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Abstract

We reconsider the supermembrane in a Minkowski background and in the light-cone gauge
as a one-dimensional gauge theory of area preserving diffeomorphisms (APDs). Keeping the
membrane tension 71" as an independent parameter we show that 7" is proportional to the gauge
coupling ¢ of this gauge theory, such that the small (large) tension limit of the supermembrane
corresponds to the weak (strong) coupling limit of the APD gauge theory and its SU(N) matrix
model approximation. A perturbative linearization of the supersymmetric theory suitable for a
quantum mechanical path-integral treatment can be achieved by formulating a Nicolai map for
the matrix model, which we work out explicitly to O(g*). The corresponding formulae remain
well-defined in the limit N — oo, i.e. for the supermembrane theory itself. Furthermore we show
that the map has improved convergence properties in comparison with the usual perturbative
expansions because its Jacobian admits an expansion in g with a non-zero radius of convergence.

Possible implications for unsolved issues with the matrix model of M theory are also mentioned.
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1 Introduction and summary

The maximally supersymmetric supermembrane theory in spacetime dimension D =11 [1,2]
is a model ‘beyond’ string theory that also incorporates D = 11 supergravity [3], and is thus
a candidate theory for a non-perturbative formulation of superstring theory (besides there are
three more classically consistent supermembrane theories for target-space dimensions D =4,5,7
[2]). As shown long ago [4] the supermembrane in a flat (Minkowski) background and in the
light-cone gauge can be reformulated as a one-dimensional maximally supersymmetric gauge
theory of area preserving diffeomorphisms (APDs). Building on earlier results of [5,6] it has
been shown that this model can be equivalently obtained as the N — oo limit of a maximally
supersymmetric SU(/N) matrix model [4]. Much later the very same model was re-interpreted
in terms of DO particle quantum mechanics [7], and proposed as a model of M theory in [8].

For reviews of supermembrane theory with many further references, see e.g. [9-11].

The main unsolved problem of (super-)membrane theory is its quantization. Unlike for
string theory there exists no gauge which linearizes the equations of motion such that the de-
termination of quantum correlators can be effectively reduced to free field theory computations.
Likewise, in view of the non-linearities a covariant path-integral approach a la Polyakov ap-
pears hopeless for either the bosonic or the supersymmetric membrane. A more realistically
feasible approach is based on (target-space) light-cone gauge quantization. Nevertheless, even
with this preferred gauge choice the solution to the problem of quantization has so far remained
elusive not only because one has to deal with a fully interacting theory on the world volume,
but also because it is not obvious how to set up a perturbative expansion for the quantized
supermembrane. These difficulties are mirrored by corresponding difficulties of the supersym-
metric SU(N) matrix model for N < oo, as a consequence of which key issues remain unresolved
to this day. Apart from questions regarding the existence and properties of the N — oo limit
for the quantized theory, there are two main issues. One concerns the target-space Lorentz
invariance of the quantized supermembrane (or the matrix model in the N — oo limit). For the
classical theory and for finite IV, Lorentz invariance is in fact violated, but can be recovered in
the N — oo limit [12,13]. However, there has been almost no progress on the quantized theory,
which would first of all require a proper definition of the quantized Lorentz generators and
ensuring their quantum consistency, before actually checking the Lorentz algebra. Amongst
other things this involves the correct definition of the light-cone target-space coordinate X~
(which matrix theory by itself ‘does not know about’) as a quantum operator. Consequently,
it also remains an open question whether D¢, = 11 is indeed the critical dimension for the
supermembrane, eliminating the other classically consistent theories (see however [14] for some
early results in this direction), unlike for the superstring where the well-known result D¢ = 10

can be established in more than one way.

A second key issue arises in connection with correlators and scattering amplitudes for the
putative massless supermembrane excitations corresponding to the graviton, the gravitino and
the 3-form field of D = 11 supergravity. In particular, there is no (super-)membrane analog
known of the Veneziano and Virasoro-Shapiro amplitudes, as this would almost certainly in-
volve higher order and non-perturbative contributions beyond the reach of conventional string

technology. Remarkably, there do exist classical candidate expressions for vertex operators as-



sociated to these states [15], but like for the Lorentz generators, it has not been possible so far

to turn them into well-defined quantum objects.

In this paper we wish to tackle the quantization of the supermembrane from a new and
different perspective. A main ingredient here is the fact that the supersymmetric APD gauge
theory (alias the supersymmetric SU(o0) matrix model) is the supermembrane. Our analysis
leads us to the conclusion that the membrane tension 7', made dimensionless, must be identified
with the gauge coupling g of the APD gauge theory. This insight allows us to set up a systematic
expansion scheme in terms of a path-integral formulation where the small (large) tension limit
of the membrane theory corresponds to the weak (strong) coupling limit of the APD gauge
theory — a result to be contrasted with the somewhat murky state of affairs with the zero-
tension limit of string theory. This expansion is introduced by means of a Nicolai map [16,17]
(designated by 7,) which we first construct for the finite- N theory up to and including quartic
order O(g*).! Our derivation is based on a systematic procedure that relies on very recent
progress in perturbatively evaluating this map for supersymmetric Yang—Mills theories in higher
dimensions, see especially [18,19]. This prescription in principle allows for the determination
of the map to any desired order. It then turns out that the pertinent formulse all remain well-
defined in the limit N — oo, via the straightforward replacement of SU(N) commutators by
APD brackets, see especially (3.36).2 These are two main results of this paper, which should
eventually permit setting up an approximation scheme also for correlators and other quantities
of physical interest. This might enable one to sidestep the finite-N approximation altogether
and to deal directly with the limiting theory for N = co. Finally, we demonstrate that the
expansion of the Jacobian in powers of g has a mon-zero radius of convergence. This does
not yet mean that the map itself has this property, but it represents strong evidence that the
expansion is indeed better behaved than the usual perturbation expansions, and that it may

likewise have a non-zero radius of convergence.

The structure of this paper is as follows. In Section 2 we review basic results on the light-
cone gauge formulation of the supermembrane, mostly following the exposition in [4], and set
up the path integral in Subsection 2.3. Section 3 explains the construction of the Nicolai map
both for the matrix theory and the APD gauge theory. This section contains our main result,
namely an explicit form of the map 7, in an expansion to quartic order in the coupling g.
The question of the behavior of the map in the complex g plane (and thus the convergence
properties of the expansion) is addressed in Section 4. Finally an Appendix provides details of
two consistency checks on the main result derived in this paper.

2 Supermembrane basics

In the section we closely follow [4] to which we refer for further details of the derivation. The
main difference is that we here keep the membrane tension 7" as an independent parameter, in
order to expose the link with weakly and strongly coupled Yang—Mills theory.

