
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 S

ep
te

m
be

r 
20

21
 

royalsocietypublishing.org/journal/rstb
Introduction
Cite this article: Vernes SC, Janik VM, Fitch
WT, Slater PJB. 2021 Vocal learning in animals

and humans. Phil. Trans. R. Soc. B 376:
20200234.

https://doi.org/10.1098/rstb.2020.0234

Accepted: 5 July 2021

One contribution of 21 to a theme issue ‘Vocal

learning in animals and humans’.

Subject Areas:
behaviour, neuroscience, cognition

Author for correspondence:
Sonja C. Vernes

e-mail: scv1@st-andrews.ac.uk
© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Vocal learning in animals and humans

Sonja C. Vernes1,2,3, Vincent M. Janik1, W. Tecumseh Fitch4 and
Peter J. B. Slater1

1School of Biology, The University of St Andrews, St Andrews, UK
2Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen,
The Netherlands
3Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
4University of Vienna, Vienna, Austria

SCV, 0000-0003-0305-4584; VMJ, 0000-0001-7894-0121; WTF, 0000-0003-1830-0928;
PJBS, 0000-0001-8187-7514
1. Introduction
That some animals can learn the sounds they produce has been known for
millennia [1], most notably through the ability of birds like parrots to copy
human speech. But just how widespread vocal learning is, and how it impacts
on the natural lives of animals that show it, is a subject that has only been illu-
minated relatively recently and continues to raise interesting and challenging
questions, many of them investigated by articles in this issue.

Almost 250 years ago, in a paper published in this very journal, observations
by Daines Barrington (then Vice President of the Royal Society) raised such ques-
tions (figure 1) [2]. However, it was not at that stage possible to get far towards
answering them. Barrington was writing before the birth of Darwin and so knew
nothing of the major theoretical framework within which much of current bio-
logical research is conducted. Despite this, he had an insightful view of the
capabilities of at least some bird species, pointing out that ‘Notes in birds are
no more innate, than language is in man, and depend entirely upon the matter
under which they are bred, as far as their organs will enable them to imitate
the sounds which they have frequent opportunities of hearing’ ([2], p. 252).

Wrens and goldfinches look very different and their songs are extremely dis-
tinctive so a good observer such as Barrington had no difficulty in concluding
that one of the latter had learnt the song of the former (see Page 256 in figure 1).
Moving on from this discovery to looking at the role of this learning ability in
the natural lives of animals needed later technical advances. Ways of recording
sounds and replaying them lay at least a century and a half in the future. Indeed,
even then, these were extremely cumbersome and far from easy to use. Thorpe
[3] carried out one of the first experimental studies of vocal learningand, in addition
tousing the tape recorderswhichhad recentlybeendeveloped, he also recorded the
songs of his chaffinches with a stylus on lacquer-coated discs. He found this in
some ways preferable as one could see where the needle had registered a sound
on the disc without going right through the recording to find it. Thorpe was also
the first to use the sound spectrograph, which revolutionized sound analysis in
the mid-twentieth century. Now, of course, such studies no longer require com-
mitted expensive pieces of equipment like spectrographs but can be carried out
on a personal computer such as we all have on our desks; nor do we need tape
recorders when the sounds can be registered directly on hard drives.

That many people have become fascinated by vocal learning is at least
partly because it is a striking feature of our own species, and one fundamental
to its success. Yet it is also one for which evidence in our closest relatives has so
far proved elusive. While research into birds has continued to lead the field, in
recent years studies in mammalian species have increased and enabled more
cross taxa comparisons [4]. Studying vocal learning in a wide range of animals
has the potential to shed light on why it arose so extraordinarily productively in
our own recent evolution [5]. The research papers and reviews in this issue
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Figure 1. Experiments and observations on the singing of birds, by the Hon Daines Barrington, Vice President of the Royal Society. January 10, 1773, pp. 249, 256 [2].
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illustrate the many different approaches that can be taken to
vocal learning across diverse species. This collection presents
a mix of review and theory papers, alongside empirical
research papers concerned with experimental and modelling
approaches to the study of vocal learning. We have sought
to include papers that address or discuss all of the groups
in which the trait has been identified, including oscine and
non-oscine birds, cetaceans, pinnipeds, bats, elephants
and humans.

