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ABSTRACT

Recent theoretical proposals have argued that cobal-
tates with edge-sharing octahedral coordination can have
significant bond-dependent exchange couplings thus of-
fering a platform in 3d ions for such physics beyond the
much-explored realizations in 4d and 5d materials. Here
we present high-resolution inelastic neutron scattering
data within the magnetically ordered phase of the stacked
honeycomb magnet CoTiO3 revealing the presence of a
finite energy gap and demonstrate that this implies the
presence of bond-dependent anisotropic couplings. We
also show through an extensive theoretical analysis that
the gap further implies the existence of a quantum order-
by-disorder mechanism that, in this material, crucially
involves virtual crystal field fluctuations. Our data also
provide an experimental observation of a universal wind-
ing of the scattering intensity in angular scans around
linear band-touching points for both magnons and dis-
persive spin-orbit excitons, which is directly related to
the non-trivial topology of the quasiparticle wavefunc-
tion in momentum space near nodal points.

INTRODUCTION

Spin-orbit coupling is at the origin of many remarkable
properties of condensed matter uncovered in recent years
[1–5]. It is central to the appearance of nontrivial topo-
logical invariants in electronic band structures and under-
lies the existence of bond-dependent exchange couplings
that have been shown to bring about exotic features in
many quantum magnets [6–8]. In the latter case much
of the effort in materials discovery has focussed on heavy
5d and 4d ions in which the spin-orbit coupling is one of
the dominant energy scales. Notable are the honeycomb
iridates A2IrO3 (A=Na,Li) and related materials, and
α-RuCl3, which displayed a range of many novel exotic
magnetic properties including spin-momentum locking
[9], incommensurate orders with counter-rotating spin
spirals [6], broad scattering continua in the spectrum of
spin excitations [10] or unconventional field-dependent
thermal Hall effect [11]. The origin of these exotic forms
of behaviour is the presence of significant anisotropic,
bond-dependent exchange, which in extreme cases has
been predicted to stabilize quantum spin liquids, such as
the celebrated Kitaev honeycomb model with Ising ex-

changes along orthogonal directions for the three bonds
that meet at each site [12]. The path to the discov-
ery of the unusual magnetic properties of those materi-
als has been a fruitful one starting with theoretical pro-
posals that bond-dependent exchange couplings can arise
in certain iridates and ruthenates with edge-sharing oc-
tahedra [13, 14]. The octahedra supply a crystal field
environment that leads to an effective low-energy spin
one-half degree of freedom for the magnetic ions and the
edge-sharing provides the local exchange pathway that,
in conjunction with the spin-orbit coupling, produces
anisotropic bond-dependent exchange. There is now ev-
idence for significant such exchanges in honeycomb iri-
dates and ruthenates [6–8].

More recent theoretical work has argued that signif-
icant bond-dependent exchange in the form of Kitaev
and related couplings may also arise between Co2+ ions
in edge-sharing octahedral coordination [15–17] thus ex-
tending the original proposals into a surprising new set-
ting. To investigate such effects we report here inelastic
neutron scattering (INS) measurements of the spin dy-
namics in the stacked honeycomb magnet CoTiO3. Our
data show propagating spin wave excitations with a clear
low energy spectral gap, which was inferred but could
not be resolved by previous studies [18]. We show that
the spin wave spectrum is not merely compatible with
the presence of bond-dependent exchange, but that such
couplings must be present in the low energy pseudo-spin
one-half theory in order to explain the origin of the gap.
Moreover, we show that the gap opening must occur via a
quantum order-by-disorder mechanism [19–25] as a con-
sequence of unusually strong constraints on the possible
mechanisms that can open the spectral gap. In view
of the low-lying crystal field excitations in this mate-
rial compared to the exchange coupling, we provide com-
pelling evidence that virtual crystal field excitations are
the driving mechanism for order-by-disorder [26, 27] as-
sisted by spin-orbital exchange and supply a calculation
of the spin wave spectrum including this effect that cap-
tures the principal features of the data.

CoTiO3 is part of a growing list of materials [18, 28, 29]
explored as candidates displaying Dirac magnons. Ear-
lier studies established the presence of Dirac nodal lines
[18], which make this material ideal for the exploration
of a recently predicted [30] fingerprint of a topologically
non-trivial magnon band structure, namely a universal
azimuthal modulation in the dynamical structure factor
around linear band touching points, not probed exper-

ar
X

iv
:2

00
7.

04
19

9v
2 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

6 
Ju

n 
20

21



2

(11)

(01)

(10)

a) b)
d)

c)

Figure 1. Magnon dispersions. INS data at 8 K observing the magnon dispersions along high-symmetry directions (a) in-plane and
(c) out-of-plane, compared in (b) and (d) with the XXZ∆ model. Lines are the model dispersions ω̃(k), green/brown dots on the
elastic line indicate location of structural/magnetic Bragg peaks. Lower left inset in (b) shows the wavevector path in a)-b) (arrowed
solid white lines) projected onto the (hk) plane, gray dashed lines are the 2D Brillouin zone boundaries. Intensities are averaged for
a transverse wavevector range of ±0.1 Å−1. The incident neutron energy was Ei = 18 meV in (a) and 9.6 meV in (c). The colour
bars indicate scattering intensity in arbitrary units on a linear scale.

imentally before and which originates from the special
topological features in the wavefunction of nodal quasi-
particles. We indeed observe clear evidence for the pre-
dicted intensity winding around the nodal points, thus
providing a direct measurement of the non-trivial topol-
ogy of the Dirac magnon wavefunctions and establishing
that there are meaningful features in the momentum-
and-energy dependent dynamical structure factor beyond
simply revealing the quasiparticle dispersion relations.
Furthermore, we observe analogous features in the dis-
persive spin-orbital excitations at higher energy, high-
lighting the universal properties of Dirac bosonic quasi-
particles. Finally, we investigate the effect of the bond-
dependent exchange on the Dirac nodal lines arguing that
they are robust to gap opening and likely appear as ‘dou-
ble helices’ winding around each zone corner. We show
that the same type of bond-dependent anisotropic ex-
change that opens up the spectral gap provides a natural
explanation for a ‘double-peak’ structure in energy scans
near the nodal points.

RESULTS

Magnon dispersions - The magnon dispersions along
high-symmetry directions in the honeycomb plane ob-
tained using inelastic neutron scattering (INS) mea-
surements on single crystals of CoTiO3 (for details see
Supplementary Note 6A) are summarized in Fig. 1a).
Wavevectors are indexed in reciprocal lattice units of
the hexagonal structural unit cell. Near the (1,1,3/2)
magnetic Bragg peak the lowest mode has a near-linear
in-plane dispersion. As the honeycomb layers are fer-
romagnetically ordered with moments confined to the
crystallographic ab plane, the linear dispersion indicates
predominant easy-plane-type exchange couplings for in-
plane neighbors. Fig. 1c) observes a finite dispersion at
low energies in the direction normal to the layers, in-

dicating finite inter-layer couplings, and a small but fi-
nite spectral gap ∆ = 1.0(1) meV, clearly resolved above
the magnetic Bragg peak. Ref. [18] proposed that a
finite spin gap would be needed to account for the ob-
served non-linear magnetization curve in small in-plane
fields [31], but it was not possible to directly resolve the
gap excitation in the earlier lower-resolution INS data
[18]. Apart from the finite gap, the main features of the
magnon spectrum can be accounted for by a minimal
exchange Hamiltonian HXXZ for the stacked honeycomb
geometry in CoTiO3, allowing for each bond a differ-
ent exchange coupling between the moment components
along the c-axis, and between the components in the ab
plane. For a single ferromagnetic honeycomb layer, two
magnon bands (acoustic/optic) would be expected with
linear crossings at the corners (K-points) of the hexagonal
Brillouin zone. For finite interlayer couplings that stabi-
lize antiferromagnetic stacking of layers, the number of
bands doubles and inter-layer resolved lower bands are
expected with almost degenerate higher bands, as ob-
served in Figs. 1a,c). HXXZ has a gapless (Goldstone)
mode corresponding to moments rotating freely in the ab
plane, so to capture the observed gap we assume that
the physical mechanism responsible for gap generation
only modifies the dispersion relations ω(k) of HXXZ by
adding a gap in quadrature, i.e. experimental dispersion
points are compared with ω̃(k) =

√
ω2(k) + ∆2. We

call this parameterization the XXZ∆ model to empha-
size that the gap ∆ is not intrinsic, but is an additional,
empirical fitting parameter. We find that exchanges up
to 6th nearest-neighbor (nn) are important and obtain a
very good level of agreement for both the dispersions and
intensities as shown by comparing Figs. 1a) with b), and
c) with d) (for more details see Supplementary Notes 5B,
5C, and 6C).

Quantum Order-by-Disorder - The presence of the
finite magnon spectral gap ∆ is important as it indicates
preferential moment orientations inside the easy plane.
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Figure 2. Intensity winding for Dirac magnons: theory and
experiment. a) Conical dispersion surfaces meeting at a Dirac
node for a honeycomb ferromagnet. b) Winding pattern of the
isospin polarization σ (radial arrows) out/in from the nodal point
for the top/bottom bands. In both a-b) colour is the dynami-
cal structure factor 1 + σ · n̂K, which winds around the node
in antiphase between the top and bottom bands. c) Constant-
energy INS intensity in CoTiO3 as a function of azimuthal an-
gle α around the (2/3,2/3) Dirac node, showing expected two-
fold winding periodicity in anti-phase between the top/bottom
bands (filled/open symbols) in agreement with b). The black
squares/white circles denote the inelastic neutron scattering in-
tensity for the top/bottom bands, with error bars representing
one standard deviation. Solid lines are fits to cosine depen-
dencies described in the text with dotted vertical lines show-
ing the extreme points 180◦ apart. d/e) Momentum intensity
maps above/below the Dirac node energy, highlighting dramatic
changes in the angular intensity dependence around the Dirac
nodes. Dashed gray lines outline the edges of the 2D Brillouin
zones and radial magenta arrows in d) indicate the direction
of the vectors n̂ at the zone corners at L = 0. Magenta an-
nular region in e) shows the radial in-plane wavevector range
[0.05, 0.2] Å−1 in the angular scans in c). f/g) INS data through
a nodal point (vertical dashed arrow) along orthogonal in-plane
directions that maximise the intensity asymmetry effect (slices
shown in a) by dashed black/cyan rectangles, respectively): in
f) both crossing modes are visible, in g) only one mode carries
weight. All data were collected with Ei = 18 meV. In pan-
els c-g) intensities are averaged for L = [0, 2.4], and in f) and
g) for an in-plane transverse momentum range of ±0.026 and
±0.028 Å−1, respectively. The colour bar in g) applies also to
panels d-f), indicating scattering intensity in arbitrary units on a
linear scale.

The magnetic ground state of Co2+ (3d7) ions in the lo-
cal crystal field environment is a Kramers doublet with
pseudospin-1/2, for which there is no local anisotropy, so
any preferential orientation must be selected by interac-
tions beyond the minimal HXXZ Hamiltonian. We focus
our attention on bilinear couplings in the pseudospin as
higher order two-site couplings project down to such cou-
plings. As outlined in Supplementary Note 10, multi-site
couplings will be suppressed by the large charge gap. As
there is no detectable distortion of the crystal lattice fol-
lowing the onset of the magnetic order, we perform the
analysis of bi-linear couplings between cobalt moments
that are symmetry-allowed by the crystal structure space
group. We find that whilst various bond-dependent ex-
change couplings can be present in principle, at the clas-
sical level, surprisingly, the ground state energy remains
independent of the moment orientation in the ab plane -
see Supplementary Notes 7 and 8.

This degeneracy must however be an artefact of the
mean-field approximation, as the real material Hamilto-
nian has only discrete, rather than continuous rotational
symmetry around the c-axis. Such degeneracies would
in general be expected to be lifted by quantum fluctua-
tions via an order-by-disorder mechanism [19–24], when
the ground state energy (per site) acquires a contribu-
tion from zero-point fluctuations of the form εqu(φ) =
1
2
∑
m〈ωm(k)〉, where φ defines the moments’ orientation

in the ab-plane relative to the a-axis and 〈ωm(k)〉 is the
average energy of dispersive branch m = 1 to 4 over the
Brillouin zone. The possibility that an order-by-disorder
mechanism might be relevant for the ground state selec-
tion in CoTiO3 was mentioned in [18], but no quantita-
tive model was proposed. We show by direct calculations
in Supplementary Note 8 that the semi-classical degener-
acy is indeed lifted by zero-point fluctuations from bond-
dependent anisotropic couplings such as η ≡ Jyy − Jxx
on the 1st neighbor bond where y defines the local bond
direction and x is in-plane transverse to y, and we find
an induced gap that scales as ∆ ∼ |η|3/2 at leading or-
der. At the level of the low energy pseudospin-1/2 mo-
ments this provides a natural qualitative mechanism for
the observed gap. One can also place this finding in the
context of a theory that operates within the full set of
12 single-ion spin and orbital states. In fact, working
within the pseudospin-1/2 picture suggests an unphysi-
cally large coupling η calculated in Supplementary Note
8 compared to the coupling η fitted in Supplementary
Note 7. Since the crystal field excitations are compara-
ble to the exchange scale, an entirely natural mechanism
for order-by-disorder to arise is through virtual crystal
field fluctuations in a model that includes small spin-
orbital exchange. The virtual crystal field mechanism
has been discussed in the context of Er2Ti2O7 [26, 27]
− essentially the only other well-characterized example
of order-by-disorder − where the linear spin wave mecha-
nism and virtual crystal field mechanism are complemen-
tary. However, in CoTiO3 virtual crystal field excitations
are the leading cause of the discrete symmetry breaking.
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A so-called flavour-wave expansion [32–36] incorporating
this effect captures the magnon dispersions including the
spectral gap and the dispersing crystal field excitations,
as shown in Supplementary Note 10.

Neutron Intensity Fingerprint of Magnon
Isospin Winding - Having established the presence of
bond-dependent exchange in this material, we now fo-
cus on the Dirac points in the magnon spectrum which
provide an ideal setting to explore predicted intensity
modulations associated with the isospin winding around
nodal points. To explain this physics we use the simple
example of a two-dimensional (2D) honeycomb Heisen-
berg ferromagnet H = −J

∑
〈i,j〉 Si · Sj (J > 0) taken

from Ref. [30] to which we refer for further details, gen-
eralizations to band structures in 3D, and different types
of touching points. The magnon band structure for this
model computed within linear spin wave theory around
the collinear ferromagnetic ground state has Dirac points
at finite frequency at the corners (K-points) of the 2D
hexagonal Brillouin zone (dashed outline in Fig. 2d). For
a small momentum δk measured from a Dirac node, the
effective spin wave Hamiltonian takes the famous form
Heff = v δk · σ where v = 3JSa0/2 is the Dirac veloc-
ity (a0 is the nearest-neighbor distance) and the isospin
encoded in the Pauli matrices σ originates from the two
sublattice honeycomb structure. By analogy with the
Zeeman Hamiltonian, it follows that magnon wavefunc-
tions carry an isospin polarization that is locked to the
offset momentum δk thus winding around each Dirac
point, see Fig. 2b). This feature is directly observable
via INS because, in the vicinity of these points, the in-
tensity is, up to a constant, the projection of the isospin
polarization onto some direction n̂ characteristic of each
Dirac point [30], illustrated by the pink radial arrows
in Fig. 2d). Explicitly, the intensity takes the form
1 ± cos(α − α0) where α is the polar angle around the
K point and α0 defines the direction of n̂, with the up-
per/lower sign for the top/bottom band, respectively.
Therefore, the intensity winds smoothly around the Dirac
point (as illustrated by the colour shading on the two
conical bands in Fig. 2a).

Isospin of Dirac Magnons - CoTiO3 provides a
nearly ideal experimental platform to see the theoreti-
cally predicted winding of neutron intensity in the vicin-
ity of the Dirac points. Fig. 2f) shows the INS data
along the (1,1̄) in-plane direction through the nominal
Dirac point at (2/3,2/3) where a clear near-linear band
crossing is observed. In contrast, Fig. 2g) shows that the
INS data through the same K point, but along the or-
thogonal (1,1) direction, has vanishingly small intensity
in one of the two crossing bands. This strong intensity
asymmetry in orthogonal scans is precisely what is ex-
pected based on the predicted isospin winding around a
Dirac node in Fig. 2a). This can be seen more directly
in Fig. 2c), which plots the intensity dependence as a
function of angle α winding around the Dirac node in
the top/bottom bands (filled/open symbols), the maxima
and minima in each band are 180◦ apart and in anti-phase

between the two bands, the solid lines show fits to the
generic form A± ±B± cos(α− α0) with the upper/lower
sign for top/bottom band. The fits give α0 = −80(3)◦,
in good agreement with the XXZ∆ model for the same
scan −81(1)◦, the offset from −60◦ is due to the buckling
of the honeycomb layers, which rotate the n̂ vectors in
plane upon varying L, for more details see Supplemen-
tary Note 5. The observed two-fold angular dependence
is precisely the fingerprint of the predicted isospin wind-
ing for the near-nodal quasiparticles.

×3

L = 0

L = 1.5

a)

b)

c)

× 2

d)

Figure 3. Dirac magnon nodal lines. Nodal lines along L for a)
Heisenberg and b) XXZ interlayer couplings (blue/red lines cor-
respond to in-/out-of-plane polarization). Top left insets show
the band structure near the nodal points, two doubly-degenerate
touching cones in a) and momentum-offset pairs of touching
cones in b), curly arrows indicate precession of the nodal points
along L. In b) the diameter of the ‘double helix’ nodal lines is
amplified for visibility by ×3 compared to the XXZ∆ model. c)
Momentum INS intensity map as in Fig. 2d-e), but centred at
the nominal nodal energy. Dashed lines show 2D Brillouin zone
edges. The intensities are on a linear scale as per the colour bar
in Fig. 2g). d) Energy scan averaged between all six K-points in
c) as well as (1/3,1/3), for a cylindrical wavevector range of in-
plane radius 0.03 Å−1 (dark gray dot at (1/3,4/3) in c) bottom
left) and L = [0, 2.3]. Error bars represent one standard devia-
tion, the dashed line is the calculated lineshape for the XXZ∆
model (η = 0), and the solid line is a fit that includes an ad-
ditional exchange anisotropy η = −1.7 meV, both calculations
include instrumental resolution effects.

Fine Structure of Dirac Magnons - The bond-
dependent exchange that is responsible for the spectral
gap also affects the Dirac nodal lines. For antiferromag-
netic Heisenberg interlayer couplings the nodal points
form lines along L, each 4-fold degenerate (the top and
bottom cones in Fig. 2a) are each doubly degenerate due
to the antiferromagnetic doubling of the number of mag-
netic sublattices). For an XXZ Hamiltonian two cases
can occur depending on the anisotropy of the interlayer
coupling J2: i) for Heisenberg J2 the nodal lines are de-
generate and are straight along L [see Fig. 3a)], ii) for
XXZ J2 they are separated in momentum, but remain
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at the same energy and wind along L in a ‘double-helix’
[see Fig. 3b)], in opposite senses between adjacent K-
type points due to the 3̄ point group symmetry of the
crystal lattice. However, neither of those cases can ex-
plain the fine structure observed by the energy scan in
Fig. 3d) centred at K-points, where two peaks are clearly
resolved, 0.75(5) meV apart, instead of a single peak
(XXZ∆ model, dashed red line, case ii) above; for case i)
the single peak would be even sharper). This fine struc-
ture was not detected by earlier lower-resolution studies
[18] and accounting for it requires anisotropic coupling
terms beyond HXXZ. We have already argued that such
terms must be present in order to account for the spec-
tral gap. As shown in Supplementary Note 9, these terms
all preserve the Dirac nodal lines while shifting their po-
sition in momentum space along in-plane directions re-
lated to the moment orientation in the ground state.
To make quantitative contact with the experiment, we
demonstrate that adding a finite nearest neighbor bond-
dependent exchange η leaves the dispersions largely unaf-
fected relative to the η = 0 case in the magnetic Brillouin
zone interior while leading to the observed double peak
structure in Fig. 3d)(solid line).

Dirac Excitons - We now describe high-energy ex-
citations, which we attribute to transitions to higher
crystal field levels, where we also observe propagating
excitations with linear band touching points and inten-
sity winding around nodal points. The local spin-orbit
coupled and trigonally distorted octahedral crystal field
scheme for a Co2+ (3d7) ion (L = 3 and S = 3/2) is shown
in Fig. 4a). Fig. 4b) shows INS measurements observing
two peaks centred near 28 and 58 meV, which we identify
with the (exciton) transitions to the two trigonally-split
doublets of the jeff = 3/2 excited quadruplet (blue and
red vertical thick arrow in Fig. 4a).

Fig. 4c) shows higher resolution INS measurements ob-
serving clear in-plane dispersions for the lower exciton
modes near 28 meV, attributed to hopping due to spin
and orbital exchange. Two modes are expected due to the
two sublattices of the honeycomb structure and Fig. 4f)
shows clear evidence for mode crossing at the two la-
belled nodal positions. Angular intensity maps around
a nodal point in Fig. 4e) show a clear two-fold angu-
lar dependence, in anti-phase between the top/bottom
bands (filled/open symbols), as expected from the in-
tensity winding picture, again in complete analogy with
the spectroscopic signature seen for the Dirac magnon
wavefunctions in Fig. 2c). The observed dispersions and
relative intensities of the two exciton modes can be well
captured by a tight-binding model, detailed in Supple-
mentary Note 4. The experimental and modelled exciton
dispersions are compared in Figs. 4c) and d). We note
that after this work was completed, Ref. [37] appeared,
also reporting INS measurements of the exciton disper-
sion in CoTiO3.