In the temporal gauge and actually including O(g5) since odd orders vanish at least up to this point.
2An accompanying N-dependent rescaling cancels only for the supermembrane, indicating that the N — oo
limit does not exist for the ordinary membrane.



2.1 Supermembrane in the light-cone gauge with variable tension

Classically consistent supermembranes exist for target-space dimensions D =4,5,7 and 11, but
in the remainder we will restrict attention mostly to the maximally supersymmetric case, for
which D = 11. The target superspace coordinates {X#,0} = {X#(&"), 0(¢%)} with the range
w,vy...=0,1,...,D—1=10 are then functions of the membrane world-volume coordinates

(€)= (r,0) = (1,0") where 4,7,...=0,1,2 and rs,...=1,2. (2.1)

0(1,0) is a real 32-component Majorana spinor of SO(1,10) (we usually do not write out spinor

indices). The target-space vielbein is
B = 0, X' +0T"0,0 . (2.2)

For D =11, the real 32-by-32 I'-matrices generate the SO(1,10) Clifford algebra, {T'#, T} = 2n*>.
The world-volume metric is
gij = EZ'MEJ'VT]MV . (23)

For the light-cone gauge we split the target-space coordinates as

(XP}={XT X", X with X+ = HXPEX?) and (X} =X (24)
being the transverse components (a,b,...=1,...,9). We adopt the target-space light-cone gauge
Xt(r,o) = X +71, ryé(r,o) =0 (2.5)

thus identifying the target-space light-cone coordinate X with the world-volume time coordi-
nate 7. With these gauge choices the induced metric on the three-dimensional world volume

is

grs Ers = 87*X'83X,

gor = Uy = 8T’X_+80X'arx+ér—ar97 (26)
goo = 200X + (00X)*+20T_0o0 .

The metric determinant is
g =detg;; = —Ag (2.7)

with
g = detg,s and A = —goo+urglus ggst =0 . (2.8)

The supermembrane Lagrangian then becomes
L =T (_ gA + ersarxaér_raase) , (2.9)

where we now include the membrane tension 7' as an independent parameter. In principle the
membrane tension is of dimension [mass]?, but we here find it convenient to render all variables
dimensionless by rescaling them with appropriate powers of some reference mass scale (as was
already implicitly assumed in (2.5)). This reference scale has no physical meaning in and by
itself, as a proper identification of the gravitational coupling (Newton constant or Planck mass)
and evaluating its relation to T will require the evaluation of a graviton scattering amplitude, as
is the case in string theory. However, for the doubly dimensionally reduced supermembrane [20]



such a relation can indeed be established by noting that T'Ryg = (o )_1, where R is the radius
of the compactified 11th dimension. Because the latter is related to the string coupling by
Rip = 93/3 [21] (see also [22]), we see that

T = g7 )™, (2.10)

In this way the parameter T' ties together the two key parameters of string theory, and thus
also with the APD gauge coupling via (2.23) below.

With these conventions the (dimensionless) canonical momenta are

pt _ 7. /8
\/Z’
P = oL _ Z\/g(%X—u g70:X) = P (06X —urg°05X) (2.11)
500X A o o '

S = £ = —T\/EF_O = —P'T_4.
5000 A

The last formula implies a second-class constraint (entailing the replacement of Poisson brackets
by Dirac brackets). The formulae (2.11) imply the first-class constraint

¢ = P-O,X+P 9, X +80,0 ~ 0, (2.12)

which generates spatial diffeomorphisms on the membrane. This gauge freedom can be exploited
to set u” =0 in (2.6), which in turn implies

0. X" = —0oX-0,X —0T_0,0 . (2.13)
To be able to solve this equation for X~ we must impose the integrability constraint
¢ = €5(0,00X-0sX + 0,0T_050) ~ 0. (2.14)

This constraint generates APDs on the membrane: while general (spatial) diffeomorphisms on
the membrane are generated by vector fields 66" (o), APDs are generated by divergence-free
vector fields obeying 9,(/wd¢") = 0 (where the reference density \/w(o) coincides with the
one introduced in (2.16) below). The latter are locally of the form /wd¢" = €"5950¢ with a
scalar parameter 0¢(o). On higher-genus membranes there are in addition topologically non-
trivial diffeomeophisms formally generated by harmonic vector fields [12], and related to global
diffeomeorphisms not contractible to the identity, which we will, however, disregard here.

With these gauge choices the (dimensionless) Hamiltonian density becomes (see also [23])

H(o) = —P (0) = P-0oX + Ptop X~ + S0 — L
_ 2.15)
P2 + ng rs apn (
= —pr— — T, X900 T,0,0

whose bosonic part was already derived long ago in [5,6] (for 7'=1). Here we see why we must
choose the membrane tension to be positive; flipping the sign of T will change the sign of the
kinetic part of the Hamiltonian by (2.11), hence result in an instability. This is, of course, in
accord with expectations.



Because P (7,0) obeys the Hamiltonian equation of motion 9, P*(7,0) =0 and transforms
as a density we can set [4]

Pt(r,0) = Py\/w(o) (2.16)
where Py > 0 is constant, and \/w(o) > 0 is a reference density normalized to [d?c/w(o) =1
(with an associated reference metric w,s(o) on the membrane, which is however only needed

when discussing target-space Lorentz invariance [12]). This leads to the (dimensionless) mass
operator

M? = 2P Py —P2 = /d% (IP?)' + 1% — 27¢0, X"OT T1,0,0) (2.17)
with P;” = [d?¢c P~ (o) and rescaled fermionic variables 3
O(o) = /Py b(o) . (2.18)

The prime in (2.17) indicates that zero modes have been removed from [d%cP?(o).

Finally we note that the fulfilment of the constraint (2.14) allows us to solve for the target-
space coordinate X ~: we have

X~ (r,0) = — / %’ @ (0.0") (00X -0, X(r,0") — IT_0,0(r.0")) (2.19)

with a suitable Green’s function obeying 9,G"(o,0") = §(o,0”’) [5,12]. This formula is needed
for the target-space boost generators and for the verification of target-space Lorentz invariance
in the classical limit [12,13]. It is worth pointing out that this information is not available
in the matrix model as such, where the Lorentz boost generators must either be “guessed” or
deduced from the supermembrane matrix-model correspondence, as in [12].

2.2 APD gauge theory and matrix model

With the above formula for the mass operator the supermembrane theory can be reformulated
as a one-dimensional supersymmetric gauge theory of area preserving diffeomorphisms [4]. This
can be seen by exploiting the algebraic identity

g = det(0,X-0,X) = {X* X" {Xx* X"}, (2.20)

where the APD bracket of any two functions A(e) and B(o) on the membrane is defined by

[A(0), B(0)} = ——— "0, A(0)0,B(cr) . (2.21)

w(o)

This is indeed a Lie bracket (obeying antisymmetry and the Jacobi identity) [5,6].

