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Synopsis
Spiral di�usion weighted imaging (DWI) with �eld monitoring and iterative reconstruction o�ers potentially reduced echo time (TE) and
higher e�ective resolution (less blurring) compared to EPI. Coupled with a scanner with ultra-strong gradients, it enabled an 800 µm DWI
protocol for imaging �ne structures of the brain in vivo. Compared to EPI, the shorter TEs provided distinctly di�erent contrast in iron-
rich areas (U-�bres and sub-cortical nuclei), which could enhance investigations of these regions. The protocol did, however, come with a
reduction in SNR/(unit time) compared to EPI due to di�erences in readout time.

Introduction
Di�usion weighted imaging (DWI) of brain tissue allows access to microstructural properties of brain in vivo . However, high resolution is
required to separate and segment �ne structures like cortex , sub-cortical nuclei , or U-�bres .

Spiral trajectories are more e�cient than rectilinear k-space trajectories  and enable shorter e�ective echo time  (TE). Shorter TEs retain
higher signal levels and increase the range of TEs that can be sampled. Importantly, varying TE can provide additional microstructural
information . This is especially pertinent for U-�bres and deep gray matter, because their high relative iron content  means that
behaviour in the low TE-regime is likely to be interesting.

MRI scanners with ultra-strong gradients have recently enabled enhanced in vivo DWI U-�bre imaging in lower visual areas using a protocol
optimised for the occipital lobe . Here, we demonstrate the potential of spiral acquisitions to allow for shorter TE in this protocol, while
ensuring high image quality using �eld monitoring and iterative reconstruction.

Methods
Data were recorded from a young healthy participant on a Siemens Connectom 3T scanner with a 32-channel receive-only head coil.

Spiral data: spin echo DWI sequence with spiral readout ; TE 33 ms; TR 6500 ms; 800 µm isotropic resolution;  mm  �eld of view
(FoV); 62 slices; oblique axial, tilted along the calcarine sulcus; 41 ms readout time; bandwidth (BW) 952 Hz/px;  radially undersampled;
acquisition repeated  with initial azimuthal phase  (4 arms);  ms/µm ; 60 non-colinear directions per shell distributed
over the sphere; 15 interleaved  ms/µm  ( ) volumes; total acquisition time (TA) ~1hr. Multi-echo GRE images were recorded at 1.5 mm
isotropic resolution to calculate B0 and coil sensitivity maps, TA ~3mins. Additionally,  images were recorded for temporal signal-to-
noise ratio (tSNR) comparison with EPI, TA ~9mins.

The spiral trajectory was measured up to spatial second-order  in a separate calibration on a phantom using a 64-channel receive-only head
coil  with built in �eld monitoring probes connected to a �eld monitoring system (Skope Magnetic Resonance Technologies).

Spiral data were reconstructed using iterative SENSE reconstruction in the Skope-i software (Skope Magnetic Resonance Technologies),
incorporating the recorded trajectories and the B0 and coil-sensitivity maps . Spiral arms were combined using an implementation of MUSE
in Skope-i. Scanner-side eddy current correction  was removed before reconstruction using simulations of the trajectory (https://github.com
/SkopeMagneticResonanceTechnologies/siemens_to_ismrmrd) so that the measured values could be used.

EPI data: measured in a separate session and previously published . Parameters di�erent from spiral acquisition: spin echo EPI sequence ;
TE 66 ms; TR 8900 ms;  mm  FoV; 81 ms readout time; BW 1148 Hz/px; GRAPPA  2; partial Fourier 5/8; two repetitions; one
additional  image with opposed phase encoding recorded for susceptibility correction ; total TA ~45mins. In addition, one repetition of

 images were recorded in the same session as the spiral for tSNR comparison, TA ~5mins.

DWI data were preprocessed as per Attar, et al. , except that because eddy current and susceptibility corrections are incorporated into the
spiral reconstruction, in that case these steps were replaced with correction for inter-volume motion using the ACID toolbox . Di�usion
tensors , and multi-tissue CSD segmentations and �bre orientation distribution functions  (fODFs) were computed from the DWI data using
MRtrix3 .

The  data for tSNR comparison was not preprocessed. tSNR was computed voxelwise over the  repetitions as (signal mean)/(signal
standard deviation). Separately for spiral and EPI images, the mean  image was segmented using SPM12, and white matter (WM) probability
maps were thresholded at 99% to generate WM masks. The distribution of tSNR was compared in these WM masks.

Results
Fig. 1 demonstrates that the spiral acquisition gives higher e�ective spatial resolution in terms of crisper delineation of tissue classes and less
blurring. It also suggests that the shorter TE for the spiral gives di�erential sensitivity to U-�bres, in line with their increased iron content .

The tSNR comparison (Fig. 2) demonstrated comparable tSNR for 4-arm spiral and single-repetition EPI. Over the WM, spiral tSNR
(mean standard deviation) was  in ~9mins, EPI tSNR  in ~5mins. The distribution of tSNR was seen to be �atter for the
spiral, in line with previous results , though this may be in part due to the lack of susceptibility correction in the EPI case. The e�ect of the
shorter TE on deep gray matter contrast was also apparent.
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Discussion and Conclusion
Unlike in previous work , our spiral acquisition was less SNR/(unit time) e�cient than the EPI. The main reason for this is that the EPI has a
readout time twice as long as the spiral. A further contributing factor is that the partial Fourier encoding leads to blurring and thus a lower
e�ective resolution in the phase-encoding direction of the EPI. However, two repetitions of the EPI protocol can be run in the same time as the
spiral protocol.

On the other hand, the spiral DWI o�ered a higher (and isotropic) e�ective resolution and shorter minimal TE, though the contributions of TE,
�eld monitoring, and iterative reconstruction to the higher resolution remain to be disentangled. Spiral DWI holds the potential to enhance
investigations of di�usion properties of thin and small structures like cortex, U-�bres, and deep grey matter nuclei in vivo in the low TE-regime
at sub-millimetre resolution.
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Figures

Figure 1: Comparison of spiral and EPI in the occipital lobe. Top: RGB segmentations of DWI data using multi-tissue CSD show better de�nition
of the cortex in the spiral acquisition. Middle: Fractional anistropy (FA) maps further demonstrate the higher e�ective resolution of the spiral,
i.e. less blurring. Bottom: fODFs seem to be more prominent for the iron-rich U-�bres connecting the two gyri (cyan ovals) in the spiral
acquisition (short TE) than EPI (long TE). The same glyph scaling was used for both.

Firefox https://submissions2.mirasmart.com/ISMRM2021/Vie...

3 of 4 16.12.20, 23:12



Figure 2: Spiral and EPI data show similar tSNR distributions. The anterior-left (top right of each �gure panel) artefact is due to a �ducial oil
capsule attached to the subject's forehead. The longer TR of the EPI acquisition resulted in higher cerebrospinal �uid (CSF) signal in the
ventricles and near the surface of the brain. The contrast in the putamen (cyan ovals), an iron-rich deep grey matter structure, shows distinct
di�erences between the spiral and EPI because of the di�erent TEs.
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