Spin Orbit
+ Trigonal

Octahedral
cubic

a)

f)e)

b)

jeff

5/2

3/2

1/2

G4

G5

G2

4F

Free
ion

c)

[26,28] meV bottom band
[28,30] meV top band

d)

c)

Figure 4. Spin-orbit excitons: dispersions and Dirac node. a)
Schematic level splitting for a Co2+ ion in an octahedral crystal
field of trigonal symmetry including spin-orbit coupling. b) INS
energy scan observing transitions to the first two excited crystal
field levels (the blue/red arrows above the peaks show the transi-
tions indicated by matching colour vertical arrows in a), the solid
line is a guide to the eye. c) INS data probing the dispersions of
the first crystal level along high-symmetry directions, compared
in d) with a tight-binding model (thick solid/dashed lines through
both graphs show best fit dispersions). e) Angular intensity de-
pendence around the nodal point (2/3,5/3) for the top/bottom
exciton bands fitted to an A±±B± cos(α−α̃0) form (solid lines,
α̃0 = 155(3)◦, calculated 153(1)◦, in-plane radial wavevector
range [0.075, 0.3] Å−1). The black squares/white circles denote
the inelastic neutron scattering intensity for the top/bottom ex-
citon bands, respectively, with error bars representing one stan-
dard deviation. Note the analogous behaviour to the intensity
dependence in azimuthal scans for Dirac magnons in Fig. 2c). f)
Exciton bands crossing at the two labelled nodal Dirac points,
analogous to the magnon bands crossing in Fig. 2f). In e-f)
intensities are averaged for L = [0, 3.5], in c) for a transverse
wavevector range ±0.1 Å−1, and in f) for a transverse in-plane
wavevector range ±0.025 Å−1. Data were collected at 8 K with
Ei = 83 meV in b) and 45 meV in c,e,f). The colour bar in
f) also applies to c) and d), and indicate scattering intensity in
arbitrary units on a linear scale.

DISCUSSION

To summarise, we have reported INS measurements
of the magnon dispersions in the stacked honeycomb
CoTiO3, which reveal the presence of a spectral gap and
Dirac nodal lines. We have shown that the gap implies
the presence of significant bond-dependent anisotropic
exchange originating from spin-orbit coupling and we
have proposed a minimal model compatible with the ex-
perimental data to explain the discrete symmetry break-
ing via a quantum order-by-disorder mechanism. We
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have also observed key signatures of proximity to Dirac
magnon physics through near-linear band touching and
characteristic two-fold intensity periodicity in azimuthal
scans attributed to the isospin winding around the Dirac
node. The similar features seen also at the nodal band
crossing in the spin-orbit excitons show that neutron
scattering provides a window into the universal prop-
erties of highly constrained wavefunctions around lin-
ear band-touching points in bosonic systems in the solid

state.

DATA AVAILABILITY

The experimental data in this study is available from
Ref. [38].
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H. Ågren, G. Aeppli, and A. V. Balatsky, Dirac magnons
in honeycomb ferromagnets, Phys. Rev. X 8, 011010
(2018).

[56] N. Papanicolaou, Unusual phases in quantum spin-1 sys-
tems, Nuclear Physics B 305, 367 (1988).
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Supplementary Information

Here we provide additional technical details on 1)
the refinement of the crystal and magnetic structures
from powder neutron diffraction, 2-3) calculation of the
single-ion levels in the presence of spin-orbit coupling,
trigonal crystal field, and exchange mean field to de-
termine the spin and orbital contributions to the or-
dered moment in the ground state, 4) a tight binding
model to capture the exciton dispersion, 5) the spin-
wave calculations for the minimal effective S = 1/2
XXZ model used to parametrize the magnon dispersions,
6) details of the INS experiments and quantitative fit
of the observed dispersions, 7) symmetry-allowed bond-
dependent anisotropic exchanges, 8) quantum order-by-
disorder from those terms as the origin of the spectral
gap, 9) topology of the nodal lines of Dirac magnons and
Hamiltonian symmetries, 10) flavor-wave theory based on
a model with spin-orbital exchange that captures the dis-
crete symmetry-breaking, the magnons and their spectral
gap, as well as the dispersive excitons in a single model.

Supplementary Note 1. REFINEMENT OF
CRYSTAL AND MAGNETIC STRUCTURES

Here we present neutron powder diffraction (NPD)
measurements to determine the magnitude of the ordered

Supplementary Table I. Refined 150 K crystal struc-
ture parameters of CoTiO3 (Rp = 4.1%, Rwp = 3.7%,
RBragg = 4.1%). Wyckoff positions are given in parenthesis.

Cell parameters
Space group: R3̄ (#148, hexagonal axes, obverse setting)
a, b, c (Å) 5.06383(3) 5.06383(3) 13.9076(1)
Volume (Å3) 308.845(4)

Atomic fractional coordinates
Atom x y z Uiso(Å−2)

Co (6c) 0 0 0.3562(3) 0.0132(9)
Ti (6c) 0 0 0.1454(2) 0.0066(6)
O (18f) 0.3161(2) 0.0203(2) 0.24605(5) 0.0074(2)

moment in the ground state, which is an important ingre-
dient in the parametrization of spin and orbital character
of the cobalt magnetic moments. The experiments were
performed using the WISH time-of-flight diffractometer
[40] at ISIS, the UK Neutron and Muon Source. A high
quality, single phase powder sample of CoTiO3 (mass
3.125 g) was loaded into a 6 mm diameter vanadium can
and mounted within an Oxford Instruments 4He cryo-
stat. High counting statistics data were collected at 1.5
and 150 K, representative of the magnetically ordered
and paramagnetic phases, respectively (N.B. the para-
magnetic data were collected well above TN = 38(3) K
as magnetic diffuse scattering was found to persist above
the transition). Additional lower counting statistics data
were also collected on warming in 2.5 K steps between 1.5
and 50 K to obtain the order parameter. In the following
analysis, Rietveld refinements of nuclear and magnetic
structural models were performed using Fullprof [41], si-
multaneously against data measured in detector banks
2 and 9 (medium resolution, large d-spacing range) and
banks 5 and 6 (high resolution, short d-spacing) of the
WISH instrument. A small absorption correction was
included in the refinements to account for moderate neu-
tron absorption by cobalt.

The published ilmenite crystal structure of CoTiO3
[42] (space group R3̄, herein defined using hexagonal axes
in the obverse setting) was refined against the param-
agnetic data (Supplementary Figures 1a-c). Excellent
agreement between model and data was achieved and the
crystal structure parameters are summarised in Supple-
mentary Table I.

Below TN, more than 10 new diffraction peaks ap-
peared (labelled “M” in Supplementary Figure 1d), which
could be indexed using the T-point propagation vector
Q = (0, 0, 3/2). Symmetry analysis performed using
isodistort [43, 44], showed that the full T-point mag-
netic representation for the cobalt Wyckoff positions de-
composed into two 1D irreducible representations, T+

1
and T−1 , and two physically real, 2D reducible represen-
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Supplementary Figure 1. Neutron powder diffraction data. Data (red circles) was collected at (a),(c) 150 K and (b),(d) 1.5 K.
Panels (c) and (d) show an enlarged region of the diffraction pattern, as indicated by the black rectangle in (a) and (b), highlighting
magnetic diffraction intensities labelled “M”. The weak diffraction peak labelled by an asterisk (*) in (c) likely originates from a small
CoTi2O5 impurity. Its presence did not affect the quantitative analysis of the diffraction pattern. Fits to the data are shown as solid
black lines, and the difference Iobs − Icalc is given as a blue line at the bottom of the panes. In (a) and (c) nuclear peak positions
are denoted by black tick marks, and in (b) and (d) nuclear and magnetic peak positions are denoted by top and bottom black tick
marks, respectively. The temperature dependence of the cobalt magnetic moment evaluated by fitting variable temperature neutron
powder diffraction data is shown in the inset to panel a).

tations, T+
2 ⊕T+

3 and T−2 ⊕T−3 . There exist four, symme-
try distinct magnetic structures that transform by these
four representations, respectively:

(a) Ferromagnetic (FM) honeycomb layers stacked via
antiferromagnetic (AFM) bonds with magnetic mo-
ments parallel to the c-axis (magnetic space group
RI3̄),

(b) AFM honeycomb layers (Néel-type) stacked via FM
bonds with magnetic moments parallel to the c-axis
(magnetic space group RI3̄),

(c) FM honeycomb layers stacked via AFM bonds
with magnetic moments perpendicular to the c-axis
(magnetic space group PS1̄), and

(d) AFM honeycomb layers (Néel-type) stacked via FM
bonds with magnetic moments perpendicular to the
c-axis (magnetic space group PS1̄).

We note that for structures (c) and (d) all in-plane mo-
ment directions are indistinguishable by symmetry. Fur-
thermore, the T+

2 ⊕ T+
3 (T−2 ⊕ T−3 ) symmetry allows the

T+
1 (T−1 ) mode to appear via a secondary order param-

eter, which describes a global rotation of all moments

out of the ab plane towards the hexagonal c axis whilst
maintaining a collinear magnetic structure.

The largest magnetic diffraction intensity occurs for
the magnetic Bragg peak indexed by the propagation vec-
tor Q = (0, 0, 3/2). Given that the magnetic neutron
diffraction intensity is proportional to the component
of the magnetic moments perpendicular to the scatter-
ing vector, this observation alone conclusively rules out
structures (a) and (b) that have moments strictly paral-
lel to the c axis. Furthermore, one can show that in the
case of perfectly flat cobalt honeycomb planes (zCo = 1/3
in Supplementary Table I) the magnetic structure factor
at Q is maximal for FM honeycomb planes and exactly
zero for AFM honeycomb planes. The honeycomb planes
of the true crystal structure are not perfectly flat, but
the small buckling of these planes leads to only a few
percent change in the predicted diffraction intensities.
Hence, case (c) (illustrated in Supplementary Figure 5)
is uniquely identified as the primary magnetic structure
of CoTiO3 by the observation of the largest intensity at
the propagation vector alone, in agreement with earlier
neutron powder diffraction results [42].

A magnetic structure model based on (c) was refined
against the neutron powder diffraction data collected
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at 1.5 K (Supplementary Figures 1b and d). Excel-
lent agreement between model and data was achieved
(Rp = 4.9%, Rwp = 4.3%, RMag = 3.1%). The in-plane
direction of the magnetic moments cannot be determined
from powder averaged diffraction data, and symmetry al-
lowed out-of-plane tilting of the magnetic moments was
found to be statistically insignificant. At 1.5 K the cobalt
magnetic moment refined to 3.08(1) µB. The tempera-
ture dependence of the magnetic moment was extracted
from fits to data collected on warming and is shown in
the inset to Supplementary Figure 1a).

The above magnetic structure has lower symmetry
(PS1̄) than the paramagnetic crystal structure (R3̄). In
this case the crystal symmetry can be lowered via mag-
netostriction. However we found that a hexagonal unit
cell metric could be used to achieve excellent fits to our
data at all measured temperatures and no peak split-
ting or significant peak broadening could be observed
within the experimental resolution upon cooling below
TN. We therefore estimate that any symmetry lowering of
the hexagonal metric by the magnetic ordering involves
changes in the lattice parameters below a conservative
threshold of 0.02%.

Supplementary Note 2. SINGLE-ION PHYSICS

Here we discuss the ground state and higher-energy
excited states of the Co2+ (3d7) ions given their lo-
cal, octahedrally-coordinated crystal field environment
and spin-orbit interaction, fitted to inter-level transi-
tions observed in INS data. Hund’s rules - appropri-
ate to the case where the Coulomb interaction is greater
than the crystal field - give a bare d7 shell orbital triplet
L = 3 and high spin S = 3/2. For an ideal octahe-
dron, the crystal field acting on those levels has Hamil-
tonian HCF = −B

(
O0

4 + 5O4
4
)

with B > 0, leading to a
ground state triplet (Γ4), and excited triplet and sin-
glet levels, above energy gaps of 480 B and 1080 B,
respectively. Those level splittings are of the order of
1 eV. Viewed another way, the crystal field levels are
populated in the high spin t52ge

2
g configuration, which is

the aforementioned S = 3/2 orbital triplet. Cobalt(II)
ions in octahedral environments may also occur in a low
spin configuration with spin-1/2 degree of freedom and
a two-fold orbital degeneracy, however CoTiO3 is consis-
tent with the high spin single-ion configuration because,
as we show below, this offers a natural explanation for i)
the observed transitions to higher single-ion levels and ii)
the experimentally determined magnitude of the ordered
moment in the ground state determined in Supplemen-
tary Note 1.

Empirically, the exchange scale and spin-orbit coupling
in CoTiO3 are both of order 10 meV. Since the octahedral
crystal field splitting is larger than any other relevant
magnetic scales, we may focus on the ground state orbital
triplet as an effective l = 1 orbital angular momentum

state with wavefunctions [45]

|lz = +1〉 =
√

5
8 | − 3〉+

√
3
8 |+ 1〉

|lz = 0〉 = −|0〉

|lz = −1〉 =
√

5
8 |3〉+

√
3
8 | − 1〉

in terms of the |Lz〉 states of the full L = 3 Hilbert
space. The full angular momentum operator when pro-
jected onto the restricted l = 1 Hilbert space is expressed
as L ≡ (−3/2)l.

The spin-orbit coupling HSO = (3/2)λl · S with λ > 0
acts on the l = 1 and S = 3/2 states numbering 12 in
all. It is convenient to define an effective angular momen-
tum Jeff = l + S as Jeff is a good quantum number for
the eigenstates of HSO. The spectrum is a spin-orbital
ground state doublet with Jeff = 1/2 at energy −15λ/4, a
quartet (Jeff = 3/2) at −3λ/2 and a 6-fold degenerate set
(Jeff = 5/2) at 9λ/4. The lowest doublet wavefunctions
take the form

1√
2
| ± 1,∓3/2〉+ 1√

6
| ∓ 1,±1/2〉 − 1√

3
|0,∓1/2〉 (1)

in the |lz,Sz〉 basis.
In the actual crystal structure the oxygen octahedra

around the Co ions are slightly trigonally distorted (the
local point group symmetry at the Co sites is 3 instead
of 4̄3m for a cubic octahedron) and this distortion can be
parameterized by the term Htrig = δ[l2z − (2/3)], where z
denotes the c-axis. The level scheme in the presence of
spin-orbit and trigonal distortion is summarized in Sup-
plementary Figure 2(a). The trigonal distortion splits
the levels into six Kramers doublets, with Jzeff remaining
a good quantum number. We now use the available ex-
perimental data to constrain the single-ion parameters.
Inelastic neutron scattering has revealed the existence of
single-ion levels at 28 and 58 meV (see Fig. 4a). A best
fit to those levels gives δ = 45 meV and λ = 18 meV,
consistent with earlier reports [18]. In the above analy-
sis we have assumed δ > 0, as this gives larger magnetic
moment in the ab-plane compared to along the c-axis,
in agreement with single-crystal magnetic susceptibility
measurements [31].

For the trigonally distorted case we examine the
anisotropy of the magnetic moment in the ground state.
This means that we compute matrix elements of the Zee-
man coupled moment gll + gSS within the ground state
Kramers doublet described by an effective spin S = 1/2.
Throughout we use Serif symbols S and S to refer to
the effective spin-1/2 and SansSerif symbols S and S to
refer to the real spin-3/2. Here gl = −3/2 and gS ≈ 2.
Supplementary Figure 2(c) shows how the g-factors along
and perpendicular to the trigonal axis vary with the re-
duced parameter δ/λ. The moments are isotropic for no
trigonal distortion, but develop a strong easy-plane/axis
anisotropy in the g-factor for +/−ve δ/λ. For the fitted
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<latexit sha1_base64="QRKsrK9PrldfXa7NbncNwbLr4h8=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkpSBD0WvXisYD+gCWWz3bRLdzdhdyPU0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmRSln2njet1Pa2Nza3invVvb2Dw6r7tFxRyeZIrRNEp6oXoQ15UzStmGG016qKBYRp91ocjv3u49UaZbIBzNNaSjwSLKYEWysNHCrQSpQECtMcn+WN2YDt+bVvQXQOvELUoMCrYH7FQwTkgkqDeFY677vpSbMsTKMcDqrBJmmKSYTPKJ9SyUWVIf54vAZOrfKEMWJsiUNWqi/J3IstJ6KyHYKbMZ61ZuL/3n9zMTXYc5kmhkqyXJRnHFkEjRPAQ2ZosTwqSWYKGZvRWSMbQrGZlWxIfirL6+TTqPue3X//rLWvCniKMMpnMEF+HAFTbiDFrSBQAbP8ApvzpPz4rw7H8vWklPMnMAfOJ8/YSaS5Q==</latexit><latexit sha1_base64="QRKsrK9PrldfXa7NbncNwbLr4h8=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkpSBD0WvXisYD+gCWWz3bRLdzdhdyPU0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmRSln2njet1Pa2Nza3invVvb2Dw6r7tFxRyeZIrRNEp6oXoQ15UzStmGG016qKBYRp91ocjv3u49UaZbIBzNNaSjwSLKYEWysNHCrQSpQECtMcn+WN2YDt+bVvQXQOvELUoMCrYH7FQwTkgkqDeFY677vpSbMsTKMcDqrBJmmKSYTPKJ9SyUWVIf54vAZOrfKEMWJsiUNWqi/J3IstJ6KyHYKbMZ61ZuL/3n9zMTXYc5kmhkqyXJRnHFkEjRPAQ2ZosTwqSWYKGZvRWSMbQrGZlWxIfirL6+TTqPue3X//rLWvCniKMMpnMEF+HAFTbiDFrSBQAbP8ApvzpPz4rw7H8vWklPMnMAfOJ8/YSaS5Q==</latexit><latexit sha1_base64="QRKsrK9PrldfXa7NbncNwbLr4h8=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkpSBD0WvXisYD+gCWWz3bRLdzdhdyPU0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmRSln2njet1Pa2Nza3invVvb2Dw6r7tFxRyeZIrRNEp6oXoQ15UzStmGG016qKBYRp91ocjv3u49UaZbIBzNNaSjwSLKYEWysNHCrQSpQECtMcn+WN2YDt+bVvQXQOvELUoMCrYH7FQwTkgkqDeFY677vpSbMsTKMcDqrBJmmKSYTPKJ9SyUWVIf54vAZOrfKEMWJsiUNWqi/J3IstJ6KyHYKbMZ61ZuL/3n9zMTXYc5kmhkqyXJRnHFkEjRPAQ2ZosTwqSWYKGZvRWSMbQrGZlWxIfirL6+TTqPue3X//rLWvCniKMMpnMEF+HAFTbiDFrSBQAbP8ApvzpPz4rw7H8vWklPMnMAfOJ8/YSaS5Q==</latexit><latexit sha1_base64="QRKsrK9PrldfXa7NbncNwbLr4h8=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkpSBD0WvXisYD+gCWWz3bRLdzdhdyPU0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmRSln2njet1Pa2Nza3invVvb2Dw6r7tFxRyeZIrRNEp6oXoQ15UzStmGG016qKBYRp91ocjv3u49UaZbIBzNNaSjwSLKYEWysNHCrQSpQECtMcn+WN2YDt+bVvQXQOvELUoMCrYH7FQwTkgkqDeFY677vpSbMsTKMcDqrBJmmKSYTPKJ9SyUWVIf54vAZOrfKEMWJsiUNWqi/J3IstJ6KyHYKbMZ61ZuL/3n9zMTXYc5kmhkqyXJRnHFkEjRPAQ2ZosTwqSWYKGZvRWSMbQrGZlWxIfirL6+TTqPue3X//rLWvCniKMMpnMEF+HAFTbiDFrSBQAbP8ApvzpPz4rw7H8vWklPMnMAfOJ8/YSaS5Q==</latexit>