Then (2.15) can be equivalently obtained from the supersymmetric Lagrangian
=L = 1(DX)? + OT_D;© — 1g*{X* X"} + ¢gOT_T,{X* 0} (2.22)

3Which obey the canonical (Dirac) brackets {©(c), ©(c”)}pp = (44 /w(a))71F+5(2)(0,0’) [4].
4While 7 is the time coordinate on the membrane world-volume, we denote the Yang—Mills time coordinate
by t, but keep the erstwhile membrane coordinates ¢ as labels for the APD gauge group.



if we identify
T =g. (2.23)

In view of our comments after (2.15) we must, however, restrict this identification to positive
values of T" and g, even though there appear to be no obstructions to continuing the APD
gauge theory to negative couplings. Hence the small (large) tension limit of the supermembrane
corresponds to the weak (strong) coupling limit of the supersymmetric APD gauge theory. The

APD covariant derivative is given by

Dif(t,o) = 0 f(t,0) + g{w(t,o), f(t.0)} (2.24)

with the APD gauge field w(t, o) which is here introduced ad hoc, as it is absent from the super-
membrane action. The Lagrangian (2.22) is nothing but the dimensional reduction of maximally
extended super-Yang—Mills theory [24] to one (time) dimension, with the identifications w = Ay
and X, = A,, and g the usual Yang-Mills coupling, but now with the infinite-dimensional
APD gauge group. This works precisely in the dimensions where pure supersymmetric Yang—
Mills theories exist, namely D = 3,4,6,10 [24], in agreement with the admissible target-space

dimensions 4,5,7 and 11 for supermembranes.

The group of APDs on the membrane can be approximated by the finite-dimensional unitary
groups SU(N), such that the full group of APDs is recovered in the limit N — oo [5,6]. Replacing
APDs by SU(N) gives the matrix model of M theory. For this approximation one expands all
functions on the membrane into a complete orthonormal set of functions Y4 (o),

/ 20 1 Jw(e)YA(@)YE (o) = 6B (2.25)
where we separate off the zero modes,

Xaltio) = XO1) + 3 X2V (o),
A=1

w(t,o) = wO@) + iwA(t)YA(U), (2.26)
A=1

O(t,o) = 001) + i@A(t)YA(o-).
A=1

The zero modes X" (t) and ©©)(¢) decouple in (2.22), where x (t) describes the center of
mass motion of the membrane as a whole. Likewise, the gauge zero mode w(® (t) drops out
in the Lagrangian (as it acts effectively like a U(1) gauge field, which cannot couple because
both XC(LO) and ©() are real). The remaining non-zero modes describe the ‘internal’ degrees of
freedom of the supermembrane. The APD gauge group can thus be approximated by SU(V),
as is most easily and explicitly done for S? [5,6] and T2 [12,25,26], by cutting off the mode
expansions at N2—1 (ignoring topological modes) and replacing the APD-brackets by SU(N)
commutators. In fact, as shown in [27] the SU(N) approximation works for any genus of the

membrane. Consequently, we have

A5G = /d20'\/w(O')YA(O'){YB(O'),YC(O')} = lim fABO(N) (2.27)



with SU(V) structure constants fABC(N). Hence the expansion labels A4,B,...=1,...,N?>—1
are thus turned into Yang—Mills indices, while a,b,... are transverse (for membrane) and space-
like (for supersymmetric Yang—Mills) indices.

After these preparations, the matrix-model Lagrangian assumes the standard form °
£ = LDXA? — 100D — LR ABCXEXOY - b fAP0etn,XBeS (29
where we have now switched to SO(9) spinors 02 with 16 real components and where
D = 8,04 4 g fABCLBYC (2.29)

is the SU(V) covariant derivative. The real symmetric 16-by-16 matrices v, generate the SO(9)
Clifford algebra, {v%,~7?} =20%. Variation w.r.t. w* yields the constraint

FAPC(XEBDxC 1+ 6865) ~ 0 (2.30)

which is equivalent to the canonical generator of SU(N) gauge transformations (after performing
this variation we can put w? =0 everywhere). The Lagrangian (2.28) is the one that underlies
the M theory conjecture of [8], see also [31-33].

2.3 Setting up the path integral

Our goal is now to set up a path-integral formulation that should eventually permit the com-
putation of correlators of physically relevant quantities, and complement the canonical quanti-
zation methods underlying many treatments of the matrix model. We shall thus be interested
in evaluating correlation functions of the type

(O1X.0)-- 0,[X.0)) = / [[DXu(t,0) Db (t, ) Des(t,0) DC(t, ) Dt )
g (2.31)
X Ol [X, 9] s On [X, 9] exp (l Stot)

where the precise form of the functionals O;[X, 0] need not be specified at this point. Because
this is a gauge theory, the full action

Stot = S+ ¢ (2.32)

with S = [dt £ must comprise a gauge-fixing part S' = [d¢£’. For higher-dimensional Yang—
Mills theories there are two preferred choices, namely the Lorenz gauge 0" A, = 0, and the axial
gauge n*'A,, = 0 (which includes the light-cone gauge for null vectors n#). In the reduction to one
time dimension the axial gauge is necessarily identical with the temporal gauge. Consequently,
we have two preferred choices for the gauge-fixing part, namely

L = —2—15(815(,0)2 + Co;D;C (Lorenz gauge) ,
) (2.33)
L= —2—15w2 + CDC (temporal gauge) .

SFor finite-dimensional gauge groups these supersymmetric matrix models were first obtained in [28-30].



A further peculiarity of one dimension is that the temporal gauge implies the Lorenz gauge
w(t,o)=0 = Ow(t,o) =w(t,o)=0. (2.34)

C(t,o) and C(t,o) are the usual Faddeev-Popov ghosts [34,35], and ¢ is a real parameter
which will be eventually sent to zero to put the theory on the gauge hypersurface. After
trading the o dependence for SU(N) indices, we are left with a quantum mechanical path
integral describing finitely many degrees of freedom. Because of the supersymmetry there is no
need for a normalization factor in (2.31) (as can be easily checked for g =0 with both gauge
choices). In passing we note that we can of course equivalently switch to a Euclidean formulation
by flipping the sign in the kinetic terms (XG)Z, w2 and for the ghosts, and by replacing the
oscillatory exponent by exp(—Siot); the factor i is then absent in the spinor kinetic term.

