, hence also ρ3-invariant. So does x36 . We may then take ρ3 =
1
2 (1, 1, 0, 0, 0, 0). Then ρ = 1

6 (3, 3, 0, 0, 2, 4) and

F ∈ Span{x21 x3, x21 x4, x1x2x3, x1x2x4, x22 x3, x22 x4, x33 , x23 x4, x3x
2
4 , x3x5x6, x

3
4 , x4x5x6, x

3
5 , x36 }.
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This 14-dimensional vector space contains x21 x3+x22 x4+x33+x34+x35+x36 which determines
a smooth cubic fourfold. Therefore, a generic cubic fourfold with this automorphism ρ is
smooth. The dimension of the centralizer of ρ in GL(6, C) is 4+ 4+ 1+ 1 = 10, hence the
dimension of the moduli space F is 14 − 10 = 4.

If ρ2 = 1
3 (0, 0, 1, 1, 2, 2), then a ρ2-invariant monomial divisible by x21 must be x31 or

x21 x2. Therefore, the two−1 on the diagonal of ρ3 cannot occupy the first two positions simul-
taneously. So do the third and fourth positions, the fifth and sixth positions. By symmetry,
we may take ρ = 1

6 (0, 3, 2, 5, 4, 4) and

F ∈ Span{x31 , x1x22 , x1x3x5, x1x3x6, x2x4x5, x2x4x6, x33 , x3x24 , x35 , x25 x6, x5x26 , x36 }.
This 12 dimensional vector space contains x31 +x1x22 +x33 +x3x24 +x35 +x36 which determines
a smooth cubic fourfold, hence a generic element also determines a smooth cubic fourfold.
Moreover, the dimension of the centralizer of ρ in GL(6, C) is 1+ 1+ 1+ 1+ 4 = 8, hence
the dimension of the moduli space F is 12 − 8 = 4. ��

4.3.1 Small non-cyclic groups

In addition to the cyclic groups identified above, we discuss also the cases of cubics with
symplectic action by the simplest non-cyclic groups, Klein group and respectively S3. First,
for the Klein group 22, relevant to item (c1) in Theorem 1.2, the following holds.

Lemma 4.23 Suppose X = V (F) is a smooth cubic fourfold with symplectic action of
G ∼= 22. Then we can choose coordinates (x1, x2, x3, x4, x5, x6) for V such that G =
〈diag(1, 1, 1, 1,−1,−1), diag(1, 1, 1,−1,−1, 1)〉, and F can bewritten as F1(x1, x2, x3)+
x24 L1(x1, x2, x3)+x25 L2(x1, x2, x3)+x26 L3(x1, x2, x3)+x4x5x6. The dimension of the asso-
ciated moduli space F is 8.

Proof Since G is a finite abelian subgroup of PSL(V ), we can choose coordinates
(x1, x2, x3, x4, x5, x6) for V , such that all element inG are diagonal matrices. For any g ∈ G,
since g2 = id and g acts symplectically on the smooth cubic fourfold X , there are four eigen-
values 1 and two eigenvalues−1 (see Theorem 4.15(1)). We now choose generators g1, g2 of
G. Up to coordinate choices, we may assume g1 = diag(1, 1, 1, 1,−1,−1), and g2 is either
diag(1, 1, 1,−1,−1, 1) or diag(1, 1,−1,−1, 1, 1). Suppose g2 = diag(1, 1,−1,−1, 1, 1),
then there is no smooth cubic fourfold preserved by the action of G. Thus g2 =
diag(1, 1, 1, 1,−1,−1). The defining polynomial F can then be written as

F1(x1, x2, x3) + x24 L1(x1, x2, x3) + x25 L2(x1, x2, x3) + x26 L3(x1, x2, x3) + x4x5x6.

A generic cubic of this type is smooth. Moreover, the dimension of the vector space of such
cubic polynomials is 10 + 3 + 3 + 3 + 1 = 20, and the dimension of the reductive group
GL(3) × C

× × C
× × C

× ⊂ GL(6) preserving the normal form is 9+ 1+ 1+ 1 = 12. Thus
dim(F) = 20 − 12 = 8. ��

We now consider the symmetric group S3, relevant to item (d2) in Theorem 1.2.

Lemma 4.24 Let X = V (F) ⊂ P(V ) be a smooth cubic fourfold with symplectic action of
G ∼= S3. Then the action of G on P

5 can be lifted to a representation of G on V ∼= C
6, and

one of the following holds:

(1) The representation of G on V is the direct sum of two standard representations of S3.
The dimension of the moduli space of cubic fourfolds F with such an action is 6.
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(2) The representation of G on V is the direct sumof a standard representation, an alternating
character, and two trivial characters of S3. The dimension of the moduli space of cubic
fourfolds F with such an action is 4.

Proof A projective representation of S3 can be lifted as a linear representation. Suppose we
have an action of S3 on V with an invariant smooth cubic form F ∈ Sym3(V ∗), such that
the induced action of S3 on V (F) is faithful and symplectic. There are three involutions in
S3, and their actions on V must have two-dimensional (−1)-eigenspace.

There are three linear irreducible representations of S3, namely, the trivial character, the
alternating character, and the standard representation on C

3. Since the action of an order 3
element in G is faithful on V , the representation of G on V has the standard representation
of S3 as an irreducible component. It is then clear that the two cases mentioned in the lemma
are the only possible ones.

Suppose V is a direct sum of two standard representations. We can choose coor-
dinates (x1, x2, x3, x4, x5, x6) of V ∗, such that G ∼= S3 is acting via permutating
(x1, x2), (x3, x4), (x5, x6) simultaneously. A cubic form which is invariant under this action
can be written uniquely as a linear combinations of 14 cubic forms which are also invariant.

The centralizer group of S3 in GL(V ) can be written as

⎛

⎝
A B B
B A B
B B A

⎞

⎠ where A, B are two

by two matrices. This group has dimension 8. Hence the dimension of the moduli of cubic
fourfolds with this action is 14 − 8 = 6.

Suppose V is a direct sum of a standard representation, an alternating character, and two
trivial characters. We can choose coordinate (x1, x2, x3, x4, x5, x6) of V ∗, such that G ∼= S3
is acting via permutating (x1, x2, x3), identically on x5, x6, and alternatively on x4. A cubic
form which is invariant under this action can be written uniquely as a linear combinations of
15 cubic forms which are also invariant. The centralizer group of S3 in GL(V ) has dimension
11. Thus, the dimension of themoduli space of cubic fourfolds with this action is 15−11 = 4.

��

4.4 Proof of Theorem 1.2

At this point, we can complete the proof of our classification theorem (Theorem 1.2). The
main ingredients of our proof are the criterion given by Theorem 4.5, the Höhn–Mason
classification [24] of the fixed-point sublattices in the Leech lattice L, and Fu’s classification
discussed above (Theorem 4.15). Nikulin’s criterion for the existence of even lattices with
specified discriminant form (Theorem A.8) is a well-known tool that we use repeatedly.

Höhn and Mason [24] list all possibilities (290 in total) for saturated Leech pairs (G, S).
Condition 4.8 allows us to rapidly remove a large number of cases (e.g., about half of the cases
have rank(S) ≥ 21). We analyze the remaining cases one by one using Theorem 4.5 (our
main criterion) and Nikulin’s theory. The most delicate case, rank(K ) = 4, was analyzed in
detail in Theorem 4.14. The cases when rank(K ) ≥ 5 are similar and in fact easier. Namely,
as K becomes larger, it is easier to embed E6 into K ⊕ U 2 (in particular, note that except
rank(K ) = 4, (E6)

⊥
K⊕U2 is indefinite, i.e., the “easy” case of Nikulin’s theory). By a routine

inspection (we only need to compare the rank of K and l p(AK )) of the list of Höhn–Mason,
we see that there are 43 cases (among them, there are 12, 12, 5, 5, 2, 3, 2, 1, 1 cases with
rank(K ) = 5, 6, 7, 8, 9, 10, 12, 16, 24 respectively) in Höhn–Mason list with rank(K ) ≥ 5
and satisfyingCondition 4.8.Out of these 43 potential caseswith rank(K ) ≥ 5, only 28 satisfy
the equivalent conditions in our main criterion Theorem 4.5. We omit the details. Including

123



Automorphisms and periods of cubic fourfolds 1485

the 6 cases of maximal rank, we obtain the list of 34 possibilities for (G, S) ∈ Acub. We list
them in Theorem 1.2 in the order of decreasing dimension of moduliM(G,S) (or equivalently
by rank(S)). (Note however that M(G,S) is not necessarily irreducible. When possible, we
list also the irreducible components of M(G,S).)

The second part of Theorem 1.2 is to give explicit equations for some of the cases. As
discussed above, Theorem 4.15, Lemma 4.22, Lemma 4.23 and Lemma 4.24 give normal
equations for cubic fourfolds X which admit faithful actions by some special group G (either
cyclic of primary order,Z/6, Klein group or S3 respectively). Starting with this classification,
we proceed in two ways. First, we have the saturation procedure: given a normal form
F stabilized by such a G, we obtain a Leech pair (G, S = SG(V (F))), with saturation
(G ′, S) ∈ Acub (i.e., in the list of the previous paragraph). For a generic cubic fourfold X
in M(G,S), we have G ⊂ G ′ = Auts(X). By Proposition 4.6, we can calculate rank(S) =
20 − dimM(G,S) = 20 − dimFG . Typically, using the information on the order of G (note
that ord(G ′) is a multiple of ord(G)) and rank(S) suffices to identify the pair (G ′, S). As an
illustration of this saturation procedure see item (5) case D10 in Theorem 1.2.