Je↵
<latexit sha1_base64="tHGsCdu2Rdn8l2FJJGi12+1qHSI=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF/EUwTxgs4TZyWwyZB7LzKwQlnyGFw+KePVrvPk3TpI9aGJBQ1HVTXdXnHJmrO9/e6W19Y3NrfJ2ZWd3b/+genjUNirThLaI4kp3Y2woZ5K2LLOcdlNNsYg57cTj25nfeaLaMCUf7SSlkcBDyRJGsHVSeN/Pe1ogmiTTfrXm1/050CoJClKDAs1+9as3UCQTVFrCsTFh4Kc2yrG2jHA6rfQyQ1NMxnhIQ0clFtRE+fzkKTpzygAlSruSFs3V3xM5FsZMROw6BbYjs+zNxP+8MLPJdZQzmWaWSrJYlGQcWYVm/6MB05RYPnEEE83crYiMsMbEupQqLoRg+eVV0r6oB349eLisNW6KOMpwAqdwDgFcQQPuoAktIKDgGV7hzbPei/fufSxaS14xcwx/4H3+AAqMkRU=</latexit><latexit sha1_base64="tHGsCdu2Rdn8l2FJJGi12+1qHSI=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF/EUwTxgs4TZyWwyZB7LzKwQlnyGFw+KePVrvPk3TpI9aGJBQ1HVTXdXnHJmrO9/e6W19Y3NrfJ2ZWd3b/+genjUNirThLaI4kp3Y2woZ5K2LLOcdlNNsYg57cTj25nfeaLaMCUf7SSlkcBDyRJGsHVSeN/Pe1ogmiTTfrXm1/050CoJClKDAs1+9as3UCQTVFrCsTFh4Kc2yrG2jHA6rfQyQ1NMxnhIQ0clFtRE+fzkKTpzygAlSruSFs3V3xM5FsZMROw6BbYjs+zNxP+8MLPJdZQzmWaWSrJYlGQcWYVm/6MB05RYPnEEE83crYiMsMbEupQqLoRg+eVV0r6oB349eLisNW6KOMpwAqdwDgFcQQPuoAktIKDgGV7hzbPei/fufSxaS14xcwx/4H3+AAqMkRU=</latexit><latexit sha1_base64="tHGsCdu2Rdn8l2FJJGi12+1qHSI=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF/EUwTxgs4TZyWwyZB7LzKwQlnyGFw+KePVrvPk3TpI9aGJBQ1HVTXdXnHJmrO9/e6W19Y3NrfJ2ZWd3b/+genjUNirThLaI4kp3Y2woZ5K2LLOcdlNNsYg57cTj25nfeaLaMCUf7SSlkcBDyRJGsHVSeN/Pe1ogmiTTfrXm1/050CoJClKDAs1+9as3UCQTVFrCsTFh4Kc2yrG2jHA6rfQyQ1NMxnhIQ0clFtRE+fzkKTpzygAlSruSFs3V3xM5FsZMROw6BbYjs+zNxP+8MLPJdZQzmWaWSrJYlGQcWYVm/6MB05RYPnEEE83crYiMsMbEupQqLoRg+eVV0r6oB349eLisNW6KOMpwAqdwDgFcQQPuoAktIKDgGV7hzbPei/fufSxaS14xcwx/4H3+AAqMkRU=</latexit><latexit sha1_base64="tHGsCdu2Rdn8l2FJJGi12+1qHSI=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF/EUwTxgs4TZyWwyZB7LzKwQlnyGFw+KePVrvPk3TpI9aGJBQ1HVTXdXnHJmrO9/e6W19Y3NrfJ2ZWd3b/+genjUNirThLaI4kp3Y2woZ5K2LLOcdlNNsYg57cTj25nfeaLaMCUf7SSlkcBDyRJGsHVSeN/Pe1ogmiTTfrXm1/050CoJClKDAs1+9as3UCQTVFrCsTFh4Kc2yrG2jHA6rfQyQ1NMxnhIQ0clFtRE+fzkKTpzygAlSruSFs3V3xM5FsZMROw6BbYjs+zNxP+8MLPJdZQzmWaWSrJYlGQcWYVm/6MB05RYPnEEE83crYiMsMbEupQqLoRg+eVV0r6oB349eLisNW6KOMpwAqdwDgFcQQPuoAktIKDgGV7hzbPei/fufSxaS14xcwx/4H3+AAqMkRU=</latexit>

±3

2
<latexit sha1_base64="ECE3UcIz6EN/bScJjuXkE+OcCTI=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAmls120y7d3YTdjVJC/ocXD4p49b9489+4bXPQ1gcDj/dmmJkXJpxp47rfzsrq2vrGZmmrvL2zu7dfOThs6zhVhLZIzGPVDbGmnEnaMsxw2k0UxSLktBOOb6Z+55EqzWJ5byYJDQQeShYxgo2VHvxE+JHCJDvPs3rer1TdmjsDWiZeQapQoNmvfPmDmKSCSkM41rrnuYkJMqwMI5zmZT/VNMFkjIe0Z6nEguogm12do1OrDFAUK1vSoJn6eyLDQuuJCG2nwGakF72p+J/XS010FWRMJqmhkswXRSlHJkbTCNCAKUoMn1iCiWL2VkRG2KZgbFBlG4K3+PIyaddrnlvz7i6qjesijhIcwwmcgQeX0IBbaEILCCh4hld4c56cF+fd+Zi3rjjFzBH8gfP5A5Rbkow=</latexit><latexit sha1_base64="ECE3UcIz6EN/bScJjuXkE+OcCTI=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAmls120y7d3YTdjVJC/ocXD4p49b9489+4bXPQ1gcDj/dmmJkXJpxp47rfzsrq2vrGZmmrvL2zu7dfOThs6zhVhLZIzGPVDbGmnEnaMsxw2k0UxSLktBOOb6Z+55EqzWJ5byYJDQQeShYxgo2VHvxE+JHCJDvPs3rer1TdmjsDWiZeQapQoNmvfPmDmKSCSkM41rrnuYkJMqwMI5zmZT/VNMFkjIe0Z6nEguogm12do1OrDFAUK1vSoJn6eyLDQuuJCG2nwGakF72p+J/XS010FWRMJqmhkswXRSlHJkbTCNCAKUoMn1iCiWL2VkRG2KZgbFBlG4K3+PIyaddrnlvz7i6qjesijhIcwwmcgQeX0IBbaEILCCh4hld4c56cF+fd+Zi3rjjFzBH8gfP5A5Rbkow=</latexit><latexit sha1_base64="ECE3UcIz6EN/bScJjuXkE+OcCTI=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAmls120y7d3YTdjVJC/ocXD4p49b9489+4bXPQ1gcDj/dmmJkXJpxp47rfzsrq2vrGZmmrvL2zu7dfOThs6zhVhLZIzGPVDbGmnEnaMsxw2k0UxSLktBOOb6Z+55EqzWJ5byYJDQQeShYxgo2VHvxE+JHCJDvPs3rer1TdmjsDWiZeQapQoNmvfPmDmKSCSkM41rrnuYkJMqwMI5zmZT/VNMFkjIe0Z6nEguogm12do1OrDFAUK1vSoJn6eyLDQuuJCG2nwGakF72p+J/XS010FWRMJqmhkswXRSlHJkbTCNCAKUoMn1iCiWL2VkRG2KZgbFBlG4K3+PIyaddrnlvz7i6qjesijhIcwwmcgQeX0IBbaEILCCh4hld4c56cF+fd+Zi3rjjFzBH8gfP5A5Rbkow=</latexit><latexit sha1_base64="ECE3UcIz6EN/bScJjuXkE+OcCTI=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAmls120y7d3YTdjVJC/ocXD4p49b9489+4bXPQ1gcDj/dmmJkXJpxp47rfzsrq2vrGZmmrvL2zu7dfOThs6zhVhLZIzGPVDbGmnEnaMsxw2k0UxSLktBOOb6Z+55EqzWJ5byYJDQQeShYxgo2VHvxE+JHCJDvPs3rer1TdmjsDWiZeQapQoNmvfPmDmKSCSkM41rrnuYkJMqwMI5zmZT/VNMFkjIe0Z6nEguogm12do1OrDFAUK1vSoJn6eyLDQuuJCG2nwGakF72p+J/XS010FWRMJqmhkswXRSlHJkbTCNCAKUoMn1iCiWL2VkRG2KZgbFBlG4K3+PIyaddrnlvz7i6qjesijhIcwwmcgQeX0IBbaEILCCh4hld4c56cF+fd+Zi3rjjFzBH8gfP5A5Rbkow=</latexit>

±5

2
<latexit sha1_base64="RM/NivcRq5MzFuUFkg13Z2LvPM0=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4KklR9Fj04rGC/YAmls120y7d3YTdjVJC/ocXD4p49b9489+4bXPQ1gcDj/dmmJkXJpxp47rfzsrq2vrGZmmrvL2zu7dfOThs6zhVhLZIzGPVDbGmnEnaMsxw2k0UxSLktBOOb6Z+55EqzWJ5byYJDQQeShYxgo2VHvxE+JHCJLvIs3rer1TdmjsDWiZeQapQoNmvfPmDmKSCSkM41rrnuYkJMqwMI5zmZT/VNMFkjIe0Z6nEguogm12do1OrDFAUK1vSoJn6eyLDQuuJCG2nwGakF72p+J/XS010FWRMJqmhkswXRSlHJkbTCNCAKUoMn1iCiWL2VkRG2KZgbFBlG4K3+PIyaddrnlvz7s6rjesijhIcwwmcgQeX0IBbaEILCCh4hld4c56cF+fd+Zi3rjjFzBH8gfP5A5drko4=</latexit><latexit sha1_base64="RM/NivcRq5MzFuUFkg13Z2LvPM0=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4KklR9Fj04rGC/YAmls120y7d3YTdjVJC/ocXD4p49b9489+4bXPQ1gcDj/dmmJkXJpxp47rfzsrq2vrGZmmrvL2zu7dfOThs6zhVhLZIzGPVDbGmnEnaMsxw2k0UxSLktBOOb6Z+55EqzWJ5byYJDQQeShYxgo2VHvxE+JHCJLvIs3rer1TdmjsDWiZeQapQoNmvfPmDmKSCSkM41rrnuYkJMqwMI5zmZT/VNMFkjIe0Z6nEguogm12do1OrDFAUK1vSoJn6eyLDQuuJCG2nwGakF72p+J/XS010FWRMJqmhkswXRSlHJkbTCNCAKUoMn1iCiWL2VkRG2KZgbFBlG4K3+PIyaddrnlvz7s6rjesijhIcwwmcgQeX0IBbaEILCCh4hld4c56cF+fd+Zi3rjjFzBH8gfP5A5drko4=</latexit><latexit sha1_base64="RM/NivcRq5MzFuUFkg13Z2LvPM0=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4KklR9Fj04rGC/YAmls120y7d3YTdjVJC/ocXD4p49b9489+4bXPQ1gcDj/dmmJkXJpxp47rfzsrq2vrGZmmrvL2zu7dfOThs6zhVhLZIzGPVDbGmnEnaMsxw2k0UxSLktBOOb6Z+55EqzWJ5byYJDQQeShYxgo2VHvxE+JHCJLvIs3rer1TdmjsDWiZeQapQoNmvfPmDmKSCSkM41rrnuYkJMqwMI5zmZT/VNMFkjIe0Z6nEguogm12do1OrDFAUK1vSoJn6eyLDQuuJCG2nwGakF72p+J/XS010FWRMJqmhkswXRSlHJkbTCNCAKUoMn1iCiWL2VkRG2KZgbFBlG4K3+PIyaddrnlvz7s6rjesijhIcwwmcgQeX0IBbaEILCCh4hld4c56cF+fd+Zi3rjjFzBH8gfP5A5drko4=</latexit><latexit sha1_base64="RM/NivcRq5MzFuUFkg13Z2LvPM0=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4KklR9Fj04rGC/YAmls120y7d3YTdjVJC/ocXD4p49b9489+4bXPQ1gcDj/dmmJkXJpxp47rfzsrq2vrGZmmrvL2zu7dfOThs6zhVhLZIzGPVDbGmnEnaMsxw2k0UxSLktBOOb6Z+55EqzWJ5byYJDQQeShYxgo2VHvxE+JHCJLvIs3rer1TdmjsDWiZeQapQoNmvfPmDmKSCSkM41rrnuYkJMqwMI5zmZT/VNMFkjIe0Z6nEguogm12do1OrDFAUK1vSoJn6eyLDQuuJCG2nwGakF72p+J/XS010FWRMJqmhkswXRSlHJkbTCNCAKUoMn1iCiWL2VkRG2KZgbFBlG4K3+PIyaddrnlvz7s6rjesijhIcwwmcgQeX0IBbaEILCCh4hld4c56cF+fd+Zi3rjjFzBH8gfP5A5drko4=</latexit>

±1

2
<latexit sha1_base64="QRKsrK9PrldfXa7NbncNwbLr4h8=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkpSBD0WvXisYD+gCWWz3bRLdzdhdyPU0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmRSln2njet1Pa2Nza3invVvb2Dw6r7tFxRyeZIrRNEp6oXoQ15UzStmGG016qKBYRp91ocjv3u49UaZbIBzNNaSjwSLKYEWysNHCrQSpQECtMcn+WN2YDt+bVvQXQOvELUoMCrYH7FQwTkgkqDeFY677vpSbMsTKMcDqrBJmmKSYTPKJ9SyUWVIf54vAZOrfKEMWJsiUNWqi/J3IstJ6KyHYKbMZ61ZuL/3n9zMTXYc5kmhkqyXJRnHFkEjRPAQ2ZosTwqSWYKGZvRWSMbQrGZlWxIfirL6+TTqPue3X//rLWvCniKMMpnMEF+HAFTbiDFrSBQAbP8ApvzpPz4rw7H8vWklPMnMAfOJ8/YSaS5Q==</latexit><latexit sha1_base64="QRKsrK9PrldfXa7NbncNwbLr4h8=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkpSBD0WvXisYD+gCWWz3bRLdzdhdyPU0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmRSln2njet1Pa2Nza3invVvb2Dw6r7tFxRyeZIrRNEp6oXoQ15UzStmGG016qKBYRp91ocjv3u49UaZbIBzNNaSjwSLKYEWysNHCrQSpQECtMcn+WN2YDt+bVvQXQOvELUoMCrYH7FQwTkgkqDeFY677vpSbMsTKMcDqrBJmmKSYTPKJ9SyUWVIf54vAZOrfKEMWJsiUNWqi/J3IstJ6KyHYKbMZ61ZuL/3n9zMTXYc5kmhkqyXJRnHFkEjRPAQ2ZosTwqSWYKGZvRWSMbQrGZlWxIfirL6+TTqPue3X//rLWvCniKMMpnMEF+HAFTbiDFrSBQAbP8ApvzpPz4rw7H8vWklPMnMAfOJ8/YSaS5Q==</latexit><latexit sha1_base64="QRKsrK9PrldfXa7NbncNwbLr4h8=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkpSBD0WvXisYD+gCWWz3bRLdzdhdyPU0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmRSln2njet1Pa2Nza3invVvb2Dw6r7tFxRyeZIrRNEp6oXoQ15UzStmGG016qKBYRp91ocjv3u49UaZbIBzNNaSjwSLKYEWysNHCrQSpQECtMcn+WN2YDt+bVvQXQOvELUoMCrYH7FQwTkgkqDeFY677vpSbMsTKMcDqrBJmmKSYTPKJ9SyUWVIf54vAZOrfKEMWJsiUNWqi/J3IstJ6KyHYKbMZ61ZuL/3n9zMTXYc5kmhkqyXJRnHFkEjRPAQ2ZosTwqSWYKGZvRWSMbQrGZlWxIfirL6+TTqPue3X//rLWvCniKMMpnMEF+HAFTbiDFrSBQAbP8ApvzpPz4rw7H8vWklPMnMAfOJ8/YSaS5Q==</latexit><latexit sha1_base64="QRKsrK9PrldfXa7NbncNwbLr4h8=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkpSBD0WvXisYD+gCWWz3bRLdzdhdyPU0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmRSln2njet1Pa2Nza3invVvb2Dw6r7tFxRyeZIrRNEp6oXoQ15UzStmGG016qKBYRp91ocjv3u49UaZbIBzNNaSjwSLKYEWysNHCrQSpQECtMcn+WN2YDt+bVvQXQOvELUoMCrYH7FQwTkgkqDeFY677vpSbMsTKMcDqrBJmmKSYTPKJ9SyUWVIf54vAZOrfKEMWJsiUNWqi/J3IstJ6KyHYKbMZ61ZuL/3n9zMTXYc5kmhkqyXJRnHFkEjRPAQ2ZosTwqSWYKGZvRWSMbQrGZlWxIfirL6+TTqPue3X//rLWvCniKMMpnMEF+HAFTbiDFrSBQAbP8ApvzpPz4rw7H8vWklPMnMAfOJ8/YSaS5Q==</latexit>

±3

2
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Supplementary Figure 2. Single-ion levels in the presence
of spin-orbit coupling and trigonal distortion. (a) Single-ion
spectrum within the lowest l = 1, S = 3/2 sector. (b) Splitting
of levels as a function of the trigonal distortion δ at fixed λ =
18 meV. (c) Anisotropic g-factors along and perpendicular to
the trigonal axis as a function of δ/λ. In b) and c) the vertical
dashed line corresponds to parameter values for the best fit to the
experimentally observed transitions to excited single-ion levels
(vertical blue arrows in (a) bottom right).

crystal field scheme, g‖ = 2.9 and g⊥ = 4.95 so the ratio
g⊥/g‖ ≈ 1.7, and the expected in-plane moment would
be g⊥µBS = 2.5 µB, which falls short of the 3 µB found
experimentally.

Supplementary Note 3. MAGNITUDE OF THE
ORDERED MOMENT
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Supplementary Figure 3. Ground state moment and energy
levels as a function of in-plane field. (a) In-plane magnetic
moment in the ground state as a function of in-plane mean field
h⊥. The experimental value of 3 µB is indicated by the horizontal
dashed line. (b) Splitting of the single-ion levels as a function of
h⊥.

Here we show that the shortfall between the calcu-
lated magnetic moment in the single-ion picture and the
experimentally-determined ordered moment can be ex-
plained naturally if exchange mean-field effects are incor-
porated into the single-ion picture. These can be param-
eterized by the Zeeman Hamiltonian HMF = −h⊥ · S⊥
where the ⊥ subscript indicates that the mean field is
oriented in-plane, along the ordered moment direction in
the magnetic structure.

We treat h⊥ as a variable parameter and solve for the
magnetic moment in the ground state with the result



12

shown in Supplementary Figure 3(a). We also compute
the single-ion spectrum as a function of h⊥ in Supplemen-
tary Figure 3(b) showing that the splitting of the first
exciton around 28 meV is very small, consistent with the
experimental finding.

We can estimate the magnitude of the actual mean
field experienced by the magnetic moments from the
XXZ exchange parameters that provide a quantitative
description of the observed magnon dispersions in Sup-
plementary Note 6. Those exchange parameters refer
to an effective S = 1/2 spin model and, for this on-
site moment, the magnitude of the mean field is h⊥ =
|S
∑6
n=1(−)n+1znJ

⊥
n | where zn is the number of n’th

nearest neighbors and J⊥n is the n’th neighbor in-plane
exchange. The sign (−)n+1 takes care of the antiferro-
magnetic arrangement between layers. For the exchange
couplings given in Supplementary Equation (21), we find
h⊥ = 9.1 meV. We must then adjust for the bare moment
by matching the Zeeman splittings for EMF = −h⊥ · S⊥
giving h⊥ = 5.0 meV from which we read off from Sup-
plementary Figure 3(a) a renormalized moment of about
3.0 µB, as deduced experimentally. We also note that
the spin-orbital mean field of Supplementary Note 10,
with parameters chosen principally to match the spin
wave bandwidth, gives a ground state ordered moment
of about 2.8 µB, again predicting an enhancement of the
ordered moment compared to that of isolated ions and
towards the value seen experimentally. In summary, we
conclude that the enhanced magnetic moment seen ex-
perimentally is due to mean-field exchange effects.

Supplementary Note 4. TIGHT-BINDING
MODEL FOR THE EXCITON DISPERSION

Here we outline the tight-binding model used to de-
scribe the observed dispersion [in Fig. 4c)] of the low-
est crystal field excited level near 28 meV, attributed to
hopping due to spin and orbital exchange. In a first ap-
proximation we neglect the effect of magnetic ordering
on the crystal-field excitations and consider hopping of
crystal-field excitations only between sites in the same
honeycomb layer, so between sites of the A and B sub-
lattices indicated in Supplementary Figure 5. Because
the Kramers degeneracy of the crystal field modes is pre-
served and there are two sublattices in the paramagnetic
regime, two dispersive bands are expected, analogous to
the two bands of mobile electrons in graphene, which
touch at the corners (K points) of the two-dimensional
Brillouin zone [46]. A tight-binding description includ-
ing 1st, 2nd and 3rd nearest neighbor in-plane (1st, 3rd
and 5th in the full crystal structure) with hopping inte-
grals t1,3,5 on the same paths as J1,3,5 in Supplementary
Figure 5 gives the dispersions relations

E±(k) = E0 ± |Γk|+ t3γ3k (2)

where

|Γk|eiϕk = (t1γ1k + t5γ5k) eik·(r2−r1) (3)

and the cobalt positions r1,2 and geometric factors γnk
are defined (later) in Supplementary Equation. (9) and
(15). The above equations can capture well the observed
dispersions of the exciton modes, see solid and dashed
lines in Figure 4c). To find the model parameters ex-
perimental dispersion points were extracted from fitting
Gaussian peaks to constant-energy and -wavevector scans
through the high-energy INS data. From a best-fit to the
experimental dispersion points we obtain

E0 = 28.01(1) meV
t1 = −0.846(6) meV
t3 = −0.027(4) meV
t5 = −0.084(6) meV. (4)

The uncertainties in the fit parameters were obtained by
adding Gaussian noise with a representative standard de-
viation σ = 0.3 meV to the energies of the experimentally
extracted exciton dispersion points and fitting the model
parameters for many such data sets. This resulted in a
distribution of values for each of the model parameters,
the quoted uncertainties are the standard deviations of
those distributions. The hopping terms obtained above
are of the same order of magnitude as the fitted exchange
couplings presented in Supplementary Note 6 C.