2. Frameworks for vocal learning across species
In this Introduction, we shall attempt to draw together some
of these threads, starting with several articles that look at the
phenomenon in a broad context and across a wide variety of
species to develop frameworks for study. The expression
‘vocal learning’ has in the past been used simply to refer to
the use by one animal of sounds copied from others. How-
ever, it has become clear in the last couple of decades that
learning impinges on the use of sounds by animals in numer-
ous ways, of which this is only one, and a number of
suggestions have been made on how these should be classi-
fied during that time [6–9]. Vernes et al. [10] review and
discuss these to come up with suggestions as to how the
phenomena involved should be defined and identified. This
makes it clear that the issues involved are far more complex
than whether or not a particular sound is learnt and their
discussion will provide a useful detailed framework to
guide research in the years to come. Carouso-Peck et al. [11]
ask what selective advantages contributed to the evolution
of vocal learning when many species appear to solve similar
problems without this skill. They highlight how vocal learn-
ing research has focussed mostly on songbirds in the context
of sexual selection and aim to draw attention to other vocal
learners and other contexts in which this skill is being used.
Using humans and parrots as examples, they review what
these advantages might be and conclude that increased reper-
toire sizes improve the efficacy of signals and/or allow for
flexible pruning to arrive at optimized signals. They also
hypothesize that vocal learning may have evolved because
of the advantages of cumulative vocal culture. A review by
Searcy et al. [12] emphasizes the diversity of types of vocal
learning in the 4000+ species of songbirds. Although all song-
birds are thought to be vocal production learners, they vary
considerably in the degree to which they depend upon exter-
nal input, and some songbirds such as sedge warblers can
develop apparently normal songs even lacking such input.
The degree to which deafening of young birds leads to aber-
rant song also varies between species, suggesting that the
need for auditory-motor feedback also is variable. After con-
cisely reviewing these factors, the authors propose a
taxonomy of vocal production learning in birds that allows
for degrees of vocal learning, depending upon the specific
conditions required to develop normal vocalizations.
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Lattenkamp et al. [13] provide ‘A researcher’s guide to the
comparative assessment of vocal production learning’, that
considers how vocal learning abilities are experimentally
assessed and reported in different studies, and across species.
They highlight discrepancies in reporting, suggest ways in
which reporting could be made more uniform, and propose
five factors that would increase comparability of data across
studies. The guidelines presented therein would facilitate
future meta-analyses and comparative studies if widely
adopted, enriching our understanding of vocal learning.
rnal/rstb
Phil.Trans.R.Soc.B
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3. Distribution of vocal learning in birds and
mammals

Moving on from these general considerations, several articles
examine the distribution of vocal learning in birds and mam-
mals, the only two classes in which it has so far been
demonstrated. In addition to parrots and songbirds, evidence
for vocal production learning has recently come to light in a
number of other bird groups, showing that its occurrence is
now more widespread than realized even a few years ago.
ten Cate [14] reviews this evidence in non-oscine birds,
evaluating the evidence and highlighting unusual examples
from across this group. This suggests a number of species
that deserve further study and gives new insight into the poss-
ible evolution of vocal learning in this group. A particularly
surprising finding, described in detail for the first time, to
our knowledge, by ten Cate & Fullagar [15], is clear evidence
for production learning in the Australian musk duck (Biziura
lobata). The musk duck belongs to a basal clade in avian phy-
logeny and no other Anseriform species has been described as
showing vocal learning. The musk duck is unusual in that it is
altricial and also shows lekking behaviour, but just why it
evolved vocal learning must await detailed field studies.
These two papers support the hypothesis that vocal learning
has evolved independently several times among the birds,
rather than evolving once and being lost many times.

Rather few species have been described in which social
guidance is involved in influencing vocal learning, most
obviously humans and, among songbirds, brown-headed
cowbirds [16]. But this may stem from the subtlety of the
interactions involved so that the possibility has not been
examined in many. Carouso-Peck & Goldstein [17] have
looked at a wide variety of songbirds and identified several
features that make such influences likely. They thus pinpoint
a group of species, scattered across the phylogenetic tree of
songbirds that deserve study from this viewpoint.