A second way to proceed is to start with (G, S) ∈ Acub, and consider elements of primary
order g ∈ G (say ord(g) = pk). By Theorem 4.15, we know the possible normal form(s) F
of X with an action by g (similar arguments apply to 22 ⊂ G or S3 ⊂ G). We then try to
specialize F so that it admits an action by G ⊃ 〈g〉 (e.g., see proof of Lemma 4.24). Again,
the knowledge of the dimension of FG (from the normal form) and that of M(G,S) proved
very handy in practice.

Concretely, for G ∼= 1, 2, 3 or 4, we can directly apply the second method (G = 〈g〉)
and (0), (1), (2b), (3a) are clear. For (2a), we can apply the second method for G ∼= 22 and
use Lemma 4.23. For (3b), we can apply the second method for G ∼= S3 and use Lemma
4.24. For (5a), we can apply the second method for G ∼= D12 and use Lemma 4.22. Then
applying the first method we see that a generic cubic fourfold described in Lemma 4.22 has
symplectic automorphism group D12. For items (5b), (7b) and (7c) of Theorem 1.2, we
apply a combination of the two methods.

The last case left is (7a). From Harada-Lang [20] (case (3C )), there is a Leech pair (G, S)

withG ∼= 3 and K = E∗
6 (3). FromHöhn–Mason classification, the only saturated Leech sub-

pair of (Co0, L) with discriminant 35 is (31+4 : 2, S). Thus this is the saturation of (G, S).
By Theorem 4.5, there exist cubic fourfolds with certain order 3 automorphism such that the
induced Leech pair is (G, S). The moduli space of such cubic fourfolds has dimension 2.
These cubic fourfolds must be given by case (6) in Theorem 4.15. Using the first method
described above, any cubic fourfold with such an order 3 automorphism has automatically
symplectic automorphism group 31+4 : 2. We conclude case (7a). ��

4.5 Uniqueness in maximal case

As discussed in the previous subsection, we are able to identify explicit equations for a
number of cases in Theorem 1.2. The cases that are more difficult are those with large, non-
abelian group. One further complication that can arise is the fact that M(G,S) might not be
irreducible. We discuss in detail this situation for the maximal rank case, rank(S) = 20 or
equivalently dimM(G,S) = 0. In Theorem 4.14 we have identified six cases for such pairs
(G, S). On the other hand, Höhn–Mason [25, Table 11] have listed for each of these cases a
cubic fourfold inM(G,S). It turns out, that in two of the six cases, there is an additional point
in M(G,S). This is the new content of our Theorem 1.8. Our arguments are lattice theoretic;
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we do not have explicit equations for these cubic fourfolds with large automorphism groups.
We start with two lemmas:

Lemma 4.25 For Leech pairs (G, S)with numbers 1, 4, 5, 10, 11, or 13 in Table 1, the natural
group homomorphisms

Aut(S) −→ Aut(qS)

are surjective.

Proof Direct inspection of Table 9 in [25]. ��
From the reduction theory of lattices (e.g., see [8, Chap. 15, §3.2]), we have:

Lemma 4.26 Every positive rank 2 lattice admits a basis, such that the corresponding inter-

section matrix is abc =
(
a b
b c

)
with −a < 2b ≤ a ≤ c, and b ≥ 0 if a = c. In particular,

we have 3b2 ≤ d = ac − b2.

Proof of Theorem 1.8 The issue that we need to investigate is the uniqueness of the primitive
embedding S ↪→ �0 (where �0 ∼= A2 ⊕ (E8)

2 ⊕ U 2 is the primitive cohomology of the
cubic fourfold). We let T = S⊥

�0
be the transcendental lattice. The maximal rank case is very

special, as T is in fact a negative definite lattice of rank 24 (in all other cases, T is indefinite,
the easy case of Nikulin’s theory).We now analyze case by case, the six cases of the Theorem
1.8, corresponding to items 1, 4, 5, 10, 11, or 13 in Table 1.

(1) For 34 : A6, the lattice T has discriminant form 3+19+1. By Lemma 4.26, we see that the
negative rank 2 even lattices with discriminant 27 are−(2114) and−(636). Only−(636)
has discriminant form 3+19+1. Hence T = −(636) is unique. A saturation S⊕T ↪→ �0

is given by an injective morphism −qT ↪→ qS . Every two such morphisms differ by an
automorphism of qS , which is induced by an automorphism of S (from Lemma 4.25).
Thus all primitive embeddings of S into�0 with orthogonal complement T give the same
primitive sublattice (up to automorphisms of �0). Therefore, this case recovers a unique
smooth cubic fourfold, which must be the Fermat cubic fourfold V (x31 + x32 + x33 + x34 +
x35 + x36 ).

(2) For G ∼= A7 and qT = 5+17+1. All negative rank 2 even lattices with discriminant
35 are −(616) and −(2118). After calculating their discriminant forms, we conclude
T = −(2118). Similarly to the previous case, all primitive embeddings of S into �0

with orthogonal complement T give the same primitive sublattice. Therefore, this case
recovers a unique smooth cubic fourfold which is the diagonal cubic fourfold V (x31 +
x32 + x33 + x34 + x35 + x36 − (x1 + x2 + x3 + x4 + x5 + x6)3) as we will show in Sect. 6
using the existence of certain anti-symplectic involutions (equivalently, Eckardt points).
See Corollary 6.9.

(2′) ForG ∼= A7 andqT = 3−25+17+1.All negative rank2 even latticeswith discriminant 315
are−(21158),−(6354),−(18318),−(10534),−(14726) and−(18922).After calculating
their discriminant forms, we must have T = −(18318). A saturation S ⊕ T ↪→ �0 is
given by an injectivemorphism qS ↪→ −qT . Given two suchmorphisms τ1 and τ2, denote
by e1, e2 the generators of T with intersecting matrix −(18318). One element in the
automorphism group of T sends (e1, e2) to (e1, e2), (e2, e1), (−e1,−e2) or (−e2,−e1).
By simple calculation, we can choose an automorphism ι of T , such that τ1 and ι◦τ2 have
the same image. Then τ1 and ι ◦ τ2 only differ by an automorphism of qS . By Lemma
4.25, this is induced by an automorphism of S. Thus the two primitive embeddings
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corresponding to τ1 and τ2 have the same image in �0. Therefore, this case recovers a
unique smooth cubic fourfold. As we will show in Sect. 6, this cubic fourfold does not
admit any Eckardt points, hence is distinguished from case (2) above.

(3) For 31+4 : 2.22, the lattice T has discriminant form 2+2
2 3+2. All negative rank 2 even

lattices with discriminant 36 are −(2018), −(606) and −(4210). After calculating their
discriminant forms, we must have T = −(606). As in case (1), all primitive embeddings
of S into�0 with orthogonal complement T give the same primitive sublattice. Therefore,
this case gives rise to a unique smooth cubic fourfold. By [25], this cubic fourfold is
X(31+4 : 2.22) = V (x31 + x32 + x33 + x34 + x35 + x36 − 3(

√
3 + 1)(x1x2x3 + x4x5x6)).

(4) For M10, the discriminant form of T is 2−1
3 4+1

7 3+25+1. All negative rank 2 even lat-
tices with discriminant 360 are −(20180), −(4090), −(6060), −(10036), −(12030),
−(18020), −(14226), −(18622) and −(18−622). After calculating their discriminant
forms, we must have T = −(12030). There are two discriminant subforms of −qT =
2−1
5 4+1

1 3+25+1 that are isomorphic to qS = 2−1
5 4+1

1 3+15+1. Moreover, these two are not
identified via an automorphism of T . Therefore, there are two non-conjugate embeddings
of S into �0, both with orthogonal complement isomorphic to T . From [25, Table 11]
there is an explicit description for one smooth cubic fourfold with symplectic automor-
phism group M10:

X1(M10) = x31 + · · · + x36 + 1

5
(−3ζ 7 − 3ζ 5 + 3ζ 4 − 3ζ 3 + 6ζ − 3) × F (4.3)

where ζ = e2π
√−1/24 and F = x1x2x3 + x1x2x4 + (ζ 4 − 1)x1x2x5 + x1x2x6 + (ζ 4 −

1)x1x3x4+x1x3x5+x1x3x6+(ζ 4−1)x1x4x5−ζ 4x1x4x6−ζ 4x1x5x6+(ζ 4−1)x2x3x4+
(ζ 4 − 1)x2x3x5 − ζ 4x2x3x6 + x2x4x5 + x2x4x6 − ζ 4x2x5x6 + x3x4x5 − ζ 4x3x4x6 +
x3x5x6 + x4x5x6.

(5) For L2(11), the lattice T has discriminant form 11+23−1. All negative rank 2 even lattices
with discriminant 363 are −(21182), −(14126), −(14−126), −(6362) and −(221122).
After calculating their discriminant forms, we must have T = −(221122). Similarly to
the case (3), the image of S in�0 is unique up to automorphisms of�0. Thus this recovers
a unique cubic fourfold, which must be V (x21 x2 + x22 x3 + x23 x4 + x24 x5 + x25 x1 + x36 ).
Namely, Adler [1] showed that L2(11) is the automorphism group of the Klein cubic
threefold V (x21 x2 + x22 x3 + x23 x4 + x24 x5 + x25 x1). It is then easy to see that L2(11) acts
symplectically on the fourfold V (x21 x2 + x22 x3 + x23 x4 + x24 x5 + x25 x1 + x36 ) (obtained
as a cyclic cover of P

4 branched over the Klein cubic threefold).
(6) For A3,5, the lattice T has discriminant form3−15−2.All negative rank 2 even latticeswith

discriminant 75 are−(2138),−(6314) and−(10510). After calculating their discriminant
forms, we must have T = −(10510). Similarly to the case (1), the image of S in �0 is
unique up to automorphisms of �0. Thus, this recovers a unique cubic fourfold, which
must be

X(A3,5) = V (x31 + x32 + x33 + x34 + x35 + x36 + x37 + x38 ) ∩ V (x1 + x2 + x3)

∩V (x4 + x5 + x6 + x7 + x8).

as A3,5 is acting symplectically on this cubic fourfold by permuting the two tuples
(x1, x2, x3) and (x4, . . . , x8).

