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Magnetic ordering tendencies in hexagonal-boron-nitride-bilayer-graphene moiré structures
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When hexagonal boron nitride (hBN) and graphene are aligned at zero or a small twist angle, a moiré structure
is formed due to the small lattice constant mismatch between the two structures. In this paper, we analyze
magnetic ordering tendencies, driven by on-site Coulomb interactions, of encapsulated bilayer graphene (BG)
forming a moiré structure with one (hBN-BG) or both hBN layers (hBN-BG-hBN), using the random phase
approximation. The calculations are performed in a fully atomistic Hubbard model that takes into account
all 7 electrons of the carbon atoms in one moiré unit cell. We analyze the charge neutral case and find that
the dominant magnetic ordering instability is uniformly antiferromagnetic. Furthermore, at low temperatures,
the critical Hubbard interaction U, required to induce magnetic order is slightly larger in those systems where
the moiré structure has caused a band gap opening in the noninteracting picture, although the difference is less
than 6%. Mean-field calculations are employed to estimate how such an interaction-induced magnetic order may

change the observable single-particle gap sizes.
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I. INTRODUCTION

Hexagonal boron nitride (hBN) is frequently used as a
substrate for graphene devices, because it offers a flat and
clean surface and enables a high charge carrier mobility [1].
When single-layer graphene (SG) and hBN are stacked at
no or a small twist angle to each other, they form a moiré
structure due to a small lattice constant mismatch. hBN has a
lattice constant of around appny = 0.2504 nm [2] whereas SG
has a lattice constant of @ = 0.246 nm [3]. The formed moiré
structure, with lattice constants up to 14 nm [4], changes the
electronic properties of the material and has been analyzed
in several theoretical [5—-8] and experimental [9-11] papers.
For example, a band gap opens at the central Dirac points of
SG [11]. The size of the central band gap was analyzed in
calculations, which stressed the importance of the structural
relaxation of the carbon atoms within the moiré structure, but
also included many-body perturbation theory and electron-
electron interactions [6,12]. Further, secondary, gapped Dirac
points have been reported to form at the mini Brillouin zone
edges [1,8]. In addition, the wavelength of the moiré struc-
ture and the underlying potential modulation is well suited to
observe the Hofstadter butterfly, a self-similar pattern of the
energy levels as a function of a magnetic field [10,11].

In contrast to hBN-SG systems, literature on hBN-bilayer
graphene (BG) and hBN-BG-hBN moiré structures is less
extensive. In Ref. [8], the band structure of hBN-BG was
calculated in a tight binding model that explicitly took the
boron and nitrogen atoms into account. Then an effective
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continuum model was used to calculate the spectrum fea-
turing Hofstadter’s butterfly. In Ref. [13], n-layer structures
built of graphene and hBN were analyzed theoretically, in-
cluding interaction effects and a vertically applied electrical
field, which contributes to the formation of flat bands and
changes the Chern number. Further, correlated states such
as quantum anomalous Hall insulating states and fractional
anomalous quantum Hall effect states were described. In the
experimental work of Ref. [14], band gap widths were mea-
sured at the central Dirac point and the secondary Dirac points
both in hBN-SG and hBN-BG samples. It was found that in
hBN-BG the secondary Dirac points are not fully gapped,
and the particle-hole asymmetry is less pronounced compared
to hBN-SG. The measurements were accompanied by theo-
retical calculations and it was concluded that the observed
behavior can be explained qualitatively in a noninteracting
picture. Another experimental study created doubly aligned
hBN-BG-hBN with a close-to-zero rotation angle [15]. They
measured a nonlocal resistance which they attribute to a
“valley current” near the band gap at charge neutrality. In
Ref. [16], doubly aligned hBN-BG-hBN was produced with
a small twist in one hBN layer and resistivity measurements
displayed secondary Dirac points from both moiré structures.