Fig. 4d) shows the intensity dependence assuming it
is determined solely by interference scattering from the
A and B sublattices, which takes the form [47] I±(k) ∼
1± cosϕk with the upper/lower sign for the top/bottom
band and the phase angle ϕk defined above. For wavevec-
tors with in-plane projection in the vicinity of a K point,
the phase ϕk is directly related to the polar (azimuthal)
angle αδk of the in-plane wavevector displacement δk
away from K. In the limit |δk| → 0 and t5/t1 → 0, the fol-
lowing relations are obtained for representative K-points

(2/3, 5/3) ϕk= αδk − π + 2πεL (5)
(2/3, 2/3) ϕk= αδk + π/3 + 2πεL (6)
(4/3, 1/3) ϕk= −αδk + 2πεL (7)

where the azimuthal angle αδk is measured with refer-
ence to the ( 1

2 1̄0) direction (horizontal axis in Fig. 2d).
The relations near other K-points are obtained by 3̄m
symmetry. Here ε = 2(zCo− 1/3) characterises the buck-
ling of the cobalt honeycomb layer (ε = 0 for flat planes).
The above intensity form captures well the overall inten-
sity distribution and explains why only one exciton mode
carries significant weight for most wavevectors in Fig. 4c)
except the last panel where both modes are visible. Note
that by simultaneously changing the sign of both t1 and
t5 leaves the dispersion relations in Supplementary Equa-
tion (2) unchanged, however the intensities of the two
modes then become completely the opposite way round
to what is seen experimentally in Fig. 4c), so the pa-
rameter signs as listed in Supplementary Equation (4)
are uniquely determined by combining dispersions and
intensities constraints.

The above intensity form I(k)± also explains the an-
gular dependence of the intensity in the azimuthal scans
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in Fig. 4e) with maximum intensity in the top band oc-
curring near αδk = 155(5)◦, compared to the predicted
value of 153(1)◦ based on Supplementary Equation (5)
[π − 2πεL averaged for the appropriate L-integration
range of the scan]. The tight-binding model in this Sec-
tion provides a good empirical fit to the observed exciton
data. In Supplementary Note 10 we treat the excitons
and magnons in a unified way showing that the antifer-
romagnetic order should lead to further splitting of the
exciton modes, however such splittings are expected to
be small, beyond the resolution of the present measure-
ments.

Supplementary Note 5. SPIN WAVE
CALCULATIONS FOR THE MINIMAL S = 1/2

XXZ MODEL

A. Structural and magnetic Brillouin zones

Here we describe the Brillouin zone relevant for the
reciprocal space periodicity of the magnetic dispersion
relations. We introduce the hexagonal primitive vectors
a, b and c indicated in Supplementary Figure 5 and the
primitive rhombohedral unit cell with vectors A1

A2

A3

 = 1
3

 −1 −2 1
2 1 1
−1 1 1


 a

b
c

 , (8)

such that c = A1 + A2 + A3. The Brillouin zone corre-
sponding to this primitive structural cell is illustrated in
Supplementary Figure 4a) and belongs to the elongated
(c >

√
3/2a) rhombohedral case [48]. It has top and bot-

tom regular hexagonal faces with midpoints at ±
(
00 3

2
)

and twelve side faces that alternate between rectangular
and slightly-distorted hexagonal with midpoints at

( 1
201̄
)

and
( 1

20 1
2
)
, respectively, with other faces obtained by 3̄

symmetry.
The magnetic structure is illustrated in Supplementary

Figure 5 and has moments parallel in each layer and an-
tiparallel between layers. This magnetic periodicity can
be captured by a doubled-volume rhombohedral primi-
tive cell shown by the dashed outline in Supplementary
Figure 5, with basis vectors rotated by 60◦ and elongated
a factor of 2 along c compared to the rhombohedral prim-
itive structural cell in Supplementary Equation (8), with
the magnetic primitive unit cell vectors given by M1

M2

M3

 = 1
3

 1 2 2
−2 −1 2
1 −1 2


 a

b
c

 .

The Brillouin zone corresponding to this primitive mag-
netic unit cell is shown in Supplementary Figure 4c) and
is half the volume of the structural Brillouin zone in
Supplementary Figure 4a), with similar topology, but
60◦ rotated around (001). The top and bottom faces

Magnetic Brillouin ZoneStructural Brillouin Zone

a) b)

c) d)

K

a*

b*

_
2

_
2

Supplementary Figure 4. Brillouin zones. a) Structural and b)
magnetic Brillouin zones with selected mid-face points labelled
and projected in c) and d), respectively, onto the hk plane, where
the dashed outline is the 2D hexagonal Brillouin zone of a single
honeycomb layer. In a) and b) the side Brillouin zone edges wrap
round vertical lines (dashed red) that project onto the corner
K-points of the 2D hexagonal Brillouin zone. In b) the parallel
dotted blue line segments on the top and a side face show a path
equivalent to the scan direction in Supplementary Figure 12.

are hexagonal with midpoints at ±
(
00 3

4
)

and the twelve
side faces alternate between rectangular and strongly dis-
torted hexagonal with midpoints at

( 1
20 1

2
)

and
(

1
20 1̄

4

)
,

respectively, with other faces obtained by 3̄ symmetry.
The projection of the magnetic Brillouin zone in the hk

plane is illustrated in Supplementary Figure 4d), where
the inner hexagon corresponds to the top face at L = 3/4.
In projection, this is located inside the 2D hexagonal Bril-
louin zone (red dashed outline) of a single honeycomb
layer. Upon decreasing L, the corners of the magnetic
Brillouin zone move initially outwards, along the set of
small black segments, followed by two other small seg-
ments, such that in projection they describe small equi-
lateral triangles centred at the nominal K-points of the
2D hexagonal Brillouin zone. Viewed in 3D, the mag-
netic Brillouin zone edges wrap around the straight lines
that project onto K-points, as illustrated in Supplemen-
tary Figure 4b). This has the consequence that points
along those straight lines have no special symmetry, they
act like general points in the magnetic Brillouin zone.
Therefore, there are no symmetry-imposed constraints
for touching points in the magnetic dispersion bands to
be pinned at those positions. Indeed, as illustrated in
Fig. 3b) and detailed in Supplementary Note 7 A and
Supplementary Note 9, we find that in the general case
nodal lines wind along L and precess in-plane around
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positions that can be displaced away from the nominal
K-points.

B. The XXZ Model and Further Neighbor
Couplings

Here we give details of the analytical spin-wave calcu-
lations for the minimal easy-plane exchange model that
captures the principal features of the observed magnon
dispersion relations. To describe the full structural ar-
rangement of the Co ions we use the following primitive
unit cell with vectors R1

R2

R3

 =

 1 0 0
0 1 0
− 1

3 −
2
3

1
3


 a

b
c


and vectors defining the positions of the two cobalt ions
in this primitive cell

r1= − ε2c

r2= −1
3a − 2

3b + ε

2c, (9)

where ε = 2(zCo − 1/3) characterises the buckling of the
cobalt honeycombs, with the Co z-coordinate zCo given
in Supplementary Table I. The above primitive cell was
chosen to emphasize the ab planes as a ‘natural’ building
block of the Co structural arrangement.

The full structure of cobalt ions is then generated by
the set of positional vectors

Rni,m =
∑

a=1,2,3
niaRa + rm ≡ Ri + rm (10)

where the integers nia select the primitive unit cell and
m = 1, 2 is the cobalt sublattice index.

The minimal model that we find describes all but the
fine structure of the spin wave spectrum is an XXZ model
on all these couplings:

HXXZ =
∑
〈i,j〉n

J⊥n
2
(
S+
i S
−
j + S−i S

+
j

)
+ JznS

z
i S

z
j , (11)

where Jzn is the (Ising) coupling for spin components
along z ‖ c and J⊥n is the coupling for spin components in
the ab plane, the summation is over all interacting pairs
〈i, j〉n of n’th nearest neighbors counted once, and we
include n=1 to 6.

C. Spin Wave Calculations

The magnetic structure shown in Supplementary Fig-
ure 5 has collinear moments that are ferromagnetic in
each honeycomb plane and antiparallel between adjacent
planes, with four magnetic sublattices (labelled A-D) per

c

b

a

Supplementary Figure 5. Magnetic structure and exchange
paths. Moments (thick red and blue arrows) are confined to
the ab plane, FM-aligned in the honeycomb layers with AFM
stacking. Labels A,B,C,D indicate the four magnetic sublattices
used in the spin-wave calculation and the thick double arrowed
lines labeled J1 to J6 show the exchange paths up to 6th near-
est neighbor. Dashed lines indicate the outline of the primitive
rhombohedral magnetic unit cell corresponding to the magnetic
propagation vector Q.

primitive magnetic cell. For the spin-wave calculation it
is convenient to define a global Cartesian xyz frame with
x ‖ a, z ‖ c and y = z× x, as illustrated in Supplemen-
tary Figure 18d). We also define a local frame denoted
x̃ỹz̃ where z̃ lies along the direction of the local ordered
moment and x̃ is in-plane, where the two frames are re-
lated by

x = cos(φ+ nπ)z̃− sin(φ+ nπ)x̃,
y = sin(φ+ nπ)z̃ + cos(φ+ nπ)x̃,
z = ỹ, (12)

where φ is the in-plane angle of the ordered spins of sub-
lattices A and B, measured relative to x in the positive
sense if rotating around z and n = 0 for sublattices A
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and B, and n = 1 for sublattices C and D.
In the local frame all moments are parallel and the

magnetic primitive cell is reduced to the structural prim-
itive cell, i.e. in this frame there are only two magnetic
sublattices as opposed to four in the original frame. For
the XXZ model in Supplementary Equation (11) the spin
Hamiltonian expressed in the local frame has the same
periodicity as that of the structural cell and in this case
the problem is reduced to obtaining the dispersion rela-
tions for a Hamiltonian of the generic form

H = 1
2
∑

k

Υ†kD(k)Υk

where Υ†k = (a†k, b
†
k, a−k, b−k), with a†k and b†k being

magnon creation operators for the two magnetic sublat-
tices. Here the sum extends over all wavevectors k in the
structural Brillouin zone in Supplementary Figure 4a).

Introducing A, B, C and D as implicit functions of k,
the dynamical matrix D(k) has the form

D(k) =


A B C D?

B? A D C

C? D? A B

D C? B? A

 . (13)

Including couplings up to 6th nearest neighbor we find

A = [−3J⊥1 + J⊥2 − 6J⊥3 + 1
2(J⊥3 + Jz3 )γ3k + 6J⊥4 −

1
2(J⊥4 − Jz4 )γ4k − 3J⊥5 + 3J⊥6 ]S

B = [12(J⊥1 + Jz1 )γ1k −
1
2(J⊥2 − Jz2 )γ2k + 1

2(J⊥5 + Jz5 )γ5k −
1
2(J⊥6 − Jz6 )γ6k]S

C = [12(J⊥3 − Jz3 )γ3k −
1
2(J⊥4 + Jz4 )γ4k]S

D = [12(J⊥1 − Jz1 )γ?1k −
1
2(J⊥2 + Jz2 )γ?2k + 1

2(J⊥5 − Jz5 )γ?5k −
1
2(J⊥6 + Jz6 )γ?6k]S. (14)

Here

γnk ≡
∑

ni∈NN(n)

eik·Rni (15)

where the sum runs over the set of N(n) n’th nearest
neighbors, with N(1) = 3, N(2) = 1, N(3) = 6, N(4) =
6, N(5) = 3 and N(6) = 3. The vectors Rni define the
relative displacement of the primitive cells where the i’th
members in the set of N(n) neighbors are located, and

can be decomposed in terms of the primitive basis vectors
as

Rni = pniR1 + qniR2 + rniR3 (16)

with coefficients given in Supplementary Table II for all
nearest neighbors up to n = 6, with representative bonds
illustrated in Supplementary Figure 5.

The dispersion relations are obtained by diagonalizing
the matrix GD(k), where G = diag(1, 1,−1,−1), and are
given by

ω2
± = A2 + |B|2 − |C|2 − |D|2 ±

√
(2AB − CD? −D?C?) (2AB? − CD − C?D) + (BD −B?D?)2

. (17)

In order to compute the neutron scattering intensities, we require the right eigenvectors of GD. The components are

W (ω) ≡ −(A+ ω)(A2 + |B|2 − |C|2 − |D|2 − ω2) + 2A|B|2 −BDC? −B?D?C

X(ω) ≡
(
A2C? + |B|2C? − |C|2C? + |D|2C − C?ω2)−A (BD +B?D?) + ω (BD −B?D?)

Y (ω) ≡ B?
[
(A+ ω)2 − |B|2 + |C|2

]
− (ACD +ADC? + CDω + C?Dω) +BD2

Z(ω) ≡ D
(
A2 + C?2 − |D|2 − ω2)+B?2D? − 2AB?C?

up to a normalization
N(ω) = |−|W |2 + |X|2 − |Y |2 + |Z|2|.

The eigenvectors are then the columns of

U =


W̄ (ω−) W̄ (ω+) W̄ (−ω−) W̄ (−ω+)
Ȳ (ω−) Ȳ (ω+) Ȳ (−ω−) Ȳ (−ω+)
X̄(ω−) X̄(ω+) X̄(−ω−) X̄(−ω+)
Z̄(ω−) Z̄(ω+) Z̄(−ω−) Z̄(−ω+)
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Supplementary Table II. The integer coefficients pni, qni

and rni defined in Supplementary Equation (16).
n i pni qni rni n i pni qni rni

1 1 0 1 0 4 2 0 0 1
1 2 0 0 0 4 3 0 -1 -1
1 3 1 1 0 4 4 0 1 1
2 1 0 0 -1 4 5 1 1 1
3 1 1 0 0 4 6 -1 -1 -1
3 2 -1 0 0 5 1 1 0 0
3 3 0 1 0 5 2 -1 0 0
3 4 0 -1 0 5 3 1 2 0
3 5 1 1 0 6 1 1 2 1
3 6 -1 -1 0 6 2 0 1 1
4 1 0 0 -1 6 3 1 1 1

where the bar means W̄ (ω) ≡W (ω)/
√
N(ω) and so on.

Let us define

Sx̃x̃q (k, ω) ≡|W +X + (Y + Z)e−i(k−q)·(r1−r2)|2×
S

4N [δ(ω − ω+(k)) + δ(ω − ω−(k))]

Sỹỹ(k, ω) ≡|W −X + (Y − Z)eik·(r1−r2)|2×
S

4N [δ(ω − ω+(k)) + δ(ω − ω−(k))], (18)

where implicitly the functions W , X, Y , Z, N are eval-
uated at wavevector k, and energy ω that satisfies the
delta functions δ(ω − ω±(k)). The in- and out-of-plane
dynamical correlations in the local frame are obtained as
Sx̃x̃0 (k, ω) and Sỹỹ(k, ω), respectively, so both magnon
modes ω±(k) occur in both polarizations with different
intensities. Note that the magnon dispersion relations are
independent of the buckling parameter ε, which only has
the effect of modulating the intensities through the ex-
ponential phase factor in Supplementary Equation (18).

Upon transformation to the global frame the out-of-
plane correlations are unchanged. The in-plane polarized
dispersions are momentum shifted by the propagation
vector Q such that the total INS intensity is proportional
to

px̃g
2
⊥S

x̃x̃
Q (k + Q, ω) + pỹg

2
‖S

ỹỹ(k, ω) (19)

where we have included the neutron polarization factors
pζ = 1 − (kζ/k)2 and the anisotropic g-factor compo-
nents for in- and out-of-plane moment directions, g⊥ and
g‖, respectively. Here kζ = k · ζ is the wavevector trans-
fer component along the ζ = x̃, ỹ direction. In the global
frame at a given wavevector k there are four magnon
branches, ω±(k) (polarised out-of-plane along z = ỹ) and
ω±(k + Q) (polarized in-plane), i.e. one recovers the ex-
pected number of modes for the four magnetic sublattices
in the original problem. In the above we have used the
fact that 2Q is a vector of the reciprocal lattice of the
structural cell, so ω(k + Q) and ω(k −Q) are identical

by reciprocal space translational symmetry. The above
analytical expressions for the dispersion relations and in-
tensities have been checked against a numerical spin-wave
code for the full four-sublattice spin-wave Hamiltonian,
and also against SpinW [49].

The spectrum is gapless at the origin and at the mag-
netic propagation vector Q, as expected given the U(1)
symmetry of the XXZ Hamiltonian, i.e. there is no en-
ergy cost in rotating the spins in the ab plane. The dis-
persion relations as well as the functional form of the
dynamical structure factors are independent of the in-
plane angle φ, the only dependence of the INS intensity
on φ comes through the neutron polarization factor for in-
plane fluctuations, px̃. This is the case for a single mag-
netic domain, however assuming six equally-populated
magnetic domains with moment directions at φ + nπ/3
(n = 0 to 5) as expected due to the 3̄ lattice point group
symmetry of the crystal structure, the domain average
〈px̃〉 is independent of φ and the total INS intensity in
this case is proportional to
1
2

(
1 + k2

z

k2

)
g2
⊥S

x̃x̃
Q (k + Q, ω) +

(
1− k2

z

k2

)
g2
‖S

ỹỹ(k, ω)

(20)
where kz = k · z is the wavevector transfer component
along the c-axis.

For the purpose of comparison with data it is help-
ful to discuss the overall reciprocal space periodicity and
symmetry of the dispersions and dynamical correlations.
The Brillouin zone folding that occurs upon going from
the local to the global frame has the consequence that
each of the dispersive modes in the global frame when
labelled as ωm(k) with m = 1 to 4 in order of increasing
energy, has the translational periodicity of the magnetic
Brillouin zone. The magnetic structure in Supplemen-
tary Figure 5 breaks the 3-fold rotational symmetry of
the crystal structure, however the XXZ Hamiltonian has
a higher symmetry, U(1), than required by the crystal
structure, with the consequence that the magnon disper-
sions ωm(k) are independent of the in-plane moment’s
angle φ and have the rotational symmetry of the cobalt
structural arrangement, which is 3̄m. This rotational
symmetry implies also that all magnetic domains will
have identical dispersion relations, which justifies Sup-
plementary Equation (20) for a multi magnetic domain
sample. Each of the two intensity terms in that equation,
separately has the same rotational point group symmetry
3̄m. In the case of flat plane honeycombs (ε = 0), each
of those two intensity terms also has the translational
periodicity of the structural Brillouin zone, however the
buckling of the layers breaks the translational periodicity
of the intensity along the L-direction as it introduces an
intensity modulation factor due to interference scattering
from the two cobalt sites in the same honeycomb layer
being offset along z, this intensity modulation term has
a long period, 1/ε along L.

Finally, we note that following the general arguments
presented in [30], the dynamical structure factor for
small in-plane wavevector displacements δk away from
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the nodal points will have the azimuthal angular depen-
dence 1± cosϕk, where the phase angle ϕk is related to
the azimuthal angle αδk of δk via Supplementary Equa-
tions (5)-(7). This leads to a two-fold intensity modula-
tion in azimuthal scans, in anti-phase between the two
touching bands, as observed by the data in Fig. 2c). The
relation between ϕk and αδk varies between neighboring
K-points following a 3̄m symmetry. This is illustrated in
Fig. 2d) by the radial thick magenta arrows which show
the directions n̂ away from the nearby K-points along
which the intensity in the the top band is maximal in
azimuthal scans at L = 0. At finite L, due to scatter-
ing interference from the two cobalt sites offset along z,
the n̂ vectors rotate in-plane by an angle 2πεL, in oppo-
site senses for adjacent K-points, following a 3̄m symme-
try. This L-dependence provides a natural explanation
for the observed angular intensity dependence in the az-
imuthal scan in Fig. 2c) around the (2/3,2/3) Dirac node,
with maximum intensity in the top band observed near
αδk = −80(3)◦, compared to −81(1)◦ calculated based on
Supplementary Equation (6) averaged for the appropri-
ate L-integration range of the scan. The L-dependence
of the azimuthal scans is illustrated in Supplementary
Figure 6.

Supplementary Note 6. INELASTIC NEUTRON
SCATTERING EXPERIMENTS AND FITTING

OF MAGNON DISPERSIONS TO AN XXZ∆
MODEL

A. Experimental Details

Here we provide details of the INS experiments [39] to
probe the spin dynamics, performed using the MERLIN
direct-geometry time-of-flight spectrometer[50] at ISIS.
The sample consisted of two co-aligned single crystals of
CoTiO3 (total mass 5.8 g) grown via the floating zone
method, mounted with the (hk0) scattering plane hori-
zontal. Full Horace maps of the inelastic scattering were
collected at a base temperature of 8 K (cooling was pro-
vided by a closed-cycle refrigerator) by rotating the sam-
ple around the vertical axis in steps of 0.5◦ over an an-
gular range of 120◦, with each step counted for 9 mins at
an average proton current of 170 µA. The temperature-
dependence of the inelastic scattering up to 300 K was
measured for one representative sample orientation. The
spectrometer was operated in repetition rate multiplica-
tion (RRM) mode to collect the inelastic scattering si-
multaneously for monochromatic incident neutrons with
energies Ei=9.6, 18 and 45 meV, with energy resolutions
on the elastic line of 0.36(2), 0.72(2) and 2.7(1) (full
width at half maximum, FWHM), respectively. Addi-
tional measurements were collected with Ei=83 meV to
probe transitions to higher crystal field levels. The elas-
tic line in all runs was centred on zero energy transfer to
better than 0.25% of Ei. The time-of-flight neutron data
were processed using the mantid[51] and horace[52]

a)

b)

c)

L = [0, 2.4]

L = [-1, 1]

L = [-2.4, 0]

Supplementary Figure 6. Azimuthal intensity dependence for
different L values. Azimuthal intensity scans as per Fig. 2c),
for increasing L-values from panel c) to a), fitted to cosinusoidal
forms (solid lines), with error bars representing one standard de-
viation. Thin dashed vertical lines at α = −60 and 120◦ show
the expected intensity extremal positions for flat honeycombs
(ε = 0). Red thick arrows show where the top band (filled sym-
bols) would be expected to be maximal for the case of buckled
honeycombs [−π/3− 2πεL as per Supplementary Equation (6)
appropriately averaged for the L-range of the scans].

data analysis packages.