The remaining parts of Theorem 1.8 on non-symplectic automorphisms are proved in Propo-
sition 6.12. ��
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5 Symplectic automorphisms for low degree K3 surfaces

In this section we will discuss the case of K3 surfaces. As we have indicated, the classifica-
tion of symplectic automorphisms for K3 surfaces was first systematically investigated by
Nikulin [42] via lattice theory, and culminated in the celebrated result by Mukai [41] on a
characterization of maximal finite symplectic groups of K3 surfaces via Mathieu group M23.
Kondō [29] simplified Mukai’s proof by embedding the covariant lattice S into a Niemeier
lattice (an approach closely related to ours). Xiao [53] gave the complete list of finite sym-
plectic automorphism groups of K3 surfaces by analyzing the combinatorial structures of
the singularities of the quotient surface. Hashimoto [22] extended Kondō’s lattice theoretic
approach to give the complete list and analyze the possibilities of geometric realizations.

We briefly discuss here the case of symplectic automorphisms for low degree polarized K3
surfaces, along the lines of our analysis for cubic fourfolds. Ourmethod is lattice theoretic and
relies on the Höhn–Mason [24] classification. On the other hand, low degree K3 surfaces
have projective models. For those K3 surfaces, one can study the automorphisms of the
projective model via geometric methods; some partial results exist in the literature (e.g. [21],
[9], [37]). Our discussion here only matches some of the maximal cases. A further analysis
of the interplay between geometry and arithmetic would be interesting.

5.1 General discussion

As in the cubic fourfold case, the main point of our analysis is that for a K3 surface Y with
a faithful symplectic action of a finite group G, one gets a Leech pair (G, SG(Y )(−1)) (see
Lemma 4.2). The task now is to identify those that occur for Y a polarized K3 surface of
given degree. Similarly to our main criterion (Theorem 4.5) for cubic fourfolds, we obtain
the following criterion for Leech pairs to arise from low degree K3 surfaces. Our arguments
apply essentially verbatim as in the proof of Theorem 4.5 for the cases when there exists a
Borcherds polarization on Y (see Sect. 2.4) which is a root lattice. As already discussed, this
is the case for degree 2 and 6. It is also true for the degree 4 case (e.g., [34, Sect. 1]). Finally,
it also applies to elliptic K3 surfaces. By abuse of notation, we call an elliptic K3 surface a
degree 0 K3 surface, and we insist that the polarized symplectic automorphisms preserve the
class of the fiber and of the section (i.e., the natural U polarization for elliptic K3 surfaces
is point-wise fixed by the automorphism).

Theorem 5.1 Suppose (G, S) is a Leech pair. Let d ∈ {0, 2, 4, 6} and Rd be the root lattice
E8, E7, D7, or E6 ⊕ A1 for d = 0, 2, 4, 6 respectively. The following three statements are
equivalent:

(i) there exists a smooth degree d K3 surface S with a symplectic action G which preserves
the polarization, such that (G, S) ∼= (G, SG(X)),

(ii) there exists an action of G on L with S = SG(L) and K = L
G, such that there exists a

primitive embedding of Rd into K ⊕U 2,
(iii) there exists an embedding of S⊕Rd into the Borcherds latticeB, such that S has primitive

image.

The maximal rank for SG(Y )(−1) in the K3 case is 19 (or equivalently the orthogonal
complement K in the Leech lattice L has rank 5). From Höhn–Mason classification, we
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Table 2 Maximal Finite Symplectic Automorphism Groups of K3

Number Order Group Auts (Y ) Discriminant form deg(Y ) in [41, Ex. 0.4]

1 960 M20 2−2
II 8+1

1 5−1 4

2 384 42.S4 4+1
7 8+2

6 4

3 360 A6 4−1
5 3+25+1 6

4 288 A4,4 2+2
II 8+1

1 3+2 8

5 192 24 : D12 4−2
2 8+1

1 3−1 8

6 192 (Q8 ∗ Q8) : S3 4−3
7 3+1 4

7 168 L2(7) 4+1
1 7+2 4

8 120 S5 4−1
3 3+15−2 6

9 72 M9 2−3
7 3−19−1 2

10 72 N72(∼= 32 : D8) 4+1
1 3+29−1 6

11 48 T48 2+1
7 8−2

II 3−1 2

identify the following 11 maximal cases in Table 2;7 they correspond precisely to the 11
maximal cases of Mukai. It is interesting to note that all 11 cases have projective models of
degree at most 8 (see [41, Example 0.4]).

Notation 5.2 The notation of the finite groups appearing in Table 2 followsMukai’s appendix
to [29] (N.B. there are some small typos in loc. cit.: the group A4,4 has order 288, instead of
384). For reader’s convenience, we recall that the group M20 is isomorphic to 24 : A5, the
group M9 is isomorphic to 32 : Q8, the group T48 is isomorphic to L2(3). The operator ∗ is
the central product. Concretely, the group Q8 ∗ Q8 is the quotient of Q8 × Q8 by the center
of Q8 embedded diagonally, and it is isomorphic to an extraspecial group 21+4.

Below, we discuss the maximal rank cases for K3 surfaces of degree 2 and 6 as those
are connected to cubic fourfolds (as discussed, they correspond to “fake cubics”, i.e., the
Hassett divisors C2 and C6). The cases of degree 4 K3 surfaces and elliptic K3 surfaces are
equally interesting, but less relevant to the core analysis in this paper. We point out however
the classification of projective automorphisms of quartic K3 surfaces in [37], and the work
[16] on automorphisms of elliptic K3 surfaces.

5.2 The degree 2 K3 case

The maximal symplectic cases for degree 2 K3 surfaces (analogue to Theorem 4.14 for
cubics) are listed below.

Theorem 5.3 Let Y be a K3 surface of degree 2 with a symplectic action of a finite group G.
Suppose rank(SG(Y )) = 19, then (G, SG(Y )) is one of the numbers 3, 7, 9, 11 in Table 2. In
particular, the group G can be A6 (see (5.1)), L2(7) (see (5.2)), M9 (see (5.3)), or T48 (see
(5.4)).

7 There are some typos in Höhn and Mason about the 2-parts of the discriminant forms. For instance, they
write 4+1

3 8+2
2 in case 2, and 2+3

3 3−19−1 in case 9. These symbols are not allowed (see Sect. A.2). Corrected
symbols for discriminant forms in this table can be found in [53] or [22].
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Proof Take a triple (G, S, K ) from Table 2. By Theorem 5.1, we need to check whether
there exists an embedding of S ⊕ E7 into B, such that the image of S is primitive. We have
qE7 = −qA1 = 2+1

7 . For numbers 1, 2, 4, 5, 6, the lattice S⊕ E7 has no nontrivial saturation
inwhich S is primitive, and l2(S⊕E7) ≥ 3. For number 10, we have l3(S⊕E7) = l3(K ) = 3.
Therefore, in these cases, there are no embedding of S ⊕ E7 into B such that the image of S
is primitive. We next check the other cases one by one.

(1) For number 3 in Table 2, the discriminant form of S⊕E7 is 4
−1
3 3+25+1⊕2+1

7 , and there is
no nontrivial saturation of S⊕E7. Since 2×4×5 = 40 ≡ 1 (mod 3), there exists a unique
negative rank 2 even lattice T = −(12030)with discriminant form 2+1

1 4−1
5 3+25+1. Thus

there exists a primitive embedding of S ⊕ E7 into B with orthogonal complement T .
(2) For number 7 in Table 2, the discriminant form of S ⊕ E7 is 4

+1
7 7+2 ⊕ 2+1

7 , and there
is no nontrivial saturation of S ⊕ E7. Since 2 × 4 = 8 is a square in Z7, there exists a
negative rank 2 even lattice T with discriminant form 2+1

1 4+1
1 7+2. Thus there exists a

primitive embedding of S ⊕ E7 into B with orthogonal complement T .
(3) For number 8 in Table 2, the discriminant form of S ⊕ E7 is 4−1

5 3−15−2 ⊕ 2+1
7 , and

there is no nontrivial saturation of S ⊕ E7 in which S is primitive. Since 2 × 4 × 3 =
24 ≡ −1 is a square in Z5, there is no negative rank 2 even lattice with discriminant
form 2+1

1 4−1
3 3+15−2. Thus there is no embedding of S ⊕ E7 into B for which the image

of S primitive.
(4) For number 9 in Table 2, the discriminant form of S⊕ E7 is 2

+3
5 3+19+1 ⊕2+1

7 , and there
is a unique nontrivial saturation S̃ of S ⊕ E7 in which S is primitive. The discriminant
form of S̃ is 2+2

4 3+19+1. Since 2× 2 = 4 is a square in Z3, there exists a negative rank 2
even lattice T with discriminant form qS̃(−1) = 2+2

4 3−19−1. Thus there exists a primitive

embedding of S̃ into B with orthogonal complement T .
(5) For number 11 in Table 2, the discriminant form of S⊕E7 is 2

+1
1 8−2

II 3−1⊕2+1
7 , and there

is a unique nontrivial saturation S̃ of S ⊕ E7 in which S is primitive. The discriminant
form of S̃ is 8−2

II 3−1. There exists a negative rank 2 even lattice T with discriminant form
8−2
II 3+1. Thus there exists a primitive embedding of S̃ intoBwith orthogonal complement
T .