An important part of our construction is that we consider the path integral in a form where
the fermions (and also the ghosts) are integrated out. For the temporal gauge and for finite NV
the integration over 64 (t) results in the Matthews-Salam-Seiler (MSS) determinant [36,37]

}1/ ’ (2.35)

Aiss[w=0,X] = [det (645 5,50(t1—t2) + gKAP (11.12))
which is actually a Pfaffian because we are integrating over real fermions. The integral kernel
appearing in this expression is

K45 (t,t0) = e(ti—ta) FAO a5 XS (t2) - (2.36)

This is a real operator which is however not symmetric because hermitean conjugation also
exchanges the arguments ¢; and t5. Furthermore, we have taken out trivial factors of det (J;)
(which anyway cancel in the supersymmetric path integral). The free fermion propagator ¢ is
just the Green’s function for 0,

d i . /
c(t—t) = [7)0t) =[5 e ™) = e(-t)~§ = et ). (237)

This choice of integration constant implies €(0) =0 as well as

/dt e(t—t") = 0. (2.38)

Our particular choice is important for the tests in the Appendix which otherwise cannot be
satisfied (it is also consistent with the dimensional reduction of the usual Dirac propagator).
In Section 4 we will study some properties of this determinant in more detail and prove in
particular that the expansion of log(Aygs) in powers of g has a non-zero radius of convergence
with suitable technical assumptions on the behavior of X2 (). We also note that we have no
positivity statement about Apgg (though the fermion determinant is non-negative for complex
fermions!). Similarly, the determinant cannot be shown to be an even function of g because of
the non-vanishing trace tr(y ---y%) =169,

For the infinite-dimensional APD gauge group we must be a little more careful: while the
kinetic term of (2.22) is local in o, the interaction term is not because it contains derivatives in
o. To take into account this non-locality we can formally replace the integral kernel (2.36) by

1 8Xa(7f2,0'1) 8
tl—tQ)’}/a Ers (0’1 0'2)
P Jw(oy) do? " b

KégD(tl,tz;Ul,UQ) = 6( (239)
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and the identity operator by d,0(t1—t2)d(o1,072), with the proviso that folding with this kernel
now also contains an integral over . When expanding the logarithm of the MSS determinant
using log det = Tr log, we encounter for each trace a divergent factor §(o,o), which can thus
be uniformly factored out of the sum. To arrive at a sensible result in the N — oo limit we
must therefore remove this factor. This ‘renormalization’ corresponds to the replacement of
the Cartan-Killing form fA¢P fBCD = N§AB (whose limit N — oo also diverges) in the matrix

action by the finite action obtained from (2.22) by integrating ﬁﬁ over the world volume with

the measure dtd%o+/w(o).

2.4 Physical correlators

With the path integral formalism at hand we can now in principle proceed to calculate gauge-
variant and gauge-invariant correlators of suitable objects. But what are the physically relevant
operators O[X,0]? As in string theory, for the membrane the latter should be associated to
vertex operators describing the emission or absorption of certain one-particle excitations from
the membrane. As first shown in [15] there indeed exist the classical analogs of supermembrane
light-cone vertex operators exciting the massless states of the supermembrane, which comprise
the massless supermultiplet of maximal D = 11 supergravity [3]. The related expressions must
satisfy various consistency constraints (target-space and world-volume gauge invariance, linear
and non-linear supersymmetry) which are explained at length in [15], corresponding to (but
more complicated than) the ones known from type II superstring theory. In particular, in
analogy with closed-string vertex operators they are to be integrated over the membrane world
volume. For instance, for the transverse graviton components we have [15]

O[X.0] — / dtde V,[X, 0] (2.40)
with

VA[X,0] = ha | DiXDiXP — (X XX, XY — i07"{X",0)
) B B ) (2.41)
_ %DtXa H’che kc o %{XG,XC} 0’7de9 kc + %970,00 e,ybde kckd:| e—ik'X-i-ik*t

where hgp, is the transverse graviton polarization tensor, and {k,} = k denotes the transverse
components of the target-space momentum. For the light-cone gauge target-space momentum
k" one must furthermore assume k™ = 0 in order to avoid having to deal with the light-cone
coordinate X ~(7,0) in the exponential (as is also customary in string theory [38]). Remark-
ably, and unlike for superstring theory, there do not appear to exist analogs of the string vertex
operators for massive string states. This would be in accord with the fact that the supermem-
brane is not a first quantizable (i.e. one-particle) theory [10] and for finite N consistent with
the DO-multiparticle interpretation of [8].

Because the light-cone vertex operators are given by complicated expressions, and because
the measure in (2.31) is not Gaussian, no sustained attempt has been made, as far as we are
aware, to evaluate their correlators. Neither has it been possible so far to set up a perturbative
expansion, as this will also require understanding the quantum corrections (renormalizations)
that are necessary for the vertex operators to remain well-defined in the quantized interacting



theory. Our line of attack will therefore be a different one, in that we will reformulate the above
path integral in terms of a Nicolai map. A main advantage of such an approach is that the
formulae to be presented below remain perfectly well-defined in the limit N — oo and can thus
be consistently implemented also in the APD path integral. Consequently, it may be possible
in this way to sidestep the detour via the finite-N matrix model, and to directly tackle the
N = oo theory right away. Possible applications of this technology to supermembrane vertices
will, however, be left to future work.

3 The map to fourth order

The method that we propose here to tackle expressions like (2.31) is based on the Nicolai
map T, [16,17,39-43], exploiting recent progress in determining this map to higher orders in
g [18,19,44,45]. This map is a non-local and non-linear field transformation, which maps the
theory to a free theory in such a way that after integrating out the fermions (gaugini and
ghosts) the product of the resulting fermionic determinants equals the Jacobian of the map 7,
at least locally in field space. For operators O(tx) built from X, (and w) alone, this enables
us to re-express the expectation value (2.31) in the matrix theory as a free-field correlator of
transformed bosonic fields, viz.

(O1(t1)+Onlta)) = (T (O1(t) T (Onlta)) (3.1)

0

where integrating out the gaugini and ghosts is trivial on the right-hand side because the
transformed operators are purely bosonic ones. We can therefore read this relation as one in
the integrated-out theory as well as in the original one including the fermions. A key property
of the map 7, is the equality of its functional Jacobian with the product of the fermionic
determinants obtained by integrating out all anticommuting variables, to wit,

det <57;X> = Aysslw, X] App|w, X] (3.2)
0X

where App and Aygs are, respectively, the Faddeev—Popov determinant [34,35] and the MSS de-

terminant (2.35) [36,37]. We refer readers to [18,19,44-46] for recent progress in constructing

the map 74 for pure supersymmetric Yang-Mills theories in all relevant dimensions. A crucial

simplification follows from (2.34), since it allows us to largely ignore the distinction between

‘on-shell” and ‘off-shell” R-prescriptions in [18,19] that must be taken into account in more than

one dimension.