B. Structural domains and data symmetrization

Careful examination of the observed diffraction signal
(integrated elastic line) showed that the sample contained
two almost equal-weight structural twins, related by a 2-
fold rotation around the (110) axis, or equivalently mir-
rored with respect to the (101) plane. Under this trans-
formation the Co and Ti positions are unchanged, only
the oxygen positions are affected as illustrated in Supple-
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Supplementary Figure 7. Structural domains. Projection of
a single honeycomb layer onto the ab plane for the reference
structural domain A (left, Supplementary Table I) and domain
B (right) related by a (101) mirror plane (solid vertical line). ±
signs for the cobalt ions (large blue balls) and red/brown color
for the oxygens (small balls) indicate positions above/below the
plane. The structural and magnetic Brillouin zones in Supple-
mentary Figure 4 apply to both domain A and B.

mentary Figure 7. With reference to the crystal struc-
ture in Supplementary Table I called structural domain A
with oxygens at (xO, yO, zO), the mirrored domain B has
oxygens located at positions equivalent to (yO, xO,−zO).
Both structural twins scatter into the same Bragg posi-
tions at τ = (h, k, l) with −h+k+ l = 3n, n integer, and
are most easily distinguished by analysing the diffraction
signal at (13̄1) (and equivalent positions by 3̄ symmetry)
where interference scattering from Co, Ti and O leads
to a strong intensity for domain A, but near cancellation
for domain B, and viceversa for reflection (2̄31). The
observed diffraction pattern showed almost equal inten-
sities for those two reference reflections, so we conclude
that the sample contained equal amounts of the A and B
domains, which would imply a 3̄m point group symme-
try for the (diffraction and inelastic) signal. Indeed the
inelastic intensity showed to a very good degree 3̄m sym-
metry with mirrors at (h0l) and to enhance the counting
statistics the wavevector transfers k of the pixels in the
four-dimensional Horace scans were remapped using sym-
metry operations of the above point group to a minimal
60◦ sector in the hk plane and l > 0.

We note that magnetic ordering with moments in plane
breaks the 3-fold rotation, so the dispersion relations
and dynamical structure factor for a single magnetic do-
main would in principle have point group 1̄ (a minimal
model that exhibits this lower symmetry of its magnetic
spectrum is the XXZ Hamiltonian augmented by finite
diagonal exchange anisotropy η 6= 0 discussed in Sup-
plementary Note 7 A. However, averaging over three
equal-weight magnetic domains with moments rotated
by ±120◦ as expected in a macroscopic sample, would
restore the 3-fold symmetry for the intensity pattern.
This combined with the A and B structural domains then
would restore the higher point group symmetry 3̄m for
the intensity pattern, justifying the pixel averaging used.

b)a)

Supplementary Figure 8. Spectral gap and low-energy in-
plane dispersions. a,b) INS intensity along orthogonal in-plane
wavevector directions through the (1, 1, 3

2 ) magnetic Bragg peak,
showing a strong V-shaped magnetic signal above a gap, with a
clear separation from the elastic line. Intensities are averaged for
L = [1.375, 1.625] and a transverse in-plane wavevector range
of ±0.062 and ±0.072 Å−1, respectively. The measurement
configuration was as in Fig. 1c). The colour bar indicates the
scattering intensity in arbitrary units on a linear scale.

C. Parameterization of magnon dispersions by an
XXZ∆ model

The XXZ Hamiltonian discussed in the previous sec-
tion has a U(1) symmetry, however the crystal struc-
ture has only discrete rotational symmetry and more-
over the observed magnon spectrum is clearly gapped,
as shown in Fig. 1c) and Supplementary Figure 8, in-
dicating not a continuous, but a discrete set of allowed
φ values. To account for the presence of a spectral gap
at this stage we introduce a phenomenological gap pa-
rameter ∆ and assume that the effect of the symmetry-
breaking interactions that generate this gap can be ac-
counted for, in a first approximation, by simply adding
this gap in quadrature to the analytical XXZ disper-
sions, i.e. the experimental dispersion points are com-
pared with ω̃m(k) =

√
∆2 + ω2

m(k), where m = 1 to 4
labels the four magnon modes at a given wavevector k in
order of increasing energy. Empirical (h, k, l, E,m) dis-
persion points (where E is energy) were extracted from
fitting Gaussian peaks to constant-wavevector and/or -
energy scans through the four-dimensional inelastic neu-
tron scattering data. Supplementary Figure 9 illustrates
the level of agreement that can be obtained when com-
paring nearly 2, 000 empirical dispersion points with dis-
persions of the XXZ∆ model for a representative set of
exchange parameters below, all in meV,

J⊥1 = −6.36 Jz1 = 1.97
J⊥2 = −0.33 Jz2 = 0.30
J⊥3 = 0.78 Jz3 = 0.15
J⊥4 = 0.11 Jz4 = 0.32
J⊥5 = −0.39 Jz5 = 0.20
J⊥6 = 0.79 Jz6 = 0.68 (21)
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and ∆̃ = 1.23(7) meV, where −/+ve signs for the ex-
changes mean FM/AFM coupling.
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Supplementary Figure 9. Agreement between observed and
calculated magnon energies. Magenta, grey, and green sym-
bols correspond to magnon bands indexed in order of increasing
energy. A single symbol is used for the un-resolved ω̃3,4 modes
(corresponding to their weighted average by the dynamical struc-
ture factor including the neutron polarization factor), the error
bars representing one standard deviation. The solid line shows
the 1:1 agreement.

In the above we have used the symbol ∆̃ to indi-
cate that the gap is overestimated through this analy-
sis. There is a net shift of the scattering weight towards
higher energies originating from the finite wavevector in-
tegration around the lowest energy mode because the in-
tegration range captures intensity from the mode away
from the minimum, thus shifting the average upwards.
We account for this effect in a first approximation by as-
suming all exchange parameters fixed as per Supplemen-
tary Equation (21) and calculating the expected scat-
tering for the slice in Fig. 1c), which is most sensitive
to the gap, allowing for a variable ∆ in the fit. We
include the full wavevector averaging in the transverse
(highly-dispersive, in-plane) direction as in the data slice,
and optimise ∆ to get the best agreement between scans
through the data and simulation, as shown in Supple-
mentary Figure 10. This gave ∆ = 1.0(1) meV, renor-
malized down from ∆̃. Fig. 1c) illustrates the effect of the
wavevector averaging in the transverse direction: near
the bottom of the dispersion there is a systematic up-
wards energy shift between the position of the dominant
scattering weight and the dispersion energy (solid line)
at the nominal wavevector positions. The position of the
scattering weight in the data and simulations agree once
wavevector averaging is included, compare Fig. 1c) and
d).

The parameter set in Supplementary Equation (21)
provides a quantitative account of the observed magnon

Supplementary Figure 10. Energy scan above the
(
11 3

2

)
magnetic Bragg peak. The white circles denote the inelas-
tic neutron scattering intensity, averaged for L = [1.4, 1.6] and
transverse in-plane wavevector ranges of±0.1 Å−1 in the (1, 0, 0)
and (1/2,−1, 0) directions, with error bars representing one stan-
dard deviation. The solid line is the fit described in the text to
determine the gap value.

dispersions (up to the fine structure around the K points
to be discussed later) and qualitatively of the intensities
as well, compare Fig. 1a) and b). However, the number
of Hamiltonian parameters considered is large and we
have found that some parameters are strongly correlated
in their effects on the dispersions. Therefore, the disper-
sions alone are not constraining enough to uniquely deter-
mine the values of all the individual exchange parameters.
For example, moving in parameter space away from the
set in Supplementary Equation (21) by varying the value
of Jz1 , fixing J⊥1 = −Jz1 − 4.4 meV and optimising all the
remaining exchange parameters results in a very small
relative change in χ2 =

∑
i |ωobs(i) − ωcalc(i)|2, of only

a few percent when Jz1 is reduced all the way to 0, such
a small variation in χ2 is at the level that the change in
the agreement with the data is almost indistinguishable.
Here ωobs(i)/ωcalc(i) is the observed/calculated energy
for the ith dispersion point. With the exception of J⊥1 ,
any one of the other 11 exchange parameters can be set
equal to 0 and optimising the rest of the parameters gives
a comparable agreement to that in Supplementary Fig-
ure 9. Therefore, more constraints are needed to uniquely
identify the values of the individual exchange parameters
and we therefore regard the set in Supplementary Equa-
tion (21) as representative of the best agreement that can
be obtained with the measured dispersions, and in the
following we focus on the key features of the measured
dispersions.

Whilst the overall dispersion trends are in general in
agreement with the minimal model parametrization pro-
posed in [18], our higher-resolution INS data reveal addi-
tional dispersion modulations and fine structure (split-
ting of modes) that require additional couplings and
anisotropies. For example Supplementary Figure 11
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shows a clear splitting between the two lower modes
(gray and magenta solid dots) in the region in-between
the two labelled K-points, those two lower modes would
be almost degenerate in this region in the parametriza-
tion used in [18]. The model in Supplementary Equa-
tion (21) (lines) predicts a substantial splitting between
those modes, although it still underestimates the mag-
nitude of the splitting seen experimentally. The agree-
ment with the data can be improved by adding a bond-
dependent anisotropic exchange η, which, we argue, is
physically responsible also for generating the finite spec-
tral gap above the magnetic Bragg peaks, to be discussed
in the following two sections.
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Supplementary Figure 11. Magnon spectrum along a direc-
tion passing through two adjacent K points at fixed L = 3/4.
Along this path a clear splitting of the two lower modes (pur-
ple and gray solid dots) is observed. Overplotted lines are the
dispersions for the model in Supplementary Equation (21) with
anisotropic XXZ inter-layer couplings. Heisenberg inter-layer
couplings as in [18] would give almost degenerate lower modes
in this region (not shown). Solid dots are empirical dispersion
points (colour indicates the mode index in order of increasing
energy as per the legend in Supplementary Figure 9. The upper
(yellow) and lower (magenta) pair of modes do not touch along
this wavevector path. The nodal lines are present for these pa-
rameters, but are displaced away from the two K points along
directions that make a finite angle with the plotted wavevector
path. The colour bar indicates scattering intensity in arbitrary
units on a linear scale.

For completeness, we note that the dipolar couplings
are negligible compared to the scale of the above ex-
changes, i.e. the dipolar energy scale is µ0µ

2/4πa3
0 =

0.018 meV, where µ is the ordered magnetic moment per
site in the ground state (3 µB) and a0 ≈ 3 Å is the
nearest-neighbor Co-Co distance.

For the above J1 − J6 XXZ model the reduction of
the ordered moment due to zero point fluctuations ∆S
within linear spin wave theory is merely 0.021 compared
to about 0.1 for the nearest-neighbor XXZ model (with
only J⊥1 and Jz1 nonzero).

Supplementary Note 7. SYMMETRY AND
ANISOTROPIC EXCHANGE

In Supplementary Note 6 we showed that the spin
waves computed from an XXZ model capture most of the
features of the experimental neutron scattering data very
well. However, it was necessary to include a phenomeno-
logical gap, which is absent in the XXZ model. We now
begin to address the microscopic origin of the gap and
we do this in two parts. The first is to recognize that
spin-orbit coupling can lead to anisotropic exchanges be-
yond the XXZ model which arises from a projection of a
Heisenberg model down to the spin-orbital ground state
Kramers doublet. In this section we discuss the possible
anisotropic exchange from a phenomenological point of
view. These additional anisotropies in the effective spin
one-half description generally lead to quantum order-by-
disorder as outlined in Supplementary Note 8 in which we
also compute the order-by-disorder gap exactly to lead-
ing order in 1/S for particular anisotropic exchange cou-
plings in order to estimate the required magnitude of the
anisotropies. In the second part, Supplementary Note
10, we consider the microscopic origin of the anisotropic
exchange and directly compute the spectral gap through
a flavor wave mean field theory.

We start with the nearest neighbor bonds. The inver-
sion symmetry at the midpoint of the bond forces this
exchange to be symmetric. In other words, six indepen-
dent coupling terms are allowed, which, of course, in-
cludes the XXZ form. Once the anisotropic exchange is
defined for one of the bonds chosen as “reference”, the
exchange on all other bonds of the same type in the full
crystal lattice is obtained using crystal lattice symmetry
operations such as the 3-fold rotation at the cobalt sites
or primitive lattice translations. It is insightful to con-
sider two (bond-dependent) reference frames to define the
anisotropic exchange. The global xyz frame used so far
is a natural frame for the vertical diamond-shaded bond
in Supplementary Figure 18d) as the y axis is along the
bond direction and z is along c. In this frame, the ex-
change matrix is

J1 =

 Jxx Jxy Jxz

Jxy Jyy Jyz

Jxz Jyz Jzz

 . (22)

It is also convenient to write the exchange in a Carte-
sian 111 frame (also illustrated in Supplementary Fig-
ure 18d) and denoted by SansSerif symbols xyz), where
the axes have the property that the hexagonal c-axis is
along the symmetric combination (x̂ + ŷ + ẑ)/

√
3. This

frame transforms simply under the lattice point group
symmetry 3 and is natural from the point of view of the
underlying superexchange mechanism. In this frame the
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exchange matrix for the same bond has the form J − JT Γ′1 Γ
Γ′1 J +K Γ′2
Γ Γ′2 J + JT

 (23)

where three of the six independent terms have a natural
interpretation, i.e. J is the isotropic (Heisenberg) ex-
change, K is a bond-Ising, or Kitaev-like, coupling, and
Γ is an off-diagonal symmetric exchange for components
in the plane orthogonal to the Kitaev axis. It is possible
to justify microscopically the origin of those three cou-
plings using a minimal superexchange model for the pair
of 90◦ Co-O-Co bonds (Supplementary Note 10).

The transformation that converts between the ex-
change terms between the two coordinate frames is(

Jxx Jyy Jzz Jxy Jxz Jyz
)T

=

1 2
3

1
3 0 − 2

3 − 2
3

1 0 −1 0 0 0
1 1

3
2
3 0 2

3
2
3

0 0 0 − 1√
3 − 1√

3
1√
3

0 −
√

2
3

√
2

3 0 − 1
3
√

2 −
1

3
√

2
0 0 0 − 2√

6
1√
6 − 1√

6





J

K

Γ
JT
Γ′1
Γ′2


(24)

In the following we shall consider anisotropic exchange
beyond nearest neighbor in particular to address the ef-
fect of these couplings on the fine structure of the spin
wave spectrum at the Dirac nodes. For 2nd nearest
neighbors, symmetry is highly constraining and restricts

the exchange to the XXZ form expressed in the xyz frame
as  J⊥2 0 0

0 J⊥2 0
0 0 Jz2

 . (25)

The 3rd nearest neighbor bonds are all constrained by
lattice symmetries once a single such bond is fixed.
However, a single bond has no symmetry on its own
and nine independent exchange couplings are allowed
including three diagonal couplings, three symmetric
off-diagonal couplings and three Dzyaloshinskii-Moriya
couplings. The same is true for 4th nearest neighbor
couplings, while 5th and 6th nearest neighbor exchange
couplings are constrained not to have antisymmetric
exchange (as is the case for nearest neighbors) so they
have six couplings each.

A. Bond-dependent Anisotropic Exchange
η = Jyy − Jxx

In the next section, we shall find it useful to con-
sider the anisotropic exchange component on the nearest
neighbor bond η ≡ Jyy−Jxx. One can compute the spin
wave spectrum in the presence of this coupling within the
local frame of Supplementary Note 5 C with the B and
D parameters in Supplementary Equation (14) acquiring
the additive terms B′ and D′, respectively, with

B′ = −η S8

[(
cos 2φ+

√
3 sin 2φ

)
eiβ1 − 2 cos 2φ eiβ2 +

(
cos 2φ−

√
3 sin 2φ

)
eiβ3

]
D′ = B′? (26)

where βi = k ·R1i with the vectors R1i, i = 1−3 given in
Supplementary Table II. Note that for finite η the spec-
trum depends on the spin orientation angle φ in the easy
plane and we will show in the subsequent section that
this feature is responsible for selecting discrete orienta-
tions via quantum order-by-disorder, φ = nπ/3 for η > 0,
and φ = π/2 + nπ/3 for η < 0, n integer.

For small η, significant changes to the spectrum occur
only near the magnetic Brillouin zone boundary where
the dispersion surfaces are distorted/shifted along a di-
rection that correlates with the moments’ orientation in
the ground state, leading to an overall 1̄ point group
symmetry, the same as the magnetic structure. Mag-
netic domains obtained by ±120◦ rotation therefore can
have distinct dispersion relations and this can provide a
physical mechanism to account for several features in the
data, in particular the splitting between the two lower

modes in Supplementary Figure 12, where solid/dashed
lines correspond to magnetic domains rotated by 120◦.
This path was chosen because the observed splitting can-
not be captured within an XXZ model, where the com-
bined rotational (3̄m) and translational symmetry of the
spectrum requires the two lower modes to be degener-
ate. This can be seen as follows: when mapped to the
magnetic Brillouin zone in Supplementary Figure 4b),
this path is equivalent to one of the main diagonals (blue
dotted line) of the hexagonal top face (the parallel blue
dotted segment on one of the side faces is simply an ex-
tension of the top segment into the next zone, mapped
back into the first magnetic Brillouin zone). The top
diagonal is mapped by rotational 3̄m symmetry opera-
tions, i.e. 2 ‖ ( 1̄

210) followed by 3 ‖ (001), onto the same
diagonal on the bottom face, translated by −Q. This
means that for any wavevector k on the top diagonal
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Supplementary Figure 12. Magnon spectrum along a direc-
tion confined to the magnetic Brillouin zone boundary pass-
ing through two K points. The slice direction is equivalent
to the dotted blue line segments in Supplementary Figure 4b).
Note the clear splitting of the two lower modes (purple and gray
symbols) between the two labelled K-points. The overplotted
lines are dispersions of the XXZη model with parameters in Sup-
plementary Equation (21) and η = −1.7 meV, solid/dashed for
magnetic domains with φ = π/2 and π/2 + 2π/3, respectively
(the other domains’ dispersions overlap with the ones shown).
Within an XXZ model the two lower modes are degenerate. The
colour bar indicates scattering intensity in arbitrary units on a
linear scale.

ω−(k) = ω−(k −Q), implying that in the global frame
ω1(k) = ω2(k), i.e. the lower two modes are degenerate
along this path. Furthermore, the same rotational sym-
metry implies that all magnetic domains have the same
dispersion relations, so the observed splitting cannot be
explained within an XXZ model. η 6= 0 breaks this sym-
metry requirement allowing magnetic domains with spins
rotated by 120◦ to have non-overlapping dispersions, thus
providing a natural mechanism to explain the observed
splitting.

The η interaction can also account for the fine struc-
ture in the energy scan centred at K-points in Fig. 3d),
which cannot be explained by the XXZ model (dashed
red line). To illustrate this, it is helpful to consider first
the effects of adding a finite η to a single, isolated honey-
comb with only the dominant nearest-neighbor exchange
J⊥1 < 0 with all other exchanges set to zero. A con-
tour plot of the upper magnon band in this case is shown
in Supplementary Figure 13a), the Dirac cones are cen-
tred at the K-point corners of the 2D hexagonal Brillouin
zone with the magnon band displaying a 3̄m point group
symmetry around the zone centre. Supplementary Fig-
ure 13b) shows the corresponding plot for small η > 0
and the moment’s orientation in the ground state along
the φ = 0 direction, indicated by the dashed white arrow.
The magnon dispersion surface has now 1̄ symmetry, be-
ing distorted along the ordered in-plane spin direction
in the ground state, with the Dirac nodes moving along
this direction (two nodes move in and four nodes move

a) b)

c) d)

KK

Supplementary Figure 13. Shift of the Dirac node in momen-
tum space for finite η. a-b) Contour plot of the top magnon
band ω+ for a single honeycomb with only the dominant ex-
change J⊥1 < 0 and in a) η = 0, and in b) η > 0 and moments’
orientation in the ground state φ = 0 (thick dashed arrow in b).
c) Dispersion relation along the dashed arrow direction in b) for
the same parameters as in a) (dashed red lines) and b) (solid blue
lines), d) shows a zoomed-in version near the K-point to empha-
size the displacement of the Dirac node away from K for finite
η. Dashed gray lines show the magnon dispersions of magnetic
domains rotated by ±120◦. An energy scan at K would display
a double-peak structure with a separation of 2~v δκ, where v
is the Dirac velocity and δκ is the in-plane displacement of the
Dirac node away from K.

out of the Brillouin zone hexagon). The corresponding
dispersion plots for the above two cases are shown in Sup-
plementary Figure 13c), dashed red lines for case a), and
solid blue lines for case b), with a zoomed-in version near
the K point shown in Supplementary Figure 13d), note
the Dirac nodal points have moved away from K-points,
so a scan at K would show a double-peak structure, as
in Fig. 3d).