The claim follows. ��
We discuss the geometric realizations for those maximal symplectic groups. The double

cover of P
2 branched along a sextic curve is a degree 2 K3. If a group acts on a plane sextic

curve, it also acts on the corresponding degree 2 K3 surface.A classification of automorphism
groups of plane sextic curves can be deduced from [21, Thm. 2.1]. Itwas discovered byWiman
[52] that the sextic curve

V (10x31 x
3
2 + 9x3(x

5
1 + x52 ) − 45x21 x

2
2 x

2
3 − 135x1x2x

4
3 + 27x63) (5.1)

has an action of A6. The corresponding degree 2 K3 surface also admits an action of A6,
which must be symplectic since A6 is simple. In [9] the uniqueness of such a sextic curve
(with an action of A6) is proved.

The Klein sextic curve

V (x51 x2 + x52 x3 + x53 x1) (5.2)

has automorphism group L2(7). Therefore, the symplectic automorphism group of the cor-
responding degree 2 K3 surface is L2(7).

Another smooth plane sextic with large symmetry (see Remark 2.4 in [21]) is

V (x61 + x62 + x63 − 10(x31 x
3
2 + x32 x

3
3 + x33 x

3
1 )) (5.3)
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which has automorphismgroup isomorphic to theHessian group H216 of order 216 (this group
can be represented as the affine special linear group ASL(2, F3), or as the projective unitary
group PU(3, F2)). Actually the degree 2 K3 surface corresponding to this sextic curve has
symplectic automorphism group isomorphic to M9 ∼= PSU(3, F2) (cf. [41, Example 0.4]).

Finally, the group T48 is realized by the double cover of P
2 with branch curve

V (x51 x2 + x52 x1 + x63 ), (5.4)

(cf. [41, Example 0.4]).

5.3 The degree 6 K3 case

The maximal cases in the degree 6 case are listed below.

Theorem 5.4 Let Y be a K3 surface of degree 6 with a symplectic action of a finite group
G. Suppose rank(SG(Y )) = 19, then (G, SG(Y )) is one of the numbers 3, 8, 10 in Table 2.
In particular, the group G can be A6 (see (5.5)), S5 (see (5.6)), or N72 (see (5.7)).

Proof Take a triple (G, S, K ) in Table 2. By Theorem 5.1, we need to check whether there
exists embedding of S ⊕ E6 ⊕ A1 into B, such that the image of S is primitive. We have
qE6⊕A1 = −qA2⊕qA1 = 2+1

1 3+1. For caseswith numbers 1, 2, 4, 5, 6, 11,we have l2(S̃) ≥ 3
for any saturation S̃ of S ⊕ E6 ⊕ A1 in which S is primitive. For the case number 9, we have
l3(S̃) ≥ 3 for any saturation S̃ of S ⊕ E6 ⊕ A1. Therefore, for those cases we cannot embed
S ⊕ E6 ⊕ A1 into B with primitive image of S. We consider the other cases one by one.

(1) For number 3 in Table 2, the discriminant form of S⊕ E6 ⊕ A1 is 4
−1
3 3+25+1 ⊕2+1

1 3+1.
We have a nontrivial saturation S̃ of S⊕E6⊕ A1 with discriminant form 2+1

1 4−1
3 3−15+1.

There exists a negative rank 2 even lattice T with discriminant form 2+1
7 4−1

5 3+15+1. Thus
there exists a primitive embedding of S̃ into B with orthogonal complement T .

(2) For number 7 in Table 2, the discriminant form of S ⊕ E6 ⊕ A1 is 4
+1
7 7+2 ⊕ 2+1

1 3+1,
and there is no nontrivial saturation of S ⊕ E6 ⊕ A1. Since 2 × 4 × 3 = 24 ≡ 3 (mod
7), and 3 is not a square in Z7, there is no negative rank 2 even lattice with discriminant
form 2+1

7 4+1
1 3−17+2. Thus there is no embedding of S ⊕ E6 ⊕ A1 into B.

(3) For number 8 in Table 2, the discriminant form of S⊕ E6 ⊕ A1 is 4
−1
5 3−15−2 ⊕2+1

1 3+1.
We have a nontrivial saturation S̃ of S ⊕ E6 ⊕ A1 with discriminant form 2+1

1 4−1
5 5−2,

in which S is primitive. Since 2 × 4 = 8 is not a square in Z5, there exists a negative
rank 2 even lattice T with discriminant form 2+1

7 4−1
3 5−2. Thus there exists a primitive

embedding of S̃ into B with orthogonal complement T .
(4) For number 10 in Table 2, the discriminant form of S⊕E6⊕ A1 is 4

+1
7 3+29+1⊕2+1

1 3+1.
We have a nontrivial saturation S̃ of S⊕E6⊕ A1 with discriminant form 2+1

1 4+1
7 3−19+1,

in which S is primitive. Since 2×4 = 8 is not a square in Z3, there exists a negative rank
2 even lattice T with discriminant form 2+1

7 4+1
1 3+19−1. Thus there exists a primitive

embedding of S̃ into B with orthogonal complement T .

The theorem follows. ��

The geometric realization of all these three groups can be found in Mukai [41, Example
0.4]. The group A6 is the symplectic automorphism group of

Y = V (x1 + · · · + x6) ∩ V (x21 + · · · + x26 ) ∩ V (x31 + · · · + x36 ) (5.5)
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(presented as a diagonal hyperplane section in P
5). Similarly, the group S5 is the symplectic

automorphism group of

V (x1 + · · · + x5) ∩ V (x21 + · · · + x26 ) ∩ V (x31 + · · · + x35) (5.6)

(here the symplectic action is defined as follows: g ∈ S5 acts on (x1, . . . , x5) by permutation,
and x6 → sgn(g)x6; see [41, p. 188]). The group N72 is the symplectic automorphism group
of

V (x31 + x32 + x33 + x34 ) ∩ V (x1x2 + x3x4 + x25 ). (5.7)

5.4 Uniqueness for K3 surfaces

While we don’t investigate the uniqueness question here (i.e., analogues of Theorem 1.8), we
point out that Hashimoto [22,Main Theorem] proved that for three ofMukai’s maximal cases
(specifically (3), (7), and (8), corresponding to groups A6, L2(7), and S5) there are exactly
two primitive sublattices (up to conjugate) of �K3(−1) isomorphic to S (where, as before,
S is the covariant lattice). Each of these cases has at least one realization for a K3 surface
of degree 2 or 6 (see (5.5), (5.2), and (5.6) below). As Hashimoto works in the unpolarized
case, the moduli space of K3 surfaces with symplectic automorphism groups in the above
three cases has two connected component, both of dimension 1. The group A6 is of special
interest since it occurs for degree 2 and degree 6 cases (see (5.1) and (5.5)). Interestingly, the
two cases are in two different components.

Proposition 5.5 The embeddings of S into �K3(−1) given by the two geometric realizations
(5.1) and (5.5) (degree 2 and degree 6) have different orthogonal complements. In particular,
these two K3 surfaces belong to different connected components of the moduli space of K3
surfaces with symplectic automorphism group A6.

Proof Let Y1 and Y2 be the K3 surfaces of degree 2 and degree 6 with A6 symplectic action
respectively. Then the orthogonal complement of S ∼= SA6(Y1) ↪→ H2(Y1, Z)(−1) contains
a vector with self-intersection −2, while the orthogonal complement of S ∼= SA6(Y2) ↪→
H2(Y2, Z)(−1) contains a vector with self-intersection−6. (Note that in our conventions we
are scaling the cohomology by −1, making the polarization a negative vector. Furthermore,
in thesemaximal cases, S⊥ is negative definite of rank 3.) On the other hand, fromHashimoto
[22, Table 10.3, item 79], the orthogonal complement S⊥ of an embedding of S into�K3(−1)
can be either

⎛

⎝
−2 −1 0
−1 −8 0
0 0 −12

⎞

⎠ ,

which contains (−2)-vector but does not contain any (−6)-vector, or

⎛

⎝
−6 0 −3
0 −6 −3

−3 −3 −8

⎞

⎠ ,

which contains (−6)-vector but does not contain any (−2)-vector. The claim follows. ��
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5.5 A geometric relation to cubic fourfolds

Notice that the maximal symplectic automorphism groups for degree 2 (see Theorem 5.3)
and degree 6 (see Theorem 5.4) also appear in case rank(S) = 19 in Theorem 1.2. This is not
a coincidence. The following proposition explains the geometry behind this phenomenon.

Proposition 5.6 Let (G, S) be a Leech pair satisfying conditions of Theorem 5.1 for degree
d = 2 or 6, then (G, S) is one of the 34 Leech pairs from Theorem 1.2. In each of these cases,
the dimension of the corresponding moduli space of cubic fourfolds is one unit greater than
that of the moduli space of K3 surfaces of degree 2 or 6.

Proof Let (G, S) be a Leech pair such that there is an embedding of S ⊕ Rd into B with
primitive image of S. Here Rd = E7 if d = 2 and Rd = E6 ⊕ A1 if d = 6. Notice that
in both situations we have a natural embedding E6 ↪→ Rd . Thus we have an embedding
S⊕ E6 ↪→ S⊕ Rd ↪→ B such that the image of S in B is primitive. Therefore, the Leech pair
(G, S) arises from symplectic actions ofG on certain smooth cubic fourfolds. The dimension
of the moduli space of such cubic fourfolds is 20 − rank(S), while the dimension of degree
d K3 surfaces with the corresponding symplectic action of G is 19 − rank(S). ��
Remark 5.7 The above proposition implies that if we have a family of fake cubic fourfolds
with symplectic action by a finite group G, then we can deform the fake cubic fourfolds into
smooth ones, preserving the action ofG. What we obtain is a family (of one more dimension)
of cubic fourfolds with symplectic action of G such that the generic fibers are smooth.