3.1 Construction by dimensional reduction

The goal of this section is the construction of 7, [17,39-43] for the APD and SU(V) supersym-
metric matrix models (2.22) and (2.28). This can be done either by repeating the construction
procedure described in [39,43] for this particular theory, or by dimensionally reducing the map
for ten-dimensional super Yang-Mills theory to one-dimensional matrix mechanics. Let us first
choose the second path.

10



Since we only have an on-shell formulation of supersymmetry in ten dimensions, we cannot
employ the general scheme [18,19] for arbitrary gauge fixing but have to stick to the Lorenz
gauge, for which the map was presented on the gauge hypersurface in the critical spacetime
dimensions D = 3,4,6 and 10, to O(g?®) in [45] and to O(g*) in [18]. In the dimensional reduction
all quantities loose their coordinate dependence except for a dependence on time ¢, and the D
components of the gauge potential become (D—1) dynamical matrices X, (¢) and one non-
dynamical matrix w(t). The Lorenz gauge reduces to dw = w = 0, hence the matrix w is a
constant on the gauge hypersurface. It will turn out that it is invariant under the map 7.

Let us recall the salient facts of the construction, keeping D arbitrary and denoting by r
the dimension of the corresponding Majorana spinor representation. The map 7, is a nonlinear

and nonlocal field transformation
Tyt (Xo(t),w) — (X.(t),0') . (3.3)

It affords to express the quantum correlator (F'), of an arbitrary bosonic functional F' at gauge
coupling ¢ in terms of a free correlator (¢g=0) of the same functional, but with its arguments

transformed by the inverse map,

<F[X,w]>g = <F[Tg—1x, Tg—lw]>0 . (3.4)
An infinitesimal (in g) version reads
89<F[X,w]>g = <(8g—|—Rg[X,w])F[X,w]>g , (3.5)

where the “coupling flow operator” R, is a linear functional integro-differential operator with
a nonlinear and nonlocal dependence on X and w. As the construction is perturbative in the

coupling ¢,¢ we expand (note the index shift)

Ry[X,w] = > ¢" "Ry[X,w] = Ri[X,w]+gRo[X,w]+¢*Rs[X,w] + ¢*Ru[X,w]+... . (3.6)
k=1

Integrating the infinitesimal flow equation (3.5) yields 7, ! and finally

g

ToXa = Xo — gR1Xe — 3°(Re—R) X, — $¢°(2R3 —RiRo —2RoRy + RY) X, .
— 57(6R*— 2R R3 — 3R3 + R{Rs — 6R3R; + 2R1RoR1 +3RoRT —RY) + ...

in terms of the flow operator’s expansion coefficients. We have displayed the result to O(g*)
since we shall evaluate the map to this order, and we omitted the analogous formula for w

because it reduces to Tyw = w.

In order to avoid cluttering the equations with indices, we mostly suppress spinor and color
indices as well as time dependence and employ the DeWitt summation convention (suppressing
also time integrals) in the remainder of this section. We find it convenient to let the flow

(S2]

operator act (by functional differentiation) to the left. It is then given by a variation 5 0

followed by a string of matrices in color, spinor and coordinate space, such as

(X)W P (1) = AP s—t) = (XexXg) (1) = VXX (1) (38)

5There exists, however, a universal nonperturbative formula for the map, see [46].
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and propagators G and S defined by

AB
aB

AB

[Dt G} ap

(t,t") = 64B5,50(t—t') [(Dy+ g7 X x)S] 7 (t,8) = 64B6,50(t—t)  (3.9)

with Dy = Dy = 0y +gwx. We note that wx and X, x are to be considered as matrices in color
space. The product of all these objects is to be executed in canonical fashion, where we suppress
obvious unit factors in the formulse. Observe also that G is not the ghost propagator whose
defining equation contains another derivative 0;. This is because in all relevant expressions the
ghost propagator appears with a derivative 0.

A careful dimensional reduction of the coupling flow operator eq.(1.19) of [45] then yields *

— 5
R = —%&tr[('ya_gXaXG)S(%’VCchXXd“"VdWXXd)} (3'10)

where the explicit trace refers to the spinor space, and we have dropped a term proportional
to %w. Here, the first round bracket arises from a non-abelian projector [45] which in the Lorenz
gauge reads (u = (t,a))

PY = 6'-D,0-D) o N4 5v_p.piloster (3.11)
which obeys 0" P, =0 = P,”D, and yields
PV=0, P’=6' and Pl=gX,xD;'. (3.12)

This shows that R does not contain a variation %, cf. formula (1.19) in [45] (with p=1t). The
second round bracket is just the decomposition of %APXAA in the reduction.

3.2 Construction in the matrix model

Alternatively, we may take the first path and construct the map 7, directly for the matrix model,
following the strategy of [39,43]. To this end, we implement the Lorenz gauge constraint w =0
by adding to the matrix model Lagrangian (2.28) &

L= 3(DiXo)? — 1A (XexXa)? — 50-(Dy+gXx)0 (3.13)
with X := 74X, a “gauge-fixing term”
L= -5 + C-8:D,C (3.14)

with a real parameter & and ghost matrices C' and C. Taking the limit £ — 0 puts the theory
on the gauge hypersurface.

We aim to directly derive a coupling flow operator R as in (3.5) for the matrix model, which
will govern the infinitesimal change in the coupling g for the quantum correlator of an arbitrary

"Note that we have split R = dy + R.
8Here and below, the - denotes a contraction in color space, i.e. P-Q := 5ABPAQB.

12



bosonic matrix functional F[X,w]. Keeping in mind the g-dependence of the functional integral
weight el (£+£l), we compute (suppressing the subscript in (---),)

0,(F) = (0,F +Fo, / i(C+L'))
= <agF+Fi/[DtXa-wxXa—ég(chXd)L%e-(w+f()><9+(7-at(w><0)}

= (9P + F [paartia [0-0+ X)x0+ [C-00wx0)])

(3.15)
where
A, = —%/dt (v40)qwx Xy + %/dt (v°40) - Xex X g . (3.16)
With the supersymmetry transformations
daw = —i0, , 0aXa = _1(6'7@)01 ) 60c95 = _’YZ,BDth - %VE%XCXXd (317)
one confirms that indeed
Suly — /dt [DeXa wx Xy — Sg(XexXg)* — 12510 (w+ X)x0] | (3.18)

Therefore, §,A, in (3.15) reproduces dy [£ but with a mismatch in the coefficient of the
Majorana term, which thus still appears there but with a coefficient

1 for D=3,4,6,10. (3.19)
It is noteworthy that for a temporal gauge this mismatch is absent,
Ag=0 =  w=0 and D=8 =  ba(Daluo) = ag/c . (3.20)

since effectively D — D—1 and the ghosts decouple.