In this paper, we want to understand hBN-BG and
hBN-BG-hBN moiré structures more comprehensively by an-
alyzing interaction-driven magnetic order [17]. This magnetic
order is relevant as a proxy for interaction-induced gaps
in BG and is a promising candidate for the cases where
such interaction-induced gaps may have been observed. In
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fact, in a number of experiments on freely suspended few
layers [18,19-21] and multilayers [22-24] of graphene, all
in Bernal stacking, evidence for an interaction-induced gap
opening was found. This was interpreted theoretically as due
to layered-antiferromagnetic order [25-31]. In theory, also SG
hosts this ordering tendency [32], but the density of states at
low energies is not as high as in the layered systems, and
hence the ordering instability does not occur under normal
circumstances. Clearly, it is of interest how this ordering ten-
dency of layered graphene is altered in the presence of an hBN
environment. The influence of the aligned hBN is twofold:
First, it modifies the band structure, which is addressed in
this paper. Second, the hBN environment leads to additional
screening of the electron-electron interactions. This effect is,
e.g., dealt with by Roesner et al. [33] and can be incorporated
in our reasoning by choosing an appropriately renormalized
interaction constant.

Our calculations for the interaction effects are restricted to
charge neutrality and zero external magnetic field. First, we
extend the hBN-SG model of Ref. [34] to a model of hBN-
BG and hBN-BG-hBN. In this process we also distinguish
between different stacking configurations. Next, we calculate
the parameters for which the interacting spin susceptibility
diverges in the random phase approximation (RPA). This pro-
vides information about the dominant magnetic order of these
systems. Finally, we compare our RPA results to mean-field
calculations, where we are able to calculate the band gap
widths of the magnetic phases.

II. METHODS

We set up a Hubbard model that describes the 7 electrons
of the carbon atoms, where each atom provides one orbital:

H = Z _t(d)c;l,rlaCRszff +U ZnR,rﬁnR,m

R, R, R
r,r,o

+ ) Nk o Criro- (1

r.R,o

The field operators c( ) annihilate (create) an electron with

spin o at a site w1th lattice vector R and basis vector r.
The atomic positions and the tight binding part including the
hopping parameter ¢(d ), which is a function of the distance d,
are constructed as explained in Refs. [35,36], a model orig-
inally used to describe twisted bilayer graphene. We fix the
interlayer distance to be dqp = 0.335 nm [3]. The interaction
is a Hubbard on-site interaction of strength U and the oper-
ators ng . are the spin-dependent electron density operators.
Although screening effects are less pronounced in graphene
materials, and therefore the nearest-neighbor interaction is
comparable to an on-site interaction [37], a description using
the on-site interaction only is justified when U is properly
renormalized [38,39].

The boron and nitrogen electrons are not taken into account
explicitly in our model. Instead, the moiré structure is mod-
eled by an effective potential term €"®N on the carbon atoms,
as proposed for hBN-SG in Ref. [34] There, a commensurate
moiré structure is assumed with adjusted lattice constants to
form a well-defined moiré unit cell. A close approximation
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FIG. 1. The “hBN potential” A, acting on the carbon sites at
position r = (ry, ry), as adapted from Ref. [34]. The carbon sites
are shown within one moiré unit cell of artificially decreased size
(Nmoire = 20).

[2 8]. But since this requires a very large
unit cell (w1th a lattlce constant a factor Npejr¢ = 56 larger

than in graphene) and extensive computational resources, we
~ 19
. . 20
(Nmoir¢ = 20), unless marked otherwise. This means each unit

cell in the moiré structure contains Ny X Nmoiré X 4 carbon
atoms. In Ref. [34] an effective potential on the carbon atoms
from the hBN layer was proposed by performing a fit to
density functional theory (DFT) results. We repeated the last
part of the fit using the same fit data points but a different
function that keeps the threefold rotational symmetry:

A, = AGIn(Gy -r+ @) 4+ sin(Gy -1 + @)
+ sin[— (G| + G,) - r + ¢]) + C. 2)