Let us briefly discuss the geometry behind Proposition 5.6 (and Remark 5.7). For sim-
plicity, we restrict to the case of nodal cubic fourfolds (parametrized by the Hassett divisor
C6). A singular cubic fourfold can be written as

X0 = V ( f2(x1, . . . , x5)x6 + f3(x1, . . . , x5)) ⊂ P
5 (5.8)

for some homogeneous polynomials f2, f3 of degree 2 and 3 respectively. Note that the
equation above singles out the singular point p = (0, . . . , 1) ∈ X . The linear projection
from p

π : X0 ��� P
4

is a birational equivalence. The indeterminacy locus of the inverse map π−1 : P
4 ��� X0 is

the degree 6 K3 surface

Y = V ( f2(x1, . . . , x5), f3(x1, . . . , x5)) ⊂ P
4.

More precisely, assuming Y is smooth, X0 has a unique singular point p which is either of
type A1 (if V ( f2) is smooth) or type A2 (if V ( f2) is singular), and

X̃0 = Blp X0 ∼= BlYP
4.

This establishes a Hodge correspondence (essentially an identification) between the Hodge
structure on H4(X0) (still pure) and H2(Y )(−1). Going on to automorphism, note that
since the polarized automorphisms of Y are induced from projective transformations, i.e.,
G = Aut(Y )pol ⊂ PGL(5), G acts by automorphisms on X̃0. The group G preserves the
quadric V ( f2) ⊂ P

5 and its strict transform E in X̃0 = BlYP
4. But then E is precisely the

exceptional divisor of X̃0 = Blp X0 → X0.We conclude thatG acts on X0 by automorphisms
preserving the singular point p.

123



1494 R. Laza, Z. Zheng

Assuming that the equations f2 and f3 of Y = V ( f2, f3) can be chosen to be invariant
with respect to G (in general some character of G might be involved), then the (pencil of)
cubic fourfolds

Xt = V
(
( f2x6 + f3) + t x36

) ⊂ P
5

admit G as a group of automorphisms, with G acting trivially on x6. For general t ∈ P
1,

the above cubic is smooth. This allows us to lift the equations for maximal symmetric K3
surfaces of degree 2 and 6 to 1-parameter families of cubic fourfolds with large symmetry
group (producing examples for most of the cases of Theorem 1.2(8)). The simplest example
of such a lifting is the A6 case (5.5). Specifically, the degree 6 K3 surface is

Y = V (x21 + · · · + x25 + (x1 + · · · + x5)
2, x31 + · · · + x35 − (x1 + · · · + x5)

3).

It can be lifted to the 1-parameter family of cubics Xt = V (Ft ) with A6 symmetry, where

Ft = x31 + · · · + x35 − (x1 + · · · + x5)
3 + x6

(
x21 + · · · + x25 + (x1 + · · · + x5)

2) + t x36 .

(5.9)

More symmetrically, we can write

Xt = V (x0 + · · · + x5, x
3
0 + · · · + x35 + x6(x

2
0 + · · · + x25 ) + t x36 ).

In this particular case, the symplectic condition is automatic as A6 is a simple group (see
also Sect. 6.1 below).

6 Some remarks on the full automorphism groups for smooth cubic
fourfolds

In this section we discuss about automorphisms and automorphism groups of smooth cubic
fourfolds in general (i.e. without the symplectic assumption). We first discuss some general
structure results in Sect. 6.1 (the same arguments apply to K3 surfaces or hyper-Kähler
manifolds). In Sect. 6.2,we obtain some estimate on “hownon-symplectic” the automorphism
group of a cubic fourfold can be. Finally, in Sect. 6.3, we give some arithmetic conditions for
smooth cubic fourfolds to admit non-symplectic automorphisms of order 2, 3 or 4, and then
use this to find the full automorphism groups for smooth cubic fourfolds with rank(S) = 20.

6.1 Basic structures of the full automorphism groups

Let X be a smooth cubic fourfold, and G = Aut(X) the automorphism group. The induced
action of G on H3,1(X) gives a character χ : G −→ C

×, with kernel the symplectic auto-
morphism group Gs = Ker(χ). The image of χ is a cyclic group which we denoted by G.
We have the following short exact sequence of finite groups:

1 −→ Gs −→ G −→ G −→ 1.

As before, the symplectic part Gs ⊂ Aut(X) induces a Leech pair (Gs, S). Denote by
T (X) ⊂ H4(X , Z) the transcendental lattice of X . Note

T (X) ⊂ H4(X , Z)
Gs
prim = S⊥

�0
.
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The induced action of the full automorphism group G on H4(X , Z) (or H4(X , Z)prim)
preserves the algebraic and transcendental lattices. SinceGs acts trivially on T (X), the action
of G on T (X) factors through an action of G on T (X). Clearly, the action of G preserves
the Hodge structure on T (X), and in particular it preserves the subspace H3,1 ∼= C ⊂ T (X).
Choosing a generator σ of H3,1 (i.e., the class of a (3, 1) form on X ), we see that G acts on
σ by roots of unity, i.e., for any 1 �= ξ ∈ G, we have

ξ.σ = ζσ

for some root of unity ζ(�= 1) ∈ U (1) ⊂ C
∗. Thus the invariant subspace T (X)ξ is purely of

Hodge type (2, 2). Since T (X) is transcendental, we must have T (X)ξ = {0}. In conclusion,
we have:

Lemma 6.1 The induced action of G on T (X)\{0} is free.
Denote by n the order of G (i.e., G ∼= n). Lemma 6.1 and standard algebra leads to the

following:

Corollary 6.2 We have ϕ(n)
∣
∣rank(T (X)). Here ϕ is the Euler function.

Proof Let ξ be a generator of G, and ζ a primitive n-root of unity such that ξ.σ = ζσ for
σ ∈ H3,1(X). By Lemma 6.1, all the eigenvalues of ξ on T (X) are primitive n-roots of unity.
The characteristic polynomial pξ of ξ (as an automorphism of T (X)) is rational. It follows
that pξ is a power of the cyclotomic polynomial. The claim follows. ��

6.2 Order of the non-symplectic part

The list of smooth cubic fourfolds with a prime order automorphism is known. Specifically,
according to [17, Theorem 3.8] there are 13 irreducible families8 of cubics with a prime order
automorphism. In particular,

Proposition 6.3 A prime factor of the order of the automorphism group of a smooth cubic
fourfold can only be 2, 3, 5, 7, or 11. The only primes that can be an order of a non-symplectic
automorphism of a smooth cubic fourfold are 2 and 3.

Proof The list of prime orders is a consequence of [17, Theorem 3.8]. The second part follows
by noticing that 7 of the 13 cases were already identified in Theorem 4.15 as the symplectic
cases (see also Remark 4.16). The symplectic cases cover all the cases involving the primes
5, 7, and 11. The claim follows. ��

By Proposition 6.3, the order of G has only prime factors 2 or 3. Thus, we can write
n(= |G|) = 2k3l . From Corollary 6.2 and the fact T (X) ⊂ S⊥

�0
we get:

ϕ(n) = ϕ(2k3l) ≤ 22 − rank(S). (6.1)

As mentioned, the induced action of G on H4(X , Z) preserves the algebraic and tran-
scendental lattices. In fact G preserves also the covariant lattice S(= SGs (X)).

Lemma 6.4 The induced action of G on H4(X , Z) leaves S stable.

8 The case F2
5 in [17, Theorem 3.8] should be excluded, as the corresponding family contains only singular

cubic fourfolds. This was pointed out in [6].
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Proof The subgroup Gs is normal in G = Aut(X). Thus for any g ∈ G, gGsg−1 = Gs . By
definition, S is the orthogonal complement of the invariant lattice�Gs . ClearlyGs = gGsg−1

leaves every vector in g�Gs invariant. It follows that g�Gs = �Gs . By taking orthogonal
complements, we see that g leaves S stable. ��

The action ofG on S induces a homomorphismπ : G −→ Aut(qS). SinceGs acts trivially
on qS , the homomorphism π descends to a morphism π : G −→ Aut(qS).

Proposition 6.5 When rank(S) ≥ 13, the homomorphism π : G −→ Aut(qS) is injective.

Proof Suppose g ∈ G \ Gs acts trivially on qS . Thus, the action of g on S is by isometries
preserving the discriminant. As previously discussed, any such isometry of S can be lifted
to a symplectic automorphism of X . Thus, there exists h ∈ Gs , such that the restrictions of
g and h to S are the same. Replacing g by gh−1, we can assume (without loss of generality)
that g acts trivially on S.

Replacing g by a power gk , we can further assume that g has prime order. By Proposition
6.3, we can assume that g is of order 2 or 3.

By the classification in [17] and the discussion in [54, §6], there are two conjugacy
classes of non-symplectic involutions with the corresponding moduli spaces being arithmetic
quotients of type IV domains of dimensions 10 and 14 (the 14-dimensional case is discussed
in detail in [35]). In particular, the invariant sublattice of �0 (which contains S) is of rank 12
or 8 respectively, contradicting the assumption that rank(S) ≥ 13. The order 3 case is similar.
Namely, there are 4 conjugacy classes of non-symplectic order three automorphisms, whose
moduli spaces are arithmetic ball quotients of respective dimensions (the 10-dimensional
case is [2]). Again, the automorphism g cannot leave a sublattice of rank at least 13 of �0

invariant, a contradiction. ��
The proposition above is very useful in the cases where S is of large rank, or equivalently

Gs is relatively large; this is the case of interest in this paper. In fact, note that most of the
cases in Theorem 1.2 satisfy rank(S) ≥ 13. It would be interesting to classify the possible
orders n = 2k3l of non-symplectic automorphisms on a cubic fourfold, especially we do
not know which largest n may occur. These cases will have essentially trivial symplectic
automorphism group, thus they should be handled by different methods.

