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We investigate the effect of degenerate atomic states on the exciton delocalization of dipole-dipole
interacting Rydberg assemblies. Using a frozen gas and regular one-, two-, and three-dimensional
lattice arrangements as examples, we see that degeneracies can enhance the delocalization compared
to the situation when there is no degeneracy. Using the Zeeman splitting provided by a magnetic
field, we controllably lift the degeneracy to study in detail the transition between degenerate and
non-degenerate regimes.

I. INTRODUCTION

The formation of states where an electronic excita-
tion is coherently delocalized over several particles plays
an important role in many systems. Examples include
light harvesting in photosynthesis [1], molecular aggre-
gates [2, 3], quantum dot arrays [4, 5], metallic nanopar-
ticles [6], and Rydberg atoms [7–10]. These coherent
collective states are formed by the interaction of tran-
sition dipoles of the individual particles. The relevant
transition dipoles connect two eigenstates of a particle
with different energy, and are obtained by evaluating the
dipole-operator between the respective states. Typically,
delocalized states strongly modify the absorption proper-
ties and allow an initially localized excitation to be trans-
fered along the assembly of particles.

Because of their relevance for light harvesting, the delo-
calization properties of assemblies of molecules have been
extensively studied for many years. For most molecules
of interest, within each constituent atom only two elec-
tronic states participate (typically the first electronically
excited state and the electronic ground state), resulting
in a single relevant transition energy for the molecule.
However, in all of the systems mentioned above, the sin-
gle particle transition energies can become degenerate.
In the molecular case such degenerate transition energies
can be due to an underlying symmetry [11–14]; similar
symmetry-induced degeneracies are present in quantum
dots and metal nano-particles. The spherical symmetry
of atoms results in degenerate angular momentum eigen-
states. As a result, the dipole-dipole interaction can lead
to strong mixing of all degenerate or nearly-degenerate
many body states.

In this paper we investigate the effect of such degen-
eracies on the eigenstate delocalization properties of an
assembly of N particles. As a paradigmatic system we
take an assembly of Rydberg atoms. These interact
over micron-scale distances due to their large dipole mo-
ments, and furthermore these interactions can be tuned
across several orders of magnitude by changing the prin-
ciple quantum number. Nearly arbitrary arrangements
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FIG. 1. (a) Energy structure of a single Rydberg atom
in the relevant subspace without (left) and with (right) an
applied magnetic field. The l = 0, m = 0 levels are set
to be at zero energy while the l = 1, m = 0 state sits at
energy ε. (b) Definition of the angles that enter the interaction
matrix elements. The angles θij is defined with respect to the
quantization axis, while the angle φij is given with respect to
an arbitrarily chosen x-axis. When a magnetic field is present,
we choose the quantization axis ~z|| ~B. (c) We structure our
study around four generic arrangements: a three-dimensional
random gas and one-, two-, and three-dimensional regular
lattice arrangements.

of atoms with relative distances on the order of a few
micrometers are possible. The high degree of controlla-
bility makes the Rydberg assemblies perfect systems to
investigate delocalized excitonic states [7, 15–21]. We re-
cently studied the eigenstates of a Rydberg gas without
considering degenerate sublevels, and found that many
eigenstates are delocalized over a considerable fraction of
the Rydberg atoms [19, 20].

The influence of degenerate sublevels can be modified
by the introduction of a static magnetic field. In the
strong field limit, the magnetic sublevels are separated by
Zeeman splittings exceeding the interaction strengths, re-
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sulting in the non-degenerate system studied previously;
by varying the magnetic field we can therefore study the
effect of these degeneracies in a controlled fashion. We
find that the delocalization is enhanced by the degen-
eracies at zero field, resulting in even larger delocaliza-
tion lengths. Surprisingly, these grow even further at
small but non-zero magnetic fields, before reducing to the
B →∞ limit studied in Refs. [19, 20] at higher fields. To
better understand the origin of these observations we use
one-, two-, and three-dimensional lattice arrangements of
the atoms [22–26] to systematically probe delocalization
in systems ranging from the case we previously studied
– corresponding to a disordered three-dimensional lat-
tice with fractional filling – to fully structured or low-
dimensional systems. By applying also a magnetic field
as we transition from regular to irregular atomic posi-
tions we can obtain further insight into the delocalization
properties of this system.