Here, G|, G, are the reciprocal primitive lattice vectors,
and A, ¢, and C are fit parameters, with best fit results
at A = Apy = 21.9 meV, ¢ = ¢ = 1.655, and C = Cg =
—4.7 meV. In the following, A, will be called the hBN poten-
tial and is shown in Fig. 1. The effective potential incorporates
A, with alternating sites on the two carbon atoms of the
honeycomb lattice,

eMBN = srAr, 3

r

with s, = 41/ — 1 for r being at an A/B site. To set up a
model of hBN-BG from this model of hBN-SG, we assume
that the substrate only affects the first graphene layer [14],
thus the hBN potential is only added on one graphene layer.
hBN-BG has two different stacking configurations, as pointed
out in Refs. [8,14]. These two structures are shown in Fig. 2,
which depicts one region of the moiré structure. For hBN-
BG-hBN moiré structures we need to differentiate between
more stacking configurations and we concentrate on those
configurations where we can determine a clear stacking axis,
as shown in Fig. 3. The hBN potential is modified on the
second graphene layer as to match a given configuration. For
example, in hBN-BG-hBN case 3 the potential on the upper
layer is multiplied by minus one and shifted by two-thirds
of the moiré cell diagonal. After having properly defined
the noninteracting model, we can now take into account the
Hubbard interaction and identify the possibility of magnetic
order in the material. We calculate the magnetic susceptibility
x™ in RPA by summing up infinitely many diagrams via the
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FIG. 2. Different stacking configurations of hBN-BG. The sec-
ond layer can be positioned such that at the corners of the moiré unit
cell (see Fig. 1) the stacking axis either goes through a nitrogen atom
[case (i)] or a boron atom [case (ii)].

exchange channel, analogous to Ref. [40], resulting in

M=+ UD )

Here, % is the polarization function

l / /
Ker.0) = 75 Y- [ gy kg 0+ o e,

&)

a matrix of the size of the number of atoms in the moiré
cell. The functions g are the bare Green’s functions, 8 = %
is the inverse temperature (kg = 1), w, @' are bosonic and
fermionic Matsubara frequencies, the integral is taken over
wave vectors k in the Brillouin zone with area €2, and ¢q is
the wave vector of the corresponding magnetic spin density
wave. The magnetic susceptibility diverges when the “Stoner
denominator,” i.e., the matrix (1 + U %) to be inverted, de-
velops a vanishing eigenvalue. This is the case for certain
critical values of T and U. Since the interaction strength is
a model parameter that is not known exactly, we can calculate
the critical interaction strength U, for fixed temperature via the
relation U, = — xi Here, x is the most negative eigenvalue of
the polarization function. U, marks the minimum interaction
strength needed for the system to be in a magnetic phase at
fixed temperature. The eigenvector x( corresponding to the
eigenvalue xj is proportional to the magnetization on each
atom, whose magnitude cannot be obtained from this analysis.
This is because all other eigenvectors become irrelevant when
the spin susceptibility diverges. As in Ref. [40] we evaluate

the Matsubara sum in x numerically and set w = 0 for the
static case and ¢ = 0 for identical moiré cells.

We also calculate the magnetic order in mean-field theory
to compare our results with the RPA calculation. For this, we
replace the spin density operator Sp . = %(nR,,T —ngry) by
its mean field S . — (S7) + 85k, and neglect higher orders
of fluctuations 0[(8S§,r)2] [41]. Further, we neglect terms in
the Hamiltonian describing charge density waves, because we
want to focus on spin density fluctuations [32]. The resulting
noninteracting Hamiltonian (up to a constant)

H =" [Hy (k) = cU(S:)8rr, ]t g Chirs (6)
r

o,k

is then solved self-consistently. This allows us to obtain mean-
field estimates for interaction-induced energy gaps. These
can then be compared with spectral gaps that derive from
the “single-particle” description, here primarily from the sub-
strate and stacking.