In 1997, Janik & Slater [18] published a highly cited review
of mammalian vocal learning. Now, almost 25 years on, Janik
& Knörnschild [19] revisit and update the evidence for
vocal learning across mammals, dealing in particular with
those non-human mammals where the evidence is clear:
cetaceans, pinnipeds, elephants and bats. The abilities of
other mammals are also considered, including primates,
mole-rats, goats and mice. The authors emphasize the benefits
of increasing numbers of studies addressing vocal learning in
mammals, and suggest that addressing variability in learning
skills between these species is a key issue for the future.

Dolphins present one of the most well-established examples
of mammalian vocal learning. Famously, dolphins use learned
calls, known as signature whistles, in the context of individual
recognition [20]. Oswald et al. [21] investigated species
differences inwhistle contours of two closely related, sympatric
species of common dolphin, Delphinus delphis and Delphinus
bairdii. Using a large number of acoustic recordings from the
wild, the authors identified distinctivewhistle modulation pat-
terns that each species uses. They suggest that these differences
may facilitate species recognition and be culturally driven—an
interesting area for future vocal learning studies in dolphins.

Following initial reports of production learning, Stoeger
& Baotic [22] present to our knowledge, the first evidence
for vocal usage learning in African and Asian elephants,
reporting results from training sessions in which the animals
vocalize in response to trainer cues. Several of the animals
were able to give different vocalizations in response to differ-
ent cues, and some developed novel vocalizations in this
paradigm. This adds to the evidence that usage learning is
widespread in mammals and birds.

4. Vocal learning early in life
A continuing interest in vocal learning concerns precisely
when during ontogeny animals learn the sounds they pro-
duce, with evidence from some of a very restricted sensitive
period and in others of learning throughout life. Several
papers here examine learning early in life. It is often assumed
that the sensitive period for vocal learning in birds com-
mences sometime after hatching. However, as the paper by
Colombelli-Negrel et al. [23] makes clear, embryos of various
species can perceive and respond to sounds in ovo. The
species in the study are few, but highly varied, including a
Darwin’s finch, two fairy wrens, a penguin and a quail. All
show habituation in heart rate response to repeated conspeci-
fic sounds heard in the egg. There was a reduction of heart
rate in two vocal learning species played calls of their own
or of another species, whereas two non-learners only
responded to their own—an interesting glimpse of what
may turn out to be an important widespread difference
when tested on a greater number of species. The results
point to an area ripe for further exploration.

Zebra finches have long been a preferred species for lab-
oratory studies of vocal learning and are known to learn
their songs early in life. If housed with their parents, young
males learn precise copies of their father’s song, often includ-
ing the exact sequence of the elements involved. The study by
Mol et al. [24] comes up with the interesting, and somewhat
surprising, result that recognition of the father’s song persists
despite various manipulations of its sequence. Thus, while
birds clearly code sequential information when they learn
their fathers’ songs, syllable sequence does not appear impor-
tant for its subsequent recognition.

Among mammals, pinnipeds have long been thought
capable of vocal learning, based on the remarkable case of
‘Hoover’, a harbour seal that convincingly imitated human
speech [25], but controlled experimental data have been lack-
ing until recently [26], and the relevance of vocal learning in
pinnipeds’ own vocal communication has remained unclear.
Stansbury & Janik [27] report, to our knowledge, the first
experimental field study on this topic, involving playbacks
to wild grey seals at a breeding colony. They played modified
seal sounds to eight seal pups, and found both that the target
pups copied the structure of the synthetic pup calls, and their
copies became more accurate over time. Although it remains
unclear why pups should copy each other, these results
suggest that well-documented regional differences in
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pinniped vocalizations (dialects) may result from horizontal
transfer (among same-aged individuals) and not just the
more standard vertical transfer (from adults to young) typical
in birdsong.

The development of social calls of the pale spear-nosed
bat was investigated by Lattenkamp et al. [28] observing the
effects of permanent deafening. The strongest effects were
on call activity and call duration with deafened bats calling
much more but producing much shorter calls than the hear-
ing control group. The most pronounced differences were
found in early development, but some differences remained
later in life. Deafening experiments lead to a variety of
changes in an animal’s life including less social input and
potentially increased stress levels, which can make interpret-
ations difficult. However, the experiment clearly highlights
the importance of vocal input on bat vocal behaviour.