Next, we employ the broken supersymmetric Ward identity (5,Y) = —i((do [ £)Y") together
with
5a /.c’ = s6aAg  for Ay = /c‘w (3.21)

and the Slavnov variations

sw=D;C, $sX,=gX,xC, s0=gOoxC sC=—-3CxC, sC =10 (3.22)

1
13
to rewrite
0,(F) = (8,F +180,F) + (F {AaséaAgh—q/@-(w—I—f()xH—i—i/C_’-@t(wa’)]>
_ <8gF+iAa(5aF—Aa(5aAgh)sF> (3.23)
+ <F [(sAa)((SaAgh)—Q/e‘(‘ﬂ*‘f()xe_i/é'(wxc)b ’

where in the last step we used the BRST Ward identity (sY) = 0.
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For the flow equation (3.5) to hold, the last correlator has to vanish for any bosonic func-
tional F'. Writing out

sA, =

S =

/(Xx@)a-é and  ,Agy = i /é.ea (3.24)

and performing the functional integrations over the fermions and the ghosts, this requirement
becomes

!

0 —;/(Xagxeg)-c_ﬁ-ea _ q/(f(aﬁxwa _ q/(wxwa i/(wal’)_lC, (3.25)

where the contractions stand for the fermionic and ghost propagators

05 (t) A1) = —SEAL)  and  CB(t) CA) = 1GPAWY) (3.26)

= " 1 L 1

respectively (note the time derivative on C4). With 9,G(t,t')B4 = 0, GAB(t',t) =: 0GAB(¢', 1)
the condition (3.25) reads

0= — LTy [(Xx8)0G] + ¢ Tr [X xS] +¢qTr[wxS] — L Tr [wxG] , (3.27)

where the trace here refers to spin, color and time altogether. Abbreviating the unit operator
by the symbol 1, and inserting the useful identities

G = 1—gwxG and S = G—gG(XxS), (3.28)

into the first and third term, respectively, we cancel the second and fourth terms (provided

g =2) and remain with
0= LgTr[(XxS) (wx@G)] — qgTr[(wxG)(XxS)] , (3.29)

which indeed holds in the critical dimensions.

We return to (3.23) and integrate out the fermions and ghosts to read off the flow operator

Ry = itods Bl

1) 1)
= A, / 9@’% + Aq ’ (07Ya)a - E (3.30)

S R L I

0
60X,

Since D;G = 1, the two variations w.r.t. w (first and third terms) cancel, and we are left with

{ )
Rg = Aa 95 . [(’Ya)ﬁa 1+ géﬁaG X Xa] . W . (331)

In the curly brackets we recognize the (dimensionally reduced) non-abelian projector (3.12). Re-
calling A, from (3.16), inserting the fermion propagator (3.26) and reversing the multiplication
order, one again arrives at the flow operator presented in (3.10).
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3.3 The map to third and fourth order

For the perturbative power series we need the expansion of the propagators,

G = £—gewXe+ gPewXewXe — PPewXewXewXe£. .. |
(3.32)

S = e—ge(w+X)xe+g*e(w+X)xe(w+X)xeTF... ,

with the free fermion propagator (2.37). Because spin traces vanish for an odd product of
gamma matrices (for less than nine factors), the expansion coefficients Ry, displayed here carry
only even/odd powers of w for k being even/odd. This parity extends to the map 7y itself.

Carrying out the spin traces, one gets
i
ﬁl = —EE(UXXQ s

5 5
ﬁg = mawxawxXa—i—mstanbea,

5 5 5
ﬁg = —sxoewxXewxewx X, — g ewx e Xyx e Xyx X, — gp-e Xpxewxe Xpx X, (3.33)
S S 5
— maXax aXbxswxXb—kmaXbx eXgXewx Xy — EEXbX eXpxewxX,

5
+mXa><aaXb><sw><Xb ,

and so on. Inserting all these into (3.7), performing the functional derivatives and observing

various cancellations, we arrive at
ToXo = Xo + gewxX, — 2% Xyxe Xpx X,
+ 29°[26 Xpx cwx e Xy x X +26 Xox e Xpx cwx Xy — 2 X x 62 Xy x ewx Xy
(3.34)
—eXpxeXgxewxXy+eXpxeXpxewx X, +¢ (e XpxX,) x(swxXb)}

+ O(g") .

For the practitioner’s convenience we spell this out with our shorthand notation fully expanded,
XM = XA + 9547 [ase(t-9uP X ()
= 5P PAPCFOPE [dsdus(e—s) XP (9)=(s—u) XPXE (w)
+ 3¢5 PABCOPE FEMY [dsdudy s(t-5) XP (s) (o)
20 (e (u=0) X X2 ()= XD (we(u=0) XY (0) + XP () elu—) XL ()]
+ g’ fAPCFOPE FEMN / dsdudv e(t—s) [X!(s) = Xg'(1)] e(s—u) Xy (u) e (u—v) ™ X (v)
+ §g° fABC pBPE pOMN / dsdudv e(t—s) [e(s—u) Xy X7 (u)] [£(s—v) ™ X3 (v)]

+ O(gh) . )
3.35
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As a check, beyond O(g) all terms linear in X2 (and thus of maximal power in w?) cancel
out, a feature that can be proven to hold in general. Also, in the temporal gauge w4=0 the
map drastically simplifies and admits only even powers in g at least up to the order considered.
Moreover, to the order displayed here all terms share the “linear tree” topology of the flow
operator, except for the last term in O(g?), which is the first “branched tree”. We have checked
that this result is consistent with the final result of [18]. It is straightforward though tedious to
extend the above computation to higher orders. Equivalently, the O(g*) result can be read off
by dimensionally reducing the result of [18], but we refrain here from spelling out this formula

with non-vanishing w because it is rather lengthy and not very illuminating.