II. INTERACTING RYDBERG ATOMS

The role of atomic degeneracies in delocalization can
be clearly studied using the spin-independent Rydberg
states |ν, l,m〉, where ν denotes the principal quantum
number, l the orbital angular momentum, and m the
corresponding magnetic quantum number. The simplest
case involves interacting s- and p-states, i.e. l = 0 and
l = 1, with the same ν. Without loss of generality we
choose the m quantization axis to be the same for all
atoms. There are two manifolds of states for each atom:

| ↑,m〉 ↔ |p,m〉 with m = 0, ±1 (1)

| ↓,m〉 ↔ |s,m〉 with m = 0. (2)

We set the energy of the s-state, which does not depend
on magnetic field strength, to be the reference (zero) en-
ergy. The p-state energies depend linearly on an applied
magnetic field via the Zeeman shift,

εm(B) = ε+ µBmB, (3)

where ε is the energy difference between the field-free p-
and s-states. The level structure of our effectively two
level system is shown in Fig. 1(a) and (b).

We consider an interacting system of N of these two-
level atoms, described by the Hamiltonian

H =

N∑
α=1

H(α) +

N∑
α=1

∑
β<α

V (α,β), (4)

where H(α) denotes the Hamiltonian of particle α and
V (α,β) is the dipole-dipole interaction between the atoms,

V (α,β) =
~µα · ~µβ
R3
α,β

− 3
(~µα · ~Rα,β)(~µβ · ~Rα,β)

R5
α,β

. (5)

Here, ~Rα,β is the distance vector between the two parti-
cles and Rα,β denotes its magnitude.

We are interested in the situation when there is one
excitation in the system. Consequently, we choose ba-
sis states with one atom excited to the p-state and the
remaining atoms still in the s-state. We denote these
states

|j,mj〉 ≡ |s, 0〉 · · · |p,mj〉 · · · |s, 0〉, (6)

where j identifies the atom which is excited to the p-
state. The matrix elements of the Hamiltonian (4) in
this basis are then given by

〈j,mj |H|i,mi〉 =δjiδmjmi
εmj

(B) +
µ2
sp

R3
ji

M
mj ,mi

j,i . (7)

Here we have introduced the transition dipole moment
µsp = 〈ν, l = 0|r|ν, l = 1〉 and a matrix element encoding
the relative orientation of the atoms with respect to one
another and with respect to the quantization axis,

M0,0
i,j =

1− 3 cos2 θij
3

(8)

M+1,+1
i,j = M−1,−1i,j =−

M0,0
i,j

2
(9)

M−1,0i,j =
e−iφij

√
2

cos θij sin θij (10)

M+1,0
i,j =−M−1,0i,j (11)

M−1,+1
i,j =

e−2iφij sin2 θij
2

. (12)

Interchanging indices results in complex conjugation.
The angle between the quantization axis and the distance

vector ~Rij is θij , and φij is the azimuthal angle between
the x-axis and the projection of the distance vector onto
the x-y plane (see Fig. 1(c)).

III. EIGENSTATES AND DELOCALIZATION
MEASURE

The eigenstates |ψ`〉 and eigenenergies E` follow from
the time-independent Schrödinger equation

H|ψ`〉 = E`|ψ`〉. (13)

In the basis (6) the eigenstates can be written as

|ψ`〉 =
∑
j

∑
m

c
(`)
j,m|j,m〉. (14)

The absolute square of the coefficients c
(`)
j,m is the prob-

ability to find the excitation on particle j in the specific
state | ↑,mj〉. We obtain the eigenenergies E` and the

eigenstate coefficients c
(`)
j,mj

(c.f. Eq. (14) and Eq. (6)) by

diagonalization of a matrix with matrix elements given
by 〈j,mj |H|i,mi〉 of Eq. (7).

We are interested in the overall delocalization of the
excitation, roughly corresponding to the number of atoms
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FIG. 2. The frozen Rydberg gas. All plots are for N = 1000 Rydberg atoms averaged over ∼ 103 realizations. (a) Probability
densities for the PTM measure, displayed for several magnetic field strengths. The black curve gives the B → ∞ reference
value, obtained by setting the coupling between m-levels to zero. (b) Probability densities to find a certain PTM value for an
eigenstate with a certain energy, for the same magnetic fields as in panel (a). (c) Comparison between the B = 0 and B = 50

limiting cases. The energies are given in units of Eref = µ2
sp/3a

3
ref where aref = (3/4πN)1/3L is the Wigner-Seitz radius. The

zero of energy is at the energy ε of the non-interacting atoms, which is introduced in Eq. (3).