III. RESULTS

Before we analyze the magnetic order, it is insightful to
first understand the impact of the hBN potential defined in
Eg. (2) on the noninteracting system. In Fig. 4 we compare the
band structure of hBN-BG, with the bands of (free-standing)
BG downfolded into the mini Brillouin zone of the composite
structure. In agreement with Ref. [14], secondary Dirac points
form at the new mini Brillouin zone edges and are split up in
hBN-BG. We observe only a small particle-hole asymmetry.
In addition, a band gap opens around zero energy. The low-
energy band structure mostly determines our results of the
magnetic order and is therefore shown as a zoom-in in Fig. 5.
In this figure we see two of the four Dirac points around K in
free-standing BG that are a result of trigonal warping [37].
In both configurations of hBN-BG a band gap opens. For
the studied hBN-BG-hBN configurations the band structures
split into two subgroups. In cases 1-3 the band gap opens
further compared to the one-sided cases whereas in cases 4—7
the band gap closes again. The good agreement within the
subgroups is a result of the fact that the C parameter of the
hBN potential is mostly responsible for the band gap opening,
while the A parameter does not have a significant influence. In
fact, when we set the A parameter to zero we still obtain the
same low-energy band structure (Fig. 5). Since A describes
the modulation of the effective potential in the moiré cell, a

hBN-BG-hBN
Parallel alignment 60°-alignment
B-site\? ° ?’: : * e ® <o DS
A-site \
- & -~ & R &2 -~ —ac o
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

FIG. 3. Different stacking configurations of hBN-BG-hBN. In cases 1-3 the upper hBN layer is parallel to the lower hBN layer, and in

cases 4—7 the upper hBN layer is rotated by 60°.
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FIG. 4. Band structure of hBN-BG (Ni¢ = 56, red lines) and
free-standing BG (black lines) downfolded to the same mini Bril-
louin zone. At the K and K’ points the hBN potential [Eq. (2)] creates
secondary, gapped Dirac points at band energies € ~ +0.06 eV and
€ ~ —0.05 eV. In addition, a band gap opens at charge neutrality
(see Fig. 5 for a zoom-in).

model with A = 0 has the same small unit cell size as BG.
The C parameter causes an energy difference between A and
B carbon sites in cases 1-3 and an energy difference between
dimer and nondimer sites in cases 4-7 [42]. In Fig. 3 we see
that in cases 1-3, the upper hBN layer is parallel to the lower
layer (“parallel alignment”), whereas in cases 4—7 the upper
hBN layer is rotated by 60° (“60° alignment”).

T~

£ (meV)

0.788 K
k (nm~1)

0.915

—— Free-standing BG

hBN-BG (A = Agt or A=0)
—— hBN-BG-hBN cases 1-3 (A=A or A=0)
----- hBN-BG-hBN cases 4-7 (A =Aq: or A=0)

FIG. 5. Low-energy band structure near the K point of the mini
Brillouin zone (Nyoire = 20). The band structure shows a band gap at
charge neutrality for hBN-BG and for hBN-BG-hBN cases 1-3. This
band gap originates from an energy difference at neighboring carbon
sites. Although alignment of the hBN layer and development of the
moiré structure is necessary for the band gap opening, the gap itself
can be modeled in a small unit cell corresponding to A = 0 in the
hBN potential A,.

FIG. 6. In all of our calculations the dominant magnetic order is
found to be antiferromagnetic with opposite signs of the magnetiza-
tion at neighboring carbon sites. Besides the relative spatial ordering
pattern, the orientation of the magnetization is not fixed as long as
the spin-orbit interaction is not taken into account.

Next, we turn to the possibility of magnetic order in our
structures, within the RPA approach described above. In all
cases studied, the dominant magnetic order is interlayer and
intralayer antiferromagnetic, as shown in Fig. 6. No noticeable
variation of this antiferromagnetic order was found within the
moiré cell as the relevant eigenvectors turned out to be very
homogeneous in their magnitudes through the moiré cell. This
is quite different from the twisted bilayer cases studied, e.g.,
in Refs. [40,43], where the eigenvectors vary strongly in the
moiré cell.