Remark 6.6 A major difference between the lattice theoretic methods in the symplectic and
anti-symplectic cases is that the covariant lattice N for an anti-symplectic automorphism
contains the transcendental lattice T (X), and thus (except the case rank(T (X)) = 2) N is
indefinite (in particular, O(N ) is typically infinite).

6.3 Maximal cases

We conclude our discussion of the automorphism groups of cubic fourfolds with a discussion
of the full automorphism group for the 8 maximal cases (with respect to symplectic automor-
phisms) identified in Theorem 1.8. These are the most interesting cases from the perspective
of this paper, and they are particularly suitable for classification (see Proposition 6.4 and
Remark 6.6, and note rank(S) = 20, rank(T ) = 2).

Since we assume rank(S) = 20, the transcendental lattice T (X) is the orthogonal com-
plement of S(−1) in H4(X , Z)prim and has rank 2. From Equation (6.1) we deduce that the
possible orders for the non-symplectic part G are n = 2, 3, 4, or 6. We discuss first the case
of anti-symplectic involutions.
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An involution on a cubic X can be diagonalized to one of the following three types:
diag(−1, 1, 1, 1, 1, 1), diag(−1,−1, 1, 1, 1, 1), and diag(−1,−1,−1, 1, 1, 1) (see also
[17]). The involution diag(−1,−1, 1, 1, 1, 1) is symplectic, while the other two are anti-
symplectic.

Remark 6.7 (Eckardt points) An essential ingredient in the geometric classification of the
automorphismgroups of cubic surfaces are theEckardt points (see [12] and [46]). TheEckardt
points can be defined for cubics of any dimension (e.g. see [35]). From the perspective of
automorphisms, a smooth cubic n-fold V ⊂ P

n+1 has an Eckardt point iff it is invariant
with respect to an involution ι that fixes a hyperplane (thus of type diag(−1, 1, . . . , 1)); the
Eckardt point is the isolated fixed point of ι. Explicitly, V is defined by a cubic polynomial
F(x2, . . . , xn+2) + x21 L(x2, . . . , xn+2), where deg(F) = 3 and deg(L) = 1; [1 : 0 : · · · : 0 :
0] ∈ V is an Eckardt point. We refer to [35] for further details.

We have the following necessary condition for a smooth cubic fourfold with maximal
symplectic symmetry to admit an anti-symplectic involution.

Proposition 6.8 Let X be a smooth cubic fourfold with rank(S) = 20. Suppose there exists
an anti-symplectic involution on X, then the composition of S⊕E6 ↪→ H4

0 (X , Z)⊕E6 ↪→ B

is not primitive.

Proof By Lemma 6.4, the induced involution ι∗ on H4
0 (X , Z) preserves S = SGs (X). Since

ι∗ acts as −id on the orthogonal complement of S in H4(X , Z), the invariant sublattice
M = H4

0 (X , Z)ι
∗
of H4

0 (X , Z) is contained in S. Suppose j : S⊕ E6 ↪→ B is primitive, then
the inclusion j : M ⊕ E6 ↪→ B is also primitive.

On the other hand, the involution ι∗ on H4
0 (X , Z) extends to an involution onBwith trivial

restriction to E6. The invariant sublattice of B under the action of ι∗ is M ⊕ E6. This is a
contradiction, because the invariant sublattice (in a unimodular lattice) of an involution has
2-group as its discriminant group, while |AE6 | = 3. ��

In particular, this allows us to distinguish the two cases of Theorem 1.8(2) with symplec-
tic automorphism group A7. Namely, we note that cubic fourfold with A7 automorphisms
identified by Höhn–Mason has an extra symplectic involution, while the other does not have.

Corollary 6.9 Let X = V (x31 + x32 + x33 + x34 + x35 + x36 − (x1 + x2 + x3 + x4 + x5 + x6)3)
with symplectic automorphism group A7 (cf. [25, Table 2]). Let S be the covariant sublattice
of H4(X , Z) with respect to the induced action of A7. Then the orthogonal complement T of
S in H4

0 (X , Z) is −(2118), and qT = 5+17+1.

Proof This is the (Clebsch) diagonal cubic, and thus its automorphismgroup is S7. Obviously,
G ∼= S7/A7 ∼= 2 (one can easily verify that exchanging x1, x2 is an anti-symplectic involution
of X ). By Proposition 6.8, the inclusion j : S ⊕ E6 ↪→ B is not primitive. From the proof of
Theorem 1.8, we conclude T = −(2118) and qT = 5+17+1. ��

Similarly, we get:

Corollary 6.10 The cubic fourfold X2(A7), and those with symplectic automorphism groups
Gs = L2(11) and M10, have no anti-symplectic involution (equivalently, the order of G is
odd).

We now switch our attention to the case of anti-symplectic automorphisms of order 3 and
4. The main point here is that in these cases T (X) has a decomposition into two conjugate
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eigenspaces, and in fact it acquires the structure of a (Hermitian) lattice over Z[ω] or Z[i],
Eisenstein or Gaussian integers respectively. This fact is the starting point of multiple works
by Kondō (e.g. [10]) and Allcock–Carlson–Toledo (e.g. [2]). In our situation, T (X) is of rank
2, and thus of rank 1 as Eisenstein/Gaussian lattice. This allows us to obtain the following
simple criterion for |G| to be a multiple of 3 or 4.

Lemma 6.11 Let T be a positive definite rank 2 even lattice. Then T admits an automorphism
of order 3 if and only if then there exists a positive integer a such that T ∼= A2(a), and T
admits an automorphism of order 4 if and only if there exists a positive integer a such that
T ∼= A2

1(2a).

Proof The lattice A2 = (121) admits an order 3 automorphism, explicitly

(
0 −1
1 −1

)
. The

lattice A2
1 = (202) admits an order 4 automorphism, explicitly

(
0 −1
1 0

)
. Thus we have

necessity.
Suppose T admits an automorphism ρ of order 3. Choose v ∈ T with minimal norm. Take

a such that (v, v) = 2a. A nontrivial order 3 automorphism on T is fixed-point free, hence
v + ρ(v) + ρ(ρ(v)) = 0. Thus

(v, v) = (ρ(ρ(v)), ρ(ρ(v))) = (v + ρ(v), v + ρ(v)) = 2(v, v) + 2(v, ρ(v))

which implies that (v, ρ(v)) = −a. We claim that (v,−ρ(v)) is a basis for T . If not, then we
can find non-zero numbers λ,μ ∈ [ 12 , 1

2 ] such that λv +μρ(v) ∈ T . But (λv +μρ(v), λv +
μρ(v)) = 2λ2+2λμ+2μ2 < 2(|λ|+|μ|)2 ≤ 2. This contradicts the fact that v has minimal
norm. We conclude that T ∼= A2(a).

Suppose T admits an automorphism ρ of order 4. Since ρ is rational, it has two eigenvalues√−1 and−√−1. Thus ρ2 = −1. Now take v ∈ T with minimal norm 2a. Then (v, ρ(v)) =
(ρ(v), ρ(ρ(v))) = (ρ(v),−v), which implies that (v, ρ(v)) = 0. Similarly to the order 3
case, (v, ρ(v)) is a basis for T . We conclude that T = A2

1(2). ��
We conclude with the computation of the non-symplectic part G for the 8 maximal cubic

fourfolds appearing in Theorem 1.8.

Proposition 6.12 (1) For the Fermat cubic fourfold X(34 : A6) = V (x31 + x32 + x33 + x34 +
x35 + x36 ) the order of G is n = 6.

(2) For X1(A7) = V (x31 + x32 + x33 + x34 + x35 + x36 − (x1 + x2 + x3 + x4 + x5 + x6)3) we
have n = 2; for X2(A7) we have n = 1.

(3) For the cubic fourfold with symplectic automorphism group G ∼= 31+4 : 2.22, we have
n = 4.

(4) For X1(M10) and X2(M10), we have n = 1.
(5) For X(L2(11)) = V (x31 + x22 x3 + x23 x4 + x24 x5 + x25 x6 + x26 x2) we have n = 3.
(6) For X(A3,5) = V (x31 + x32 + x23 x4 + x24 x5 + x25 x6 + x26 x3) we have n = 6.

Proof By Theorem 1.8, we know the transcendental lattices of the 8 cubic fourfolds. By
Lemma 6.11, we identify the cubic fourfolds which have order 3 or 4 non-symplectic auto-
morphisms. Combining with Corollary 6.10 we conclude the proof. ��
Remark 6.13 One easy way to produce geometrically a non-symplectic automorphism of
order 3 is to consider a cubic threefold Y = V ( f (x2, . . . , x6)) ⊂ P

4. Then the Allcock–
Carlson–Toledo [2] construction associates to Y the cubic fourfold X = V ( f + x31 ) ⊂ P

5
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with an order 3 anti-symplectic automorphism (x1 → ωx1). Of the six items of Proposition
6.12, note that items (1), (5), and (6) are of Allcock–Carlson–Toledo type. ((1) and (6) also
have an anti-symplectic involution given by switching x1 → x2.) In other words, they are
obtained from highly symmetric cubic threefolds.

Kondō [30] proved that the K3 surface

V (x41 + x42 + x43 + x44 + 12x1x2x3x4) (6.2)

has finite automorphism group of maximal possible order 3, 840. Here we conclude an
analogue of Kondō’s result. Namely, the Fermat cubic fourfold has maximal order for the
automorphism group, namely |34 : A6| × |Z/6| = 174,960.