Babbling is another developmental phenomenon, promi-
nent in human vocal learning, that is also found in most
vocal learning species. As such it has been hypothesized to
be a pre-requisite for vocal learning [29]. ter Haar et al. [30]
explore evidence for and against this theory, considering
babbling from a cross-species perspective. The paper com-
pares the phenotype and potential function of babbling in
humans, birds and mammals. Enumeration of the open
questions around this topic points towards future research
that may help to resolve the link between vocal learning
and babbling, the function of babbling, and its mechanistic
underpinnings. Oller et al. focus on human early vocal
development in infants across the first 12 months of life
[31]. They present quantitative data on the occurrence of
three categories of sounds in the utterances of children;
cries/screams, laughter and protophones (potentially com-
municative vocalizations and babbling). These data
demonstrate the predominance of protophones in the reper-
toire of infants, as their occurrences far outweighed those of
utterances that fall into the other categories during this
period. Frequent protophone use was observed regardless
of the presence or absence of adult produced vocalizations
in the recording context. These papers lay a foundation for
cross-species exploration of early vocal development, which
may aid in understanding evolutionary processes that drove
language acquisition.
5. Neurobiology of vocal learning
The neurobiology of vocal learning is well studied in some
songbirds, such as zebra finches [32]. However, in many
bird and mammal species, because of the complexity of the
question under study and behaviour involved, the neur-
scientific basis of vocal learning remains unknown.
Hoeksema et al. [33] provide detailed information on the
fine structure of the grey seal brain. This neuroanatomical
atlas reveals that grey seals have a comparatively large tem-
poral lobe and cerebellum, and that the cortex is similar to
that in humans in thickness and shows the expected six-
layered mammalian structure. The study also found
expression of the vocal learning-related FoxP2 gene in the
cortex. The atlas is a valuable basis for further studies on
the mechanisms of vocal learning in grey seals.

Humans are of course the most-studied vocal learners of
all, and the brain networks underlying our vocal abilities
have been studied intensively in the 150 years since Paul
Broca identified his eponymous brain area [34]. Advances
in brain imaging have consistently enlarged the number of
brain areas involved in speech since that time, and the offer-
ing by Valeriani & Simonyan [35] applies state-of-the-art
connectivity analyses to continue this trend. They examine
the causal directionality of links in the widely distributed
brain connectivity network underlying coherent speech,
focusing on causal (rather than correlational) connections.
They find that this network reorganizes dynamically to sup-
port the increased complexity of speech production, versus
simple repetition of nonsense syllables.

6. Computational and modelling approaches to
vocal learning

Various avenues of research also arise from recent develop-
ments in computation and in modelling techniques opening
up possibilities ranging from phylogenetic studies across a
wide variety of species to computer simulations of how voca-
lizations change with time. Regarding phylogeny, Arato &
Fitch [36] make use of well-established avian molecular phy-
logenies to look at the phylogenetic signal of song learning
involving both vocal learning and non-learning species.
They find that the phylogenetic signal can be as great, or
even greater, for learnt songs as for unlearnt ones. Zandberg
et al. [37] present cultural evolutionary simulations of hump-
back whale song transmission based on empirical data
collected over 10 years in the Southern Hemisphere popu-
lation. Using observed values for interactions between
animals in the Southern and Northern Hemispheres, they
simulated the observed patterns of song evolution in both
hemispheres. They found that differences in population
number and size and the pattern of interactions are sufficient
to lead to the difference in speed of song change observed
between the North and the South. ter Haar et al. [30] also
include a consideration of how modelling approaches can
be used to test mechanistic theories of babbling behaviour
across vocal learning animals.

We hope that the current issue illustrates the vibrant and
wide-ranging research approaches currently surrounding the
topic of vocal learning. The increasing diversity of perspec-
tives, methods and study species suggests that this field
will continue to grow and innovate in the future, leading to
exciting new avenues and a clearer understanding of vocal
learning and its evolution. We have no doubt that Daines
Barrington would be fascinated by how the subject has
developed since his time.
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