Now, we calculate U, for the different structures as a func-
tion of the temperature in Fig. 7. We find that the low-energy
band structures of the noninteracting system fully determine
the differences and the similarities between free-standing BG,
hBN-BG, and hBN-BG-hBN. For free-standing BG and 60°-
aligned hBN-BG-hBN, structures with band crossings at the
Fermi energy, U, continuously increases with the temperature.
This is expected as thermal fluctuations at some point destroy

1073 10~ 1073 1072
Temperature (eV)

107! 10°

-+ Free-standing BG
hBN-BG (A = Ag; or A = 0)
—~ hBN-BG-hBN cases 1-3 (A=A or A=0)
X hBN-BG-hBN cases 4-7 (A =Agq: or A=0)

FIG. 7. Critical Hubbard interaction U, for magnetic order as
a function of the temperature (Npoie = 20). The different stacking
configurations differ in that for structures with a band gap (e.g.,
hBN-BG) at temperatures smaller than the band gap, U. is larger as
compared to structures without a band gap (e.g., free-standing BG).
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FIG. 8. Staggered magnetization in self-consistent mean-field
theory as a function of the Hubbard interaction U at a temperature
of T = 107* eV (Nnoire = 20).

the magnetic order. For “substrate-gapped” structures such as
hBN-BG or parallelly aligned hBN-BG-hBN, U, differs from
free-standing and 60°-aligned BG at temperatures below the
size of the band gap. In this regime, U, saturates at an approx-
imately constant value. This behavior is consistent with the
expectations that band structure gaps become visible at tem-
peratures below these energy scales. Similar as in the analysis
of the band structure, we see that the A parameter of the hBN
potential does not play a role in our results. This means that,
at least at charge neutrality, the moiré length scale does not
influence the ordering tendency. In total, interaction effects
are weakened by the substrate-induced band gap, although the
difference in U is small.

Next, we evaluate the magnetic order of free-standing BG,
hBN-BG-hBN case 1, and hBN-BG-hBN case 2 in mean-field
theory at a temperature of 7 = 10~* eV. In Fig. 8 we show the
magnetization (S?) in its magnitude and plot its absolute value
averaged over the moiré cell as a function of U. The critical
interaction strength U, needed to obtain a finite magnetization
can be read off to be 5.0 eV < U, < 5.2 eV for free-standing
BG and hBN-BG-hBN case 2, and 5.2 eV < U, < 5.4 eV for
hBN-BG-hBN case 1. These values of U, are in agreement
with the RPA results described above. Next, we calculate
the band structure of the converged mean-field Hamiltonian.
In Fig. 9 we extract the band gap widths at charge neutral-
ity, again for different values of the interaction strength. As
commonly observed in Hubbard models [41], for parameters
with nonzero magnetization an interaction-induced band gap
is opened and we can see that the size of this band gap in-
creases with the magnetization. In the nonmagnetic phase the
structures are described by the noninteracting picture, which
explains the band gap for low values of U in hBN-BG-hBN
case 1. At U = 5.2 eV this substrate-induced band gap in
case 1 is still larger than the interaction-induced band gap
in free-standing and hBN-BG-hBN case 2. At U = 5.4 eV
the interaction-induced band gaps of free-standing BG and
hBN-BG-hBN case 2 exceed that of hBN-BG-hBN case 1.

0.8
0.020 r0.7
0.015 - r0.6
3| 0.0101 ° r 0.5
S| 000506 © e e 0.4
3
S| 0.000 - - 0.3
m T T T T T
4.6 4.8 5.0 52 5. 0.2
0.1
0.0
46 48 50 52 54 56 58 6.0
Onsite interaction U (eV)
Free-standing hBN-BG-hBN hBN-BG-hBN
BG ® casel case 4

FIG. 9. Band gap sizes of the converged mean-field theory cor-
responding to Fig. 8 as a function of the Hubbard interaction U . For
low U, the model can be described by the noninteracting system and
only hBN-BG-hBN case 1 has a band gap. For large U the magnetic
state results in larger “magnetic” band gaps in all structures.