However, the result simplifies greatly in the temporal gauge w=0. Furthermore, given our
transcription rule (2.27), it is straightforward to write it down right away with the APD brackets
(2.21). Suppressing the common argument o, we arrive at

T Xa(t) = Xo(t) — 342 /dsdus(t—s)e(s—u){Xb(s),{Xb(u),Xa(u)}}

+ %g‘lfdsdudvdw e(t—s)e(s—u)e(u—v)e(v—w) l

6 {Xb(s), {Xc(u), {X(a(v), {Xp(w), Xy (w)}}}}
+ 2 {300), {Xp0), (X0400), X w). Xe))} ] (3.36)

+2{X(0) - X0, {X(w), {X.(0), {Xb(w),Xc(w)}}}H
+ %g‘l/dsdudvdw e(t—s)e(s—u)e(s—v)e(v—w) x

{1, X}, {(Xe(0), (o), X} } )+ 06°)

This expression is perfectly well-defined for well-behaved functions X, (¢,0), whence the N — 0o
limit of (3.35) is equally well-defined. At higher orders we will encounter more nested APD
brackets, but the expansion stays well-defined to arbitrary order. It is noteworthy that, while
(3.35) contains both even and odd powers in g, the expansion (3.36) with the temporal gauge
w = 0 contains only even powers in g. This can only change in higher orders (starting with R7 in
(3.6), to be completely precise) when we encounter y-traces such as tr (4 ---y%) = 16¢€*%,

Finally, as an independent check, in the Appendix we also demonstrate that the “free-action

condition”
HOTyXa)? = LHDiX,)? — L2 (Xyx X.)? + total derivative (3.37)
as well as the “determinant matching condition” °
0T, X .
Tr 1og( g{, ) = 1Trlog(Dy+9X %) + Trlogd;D; — 2Tr logd? (3.38)

9For the temporal gauge the last two terms on the r.h.s. are replaced by [Tr log Dy — %Tr 1oga§], but the
cancellations remain the same, of course.
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for the Jacobian, Matthews—Salam—Seiler [36,37] and Faddeev—Popov [34] determinants are
both fulfilled up to and including O(g3) by the maps (3.34) and (3.36), provided

r

D-2 = 5 (3.39)

as happens to be the case for the critical dimensions D = 3,4,6 and 10. As already mentioned,
the determinants are more subtle in the APD gauge theory directly: like for the APD integral
kernel (2.39) we can in each APD bracket (2.21) separate the two o arguments by inserting
o-functions together with integrals over o variables. When expanded, the Jacobian of the map
7T, then contains exactly the same divergent factor é(o, o) that we encountered in the expansion
of Apnss and which can thus be dropped for the same reason.

The results of this section should be considered as a generalization of the polynomial map
that obtains in supersymmetric quantum mechanics (see e.g. [39]), where the perturbative
expansion terminates after the first step and gives rise to a closed expression (see also [47,48]
for attempts to find polynomial maps in higher dimensions). Such a feature cannot be expected
for the APD gauge theory or matrix model. However, our expressions (3.35) and (3.36) are
almost as good, because they can be obtained from a universal formula for 7, in terms of
a path-ordered exponential [46]. This formula furnishes an algorithmic procedure to work
out the expansion of 7T, systematically to any given order in g, a calculation that can be
automated and implemented on a computer. Again the result will be much simpler with the
temporal gauge w = 0. On the technical side it is worth emphasizing that because of (2.34) the
differences between the axial and the Lorenz gauge choices almost disappear in one dimension,
together with the considerable complications accompanying gauge choices different from the
Lorenz gauge in higher dimensions.

4 The Jacobian has a non-zero radius of convergence

One main difference between the present approach and more conventional perturbative expan-
sions of the path integral is that the series expansion for 7, has better convergence properties
(here we are not referring to UV divergences, but to the non-summability of what would be the
renormalized perturbation expansion in higher dimensions). That the convergence properties
should be better was already anticipated in [39] but never actually proven. Here we present
further evidence for this conjecture by showing that with suitable technical assumptions the
Jacobian of the map admits a non-zero radius of convergence when expanded around g =0 in
the complex g plane. This we can do by exploiting the equality (3.2) of the Jacobian with (the
product of) the fermionic determinants. Since we are actually only interested in the statement
for the remporal gauge let us therefore set w = 0 for which App is trivial, and consider the MSS
determinant (2.35). To this aim we expand the logarithm of Ayjgs and make use of the triangle
inequality,

}1ogdet1/z(]1+gK] ;}Z - "TrK"’ < %i::% T K| (4.1)
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where the kernel K is defined in (2.36). Let us have a look at the individual terms: we have

TrK" = /dtl'--/dtn e(ty—ta) -+ e(tp—t1) tr(y® -+ y™) x 43)
4.2

X tr (T4 TA) X2 (t) - X2 (t,)

where T4 are the SU(N) generators in the adjoint representation. We can now derive an upper
bound on the absolute value of this expression by using ’E(t)‘ < %, together with

[tr(y*-y™)] < v and (T T < (4.3)

where ¢ = ¢y is an N-dependent positive constant. Furthermore introducing the L'-norm
A
X[, = 3 fat xi) (14)
a,A
we can majorize the individual terms to obtain

@i < L3 (&) %y (15)
=9 24\3) T, L ‘
n=1
This series converges for |g| < 2¢7! HX||1_1 Consequently if we constrain the functions X(t) to
belong to the Lebesgue space L' (R¥) (for k = 9(N?—1)) the series always has an (X-dependent)

non-zero radius of convergence.

While the fact that the Jacobian has a non-zero radius of convergence as a function of g does
not imply that the map itself has this property, it strongly constrains the series expansion for 7y,
regardless of the precise form of the functions X/*(¢). The main reason that makes the argument
work is that, unlike for higher-dimensional Yang—Mills theories, the supersymmetric matrix
model has no UV divergences which would necessitate infinite subtractions (as in [37]). With
appropriate UV and IR regularizations the above statements remain valid for supersymmetric
Yang-Mills theories in higher dimensions, at least with the axial gauge choice (for which,
however, 7, is considerably more complicated than for the Lorenz gauge [18,19]). So in that
case both regulators are necessary for the MSS determinant to make sense in a more rigorous

context.

5 Outlook

We hope that the present investigations will open some new and so far unexplored avenues for
addressing several outstanding key problems of supermembrane and matrix theory. Among the
topics for future investigation we have already highlighted two of these, namely the question
of quantum target-space Lorentz invariance, and the problem of computing physically relevant
correlations functions. Here our approach provides a perturbative expansion scheme of a type
that has not been available in the literature so far. Finally we note that our methods may also
turn out to be applicable to matrix string theory [49,50], which corresponds to the reduction
of maximally extended super-Yang—Mills theory to two spacetime dimensions.

Acknowledgments. We thank Hannes Malcha for help in matching (3.36) with the dimen-
sional reduction of the O(g*) result of [18], and Daniele Dorigoni for discussion.
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A Appendix: tests

A.1 Free action test
Writing
ToXa = Xo + gT1Xa + ¢°ToXa + ¢°T3Xa + O(g") (A1)

we read off from (3.34) the concrete expressions for Tj. The free-action condition (3.37) then
breaks up into

X (T1Xa) = Xo- (wxX,) ,

(T1Xa) - (T1Xa) + Xa- (ToX,) = 2(wxX,)? = H(XaxXp)? (A.2)

1 1 1

2 2 1
(T1Xa) - (TaXa) + Xa- (T3X,) = 0,

modulo total derivatives in t.