Corollary 6.14 The maximal possible order for automorphism groups of smooth cubic four-
folds is 174,960, which is reached only by the Fermat cubic fourfold.

Proof The order of automorphism group G for a smooth cubic fourfold is given by the
product of |Gs | and n = |G|. The value of n is bounded by (6.1). The claim follows by a
straightforward inspection of Theorem 1.2, Theorem 1.8, and Proposition 6.12. ��
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Appendix A: Some lattice theory

We review some of the basic results of Nikulin [43] on lattices and discuss the standardized
notation of Conway–Sloane [8] (which is less familiar in algebraic geometry). The Conway–
Sloane notation is quite efficient and precise, and it is used in one of our primitive references
[24]. Thus, we are using it systematically throughout the paper. This appendix aims to set up
the basics as used in our paper (for further details, we refer to [43] and [8]).

A.1: Lattices

We introduce some notation and results in lattice theory. Recall that a lattice over an integral
ring R is a free R-module of finite rank together with a non-degenerate bilinear form valued
in R. An integral lattice is a lattice over Z. An integral lattice is called even if the norms of all
elements are even numbers; called odd if it is not even. Once an ordered basis for an R-lattice
is chosen, there is an associated symmetric Gram (or intersection) matrix. The discriminant
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of an R-lattice is the absolute value of the determinant of the intersection matrix. The dis-
criminant does not depend on the choices of the basis. An R-lattice is called unimodular if its
discriminant is 1. An integral lattice M can be diagonalized as diag(1, . . . , 1,−1, . . . ,−1)
over R. Let n1 be the multiplicity of 1, and n2 that of −1. Then n1 + n2 is the rank of M ,
and (n1, n2) is called the signature of M .

An element v in an R-lattice M is called primitive if v is non-zero and for any integer
n ≥ 2, the quotient v/n is not in M . A sublattice N of M is called primitive, if there does not
exist an element v ∈ M \ N and a positive integer n ≥ 2 such that nv ∈ N . An embedding
of lattices N ↪→ M is called primitive if the image is a primitive sublattice.

We use 〈n〉 to denote the rank one lattice such that the norm of the generator is equal to
n. For an R-lattice M and n ∈ Z, we define M(n) to be an R-lattice obtained from M by
multiplying the bilinear form by n. In the category of R-lattices, we have naturally direct sum
⊕. For a Dynkin diagram Ak, Dk or Ek , there is the associated intersection matrix, which
defines a positive integral lattice, still denoted by the same symbol Ak, Dk or Ek . We use U

to denote the hyperbolic lattice, given by the intersection matrix

(
0 1
1 0

)
.

We have a classification of integral unimodular lattices (e.g. [47, Chapter 5]):

Theorem A.1 (Milnor) An odd indefinite unimodular integral lattice of signature (n1, n2)
is isomorphic to In1,n2 = (1)n1 ⊕ (−1)n2 . An even indefinite unimodular integral lattice of
signature (n1, n2) exists if and only if n1 ≡ n2 (mod 8), and when this holds, the lattice is

isomorphic to IIn1,n2 = E
n1−n2

8
8 ⊕Un2

2 or E8(−1)
n2−n1

8 ⊕Un1
2 .

Remark A.2 The structure theory in the definite case is muchmore complicated. For example,
we have 24Niemeier lattices (see Theorem3.2), all ofwhich are positive definite, unimodular,
even and of rank 24.

A.2: Classification of p-adic lattices, and Conway–Sloane’s notation

For any prime p, we use Zp for the ring of p-adic integers, and Qp for the field of p-adic
numbers. We next discuss about the classification of Zp-lattices, and the standard notation
of Conway and Sloane [8]. We also call a lattice over Zp a p-adic lattice. Let Qu(Zp) be
the semigroup of p-adic lattices (with respect to ⊕).

For θ ∈ Z
∗
p/(Z

∗
p)

2, denote by Kθ (pk) the p-adic lattice determined by the matrix 〈θ pk〉.
For p an odd prime, Z

∗
p/(Z

∗
p)

2 contains two elements. For p = 2, Z
∗
2/(Z

∗
2)

2 has four
elements represented by 1, 3, 5, 7 ∈ Z

∗
2. For the case p = 2, we need to also consider lattices

U (2k) =
(

0 2k

2k 0

)
and V (2k) =

(
2k+1 2k

2k 2k+1

)
for any k ≥ 0.

Proposition A.3 [43, Proposition 1.8.1] For p an odd prime, the semigroup Qu(Zp) is gen-
erated by Kθ (pk). For p = 2, the semigroup Qu(Z2) is generated by Kθ (2k), U (2k) and
V (2k).

For p odd, any p-adic lattice K can be written as a direct sum of rank one p-adic lattices.
Explicitly, the quadratic form q can be decomposed as

K = K1 ⊕ pK p ⊕ p2Kp2 ⊕ · · · ⊕ lKl ⊕ · · · ,

where l are powers of p, the determinant of each Kl is coprime to p. Here the p-adic lattice
lKl can be write as a direct sum of several p-adic lattices of the form Kθ (l). Following [8,
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Chapter 15, §7], the p-adic quadratic form lKl is denoted by lεl nl . Here nl is the rank of Kl ,
and εl is + if det(Kl) is a square in Z

∗
p; is − otherwise. Then the p-adic form K is written

as 1ε1n1 pεpn p · · · lεl nl · · · . We call this the Conway–Sloane expression for K .

Proposition A.4 For p odd, a p-adic lattice K has a unique Conway–Sloane expression
1ε1n1 pεpn p · · · lεl nl · · · .

For p = 2 the notation is more complicated. In this case, any 2-adic lattice (M, q) can
be written as a direct sum of rank one 2-adic lattices or rank two 2-adic lattices of the forms(
2ka 2kb
2kb 2kc

)
, where a, c are even and b is odd. Explicitly, the 2-adic quadratic form K can

be decomposed as

K = K1 ⊕ 2K2 ⊕ 22K22 ⊕ · · · ⊕ lKl ⊕ · · · ,

where l are powers of 2, and the determinant of each Kl is odd. By [8, Chapter 15, §7], the
2-adic quadratic form lKl is written as lεl nlSl

. Here nl is the rank of Kl , and ε is + if det(Kl)

is congruent to 1 or 7 modulo 8; is − otherwise. A 2-adic lattice is called even, if the norm
of each vector is even; odd otherwise. If the 2-adic lattice Kl is even, then Sl = II, and we
say lKl are of even type. When lKl is of even type, it can be decomposed as a direct sum
of 2-adic lattices of the form U (l) or V (l). If Kl is odd, then Sl = Tr(Kl) ∈ Z/8Z, and we
say lKl are of odd type. When lKl is of odd type, it can be decomposed as a direct sum of
2-adic lattices of the form Kθ (l), for θ ∈ Z

∗
2/(Z

∗
2)

2. The 2-adic form K can be written as
1ε1n1
S1

2ε2n2
S2

· · · lεl nlSl
· · · . The ways to express a 2-adic form as above are not unique, but there

is a canonical way to do this (see [8, Chapter 15, §7.6]).

Remark A.5 The following conditions must hold for any 2-adic constituent lεl nlSl
of rank n:

(1) If n = 0, then Sl = II and εl = +.
(2) If n = 1, then the form is of odd type. In this case, if εl = +, then Sl is congruent to 1

or 7 modulo 8; if ε = −, then Sl is congruent to 3 or 5 modulo 8.
(3) if n = 2 and the form is of odd type, then ε = + implies that Sl is congruent to 0, 2 or

6 modulo 8, ε = − implies that Sl is congruent to 2, 4 or 6 modulo 8.

For further discussion, we refer to [8, Chapter 15, §7.8] (esp. [8, Table 15.5]).

Two integral lattices are said to have the same genus if they have the same signature and
are equivalent over the p-adic integers for all p. Under mild conditions, for indefinite lattices,
there exists a single isometry class in a given genus. For definite lattices, typically there are
multiple isometry classes in a genus (e.g. compare Theorems A.1 and 3.2 in the unimodular
case).

A.3: Conway–Sloane’s expression for finite quadratic forms

One of the main tools in the Nikulin’s theory [43] is the systematic use of finite discriminant
forms. Here we review the basics, and we connect it with the Conway–Sloane notation.

Given an integral lattice M , we denote M∗ = HomZ(M, Z), the dual lattice. We have
naturally M ↪→ M∗ ↪→ HomQ(MQ, Q), where the first map sends x to (x, ·). Define the
discriminant group ofM to be AM = M∗/M , which is a finite group of order the discriminant
of the lattice. For afinite abelian group A,we denote by l(A) theminimal number of generators
in A. The bilinear form on M induces a bilinear form bM on AM valued in Q/Z, by sending
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[v], [w] ∈ AM (with v,w ∈ M∗) to [(v,w)] ∈ Q/Z. If M is even, we can define a quadratic
form

qM : AM → Q/2Z,

by sending [v] ∈ AM to [(v, v)] ∈ Q/2Z. The quadratic form qM determines bM via the
relation:

bM ([v], [w]) = 1

2
(qM ([v + w]) − qM ([v]) − qM ([w])).

The quadratic form qM is called the discriminant form of M . We sometimes write qM instead
of (AM , qM ). In the rest of the Appendix, we restrict ourselves to the case of even lattices.

Any finite quadratic form (A, q) has a unique decomposition (A, q) = ⊕p(Ap, qp). Here
Ap is the group of elements in A whose orders are p-powers, and qp is the restriction of
q to Ap . The finite quadratic form qp takes value in Qp/Zp ∼= Q

(p)/Z if p is odd, and in
Q2/2Z2 ∼= Q

(2)/2Z if p = 2.
Let qu(Zp) be the semigroup of finite quadratic forms on an abelian group with order a

p-power. Denote by qθ (pk) the discriminant form of the p-adic lattice Kθ (pk). Denote by
u(2k), v(2k) the discriminant form of the 2-adic lattices U (2k), V (2k) respectively.