IV. DISCUSSION

Both the RPA analysis and the mean-field calculation show
an upward shift of U, for substrate-gapped structures at low
temperatures. Quantitatively, this shift is less than 6%, putting
constraints on the possibility that instabilities of BG may be
observed in free-standing bilayers but not in the heterostruc-
tures. Even in this small window, the systems that do not have
an interaction-driven ordered ground state show a substrate-
induced gap. Thus, if no gap is observed, one should deal
with a case without substrate-induced gap where the effective
on-site repulsion is too small to trigger a ground state change
at the given temperature. Lowering the temperature could still
open a gap, but this gap might be too small to be observed.
Note that the trigonal warping terms split any quadratic band
crossing points of simple bilayer band structures into Dirac
points, such that at zero temperature there should be a nonzero
threshold value in U for ordering.

We also discuss the justification and magnitude of the on-
site repulsion used in the Hubbard modeling of this work.
Clearly, a more realistic model should, beyond the on-site
term, also include nonlocal interaction terms. This nonlocal
interaction can approximately be incorporated in an effec-
tive on-site repulsion. In Ref. [38] such a simplification was
analyzed in ab initio calculations employing the constrained
random phase approximation and it is suggested to estimate
the effective on-site interaction via U ~ Uy — U;, where Uj is
the “pure” on-site interaction and U is the nearest-neighbor
interaction. For free-standing BG a value of U ~ 9.3 eV —
4.7 eV = 4.6 eV would be obtained [33]. However, the hBN
substrate may screen and thus reduce both the pure on-site
interaction and the nearest-neighbor interaction as calculated
in Ref. [33]. This screening from the substrate may approx-
imately cancel out for the effective U and we get, again,
U =~83eV—-3.7eV=4.6eV. In all these approximations
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we stay well below our threshold values for ordering, i.e.,
on the side where potential gaps would be induced by the
hBN layers. This is however not consistent with the exper-
imental reports of gaps in freely suspended Bernal-stacked
systems [18-24]. Thus, we conclude that a quantitative de-
scription of these systems remains a challenge.

From the mean-field calculation we find that, while the
band gaps of single-particle nature are less variable, the
interaction-induced gap is a strongly varying function of U
and largely independent of the putative noninteracting band
structure once the interaction threshold is exceeded. This ob-
servation makes it difficult to compare our different materials,
because the hBN-substrated materials may have a different ef-
fective U compared to free-standing BG due to the additional
screening effects. Our mean-field results imply that the precise
value of U will be the determining component for the size
of the magnetic band gap. Further, we see that h(BN-BG and
parellely aligned hBN-BG-hBN are gapped for all values of
U. A case where the substrate destroys the ordering instability
and the interaction-induced gap without producing another
single-particle gap does not appear in our study.

V. SUMMARY

In summary, we identified several stacking configurations
and differentiated between parallelly aligned and 60°-aligned

hBN-BG-hBN. The influence of hBN on the electronic struc-
ture of the BG was captured by an effective single-particle
potential in analogy to earlier DFT work [34]. hBN-BG and
parallelly aligned hBN-BG-hBN have a band gap of “single-
particle” origin already in the noninteracting picture. For
temperatures smaller than this band gap, the critical Hubbard
interaction U, required for a magnetic ordering is larger than
for the 60°-aligned hBN-BG-hBN cases and free-standing
BG. Thus interaction effects are weakened by the substrate-
induced band structure changes. However, the shift in U, is
less than 6%. Mean-field theory allowed us to calculate the
band gap sizes of the interacting systems. Our results demon-
strate that the interaction-induced band gap is a strongly
varying function of the on-site interaction U.
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