which participate in a given eigenstate. This is given by
the probability that a particle is in the ↑-manifold. Since
the decomposition into individual m levels is irrelevant to
the overall excitation delocalization, we sum over these
levels to obtain the probability that the excitation is on
particle j,

P
(`)
j =

∑
m

|c(`)j,m|
2. (15)

A convenient measure of delocalization can be obtained
by counting the number of atoms involved in a state `
that have an excitation probability larger than a chosen
threshold Pthresh. We will refer to this as the “population
threshold measure” (PTM),

N (`)
PTM =

∑
j

Θ(P
(`)
j − Pthresh), (16)

where Θ denotes the Heaviside step function. We use
Pthresh = 1/N ; this gives a PTM limit of N in a fully
delocalized, equally distributed, state, and 1 for a state
localized on a given atom.

In our previous work we used the so-called “coherence”
measure to quantify the delocalization of the excitation.
Since the PTM measure works directly with the popula-
tions, it is more suitable for the present suituation where

we are not interested in the coherence properties of the
reduced density matrix. In the Supplemental Material of
Ref. [20] we compared these measures for the case with-
out m-levels, and observed that they are essentially pro-
portional.

IV. THE FROZEN RYDBERG GAS

In a frozen Rydberg gas the atoms are randomly dis-
tributed within a certain volume and, due to the typical
ultracold laboratory conditions and relevant time scales,
remain motionless during the course of excitation and
measurement of delocalized states. For a representative
study we considerN = 1000 Rydberg atoms with random
positions placed uniformly inside a cubic volume with
length L; the results are nearly independent of boundary
conditions [19, 20]. It is convenient to use the Wigner-
Seitz radius aref = (3/4πN)1/3L as the unit of distance,
and for the unit of energy based on typical dipole-dipole
interaction strengths we use Eref = µ2

sp/3a
3
ref . We aver-

age over 103 independent random gas realizations.
In Fig. 2 the dependence of the PTM measure on the

magnetic field strength is shown. Fig. 2(a) shows the
probability density for finding a certain PTM for several
magnetic field strengths. For all magnetic field strengths
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FIG. 3. Same as Fig. 2(b), but for small magnetic fields. The
vertical bars indicate the positions of the Zeeman energies,
±mB.

there is a large fraction of states with PTM on the order
of 150-200, i.e. the delocalization is spread over nearly
20% of the atoms in the gas. The PTM distribution is
shifted towards larger values for all finite B-fields in com-
parison to the B →∞ case, to which they converge. The
peak at low PTM stems from clusters – dimers, trimers,
etc.– formed from strongly-interacting atoms in relatively
close promixity. These cluster states decouple from the
system, leaving a residual gas with more homogenous
inter-particle interactions, which in turn lead to large ex-
tended states [20].

This interpretation is supported by the energy-resolved
PTM distributions shown in Fig. 2(b). These reveal im-
mediately that the delocalized states cluster around zero
energy while the cluster states with low PTM are pri-
marily found in the wings of this distribution. One sees
additional structure in the PTM distributions: at B = 0
the distribution has an asymmetric double-peak struc-
ture and is even broader than in the B → ∞ case. For
intermediate B the distribution splits into three peaks
whose centers follow the Zeeman energies proportional
to the magnetic field strength B. For B & 10 the three
well-separated peaks each have states with only a single
m value. These peaks have a similar shape, but different
width and “orientation”. While B = 10 is not quite suf-
ficient to reach the asymptotic B → ∞ value, B = 50,

shown in panel (c), is. One clearly sees that the m = ±1
peaks are mirror images of the m = 0 peak with half
the width, features which result from the form of the in-
teraction matrix. In the B → ∞ limit the off-diagonal
couplings in M can be ignored, and thus the Hamilto-
nian separates into three blocks, with energies mB on
the diagonal and off-diagonal elements given by M0,0

i,j ,

M−1,−1i,j and M+1,+1
i,j . From Eqns. (8)–(12) one sees that

M−1,−1i,j and M+1,+1
i,j have the same sign and magnitude,

but a different sign and half the magnitude of the M0,0
i,j

interaction. It is clear that the PTM distributions for
all three blocks are identical, since the interactions are
proportional. Mirrored below the m = 0 distribution we
show the asymptotic B →∞ result [20]. It is identical to
the B = 50 m = 0 distribution, confirming the validity of
the results of Ref.[20], since the non-degenerate regime is
reached in the limit of moderately high magnetic fields.
Specifically, at typical Rydberg densities the interaction
strength is on the order of a few MHz, which requires a
magnetic field on the order of 10G to reach the separated
m-level regime.