For the full XXZ model the nodal points occur in the
form of double helix nodal lines that precess around K-
points, adding a finite η has the effect of shifting in-plane
the centre of precession away from K-points along a di-
rection parallel to the moments’ direction in the ground
state if η > 0 and φ = nπ/3, and transverse to the mo-
ments’ direction if η < 0 and φ = π/2 + nπ/3. In both
cases, the precession centres of the double-helix nodal
lines in Figure 3b) are displaced away from the K-points
by an in-plane wavevector of magnitude δκ, with the con-
sequence that at K-points there is an energy gap' 2~v δκ
between the mean of the top two bands and the mean of
the bottom two bands, where v is the Dirac velocity, simi-
lar to the simplified 2D case illustrated in Supplementary
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Figure 13d). The scan in Fig. 3d) includes wavevectors
in a narrow cylindrical region centred at K and extend-
ing out to just touch the double helix nodal lines, so for
all of those wavevectors there will be a finite energy gap
between the top and bottom sets of bands, so a two-peak
structure would be expected in the energy scan, as indeed
seen experimentally. For a quantitative comparison with
the data, we use the cross-section model in Supplemen-
tary Equation (19) averaged over all magnetic domains.
In the present case, it is sufficient to consider only three
magnetic domains (of the A structural domain), so for
η > 0 we take φ = 0,±2π/3, as for those φ values each B
magnetic domain has the same response as the A mag-
netic domain with spins along the same direction, and
domains obtained by reversing the spins on each site also
have identical signatures. We consider two scenarios re-
lated by the transformation η → −η and φ→ φ+π/2, as
this leaves B′ and D′ in Supplementary Equation (26) in-
variant, and subsequently the dispersions and dynamical
structure factor in Supplementary Equations. (17,18) are
invariant as well. The above two scenarios indeed pro-
duce a similar, but not identical intensity profile in Sup-
plementary Figure 14 (dashed gray and solid black lines),
the small differences are due to the polarization factor px̃
in Supplementary Equation (19), which changes upon ro-
tating the spins by 90◦ between the two scenarios. The
first peak in the energy scan is identified with crossing
the two lower bands (almost overlapping ω1,2 modes) and
the higher peak with crossing the top two bands (almost
overlapping ω3,4 modes), with the observed energy sep-
aration well accounted for in Supplementary Figure 14
using |η| = 1.7 meV. The calculated lineshape for the
case η < 0 (black solid line, lower peak more intense) is
in better agreement with the data than for η > 0 (gray
dashed line), from which we conclude that the former is
the more likely of the two scenarios. For the parame-
ters with best agreement we show in Supplementary Fig-
ure 15c-d) the calculated momentum intensity maps, the
agreement with the data in panels a-b) is excellent. In
particular, the observed dramatic change when moving
from energies below (bottom panels) to energies above
the nodal energy (top panels) - the intensity shift from
inside to outside of the central hexagonal Brillouin zone
(dashed hexagonal outline) - is well captured, even the
subtle local rotations of the intensity patterns around the
zone corners - most visible in the lower-right corners - are
well reproduced (those intensity modulations arise from
the finite buckling of the cobalt honeycombs).

The coupling η is one of four anisotropic nearest neigh-
bor couplings beyond the XXZ model. Establishing in
detail the magnitudes and signs of all such anisotropic
exchanges is beyond the scope of the present work. How-
ever, we have demonstrated in this Section that a finite η
provides a natural explanation for the double peak struc-
ture in Supplementary Figure 14 and the splittings ob-
served on the magnetic zone boundary in Supplementary
Figure 12, whilst leaving the Dirac nodal lines intact. As
we describe in the next Supplementary Note, the η cou-

Supplementary Figure 14. Fine structure of the energy scan
at K compared with the model with finite η. White circles
denote the inelastic neutron scattering intensity in an energy
scan, as in Fig. 3d), with error bars representing one standard
deviation, compared to the appropriate domain average for η <
0 (black solid) and η > 0 (dashed gray) as described in the
text. Both calculations have been shifted along the horizontal
axis by ∆E = +0.11 meV to provide a better agreement with
the data if exchange parameters are fixed as per Supplementary
Equation (21).

b)

a)
[8.75, 9.25] meV

[7.75, 8.25] meV

c)

d)

data calculation

Supplementary Figure 15. Momentum intensity maps
above/below the Dirac node energy for the model
with finite η. Left/right panels are data/calculation,
top/bottom panels are above/below the Dirac node energy. The
data panels are as in Fig. 2d-e) and the calculation parameters
are as in Supplementary Figure 14 (solid line). The colour bar
applies to all sub-figures and indicates scattering intensity in ar-
bitrary units on a linear scale.
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pling can also provide a mechanism to account for the
appearance of the spectral gap.

Supplementary Note 8. QUANTUM
ORDER-BY-DISORDER AND THE SPECTRAL

GAP

A. Mean-field ground-state degeneracy

Upon including exchange anisotropy terms as discussed
in the previous Section, the spin Hamiltonian symme-
try is reduced down to discrete rotations, however at
the mean-field level the ground state energy remains in-
dependent of the in-plane moment angle φ and conse-
quently the linear spin-wave spectrum remains gapless.
To see this, we parameterize the easy-plane spin con-
figuration by mi = m0Re

[
eiφ
(ˆ̃xi + iˆ̃zi

)]
where the ˆ̃x

and ˆ̃z axes define the local frame, which rotates 180◦
around the x̃-axis between adjacent layers. Here, m0 is
the size of the ordered moment. We then note that the
mean field free energy for quadratic spin interactions can
be written as FMFT[Ψ] = α|Ψ|2 + βΨ2 + β?(Ψ∗)2 where
Ψ = m0e

iφ and invariance under 3-fold symmetry forces
β = 0 as Ψ → e2πi/3Ψ under this symmetry operation.
This means that the mean field free energy cannot depend
on φ, even when symmetry-allowed two-spin exchange
anisotropy terms are included. A similar argument for-
bids symmetry breaking from four-body couplings that
may arise from spin-lattice coupling. Indeed, the lowest
order terms that lead to discrete symmetry breaking are
six-body terms that may be attributed to fluctuations.
In short, we expect order-by-disorder to arise in CoTiO3
purely on the basis of the spectral gap.

B. Quantum order-by-disorder in the presence of
bond-dependent anisotropic exchange η

A more direct way to see this is that anisotropic ex-
change couplings break the U(1) Hamiltonian symmetry
down to the lattice symmetries so one would expect the
classical ground-state degeneracy as a function of φ to
be lifted by zero-point quantum fluctuations. To lead-
ing order the zero point contribution to the ground state
energy (per magnetic unit cell) is

E0 ≡ NsSεqu = 1
Nc

∑
k,m

ωm(k)
2 (27)

where Nc is the number of magnetic unit cells, each con-
taining Ns = 4 magnetic sublattices. The sum runs over
all wavevectors k in the magnetic Brillouin zone and all
magnon branches indexed by m = 1 to Ns.

To illustrate the phenomenon we add to the XXZ
model in Supplementary Note 6 a symmetry-allowed
nearest-neighbor anisotropic diagonal coupling η defined
in the xyz frame by Jxx = J⊥1 −η/2 and Jyy = J⊥1 +η/2,
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Supplementary Figure 16. Parameterisation of quantum
zero-point energy. (a) Leading zero-point contribution to the
ground state energy, E0 in Supplementary Equation (27), as
a function of in-plane angle φ, for exchange anisotropy η =
6.36 meV. The solid line is a fit to the sinusoidal form in Sup-
plementary Equation (28) with parameters Ē0 = 16.44 meV
and Λ = 0.0196 meV at fixed φ0 = 0. (b) Zero-point energy
oscillation amplitude Λ (blue line) as a function of exchange
anisotropy η for fixed φ0 = 0, fitted to an odd polynomial
form a η3 + b η5 (red line) with a = 6.13(7)× 10−5 meV−2 and
b = (3.23±1)×10−7 meV−4 (the relatively large uncertainty in
b reflects the range of values depending on whether higher order
odd terms η7 and η9 are included or not in the polynomial fit).

i.e. +/−ve η favors spins pointing orthogonal/parallel to
the bond direction (as J⊥1 < 0). At finite η the (numeri-
cally calculated) spin-wave dispersions do depend on the
in-plane moment angle φ and the leading zero-point cor-
rection to the ground state energy is six-fold modulated
in φ with period π/3 as shown in Supplementary Fig-
ure 16a) and can be fitted (solid line) to a cosinusoidal
form

E0 = Ē0 −
Λ
2 cos[6(φ− φ0)] (28)

where Λ is an odd polynomial in the anisotropic exchange
η [see Supplementary Figure 16b)]. In other words, there
is a quantum order-by-disorder mechanism that lifts the
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U(1) classical ground state degeneracy leading to a six-
fold symmetric set of ground states, i.e. +/−ve η select
the family of orientations φ = 0 or π/6 (modulo π/3),
respectively.

C. Order-by-disorder spectral gap

To determine the anisotropy value that gives a gap
comparable to what is seen experimentally we use the
expression for the pseudo-Goldstone gap to leading order
in 1/S given by [53]

∆ = S1/2

√(
∂2εcl

∂θ2

)
0

(
∂2εqu

∂φ2

)
0

(29)

where the energy densities are defined through the total
ground state energy

EGS = NS(S + 1)εcl +NSεqu + . . . (30)

where N = NcNs is the total number of spins, θ is
the uniform tilt of the moments out of the ab plane
towards the c-axis. The derivatives in Supplementary
Equation (29) are evaluated about the quantum selected
ground state configuration.

We determine

εcl = 3
2
[
J⊥1 cos2 θ + Jz1 sin2 θ

]
− 1

2
[
J⊥2 cos2 θ + Jz2 sin2 θ

]
+ 3

[
J⊥3 cos2 θ + Jz3 sin2 θ

]
− 3

[
J⊥4 cos2 θ + Jz4 sin2 θ

]
+ 3

2
[
J⊥5 cos2 θ + Jz5 sin2 θ

]
− 3

2
[
J⊥6 cos2 θ + Jz6 sin2 θ

]
(31)

and so(
∂2εcl

∂θ2

)
0

= −3
[
J⊥1 − Jz1

]
+
[
J⊥2 − Jz2

]
+ 6

[
−J⊥3 + Jz3

]
+ 6

[
J⊥4 − Jz4

]
+ 3

[
−J⊥5 + Jz5

]
+ 3

[
J⊥6 − Jz6

]
. (32)

Note that the classical energy εcl is independent of the
anisotropy parameter η. For completeness we note that
in the 111 frame, more closely tied to the underlying mi-
croscopic superexchange mechanism, the nearest neigh-
bor part of

(
∂2εcl
∂θ2

)
0

is 3[Γ + Γ′1 + Γ′2].

For η = J⊥1 we find
(
∂2εqu
∂φ2

)
0

= 36 × 0.00245/(1/2) =
0.1764 meV having divided out S = 1/2. Supplementary
Equation (32) gives

(
∂2εcl
∂θ2

)
0

= 21.4 meV. Then the gap
is ∆ = 1.908S1/2 = 1.35 meV, on the order of magnitude
of the experimental value 1.0(1) meV. The effect on the
spin length of switching on η is to increase the role of
fluctuations − for the pure XXZ model in Supplementary

Equation (21) we found ∆S = 0.021, this increases to
∆S = 0.0237 for η = J⊥1 .

Such a large value of η comparable to the largest ex-
change J⊥1 , is however not realistic, as in this case the
dispersion relations would not be compatible with the
experimental data, based on the analysis of the previ-
ous section a value of |η| ' 1.7 meV would be more in
line with the observed dispersions. This suggests that
either (i) the order-by-disorder gap formula Supplemen-
tary Equation (29) underestimates the gap, being derived
in the large-S limit and applied here for S = 1/2, or ii)
there are other effects present in the actual material that
also contribute to the gap, and we consider such a possi-
ble gap generation mechanism via spin-orbital exchange
later in Supplementary Note 10.
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Supplementary Figure 17. Phase diagram of the XXZ model
with additional Kitaev K and Γ interactions. There are two
phases selected via the quantum order-by-disorder mechanism.
The phase in the lower left part of the phase diagram is pa-
rameterized by moment angles φ = 0 and the other phase has
φ = π/6. The contours and color scheme show the order-by-
disorder pseudo-Goldstone gap computed from Supplementary
Equation (29). The phase boundary is the locus of points (solid
white dots) where the gap ∆ closes, vertical/horizontal error bars
indicate the estimated uncertainty of the gap closing location in
vertical/horizontal scans.

To complete this section, in the following we discuss
the effects of the other anisotropic exchange terms in
Supplementary Equation (22). The mixed in-plane-out-
of-plane terms Jxz and Jyz on their own make no contri-
bution to the classical and leading order quantum ground
state energy. The effect of an in-plane mixed term Jxy

can most easily be described by working in a reference
frame x′y′z′ rotated with respect to the xyz frame around
z-axis by an angle φ0 such that we rotate into the prin-
cipal axes of (

J⊥1 − η/2 Jxy

Jxy J⊥1 + η/2

)
(33)
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and select the axis that corresponds to the minimal eigen-
value. One finds that the angle φ0 is half the polar angle
of the vector (η,−2Jxy). For example, this establishes
that for η < 0 and Jxy = 0, φ0 = π/6. Since the model
has a 3 point group symmetry and is time reversal in-
variant the solution is determined by the above equation
up to integer multiples of π/3. The zero-point quantum
energy contribution has the same form as in Supplemen-
tary Equation (28), but with an origin angle φ0 that de-
pends on the value of Jxy as above. In other words, the
minimum energy angle is not symmetry-restricted to take
only the discrete values 0 or π/6 (up to integer multiplets
of π/3), but can take any real value in-between those ref-
erence ones for finite Jxy. We note that this exchange
anisotropy term is symmetry-allowed by the absence at
the midpoint of the bond of a mirror plane normal to
the nearest-neighbor bond due to (i) the layer stacking
and (ii) the buckling of the cobalt honeycombs and (iii)
distortions of the CoO6 octahedra away from regular oc-
tahedra.

D. Order-by-disorder in a generalized Kitaev-Γ
model

For completeness, we also consider the effects of ex-
change anisotropy terms described in the 111 frame.
Starting from the minimal J1−J6 XXZ model and adding
Kitaev K and Γ terms in Supplementary Equation (23)
we find that both terms can select the φ = 0 or π/6 (mod-
ulo π/3) family of ground states via order-by-disorder ac-
cording to the phase diagram plotted in Supplementary
Figure 17, where the color represents the zero-point gap
∆ and the white dots indicate the boundary between the
two families of ground states.

E. Single-ion anisotropy

Before moving on to discuss the nodal lines, we briefly
dwell on the question of whether discrete symmetry
breaking can arise directly from single ion anisotropy
in CoTiO3. In other words, can the observed excita-
tion gap, which implies discrete moment orientations in
the ab plane, occur in the absence of bond-dependent
anisotropic exchange? The short answer is no because
any high order single ion anisotropies have to be fil-
tered through the octahedral crystal field splitting, the
spin-orbit coupling and trigonal distortion, with mixing
of states provided by exchange interactions, by which
point it is more fruitful to view them as effective bond-
dependent exchange between moments in the lowest
Kramers doublet. The longer answer is as follows. The
local site symmetry alone (point group 3) constrains the
possible single ion crystal-field Hamiltonian to have the

form [54]

HSingle−Ion = B0
2O0

2 +B0
4O0

4 +B3
4O3

4

+ B0
6O0

6 +B3
6O3

6 +B6
6O6

6, (34)

whereOml are Stevens operators acting on the orbital sec-
tor, expressed in a reference Cartesian XY Z frame with
Z along c and X in the ab plane along some reference
direction, unconstrained by symmetry for point group 3
(previously in Supplementary Note 2 we expressed the
crystal field Hamiltonian HCF for an ideal octahedron in
a reference frame with respect to the four-fold octahe-
dron axes). In terms of the angular momentum opera-
tors O0

2 = 3L2
z −L(L+ 1), which arises from the trigonal

distortion of the ideal CoO6 octahedron. The only oper-
ators that have a nontrivial in-plane anisotropy are O3

4,
O3

6 and O6
6. Semiclassically, for ϑ the polar angle from

the Z axis and φ the azimuthal angle from the X-axis
in the XY plane, O3

4 ∼ sin3 ϑ cosϑ cos 3φ which vanishes
for in-plane moments (ϑ = π/2) as does O3

6.

The operator O6
6 ∼ L6

−+L6
+ or, semiclassically, cos 6φ,

has a 6-fold periodic angular dependence in the ab plane
and can in principle lead to in-plane discrete symmetry
breaking. However, within the low energy effective l = 1
Γ4 orbital sector (which is the orbital ground state for
an ideal octahedron), this term is inoperative. To ob-
tain an effect from this operator we are forced to extend
the model to the full free-ion L = 3 Hilbert space. We
may estimate the size of the spectral gap realizing that
it can only originate through perturbative mixing of ex-
cited orbital levels (of energy G ∼ 1 eV above the l = 1
Γ4 orbital ground state) via the exchange J (with en-
ergy scale ∼ 10 meV). In other words, the mechanism, as
previously argued, is order-by-disorder through virtual
crystal field fluctuations [26, 27]. A strong coupling cal-
culation [27] reveals that the spectral gap will scale as
J3/G2 ∼ 10−3 meV. In order to account for the mag-
nitude of the observed spectral gap (∆ = 1 meV), mul-
tiplicative factors including those coming from pertur-
bation theory combinatorics and matrix elements would
have to boost this by three orders of magnitude. At
the level of the full d7 Hilbert space, both the single ion
anisotropy and the spin-orbital exchange will contribute
to the observed gap. To the extent that these mecha-
nisms can be disentangled (since the O6

6 anisotropy will
also affect the exchange) the latter mechanism will be
the primary one as this appears straightforwardly from
mixing of an order 1 meV spin-orbital exchange across a
10 meV crystal field gap. This mechanism can also be
viewed within the effective l = 1, S = 3/2 subspace or
within the pseudo-spin one-half picture where the vir-
tual crystal field excitations would manifest themselves
as bond-dependent multiple spin exchange anisotropies.
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Supplementary Note 9. NODAL LINES
TOPOLOGY AND SYMMETRY

We now consider the implications of various discrete
symmetries of the spin wave Hamiltonian for the magnon
band structure and its topological properties. To con-
sider the full generality of the problem, in the following
we work with the (full) four-sublattice magnetic unit cell,
for which the spin wave Hamiltonian has the form

H8×8 =
∑

k

Φ†kD8×8(k)Φk

where Φ†k = (a†k, b
†
k, c
†
k, d
†
k, a−k, b−k, c−k, d−k) where the

a†k, b†k, c†k and d†k operators create magnons on the A,
B, C and D magnetic sublattices, respectively, and the
dynamical matrix takes the block form

D8×8(k) =
(
A(k) B(k)
B†(k) A∗(−k)

)
.

Without giving the explicit form of the A and B matri-
ces for the J1 to J6 XXZ Hamiltonian, we note that the
dynamical matrix D8×8(k) has time reversal symmetry
defined through T −1D8×8(k)T = D8×8(−k), where T
is antiunitary. The time reversal operator is, explicitly,
the complex conjugation operator times the unit operator
acting on the sublattice indices. The same Hamiltonian
also has spatial inversion symmetry − a unitary trans-
formation: P−1D8×8(k)P = D8×8(−k) with P = Γ1, the
anti-diagonal matrix with ones along the anti-diagonal.

It follows that the model has A ≡ PT symmetry:

AD8×8(k)A−1 = D8×8(k)

where A is anti-unitary. It is this symmetry that is re-
sponsible for protecting the Dirac nodal lines. This is
because the PT symmetry imposes a reality condition
on the Hamiltonian. Consider now a closed loop in the
3D Brillouin zone. The Hamiltonian defined along this
loop is real and along this loop there is a Z2 topological
classification meaning that there is a winding number
that assumes values 0 (topological trivial) and π (topo-
logically nontrivial). If the winding number on the loop
is π, it must enclose a singular point - a nodal point -
and since the winding number cannot change continu-
ously, say by deforming the loop in 3D, there must be a
nodal line in 3D such that the winding number is π on
any loop winding around the nodal line.

We now examine the robustness of the PT symmetry
under perturbations. From the foregoing explicit form of
the operators, it is straightforward to see that

A(k) =


A11(k) A12(k) A13(k) A14(k)
A?12(k) A22(k) A23(k) A?13(−k)
A?13(k) A?23(k) A22(−k) A?12(−k)
A?14(k) A13(−k) A12(−k) A11(−k)


(35)

B(k) =


B11(k) B12(k) B13(k) B14(k)
B21(k) B22(k) B23(k) B13(k)
B31(k) B32(k) B22(k) B12(k)
B41(k) B31(k) B21(k) B11(k)

 (36)

is the most general spin wave Hamiltonian that preserves
PT . In other words, in order to break PT , we must find
an exchange coupling that breaks these weak constraints
on the Hamiltonian.

The J1 to J6 XXZ model has both time reversal sym-
metry and parity symmetry and is therefore compati-
ble with Supplementary Equations (35) and (36) with a
much more restricted form - for example the diagonal el-
ements are identical. If we go beyond the XXZ model
to the full set of symmetry-allowed exchange couplings,
we have checked that the resulting spin wave Hamilto-
nian preserves the PT symmetry out to and including
the sixth nearest neighbor couplings which includes 38
independent exchange terms. We have additionally veri-
fied explicitly (by numerical solution of the corresponding
8×8 spin-wave Hamiltonian) that none of these couplings
gap out the nodal lines at least when the magnetic ground
state is preserved.