Proposition A.6 [43, Proposition 1.8.1] The semigroup qu(Zp) is generated by qθ (pk) if p
is an odd prime; by qθ (2k), u(2k) and v(2k) if p = 2.

The following theorem (see [43, Theorem1.9.1]) tells that except very special cases (which
occur only for p = 2), a finite quadratic form over Zp is induced uniquely by a p-adic form:

Theorem A.7 (Nikulin) Let p be a prime and (A, q) ∈ qu(Zp). There exists a unique p-adic
lattice K (q) ∈ Qu(Zp) of rank l(A) whose discriminant form is isomorphic to q, except in
the case when p = 2 and q is qθ (2) ⊕ q ′

2 for some θ ∈ Z
∗
2/(Z

∗
2)

2.
If q = qθ (2) ⊕ q ′

2, there are precisely two 2-adic lattices Kα1(q) and Kα2(q) of rank
l(A) whose discriminant forms are isomorphic to q. Here disc(Kαi (q)) = αi |A|(Z∗

2)
2 for

i = 1, 2, where α1, α2 ∈ Z
∗
2/(Z

∗
2)

2 and α1α2 = 5(Z∗
2)

2.

Given q ∈ Qu(Zp), we have then a p-adic lattice K (p) of rank l(q) whose discriminant
form is q . The Conway–Sloane expression of the p-adic lattice K (q) is used also to denote
q . Notice that when p = 2 and q = qθ (2) ⊕ q ′, the expression of q is not unique. A finite
quadratic form q ∈ Qu(Z) can be uniquely decomposed as a direct sum of finite quadratic
forms over Zp . Putting together the Conway–Sloane expressions for those sub forms of q ,
we get a Conway–Sloane expression for q .

A.4: Nikulin’s criterions

We repeatedly use in our arguments two key results of Nikulin: the criteria for existence and
uniqueness of embeddings of lattices into unimodular lattices (in our case, the relevant uni-
modular lattices are the Leech lattice L and the Borcherds lattice B = L ⊕U 2). Specifically,
the following is Nikulin’s far-reaching generalization of Theorem A.1 for even lattices.

Theorem A.8 (Nikulin [43, Thm. 1.10.1]) An even lattice of invariant (n1, n2, A, q) exists
if and only if the following conditions are fulfilled:

(1) n2 − n1 ≡ sig(q) (mod 8),
(2) n1 ≥ 0, n2 ≥ 0, n1 + n2 ≥ l(A),
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(3) (−1)n2 |A| ≡ disc(Kqp ) (mod (Z∗
p)

2) for all odd primes p with n1 + n2 = l(Ap),

(4) |A| = ±disc(Kq2) (mod (Z∗
2)

2) if n1 + n2 = l(A2) and q2 �= qθ (2) ⊕ q ′
2.

An embedding of a lattice M into a unimodular lattice exists iff a lattice with complemen-
tary invariants (most notably discriminant form −qM ) exists. The above theorem allows one
to settle this question. If an embedding exists, the uniqueness of the embedding can be often
settled by the following result.

Theorem A.9 (Nikulin [43, Thm. 1.14.4]) Let S be an even lattice of signature (n1, n2) and
let M be an even unimodular lattice of signature (l1, l2). There exists a unique primitive
embedding of S into M if the following conditions are fulfilled:

(i) l1 > n1, l2 > n2,
(ii) l1 + l2 − n1 − n2 ≥ l(AS) + 2.

Appendix B: Finite groups

In this appendix, we make a quick review of some facts on finite groups relevant for the
present paper. We follow the notation of Mukai [41] and Höhn–Mason [24,25].

B.1: Extensions of finite groups

Let N , Q be two finite groups. An extension of Q by N is a finite group E with a short exact
sequence:

1 −→ N −→ E
p−→ Q −→ 1. (B.1)

Suppose there is a group homomorphism r : Q −→ E with p ◦ r = id , then the sequence
(B.1) is called split. In this case, E is denoted by N � Q, which is called the a semidirect
product of N and Q. Semidirect products of N and Q are not unique, and are uniquely
determined by group homomorphisms Q −→ Aut(N ). Following [24,25], we use N : Q
to represent a semidirect product of N and Q that is not a direct product, and use N .Q to
represent an extension of Q by N for which we are not sure whether it is split or not.

B.2. Mathieu groups

The series of Mathieu groups consists of five sporadic groups denoted by M11, M12, M22,
M23, M24. This is the first series of sporadic groups, which was found by Mathieu (1861,
1873). No other sporadic groups were found until 1965, when the first Janko group was
found. There are also Mathieu groups M8, M9, M10, M20, M21, with the first four not simple
and the last one isomorphic to PSL(3, F4), which is simple but not sporadic.

We give the definition of the largest Mathieu group M24 (see [13, Appendix B] for further
details). Let N be the Niemeier lattice with root lattice L of type 24A1. Then L ⊂ N ⊂ L∗
and L∗/L ∼= (F2)

24, where F2 is the field with 2 elements. The quotient G = N/L ⊂ F
24
2 is a

12-dimensional vector space over F2, characterized by the property that each nonzero vector
in it has at least 8 nonzero coordinates. This vector subspace G is known as the extended
binary Golay code. The permutation group S24 acts on F

24
2 by permuting the 24 coordinates,

and the Mathieu group M24 is defined to be the subgroup of S24 that leaves G stable. The
smallerMathieu groupsM24−i can be defined as the subgroups ofM24 stabilizing i coordinate
axes in F

24
2 , where i = 1, 2, 3 or 4.
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Remark B.1 For K3 surfaces, Kondō’s approach [29] to the Mukai’s classification of sym-
plectic automorphisms reduces the problem to one about subgroups of M24 [and in fact M23]
(and involves the associated Niemeier lattice of type 24A1). For hyper-Kähler manifolds, it
is necessary to pass to the Conway group Co0 (N.B. M24 can be embedded into Co0) and
the associated Leech lattice L (e.g. see [27]). Furthermore, the description in terms of Leech
lattice is more uniform; this is the point of view taken in this paper.

A dodecad of G is a vector with exactly 12 vanishing coordinates. The Mathieu group M12

is by definition the stabilizer of a dodecad in F
24
2 under the action of M24. Then M12 is a

subgroup of the permutation group S12 acting by permutations on the 12 coordinates that
vanish on the dodecad. The Mathieu group M12−i can be constructed as stabilizer in M12 of
i coordinate axes among those 12 which are permuted by M12. The action of M12−i on the
remaining 12 − i coordinates is sharply (5 − i)-transitive.

For k+l ≤ 12 and l ≥ 8,Mk,l is the subgroupMk+l∩Sk×Sl ofMk+l . This is well-defined
since Mk+l is k-transitive. Moreover, we have an exact sequence:

1 −→ Ml −→ Mk,l −→ Sk −→ 1,

and thus |Mk,l | = |Ml | · k!. Let us briefly discuss the groups M3,8 and M2,9, as they are
relevant for our study. The group M8 is isomorphic to the quaternion group Q8, and we have
a semidirect product M3,8 ∼= Q8 : S3. Mukai [41] denotes this group by T48. The group M9

is isomorphic to PSU3(F2) (see §B.4), and M9 ∼= 32 : Q8. We have M2,9 ∼= 32 : QD16.
It is natural to expect that M2,9 is exactly the group in item 15 of Table 1, but we have not
checked all the details.

B.3: Extraspecial group

For p prime, recall that a p-group is a finite group of order a power of p.

Definition B.2 An extraspecial group is a non-abelian p-group G with center Z(G) ∼= p and
an elementary abelian quotient G/Z(G).

Every extraspecial group has order p1+2k with k a positive integer. Conversely, for any
prime number p and positive integer k, there exist two extraspecial groups of order p1+2k .
By convention, the symbol p1+2k represents an extraspecial group of order p1+2k . For p = 2
and k = 1, the two extraspecial groups 21+2 are the dihedral group D8 and quaternion group
Q8.

B.4: Linear and projective groups over finite fields

Linear and projective groups over a field K refer to Zariski-closed subgroups of GL(n, K )

or PGL(n, K ). When K is a finite field, these groups are finite and play an important role in
the classification of finite simple groups. In the final section we collect such kinds of groups
related to our classifications.

We introduce the unitary groups over finite fields. For a finite group Fq2 where q = pr and
p is a prime number, there is an Fq -linear involution α : Fq2 −→ Fq2 sending x to xq (this
is the r -th power of the Frobenius automorphism of Fq ). Let V be an n dimensional vector
space over Fq2 , then there is a unique Fq -bilinear form (called Hermitian form over finite
field) H : V × V −→ Fq2 satisfying H(w, v) = α(H(v,w)) and H(v, cw) = cH(v,w)
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for any c ∈ Fq2 . Explicitly,

H(v,w) =
n∑

i=1

v
q
i wi

The unitary group9 U (n, q) is the automorphism group of the Hermitian space (V , H). We
note that the projective special unitary group PSU(3, F2) is isomorphic to the Mathieu group
M9, and appears as symplectic automorphism group of a degree 2 K3 surface.

The group PSL(2, F11) is simple and appears as the automorphism group of the Klein
cubic threefold V (x21 x2 + x22 x3 + x23 x4 + x24 x5 + x25 x1) (see [1]). As shown in Theorem 1.8,
there is a unique cubic fourfold with an order 11 automorphism which is a triple cover of P

4

branched along the Klein cubic threefold.
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