To study in more detail the splitting of the asymmetric
B = 0 distribution into three peaks, in Fig. 3 we focus on
the region B ≤ 1.1. Surprisingly, the apparently mono-
tonic decrease in delocalization extent with increasing B
seen in Fig. 2 does not hold all the way to B = 0, and
in fact the largest delocalized states are seen for small
but non-zero fields with partially lifted degeneracy. For
B . 1 the magnetic field is too weak to separate the
three distributions fully, resulting in a complicated dis-
tribution with several maxima culminating in a clearly
emerging triple peak structure as B grows to ≈ 1. The
peak centered at zero detuning has a similarly asymmet-
ric form as it does when B = 0, but with a smaller width
and reduced maximum value. The right peak (m = +1)
has a strongly asymmetric shape and exhibits a similar
double peak structure as the m = 0 peak. In contrast,
the left peak (m = −1) has no double peak structure and
its asymmetry is mirrored with respect to the m = +1
peak. Recall that in the large B-field case these two peaks
are identical.

From these calculations we see that the degenerate sub-
levels increase the extent of delocalization in and add
additional structure to the random Rydberg gas. Their
interplay with a magnetic field leads to complicated be-
havior, even including an increase in the delocalization
length at small magnetic fields and hence a small lifting
of the degeneracy, which eventually converges to the non-
degenerate B → ∞ case studied in Refs. [19, 20]. The
ability to use an applied magnetic field to subtly tune
both the level structure and delocalization properties of
such a gas provides one way of comparing the degenerate
and non-degenerate limits. To better understand the ef-
fect of the degenerate atomic transitions we now consider
different lattice arrangements.
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FIG. 4. Distribution of PTM for (a) a 1D chain, (b) a 2D and (c) a 3D lattice. In all three cases we have roughly the same
number of atoms as in the frozen gas case (990 atoms in the 1D case (Nx = 990), 992 atoms in the 2D case (Nx = 32, Ny = 31),
and 990 atoms in the 3D case (Nx = 11, Ny = 10, Nz = 9), and the quantization axis is set parallel to the magnetic field,
pointing along the z-direction. The blue bars are the case without magnetic field (B = 0) and the magenta (mirrored) bars are
the infinite B-field limit. The bottom row shows the upper plots on the same x-axis.

V. ATOMS ARRANGED ON A LATTICE

1. One-dimensional chain

We consider N equidistant atoms placed in a one-
dimensional (1D) lattice. We first note that the angle

between the quantization axis and the vector ~Rij is the
same for all pairs of atoms, i.e. θij ≡ θ and φij ≡ φ for
all i and j. The Hamiltonian can therefore be simplified
to

H =
∑
i,j

∑
m,m′

[
εm(B)δm,m′δij +

µ2
sp

R3
ij

Mm,m′

]
|i,m〉〈j,m′|,

(17)

where Mm,m′
= Mm,m′

i,j are independent of atom indices.
This has far-reaching consequences. As shown in ap-
pendix A, the PTM distribution is actually independent
of the direction and strength of the magnetic field, in pro-
nounced contrast to the three-dimensional gas, and even
though the eigenvalues depend on the magnetic field.
This holds even when the atoms are not placed equidis-
tantly. The PTM for N = 990 is shown in Figure 4(a)
for B = 0 and B →∞ (mirrored below). The PTM dis-
tribution is centered around N/2, in excellent agreement
with the analytic estimates discussed in appendix B.

2. Two-dimensional lattice

We now place the atoms in a two-dimensional (2D)
rectangular lattice in a plane perpendicular to the quan-
tization axis so that θij = π/2 for all i, j. In this case

M±1,0i,j = M0,±1
i,j = 0, and thus the m = 0 subspace de-

couples from the m = ±1 states. Within the m = 0
subspace the interaction µ2

sp/3R
3
ij is isotropic, and was

previously studied without the lattice arrangement in
Ref. [19]. The m = 0 PTM distribution is independent of
B. In Figure 4(b) we contrast the full PTM distribution
for the case B = 0 ( top panel) with the B → ∞ case
(bottom panel), with the magnetic field perpendicular to
the lattice. The two distributions are not equal due to
the m = ±1 states present only in the B = 0 case. By
comparing the differences between the two mirrored dis-
tributions, it is apparent that these states both increase
the number of highly delocalized states and give rise to
several somewhat more localized states which are com-
pletely absent in the B → ∞ case. Unlike in the 1D
case, in the 2D case B 6= 0 both the eigenstates and the
eigenenergies depend on the magnetic field orientation.