We now consider the structure of the nodal lines.
When the model is fine-tuned to have J2 of Heisenberg
form (J⊥2 = Jz2 ) and the third neighbor exchanges are
set to zero (J⊥3 = Jz3 = 0), one finds that nodal lines
are degenerate, occur at the K points, and are straight
lines along L. For anisotropic J2 (J⊥2 6= Jz2 ), the nodal
lines around each K-point split into a pair of helical nodal
lines that each wind around the K-points as illustrated
by the red and blue lines in Fig. 3b) with periodicity
L = 3. The chirality of the double helix nodal lines,
i.e. the sense in which they wind along the L direction,
is opposite at neighboring corner K-points due to the 3̄
symmetry of the lattice. The minimal model that pro-
duces these “double helix” nodal lines is the XXZ J1-J2
model. In this model, the anisotropy of the J2 coupling
is responsible for the splitting of the nodal lines and the
winding along L, i.e. − the radius of the helix in mo-
mentum space in planes perpendicular to the L direction
is

|δk| = 2√
3a

∣∣∣∣J⊥2 − Jz2J⊥1 + Jz1

∣∣∣∣ . (37)

Note that δk = 0 (the pair of nodal lines are fused and
straight) for isotropic J2 couplings. In this case adding
anisotropic J3 couplings can also produce helical nodal
lines, but the effect comes in at higher order with |δk| '
2/(
√

3a)|J2(J⊥3 −Jz3 )/[J⊥1 (J⊥1 +Jz1 )]|. For completeness,
we note that the magnitude of δk is not affected by the
buckling parameter ε, or by adding further neighbor XXZ
couplings on the J4, J5 or J6 bonds.

We also note that the two nodal lines in a pair that
wind around each K-point are translated versions of each
other along L by the propagation vector Q (translation
by 2Q leaves each nodal line invariant). This is most
easily seen by first working in the local frame, where
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a single nodal line appears near each K point (the red
helical lines in Fig. 3b) corresponding to the nodal points
κ where ω+(κ) = ω−(κ). In the global frame, each of the
modes ω± acquires a ‘pair’ shifted in momentum by Q (as
per Supplementary Equation (19)), so the original nodal
points κ are translated into a new set of nodal points
κ + Q, giving rise to the blue helical lines in Fig. 3b).

One can understand the origin of the double helix
nodal lines in terms of the underlying exchange couplings
by first observing that the γnk functions for n = 1, 4, 5, 6
connect groups of three sites in the same layer and those
always appear in the spin-wave Hamiltonian multiplying
a function of the form

∑
j exp(ik · δj) where δj vectors

connect the central site to the three neighbors related
by three-fold symmetry. These functions vanish at the
hexagonal zone corner (independent of L) implying that
all such terms must preserve a nodal line running along
the L direction. In our J1 − J6 model, the relevant cou-
plings for the existence of a helical nodal line are J2 and
J3. If the third neighbor couplings vanish, the helical
line appears only if J2 is anisotropic. Examining the
4 × 4 spin wave Hamiltonian, we observe that the only
term that depends on the anisotropic part of J2 is in
the element B. We also note that such a term is identi-
cal to the one that appears in the related rhombohedral
J1−J2 Heisenberg ferromagnet (J1,2 < 0), already stud-
ied in [55]. In the present cobalt lattice arrangement, the
spin-wave Hamiltonian for this ferromagnetic model is

HFM(k) = S

(
−3J1 − J2 J1γ

′
1k + J2γ

′
2k

J1γ
′∗
1k + J2γ

′∗
2k −3J1 − J2

)
(38)

where γ′jk = γjke
ik·(r2−r1) with j = 1, 2 and γjk defined

in Supplementary Equation (15). The presence of nodal
points is determined by the condition |J1γ

′
1k+J2γ

′
2k| = 0.

For J2 = 0 this gives straight Dirac nodal lines at K-
points. For finite J2 the nodal lines become helical and
precess around the K-points upon varying L. In detail,
considering for concreteness the nodal line near the K-
point (5/3,2/3), the above condition gives the in-plane
wavevector offset δk from K, in Cartesian coordinates as

(δkx, δky) = 2√
3a
J2

J1

(
cos 2πL

3 ,− sin 2πL
3

)
to first order in J2/J1. Here we have used the Cartesian
xyz frame defined in Supplementary Figure 18d), where
kx is along (1 1̄

20) and ky along (010). The above equa-
tions describe a helical nodal line winding clockwise in
the +L direction with period 3 along L and with radius
proportional to J2/J1.

Supplementary Note 10. SPIN-ORBITAL
FLAVOR WAVE THEORY

We have presented detailed, quantitative parametriza-
tion of the experimental data within the context of an ef-
fective XXZ spin one-half model for the cobalt moment.

The validity of this model can be argued on the basis of
single-ion spectrum in the presence of spin-orbit coupling
and trigonal distortion of the oxygen octahedra that leave
a doublet on each magnetic site separated from the first
excited state by about 28 meV. The quality of the agree-
ment with data provide an ex post facto justification for
this effective model. However, the exchange scale is some
significant fraction of the low-lying single-ion splitting so
one is naturally led to consider a more microscopic route
to describing CoTiO3 that incorporates the spin S = 3/2
and effective orbital l = 1 degrees of freedom in full. One
important motivation for building on the effective model
is to provide a direct calculation of the clearly resolved
spectral gap of about 1 meV above the magnetic Bragg
peaks. We have shown that the effective spin one-half
model including exchange anisotropies cannot open up
a gap at the mean field level, while the leading fluctu-
ation contribution to the energy does select a discrete
set of ground states. One then infers that a gap will
arise in the spin wave spectrum and we have calculated
this gap to leading order in 1/S. However, by enlarg-
ing the local Hilbert space and considering spin-orbital
exchange there is hope that mixing of states does lift
this U(1) degeneracy. In this section we develop a flavor
wave or multi-boson expansion [56, 57] for the excita-
tions in CoTiO3 that also allows us to include arbitrary
couplings in the Hamiltonian and indeed find that the
U(1) degeneracy is lifted by spin-orbital exchange terms,
which select discrete in-plane angular orientations for the
magnetic moments in the ground state and open a gap
in the magnon spectrum.

A further motivation for investigating a more micro-
scopic model is to deepen our understanding of the order-
by-disorder mechanism. We have investigated in detail
the effect of bilinear anisotropic exchange terms acting
within the pseudospin one-half subspace. From the point
of view of this effective model, any microscopic exchange
of higher order acting on two sites projects down to an
such a pseudospin one-half exchange coupling to leading
order in an expansion in the inverse crystal field gap.
However, virtual crystal field fluctuations will generate
multi-site effective exchange terms that will break the
accidental degeneracy of the spin bilinear model down
to a discrete set of ground states. These effects can be
more efficiently captured by enlarging the Hilbert space
to consider the low-lying spin and orbital coupled crystal
field as we describe below.

In this enlarged Hilbert space we shall consider the
leading order spin-orbital exchange that produces order-
by-disorder through virtual crystal field fluctuations.
Higher order terms - such as four spin terms or two-site
multipolar exchange - are possible in principle but they
are suppressed by powers of the large charge gap. In
cases where higher order exchange couplings are signifi-
cant, such as in cuprates, the reason for the size of these
couplings is the combination of proximity to a Mott tran-
sition and the largeness of the exchange [58, 59]. CoTiO3,
in contrast, is deep in the Mott insulating regime with an
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exchange about 5% of that in the cuprates leading to an
estimate of the ratio of the biquadratic to the Heisenberg
exchange of O(10−3). As we discuss next, there are spin-
orbital exchange terms that are both much larger than
this and that lead to discrete symmetry breaking.

A. Flavor Wave Expansion

The computation of the excitation spectrum proceeds
as follows. We consider a general one- and two-body
Hamiltonian

H =
∑
ia,α

hαiaÔ
α
ia +

∑
ia,jb

∑
αβ

Jαβia,jbÔ
α
iaÔ

β
jb

acting on the spin S = 3/2, orbital l = 1 subspace
where it is understood that the one-body terms include
the spin-orbit coupling HSO and the trigonal distor-
tion Htrig. A local mean field theory yields a spectrum
|i, a, p〉 =

∑
lz,Sz c

(p)
lz,Sz |l, lz,S,Sz〉 on each distinct mag-

netic sublattice a where p = 0, . . . , d − 1 and d = 12 is
the local Hilbert space dimension. The ground state can
then be written as |ΨMF〉 =

∏
i

∏
a |i, a, 0〉.

Each operator can be written as

Ôαia =
∑
n,m

[cαa ]pq|i, a, p〉〈i, a, q| ≡
∑
p,q

[cαa ]pqA†i,a,pAi,a,q

where [cαa ]pq ≡ 〈i, a, p|Ôαa |i, a, q〉 and the bosonic opera-
tors we have introduced must satisfy the constraint

d−1∑
p=0

A†i,a,pAi,a,p = M

and M = 1 in the system of interest. Formally, we wish
to have an expansion in powers of 1/M where the single-
ion Hamiltonian appears to leading quadratic order so
we rescale the single-ion Hamiltonian by a factor M . To
compute experimentally relevant quantities, however, we
set M = 1.

The expansion of operator Ôαia in terms of A bosons is

Ôαia = M [cαa ]00 − [cαa ]00

d−1∑
p=1

A†ia,pAia,p +
d−1∑
p=1

d−1∑
q=1

[cαa ]pqA†ia,pAia,q

+
d−1∑
p=1

[cαa ]0p

√√√√M −
d−1∑
q=1

A†i,a,qAia,qAia,p +
d−1∑
p=1

[cαa ]p0A†ia,p

√√√√M −
d−1∑
q=1

A†ia,qAia,q (39)

The leading order term is simply the mean field energy,
the first order terms in A vanish when the mean field
energy is minimal and the quadratic contribution from
the single-ion physics is:

M
∑
ia,α

hαia ([cαia]pq − δpq[cαia]00)A†ia,pAia,q.

The quadratic terms coming from the interactions are

HFW = M
∑
ia,jb

d−1∑
pq=1

∑
αβ

Jαβia,jb

[
[cαa ]00

(
[cβb ]pq − δpq[cβb ]00

)
A†jb,qAjb,p + [cβb ]00 ([cαa ]pq − δpq[cαa ]00)A†ia,qAia,p

+ [cαa ]0q[cβb ]0pAia,qAjb,p + [cαa ]0q[cβb ]p0Aia,pA†jb,q + [cαa ]p0[cβb ]0pA†ia,pAjb,q + [cαa ]p0[cβb ]p0A†ia,pA
†
jb,q

]
. (40)

In Fourier space this can be written as HFW = ∑
k ΥkHFW(k)Υk where Υk =

(
A†ka,pA−ka,p

)
and

HFW(k) =
(

A(k) B(k)
B†(k) A′(k)

)
(41)

is a 2(d − 1)Ns × 2(d − 1)Ns matrix (Ns = 4 being the
number of magnetic sublattices). The component matri-
ces are
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Apqab(k) =
∑
α,β

Jαβab (k)[cαa ]p0[cβb ]0q +
∑
α,β,c

Jαβab (k = 0) ([cαa ]pq − δpq[cαa ]00) [cβc ]00 (42)

A′pqab (k) =
∑
α,β

Jαβab (k)[cαa ]0p[cβb ]q0 +
∑
α,β,c

Jαβab (k = 0) ([cαa ]pq − δpq[cαa ]00) [cβc ]00 (43)

Bpqab(k) =
∑
α,β

Jαβab (k)[cαa ]p0[cβb ]q0. (44)

The spectrum is determined by carrying out a Bogoli-
ubov transformation which amounts to diagonalizing the
matrix σ3HFW(k) where σ3 = diag(1, . . . , 1,−1 . . . ,−1)
- the matrix with (d−1)Ns ones and (d−1)Ns minus ones
along the diagonal. The transformation Tk that brings
the Hamiltonian to diagonal form (T †k)−1HFW(k)T−1

k =
Λk is generally non-unitary satisfying instead the con-
straint Tkσ3T

†
k = σ3.

From this, we compute the inelastic neutron cross sec-
tion which is proportional to

S(k, ω) =
∑
αβ

(δαβ − k̂αk̂β)Sαβ(k, ω), (45)

with

Sαβ(k, ω) =
∫
dteiωt〈µα−k(t)µβk〉

where µ = gll + gSS and the g-factor for the effective
orbital moment is gl = −3/2 and gS ≈ 2.

B. Spin-Orbital Exchange

In the context of the effective spin one-half model used
to fit the data, we considered various types of anisotropic
exchange. To nearest neighbor, for example, we saw
that six couplings are allowed by symmetry including Ki-
taev and Γ couplings. In this section, we briefly review
how the effective spin one-half model can be understood
through a superexchange calculation mediated by cobalt-
oxygen-cobalt bonds and we use these results to carry out
a mean field calculation of the ground states of coupled
spin-3/2 effective orbital moments with spin-orbital ex-
change couplings.

First we consider the geometry of the principal ex-
change pathways in CoTiO3 The crystal structure con-
sists of edge-sharing CoO6 octahedra forming a honey-
comb arrangement in the ab plane as illustrated in Sup-
plementary Figure 7 left panel. The cobalt honeycomb
network is buckled like cyclohexane in its chair conforma-
tion (± signs on the blue balls indicate alternating cobalt

positions above/below the plane) so the only rotational
symmetry at the cobalt sites is 3-fold and the oxygen ge-
ometry breaks the cobalt sublattice out-of-plane mirror
symmetries. Exchange interactions between neighboring
cobalt ions is primarily mediated by a pair of oxygen
ions forming a planar unit with two near 90◦ Co-O-Co
bonds (at least within the errors of the crystal structure
refinement).

For the purpose of identifying the most relevant ex-
change mechanisms, in the following we consider an ide-
alized version of the actual crystal structure, where the
cobalt honeycomb is planar (no buckling) and the oxy-
gen octahedra are regular, as illustrated schematically in
Supplementary Figure 18d). The spin-orbital exchange
interactions for this idealized Co-O-Co bonding geome-
try have been considered by Liu and Khaliullin [15] and
Sano, Kato and Motome [16]. The calculation of the ex-
change in this paper was carried out within the set of
effective orbital l = 1 and spin 3/2 degrees of freedom on
the cobalt ions. The geometry of the low-lying triplet of d
orbitals is central to this calculation as hopping through
the mediating oxygens with right-angle bonds allows the
orbital character to change. For example, in the natural
Cartesian frame xyz shown in Supplementary Figure 18d)
the dyz orbital on one site is connected via the oxygen to
dzx on the other site.

There are several possible exchange processes and
hence several distinct spin-orbital exchange couplings.
These processes can be grouped into a pair of classes.
The first class is set of d orbitals involved in the exchange
(I) t2g − t2g (II) t2g − eg and (III) eg − eg. The second
class is the type of intermediate state (A) d7d7 → d6d8 in
which the on-site Coulomb energy U enters, (B) charge
transfer where two holes are created on one of the oxy-
gen ions d7p6d7 → d8p4d8 and (C) cyclic exchange where,
again, holes are created on oxygen ions but one hole on
each oxygen. There are then, naively, nine possible ex-
change processes obtained from pairs with one from each
class. However, processes IIIA and IIIC vanish by sym-
metry leaving seven routes. The resulting interactions
are the product of isotropic exchange in spin space and
angular-momentum violating exchange in orbital space.
We consider the following four distinct spin-orbital cou-
plings:
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HSOexchange =t1
(
Si · Sj + S2) [nianjb + (a↔ b)]

+t2
(
Si · Sj + S2) [a†i bia†jbj + (a↔ b)

]
+t3

(
Si · Sj + S2) [a†i cic†jbj + c†iaib

†
jcj + (a↔ b)

]
+t4

(
Si · Sj − S2)nicnjc (46)

on a single honeycomb nearest neighbor bond in the
frame illustrated in Supplementary Figure 18d) where,
following Liu and Khaliullin, we use the notation a = dyz,
b = dzx, c = dxy (where xyz are the axes of the Carte-
sian 111 frame) and na = a†a etc. Coupling t1 origi-
nates from IA and IC, t2 from IA, t3 from IA and t4
from IIB, IB and IA. While the couplings are fixed by
microscopic terms, in the ensuing calculations we treat
them as free parameters. Pure Heisenberg spin exchange
may also arise microscopically, through process IIIB, and
we also include these Jn couplings for n = 1 to 6 in
HHeisenberg =

∑
〈i,j〉n JnSi · Sj .

The above calculations assume an idealized cobalt-
oxide structural bonding and below we find that the spin-
orbital exchange terms derived in this case in Supplemen-
tary Equation (46) are sufficient to account for the main
features of the ground state selection and excitation spec-
trum. The actual crystal structure has additional distor-
tions, in particular the cobalt network is buckled, which
amounts to a roughly 12◦ tilt of the cobalt-oxygen-cobalt
unit about an axis through the pair of oxygens mediating
that bond. Further refinement of the ground state selec-
tion and fine structure of the spin wave spectrum may
necessitate including the local rotation of the exchange
coming from this buckling or perhaps including higher
order contributions to the exchange coupling beyond the
terms in Supplementary Equation (46).

So far we have not discussed the spin-orbit coupling
and trigonal distortion. As the hopping and Coulomb
scales are the dominant energy scales the superexchange
calculation is carried out without them and they are then
included on an equal footing with the large U or Hund
coupling spin-orbital exchange. To obtain the effective
spin one-half exchange model of previous sections of this
paper, one may project the spin-orbital exchange onto
the spin-orbit coupled trigonally distorted doublet; the
anisotropy in the effective spin model is inherited from
the angular momentum violating orbital couplings.

C. Mean Field - Flavor Wave Results

As described in the previous section, the microscopic
exchange to nearest neighbor acting on the spin 3/2
and effective orbital angular momentum 1 states will
couple these degrees of freedom leading to an effective
anisotropic exchange within the effective spin one-half

model obtained by projecting the exchange onto the
single-ion ground state doublet.

We consider a mean field theory including the micro-
scopic single-ion physics, the spin-orbital exchange tn
(n = 1, 2, 3, 4) to nearest neighbor and pure spin isotropic
exchange coupling the nth neighbor Jn for n = 1, . . . , 6,
together with single-ion spin-orbit coupling λ and trig-
onal distortion parameter δ as given in Supplementary
Note 2. The collinear, easy plane ordered state of
CoTiO3 with antiferromagnetically coupled layers is ob-
tained straightforwardly by setting J1 < 0, J2 > 0. In
Supplementary Figure 18a-b) we illustrate the magnon
spectrum obtained via the flavor-wave approach for a rep-
resentative set of exchange parameters chosen such as to
approximately reproduce the in-plane and out-of-plane
spin wave bandwidths seen in experiments. In the cal-
culation of the dynamical structure factor, as discussed
above, we use idealized spin-orbital exchange that omits
the effects of buckling of the cobalt honeycombs, but we
do include the effects of the buckling on the spin wave
intensities using this simplified exchange, i.e. we use the
actual cobalt positions in the crystal structure in the cal-
culation of dynamical structure factor. Panel a) shows
the case for spin-only exchange, when the ground state
energy is independent of the in-plane moments’ orien-
tation angle φ and consequently the magnon spectrum
has a gapless Goldstone mode, emerging out of the mag-
netic Bragg peak position (1, 1, 3/2) and the magnon
spectrum has double-helix nodal lines as illustrated for
the XXZ model in Fig. 3b). Supplementary Figure 18b)
shows the case when a finite spin-orbital exchange per-
turbation t3 is switched on. This selects the family of
φ = 0 modulo π/3 ground state moment orientations
and consequently opens a gap in the magnon spectrum.
In addition to capturing the discrete ground state selec-
tion and spectral gap, a further advantage of the flavor
wave picture is that it also gives the spectrum of exciton
modes. Supplementary Figure 18c) shows the obtained
dynamical structure factor for the lowest-energy exciton
modes, the calculated spectrum bears strong resemblance
to the data in Fig. 4c). For the parameters used in the
above calculations, the largest effect of the finite spin-
orbital exchange is in opening of a magnon spectral gap,
the magnon spectrum still displays nodal lines, and the
effect on the exciton modes is relatively small.

We note that in the present treatment of the spin-
orbital exchange, each of the four t1−4 terms in Supple-
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mentary Equation (46), irrespective of their sign, selects
the family of φ = 0 modulo π/3 ground states at least
when their magnitude is compatible with the experimen-
tally observed spin wave gap. We leave it as subject for
future research to investigate whether this is true in gen-
eral for these couplings and, if so, how to understand this
perturbatively in the spin-orbital exchange coupling over
the crystal field gap. We also leave for the future the
question of whether other symmetry-allowed spin-orbital
exchange terms not explicitly listed in Supplementary
Equation (6), could select the alternative set of φ = π/2
modulo π/3 ground states.