The first condition is fulfilled since (T1X,)" =wxX,. This also matches the first terms on
either side of the second condition. Its remainder is also fulfilled because

X, (ToX,) = —3X, (XpxeXpxX,) = —5(XoxXp) e (XpxX,)
= —L(XuxXp) e (XpxX,) = —+(XaxX3)? + 0:(...) . )

The third condition is more involved. The left-hand side reads (suppressing total derivatives)

— HwxX,) Xpxe(XpxX,) + 2Xo (e XpxXo) X (ewx Xy)

+ %Xa-{Xbxewxs(Xbea) + XoxeXpxe(wxXp) — O {(XgxeeXpxe(wxXy)}

— tXpxeXoxe(wxXy) + %Xbxstxa(wxXa)}

= — J(WXXo)XXp e (XpxXa) — £Xo O {(e XpxXo)x (ewx Xy)}

+ %Xax{Xb-swxs(Xbea) — X, eeXpxe(wxXy) — Xb-sX[axs(wxXb])}
(WX X)X Xy e (XpxXa) — £Xo- (XpxXa)xe(wxXp) + £Xq- (wxXp)xe(XpxXq)
(XaxXp) - cwxe(XpxXa) — #(XoxXp) - e Xax e (wxXp)

(WX X)X Xy €(XpxXa) — £ XaX(XpxXa)- €(wxXp) + $Xax(wxXp)-e(XpxXq)

A= N O N

(XaxXp) - wxe(XpxXa) + 2(XaxXp)  Xoxe(wxXp)
{BloxXa)xXy = Xox(@xXp) + (Xax Xp)xw}-(XpxXo)
= = HBwxXp)x Xy + (@xXp)x Xy + (XoxXp)xw}- e (Xpx Xa)

= = HwxX)x Xy + (Xpxw)xXe + (XaxXp)xw}-e(XpxXa) = 0,
(A4)
where in the last line the Jacobi identity was applied. Several times we employed partial
integration and d;e =1 as well as A-(BxC) = (AxB)-C and the complete antisymmetry of
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the structure constants, AxB = —BxA. Furthermore, for the first equality we cancelled part of
the 0 term with the term preceding it, for the second equality we dropped a term ~ X, xX,=0,
for the fourth equality the second and fifth terms cancelled, and for the fifth equality the index
antisymmetry in the final factor X;x X, was used. We note that the value D of the spacetime
dimension played no role here.

A.2 Determinant matching test

Since the determinants match in the free theory, it suffices to bring their logarithms to a form

logdet A(g) = logdet A(0) + Trlog(L+M(g)) = const+TrM —3TrM?+ 1Tr M* +O(g*)

(A.5)
since M(g) is of order g, and to compare the expressions in the orders g, g and g3 of the
perturbative expansion. The Tr symbol refers to a trace in position, color and spinor space,
while below we reserve the tr symbol for the trace in position and color space only, after having

explicitly performed the gamma traces.

For the Faddeev—Popov determinant we have
A = 0;D; = 04(0; + gwx) = M =g wx = gewx (A.6)
which, since there are no spin degreees of freedom, leads to
trlog(1+M(g)) = gtr(wxe) — 2g*tr(wxewxe) + g’ tr(wxewxewxe) + O(g") . (A7)

The Matthews—Salam—Seiler determinant produces

A

A=D;+gXx=0+g(w+X)x = M =ge(w+ X)x (A.8)
which, with a factor of % from the Majorana property, yields

tTrlog(1+M(g)) = Lgtr(wxe) — EQZtr(wxz—:wxs + XoxeXgxe)
(A.9)
+ Lgttr(wxewxewxe + 3X,xeXoxewxe) + O(g?) |

where only even powers of X survived the spin trace, which produces a factor r for the dimen-
sionality of the spinor representation. Each of the trace terms can be represented by a loop
diagram, with bosonic propagators ¢ and external “legs” w or X,. Because e(t—t) =(0) =0,
single-leg loops vanish, and we only have to consider the orders ¢® and ¢® in the matching.

Finally, considering the Jacobian of 74, we must in each tree of the expression (3.34) “dif-

ferentiate away” one “leaf” X in all possible ways. This results in an expression of the form
ST, XA () A AB
% =9 Béabé(t_t/) + (ng +92M2 +93M3 +O(g4))ab (t7t/) ) (AlO)
which can be viewed as a string starting from the tree root and ending at the cut leaf location,
possibly with branches attached to it. Inserting this expansion into (A.5) we find
0Ty X
0X

logdet (—%=) = const + gTr M + g*(Tr My — $Tr M) + g (Tr My —Tr My My + 5 Tr M) .

(A.11)
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Under each trace we glue together the strings in the product and then short-circuit the total
string by identifying the end points and summing over the corresponding indices (including

integration over time). As a result we collect

Tt My = —3(D-2)tr (XoxeX,xe) ,
(A.12)
—ATr M7 = —L(D-1)tr (wxewxe)
and, after several cancellations,
TrMs; = (B-2)tr(XoxeX,xewxe) + str(eXoxe)xewxX,
— ttr(eeXox)xewxX, — ttr(XyxeX,xwxee)
= (B-1)tr(XoxeXoxewxe) + str(eXoxe)xewx X, , (A.13)
~TrMi My = (B—1)tr (XyxeX,xewxe) ,

3
I M} = H(D-1)tr(wxewxewxe) .

In the four contributions to Tr M3, the fourth term is of the same form as the first one because
w being constant can be moved past . The other two contributions are loops with a branch
attached. The third term vanishes because the trace is proportional to 9;%(0) which gets

regularized to zero. Finally, the second term is of the form

f(t’,t”)/dt e(t—t e —t)e(t—t") = —%f(t’,t”)/dt e(t—t") = 0. (A.14)

Collecting all remaining contributions, we end up with two 2-leg loops at O(g?) and two

3-leg loops at O(g?):

expression FP | MSS Jac
g2 tr(wxewxe) —3| -% | 3(1-D)
g*tr (Xoxe X, xe) 0| -% | 32-D)
Ftr(wxewxewxe) : L | 4(D-1)
g3tr(Xa><sXaxswxe) 0 3 D—2

Here, “FP”, “MSS” and “Jac” denote the weight of the individual expressions contributing
to the logarithm of the Faddeev—Popov, Matthews—Salam—Seiler and Jacobian determinant,
respectively. Fortunately, the sum of the FP and MSS columns agrees with the Jac column
provided that again D—2 = 7, singling out the critical dimensions once more. This provides a
nontrivial check on the express1on (3.35) of the Nicolai map, which formally is guaranteed to
work out by the construction scheme. Finally, we remark that the matching also works in the
temporal gauge, since the Faddeev—Popov determinant becomes trivial but the first and third

expression in the table vanish for w = 0 anyway.
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