3. Three-dimensional lattice

A three dimensional lattice (3D) bears the closest re-
semblance to the frozen gas. Fig. 4(c) shows that the
coupling between m levels still has only a a small impact



6

on the delocalization, which, as in the 1D and 2D cases
is characterized by PTM values around N/2, although in
3D the distribution is broader. In marked contrast to the
1D and 2D cases there are now states with larger PTM
values than in the infinite B-field limit. We therefore see
that the main finding of the previous section, that the de-
generate sublevels at B = 0 lead to larger delocalization
than in the non-degenerate B →∞ limit, only occurs for
the 3D arrangement.

There are several differences between the 3D-lattice
and the random gas PTM distributions. Most notably,
the lattice PTM distribution consists only of a single-
peaked and relatively narrow distribution centered at a
high PTM value of approximately N/3; in contrast, the
random gas case exhibits a very broad distribution with
two major peaks at PTM values around 2 and at ≈ N/5,
First, there is a broad distribution of PTM values, with
peaks at 0 and ∼ 200 ≈ N/5. These differences are
explained by the absence of strongly interacting clusters
in the lattice.

To study the transition from the 3D lattice case to the
frozen gas, we introduce now a lattice with a partial fill-
ing fraction f , which introduces clustering effects into the
lattice. For a given f we adjust the size of the lattice such
that we always have the same total number of atoms in
the system. In Fig. 5 we show the PTM distribution for
several filling fractions and magnetic fields. To smoothen
the distribution with high filling fraction we added a
small (5% of the lattice constant) disorder in the position
of the atoms around the lattice positions. As expected,
the peak in the PTM distribution starts to broaden and
shifts to smaller values as f decreases. For f = 0.09 a
peak at small (< 50) PTM values develops, becoming
more pronounced at higher B values. We note that for
B = 0 and for large magnetic field (B = 50) the distri-
bution at small filling fraction (f = 0.01) agrees nearly
perfectly with the frozen gas distribution (shown as black
line). Curiously, at intermediate magnetic field strengths
the distributions with small filling fractions have peaks at
smaller PTM values than the frozen gas case, suggesting
here also a complicated interplay between the degenerate
sublevels and their anisotropic interactions, the lattice
structure, relative alignment of the lattice and magnetic
field, and magnetic field strength.

VI. CONCLUSIONS

In this paper we have explored the influence of de-
generate sublevels on the extent of single exciton state
delocalization in a Rydberg atom assembly. Taking the
degenerate sublevels into account, we find larger delo-
calization than for the separate m-level manifolds in the
three-dimensional system. The extent of this delocal-
ization can be controlled via an external magnetic field,
which tunes the system between the degenerate m-level
and decoupled m-level limits in the B = 0 and B → ∞
limits, respectively. In one and two dimensions the in-

FIG. 5. Transition from lattice to gas. Comparison of a
3D lattice with different filling fractions (numbers and colors
provided in the upper panel) to the frozen Rydberg gas (black)
for different strengths of the magnetic field (provided in the
panels). For all cases we fix the number of atoms at N = 990.
For the lattice we apply 5% uniform fluctuations around the
perfect lattice positions.

clusion of m-level degeneracies does not lead to much
larger delocalization lengths, and we find that the mag-
netic field orientation does not influence the delocaliza-
tion properties of the system at all in one dimension,
and only weakly in three dimensions. The situation in
two dimensions is very different; the strong dependence
on the direction of the external magnetic field here is im-
portant since this system mimics the situation of regular
2D molecular arrangements on surfaces. For example, for
PTCDA-molecules on a KCl surface, all molecular transi-
tion dipoles are oriented along the diagonal of the lattice
[27, 28], an interesting situation which can be simulated
in the Rydberg assembly.

Our choice of s and p states to study exciton delocal-
ization was made in order to introduce a tractable level
of degeneracy to the system. If, instead, we had cho-
sen p and d states as ↓ and ↑ states, respectively, then
in addition to a small increase in the degeneracy of ↑
states, we would introduce doubly degenerate ↓ states,
leading to an exponential growth in the number of ag-
gregate basis-states. Such a case is challenging to treat
numerically, but is the typical situation in molecular sys-
tems. Inclusion of Rydberg fine structure also leads to
such a scenario for all possible states, since the spin de-
gree of freedom leads even to a doubly degenerate s state.
Exploration of this physics would be both theoretically
interesting along the lines of choosing other degenerate
states, but is also necessary in order to treat realistic
experimental conditions [29, 30]
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and H. Ott, arXiv preprint arXiv:2012.12739 (2020).