We established in Supplementary Note 8 that the ef-
fective spin one-half model at the mean field level has
an accidental U(1) degeneracy that is lifted by quan-
tum fluctuations. In contrast, the spin-orbital exchange
model discussed in this section can be viewed as an exam-
ple of order arising from virtual crystal field fluctuations
first discussed in the context of Er2Ti2O7 [26, 27]. The

theory developed in this section is based around a mean
field theory that omits the order-by-disorder corrections
discussed in Supplementary Note 8 that act within the
effective spin one-half set of states. Yet the accidental de-
generacy, that is present in the spin-orbital model when
projected down to the low-energy doublets on each site,
is lifted within the full mean field theory leading to a
discrete set of ground states. The discrete symmetry
breaking in this case originates from the enlarged Hilbert
space and the admixing of excited crystal field levels into
the ground state and is therefore suppressed in powers
of the inverse crystal field gap. In CoTiO3 one expects
that both order-by-disorder mechanisms are operative.
While disentangling the relative contributions of the two
effects is non-trivial, the fact that the exchange scale is a
significant proportion of the crystal field gap in the ma-
terial strongly suggests that order by virtual crystal field
fluctuations is an important factor in the ground state
selection in the system.



33

Co2+

O2-

ŷ
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a
<latexit sha1_base64="tkNQXIxZYoaD4/gg3Oh4RZFrz6E=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK8Mz4bVmlt350CrxCtIDQq0htWvQShJGlNhCMda9z03MX6GlWGE01llkGqaYDLBI9q3VOCYaj+bp56hM6uEKJLKHmHQXP29keFY59HsZIzNWC97ufif109NdOVnTCSpoYIsHopSjoxEeQUoZIoSw6eWYKKYzYrIGCtMjC2qYkvwlr+8SjoXdc+te3eXteZ1UUcZTuAUzsGDBjThFlrQBgIKnuEV3pwn58V5dz4WoyWn2DmGP3A+fwAwWZLy</latexit><latexit sha1_base64="tkNQXIxZYoaD4/gg3Oh4RZFrz6E=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK8Mz4bVmlt350CrxCtIDQq0htWvQShJGlNhCMda9z03MX6GlWGE01llkGqaYDLBI9q3VOCYaj+bp56hM6uEKJLKHmHQXP29keFY59HsZIzNWC97ufif109NdOVnTCSpoYIsHopSjoxEeQUoZIoSw6eWYKKYzYrIGCtMjC2qYkvwlr+8SjoXdc+te3eXteZ1UUcZTuAUzsGDBjThFlrQBgIKnuEV3pwn58V5dz4WoyWn2DmGP3A+fwAwWZLy</latexit><latexit sha1_base64="tkNQXIxZYoaD4/gg3Oh4RZFrz6E=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK8Mz4bVmlt350CrxCtIDQq0htWvQShJGlNhCMda9z03MX6GlWGE01llkGqaYDLBI9q3VOCYaj+bp56hM6uEKJLKHmHQXP29keFY59HsZIzNWC97ufif109NdOVnTCSpoYIsHopSjoxEeQUoZIoSw6eWYKKYzYrIGCtMjC2qYkvwlr+8SjoXdc+te3eXteZ1UUcZTuAUzsGDBjThFlrQBgIKnuEV3pwn58V5dz4WoyWn2DmGP3A+fwAwWZLy</latexit><latexit sha1_base64="tkNQXIxZYoaD4/gg3Oh4RZFrz6E=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK8Mz4bVmlt350CrxCtIDQq0htWvQShJGlNhCMda9z03MX6GlWGE01llkGqaYDLBI9q3VOCYaj+bp56hM6uEKJLKHmHQXP29keFY59HsZIzNWC97ufif109NdOVnTCSpoYIsHopSjoxEeQUoZIoSw6eWYKKYzYrIGCtMjC2qYkvwlr+8SjoXdc+te3eXteZ1UUcZTuAUzsGDBjThFlrQBgIKnuEV3pwn58V5dz4WoyWn2DmGP3A+fwAwWZLy</latexit>

c
<latexit sha1_base64="UCKFp3fnw4QEseTvDNqu6nZyX60=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK+MzIbVmlt350CrxCtIDQq0htWvQShJGlNhCMda9z03MX6GlWGE01llkGqaYDLBI9q3VOCYaj+bp56hM6uEKJLKHmHQXP29keFY59HsZIzNWC97ufif109NdOVnTCSpoYIsHopSjoxEeQUoZIoSw6eWYKKYzYrIGCtMjC2qYkvwlr+8SjoXdc+te3eXteZ1UUcZTuAUzsGDBjThFlrQBgIKnuEV3pwn58V5dz4WoyWn2DmGP3A+fwAzY5L0</latexit><latexit sha1_base64="UCKFp3fnw4QEseTvDNqu6nZyX60=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK+MzIbVmlt350CrxCtIDQq0htWvQShJGlNhCMda9z03MX6GlWGE01llkGqaYDLBI9q3VOCYaj+bp56hM6uEKJLKHmHQXP29keFY59HsZIzNWC97ufif109NdOVnTCSpoYIsHopSjoxEeQUoZIoSw6eWYKKYzYrIGCtMjC2qYkvwlr+8SjoXdc+te3eXteZ1UUcZTuAUzsGDBjThFlrQBgIKnuEV3pwn58V5dz4WoyWn2DmGP3A+fwAzY5L0</latexit><latexit sha1_base64="UCKFp3fnw4QEseTvDNqu6nZyX60=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK+MzIbVmlt350CrxCtIDQq0htWvQShJGlNhCMda9z03MX6GlWGE01llkGqaYDLBI9q3VOCYaj+bp56hM6uEKJLKHmHQXP29keFY59HsZIzNWC97ufif109NdOVnTCSpoYIsHopSjoxEeQUoZIoSw6eWYKKYzYrIGCtMjC2qYkvwlr+8SjoXdc+te3eXteZ1UUcZTuAUzsGDBjThFlrQBgIKnuEV3pwn58V5dz4WoyWn2DmGP3A+fwAzY5L0</latexit><latexit sha1_base64="UCKFp3fnw4QEseTvDNqu6nZyX60=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK+MzIbVmlt350CrxCtIDQq0htWvQShJGlNhCMda9z03MX6GlWGE01llkGqaYDLBI9q3VOCYaj+bp56hM6uEKJLKHmHQXP29keFY59HsZIzNWC97ufif109NdOVnTCSpoYIsHopSjoxEeQUoZIoSw6eWYKKYzYrIGCtMjC2qYkvwlr+8SjoXdc+te3eXteZ1UUcZTuAUzsGDBjThFlrQBgIKnuEV3pwn58V5dz4WoyWn2DmGP3A+fwAzY5L0</latexit>

x
<latexit sha1_base64="xcZcwfdoAUX9vBUeGI4oN5ttGH4=">AAAB/HicbVBPS8MwHP11/pvzX3VHL8EheBqtCHocevE4wW3CVkaapVtYmpYklZVSv4oXD4p49YN489uYdT3o5oOQx3u/R355fsyZ0o7zbVXW1jc2t6rbtZ3dvf0D+/Coq6JEEtohEY/kg48V5UzQjmaa04dYUhz6nPb86c3c7z1SqVgk7nUaUy/EY8ECRrA20tCuDzSdmVxW3CrIZnk+tBtO0ymAVolbkgaUaA/tr8EoIklIhSYcK9V3nVh7GZaaEU7z2iBRNMZkise0b6jAIVVeViyfo1OjjFAQSXOERoX6O5HhUKk09M1kiPVELXtz8T+vn+jgysuYiBNNBVk8FCQc6QjNm0AjJinRPDUEE8nMrohMsMREm75qpgR3+curpHvedJ2me3fRaF2XdVThGE7gDFy4hBbcQhs6QCCFZ3iFN+vJerHerY/FaMUqM3X4A+vzBz2nlck=</latexit><latexit sha1_base64="xcZcwfdoAUX9vBUeGI4oN5ttGH4=">AAAB/HicbVBPS8MwHP11/pvzX3VHL8EheBqtCHocevE4wW3CVkaapVtYmpYklZVSv4oXD4p49YN489uYdT3o5oOQx3u/R355fsyZ0o7zbVXW1jc2t6rbtZ3dvf0D+/Coq6JEEtohEY/kg48V5UzQjmaa04dYUhz6nPb86c3c7z1SqVgk7nUaUy/EY8ECRrA20tCuDzSdmVxW3CrIZnk+tBtO0ymAVolbkgaUaA/tr8EoIklIhSYcK9V3nVh7GZaaEU7z2iBRNMZkise0b6jAIVVeViyfo1OjjFAQSXOERoX6O5HhUKk09M1kiPVELXtz8T+vn+jgysuYiBNNBVk8FCQc6QjNm0AjJinRPDUEE8nMrohMsMREm75qpgR3+curpHvedJ2me3fRaF2XdVThGE7gDFy4hBbcQhs6QCCFZ3iFN+vJerHerY/FaMUqM3X4A+vzBz2nlck=</latexit><latexit sha1_base64="xcZcwfdoAUX9vBUeGI4oN5ttGH4=">AAAB/HicbVBPS8MwHP11/pvzX3VHL8EheBqtCHocevE4wW3CVkaapVtYmpYklZVSv4oXD4p49YN489uYdT3o5oOQx3u/R355fsyZ0o7zbVXW1jc2t6rbtZ3dvf0D+/Coq6JEEtohEY/kg48V5UzQjmaa04dYUhz6nPb86c3c7z1SqVgk7nUaUy/EY8ECRrA20tCuDzSdmVxW3CrIZnk+tBtO0ymAVolbkgaUaA/tr8EoIklIhSYcK9V3nVh7GZaaEU7z2iBRNMZkise0b6jAIVVeViyfo1OjjFAQSXOERoX6O5HhUKk09M1kiPVELXtz8T+vn+jgysuYiBNNBVk8FCQc6QjNm0AjJinRPDUEE8nMrohMsMREm75qpgR3+curpHvedJ2me3fRaF2XdVThGE7gDFy4hBbcQhs6QCCFZ3iFN+vJerHerY/FaMUqM3X4A+vzBz2nlck=</latexit><latexit sha1_base64="xcZcwfdoAUX9vBUeGI4oN5ttGH4=">AAAB/HicbVBPS8MwHP11/pvzX3VHL8EheBqtCHocevE4wW3CVkaapVtYmpYklZVSv4oXD4p49YN489uYdT3o5oOQx3u/R355fsyZ0o7zbVXW1jc2t6rbtZ3dvf0D+/Coq6JEEtohEY/kg48V5UzQjmaa04dYUhz6nPb86c3c7z1SqVgk7nUaUy/EY8ECRrA20tCuDzSdmVxW3CrIZnk+tBtO0ymAVolbkgaUaA/tr8EoIklIhSYcK9V3nVh7GZaaEU7z2iBRNMZkise0b6jAIVVeViyfo1OjjFAQSXOERoX6O5HhUKk09M1kiPVELXtz8T+vn+jgysuYiBNNBVk8FCQc6QjNm0AjJinRPDUEE8nMrohMsMREm75qpgR3+curpHvedJ2me3fRaF2XdVThGE7gDFy4hBbcQhs6QCCFZ3iFN+vJerHerY/FaMUqM3X4A+vzBz2nlck=</latexit>

y
<latexit sha1_base64="buDfNVNmvosX6ol7A4koN3DdY1I=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUlE0GXRjcsK9gFtKJPppB06mYSZiRhC/BU3LhRx64e482+cpllo64FhDufcw9w5fsyZ0o7zbVXW1jc2t6rbtZ3dvf0D+/Coq6JEEtohEY9k38eKciZoRzPNaT+WFIc+pz1/djP3ew9UKhaJe53G1AvxRLCAEayNNLLrQ00fTS4rbhVkaZ6P7IbTdAqgVeKWpAEl2iP7aziOSBJSoQnHSg1cJ9ZehqVmhNO8NkwUjTGZ4QkdGCpwSJWXFcvn6NQoYxRE0hyhUaH+TmQ4VCoNfTMZYj1Vy95c/M8bJDq48jIm4kRTQRYPBQlHOkLzJtCYSUo0Tw3BRDKzKyJTLDHRpq+aKcFd/vIq6Z43Xafp3l00WtdlHVU4hhM4AxcuoQW30IYOEEjhGV7hzXqyXqx362MxWrHKTB3+wPr8AT8tlco=</latexit><latexit sha1_base64="buDfNVNmvosX6ol7A4koN3DdY1I=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUlE0GXRjcsK9gFtKJPppB06mYSZiRhC/BU3LhRx64e482+cpllo64FhDufcw9w5fsyZ0o7zbVXW1jc2t6rbtZ3dvf0D+/Coq6JEEtohEY9k38eKciZoRzPNaT+WFIc+pz1/djP3ew9UKhaJe53G1AvxRLCAEayNNLLrQ00fTS4rbhVkaZ6P7IbTdAqgVeKWpAEl2iP7aziOSBJSoQnHSg1cJ9ZehqVmhNO8NkwUjTGZ4QkdGCpwSJWXFcvn6NQoYxRE0hyhUaH+TmQ4VCoNfTMZYj1Vy95c/M8bJDq48jIm4kRTQRYPBQlHOkLzJtCYSUo0Tw3BRDKzKyJTLDHRpq+aKcFd/vIq6Z43Xafp3l00WtdlHVU4hhM4AxcuoQW30IYOEEjhGV7hzXqyXqx362MxWrHKTB3+wPr8AT8tlco=</latexit><latexit sha1_base64="buDfNVNmvosX6ol7A4koN3DdY1I=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUlE0GXRjcsK9gFtKJPppB06mYSZiRhC/BU3LhRx64e482+cpllo64FhDufcw9w5fsyZ0o7zbVXW1jc2t6rbtZ3dvf0D+/Coq6JEEtohEY9k38eKciZoRzPNaT+WFIc+pz1/djP3ew9UKhaJe53G1AvxRLCAEayNNLLrQ00fTS4rbhVkaZ6P7IbTdAqgVeKWpAEl2iP7aziOSBJSoQnHSg1cJ9ZehqVmhNO8NkwUjTGZ4QkdGCpwSJWXFcvn6NQoYxRE0hyhUaH+TmQ4VCoNfTMZYj1Vy95c/M8bJDq48jIm4kRTQRYPBQlHOkLzJtCYSUo0Tw3BRDKzKyJTLDHRpq+aKcFd/vIq6Z43Xafp3l00WtdlHVU4hhM4AxcuoQW30IYOEEjhGV7hzXqyXqx362MxWrHKTB3+wPr8AT8tlco=</latexit><latexit sha1_base64="buDfNVNmvosX6ol7A4koN3DdY1I=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUlE0GXRjcsK9gFtKJPppB06mYSZiRhC/BU3LhRx64e482+cpllo64FhDufcw9w5fsyZ0o7zbVXW1jc2t6rbtZ3dvf0D+/Coq6JEEtohEY9k38eKciZoRzPNaT+WFIc+pz1/djP3ew9UKhaJe53G1AvxRLCAEayNNLLrQ00fTS4rbhVkaZ6P7IbTdAqgVeKWpAEl2iP7aziOSBJSoQnHSg1cJ9ZehqVmhNO8NkwUjTGZ4QkdGCpwSJWXFcvn6NQoYxRE0hyhUaH+TmQ4VCoNfTMZYj1Vy95c/M8bJDq48jIm4kRTQRYPBQlHOkLzJtCYSUo0Tw3BRDKzKyJTLDHRpq+aKcFd/vIq6Z43Xafp3l00WtdlHVU4hhM4AxcuoQW30IYOEEjhGV7hzXqyXqx362MxWrHKTB3+wPr8AT8tlco=</latexit>

z
<latexit sha1_base64="GmrIweKAcpabQ7Zv3TvoAWWx138=">AAAB/HicbVC7TsMwFHV4lvIKdGSxqJCYqgQhwVjBwlgk+pDaqHJcp7XqOJF9gwhR+BUWBhBi5UPY+BvcNAO0HMny0Tn3yNfHjwXX4Djf1srq2vrGZmWrur2zu7dvHxx2dJQoyto0EpHq+UQzwSVrAwfBerFiJPQF6/rT65nfvWdK80jeQRozLyRjyQNOCRhpaNcGwB5MLituHWSPeT60607DKYCXiVuSOirRGtpfg1FEk5BJoIJo3XedGLyMKOBUsLw6SDSLCZ2SMesbKknItJcVy+f4xCgjHETKHAm4UH8nMhJqnYa+mQwJTPSiNxP/8/oJBJdexmWcAJN0/lCQCAwRnjWBR1wxCiI1hFDFza6YTogiFExfVVOCu/jlZdI5a7hOw709rzevyjoq6Agdo1PkogvURDeohdqIohQ9o1f0Zj1ZL9a79TEfXbHKTA39gfX5A0Czlcs=</latexit><latexit sha1_base64="GmrIweKAcpabQ7Zv3TvoAWWx138=">AAAB/HicbVC7TsMwFHV4lvIKdGSxqJCYqgQhwVjBwlgk+pDaqHJcp7XqOJF9gwhR+BUWBhBi5UPY+BvcNAO0HMny0Tn3yNfHjwXX4Djf1srq2vrGZmWrur2zu7dvHxx2dJQoyto0EpHq+UQzwSVrAwfBerFiJPQF6/rT65nfvWdK80jeQRozLyRjyQNOCRhpaNcGwB5MLituHWSPeT60607DKYCXiVuSOirRGtpfg1FEk5BJoIJo3XedGLyMKOBUsLw6SDSLCZ2SMesbKknItJcVy+f4xCgjHETKHAm4UH8nMhJqnYa+mQwJTPSiNxP/8/oJBJdexmWcAJN0/lCQCAwRnjWBR1wxCiI1hFDFza6YTogiFExfVVOCu/jlZdI5a7hOw709rzevyjoq6Agdo1PkogvURDeohdqIohQ9o1f0Zj1ZL9a79TEfXbHKTA39gfX5A0Czlcs=</latexit><latexit sha1_base64="GmrIweKAcpabQ7Zv3TvoAWWx138=">AAAB/HicbVC7TsMwFHV4lvIKdGSxqJCYqgQhwVjBwlgk+pDaqHJcp7XqOJF9gwhR+BUWBhBi5UPY+BvcNAO0HMny0Tn3yNfHjwXX4Djf1srq2vrGZmWrur2zu7dvHxx2dJQoyto0EpHq+UQzwSVrAwfBerFiJPQF6/rT65nfvWdK80jeQRozLyRjyQNOCRhpaNcGwB5MLituHWSPeT60607DKYCXiVuSOirRGtpfg1FEk5BJoIJo3XedGLyMKOBUsLw6SDSLCZ2SMesbKknItJcVy+f4xCgjHETKHAm4UH8nMhJqnYa+mQwJTPSiNxP/8/oJBJdexmWcAJN0/lCQCAwRnjWBR1wxCiI1hFDFza6YTogiFExfVVOCu/jlZdI5a7hOw709rzevyjoq6Agdo1PkogvURDeohdqIohQ9o1f0Zj1ZL9a79TEfXbHKTA39gfX5A0Czlcs=</latexit><latexit sha1_base64="GmrIweKAcpabQ7Zv3TvoAWWx138=">AAAB/HicbVC7TsMwFHV4lvIKdGSxqJCYqgQhwVjBwlgk+pDaqHJcp7XqOJF9gwhR+BUWBhBi5UPY+BvcNAO0HMny0Tn3yNfHjwXX4Djf1srq2vrGZmWrur2zu7dvHxx2dJQoyto0EpHq+UQzwSVrAwfBerFiJPQF6/rT65nfvWdK80jeQRozLyRjyQNOCRhpaNcGwB5MLituHWSPeT60607DKYCXiVuSOirRGtpfg1FEk5BJoIJo3XedGLyMKOBUsLw6SDSLCZ2SMesbKknItJcVy+f4xCgjHETKHAm4UH8nMhJqnYa+mQwJTPSiNxP/8/oJBJdexmWcAJN0/lCQCAwRnjWBR1wxCiI1hFDFza6YTogiFExfVVOCu/jlZdI5a7hOw709rzevyjoq6Agdo1PkogvURDeohdqIohQ9o1f0Zj1ZL9a79TEfXbHKTA39gfX5A0Czlcs=</latexit>
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Supplementary Figure 18. Flavor wave model. Calculated dynamical structure factor in Supplementary Equation (45) for a-b)
magnon and c) lowest-energy exciton modes along the same reciprocal-space paths as in Figs. 2a) and 3c), respectively. The exchange
parameters in HHeisenberg are J1 = −0.9, J2 = 0.25, and J6 = 0.25 (all in meV) and in HSOexchange t3 = 0 in a) and t3 = −0.15 meV
in b-c), with J3 = J4 = J5 = t1,2,4 = 0 in all panels. The calculations have been convolved with a Gaussian energy lineshape of
standard deviation σ =0.17 meV. Colorbars show the dynamical structure factor, on a linear scale in c), and a log scale in a-b)
ln(S(k, ω)+1) in order to highlight weak features in the magnon spectrum. All three panels correspond to the magnetic domain with
φ = 0. The thin solid lines show the calculated dispersion relations (4 magnon modes in a-b) and 8 exciton modes in c)). d) Local
geometry of an idealized cobalt oxide layer projected onto the ab plane assuming regular oxygen octahedra, planar cobalt layers and
hence 90◦ Co-O-Co bonds [Co at (0,0,1/3), O at (1/3,0,1/4) and c/a =

√
8 in Supplementary Table I]. Solid blue dots are cobalt

ions and orange dots are oxygens - filled/open for above/below the nearest cobalt ions. The blue arrows show the orientations of the
xyz axes in the 111 coordinate frame. We also indicate the hexagonal primitive lattice vectors a and b and the Cartesian xyz frame
used to specify the nearest neighbor anisotropic exchange in Supplementary Note 7 A. Note the orientation of this figure is rotated
around c by −60◦ compared to the orientation of Supplementary Figures 4c-d) and 7.
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