[30] V. Lienhard, P. Scholl, S. Weber, D. Barredo,
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Appendix A: Eigenstate structure in the 1D chain

The Hamiltonian of a 1D-chain, Eq. (17), can be writ-
ten in matrix form as

H(B) = ε(B)⊗ I +M ⊗ V (A1)

Here a single underbar denotes a 3 × 3 matrix and a
double underbar denotes a N×N matrix. The symbol ⊗
denotes the Konecker product between matrices. These
matrices are given by

ε(B) =

 −µBB 0 0
0 0 0
0 0 +µBB

 (A2)

M =



3 cos2 θ − 1

6

e−iφ√
2

cos θ sin θ
e−2iφ sin2 θ

2
eiφ√

2
cos θ sin θ

1− 3 cos2 θ

3
−e

−iφij

√
2

cos θ sin θ

e2iφ sin2 θ

2
− e

iφ

√
2

cos θ sin θ
3 cos2 θ − 1

6


(A3)

The matrix V contains the elements

Vij = µ2
sp/R

3
ij (A4)

and I is the N ×N unit matrix.
In a first step we can diagonalize the matrix V :

V~a(α) = E(α)~a(α) (A5)
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where α labels the N eigenvectors. Then Eq. (A1) can
be written as

H(B)[I ⊗ ~a(α)] = ε(B)⊗ ~a(α) + E(α)M ⊗ ~a(α) (A6)

=
[
ε(B) + E(α)M

]
⊗ ~a(α) (A7)

In the next step we diagonalize the N 3 × 3 matrices
ε(B) + E(α)M :

[
ε(B) + E(α)M

]
~bα,β(B) = Eα,β(B)~bα,β(B) (A8)

Here β labels the 3 eigenvectors of each β-block. With
this we finally can write:

H(B)[~b(α,β)(B)⊗ ~a(α)] = E(α,β)(B)[~b(α,β)(B)⊗ ~a(α)]
(A9)

We can combine the two labels α und β into a single label
` and define as eigenfunctions.

~c(`) = ~b(α,β) ⊗ ~a(α) (A10)

From this we can make the identification

c
(`)
j,m = b(α,β)m a

(α)
j (A11)

Since we are interested in the populations on each site
(see Eq. (15) we find

P
(α,β)
j =

∑
m

|c(`)j,m|
2 =

(∑
m

|b(α,β)m |2
)
|a(α)j |

2 (A12)

Since
(∑

m |b
(α,β)
m |2

)
= 1 we can finally write

P
(`)
j = |a(α)j |

2 (A13)

From this one sees that the populations are independent
of the magnetic field strength and direction. They are
given by the m-level independent Hamiltonian V , which
corresponds to isotropic interaction.

Alternative considerations using B = 0: With B = 0 it
is convenient to choose the quantization axis such that all
coupling elements (M0,±1

i,j , M±1,0i,j and M±1,∓1i,j ) vanish.
This happens when the quantization axis is parallel to
the chain (θ = 0). That means that the m = −1, m = 0
and m = +1 states are uncoupled and the Hamiltonian
has a block-diagonal form, where each block belongs to
a specific m-state. Each block can be diagonalized inde-
pendently. From the definition of the M

mi,mj

i,j one sees
that the three sub-blocks have the form

H(m) =
∑
i,j

[
εδij +

µ2
sp

R3

1

|i− j|3
M (m)

]
|i,m〉〈j,m| (A14)

with M (0) = 1/3 and M (±1) = −1/6, and where R is
the lattice spacing. Since M (m) is independent of the
atomic position i and j, it simply scales the interac-
tion strength. Therefore, one has identical eigenstates
for each sub-Hamiltonian.

Appendix B: PTM estimate for the 1D chain

To analytically estimate the extent of the delocaliza-
tion we take only the nearest neighbor interaction into
account. The squares of eigenfunction coefficient which
are used in the calculation of the PTM then are given

by |c(`)j |2 = 2/(N + 1) sin2(πj`/(N + 1)). One sees
that roughly half of them are larger than the threshold
Pthresh = 1/N . Therefore, we expect the eigenstates to
have a PTM value of approximately N/2.
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