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People sometimes predict specific words during language comprehension. It is thought that
while correct predictions benefit word recognition and incremental comprehension, incorrect
predictions can incur a cognitive processing cost, possibly because people have to inhibit the
word representations they had activated ahead of time (e.g., Ness and Meltzer-Asscher, 2018).
According to the “rational adaptation hypothesis” (e.g., Kuperberg and Jaeger, 2016), people
balance these costs and benefits by rationally adapting lexical predictions to the estimated
probability of prediction disconfirmation (error). Increased probability of disconfirmation leads to
weaker predictions, which, in turn, may reduce the processing costs incurred by prediction failure.
In support of this hypothesis, Ness and Meltzer-Asscher (2021, from hereon NMA2021) report a
clever and impressive study with two large-scale behavioral experiments and largely pre-registered
analyses. The current commentary critically reviews these analyses and performs re-analyses which
show that their data, in fact, do not support the rational adaptation hypothesis.

SUMMARY OF NMA2021

Participants gave speeded congruency judgments to prime-target word-pairs. Word-pairs were of
three types1 based on whether the prime strongly suggested a likely target and whether the target
was predictable given the prime, corresponding to the pre-rated “constraint” and “cloze” value2,
respectively. Assuming that constraining primes caused participants to predict the most likely
target, trials could involve disconfirmed prediction (High Constraint prime, Low Cloze target:
High-Low trials), confirmed prediction (High-High) or no prediction (Low-Low). To investigate
adaptation, NMA2021 manipulated the proportion of High-Low/Low-Low filler trials between
participants in three lists (High-Low list: 60/0, Low-Low list: 0/60, mixed list: 30/30).

1In Experiment 2 (English), the focus of this commentary. Similar arguments apply to Experiment 1 (Hebrew, 2 word-pair

types), detailed results are available on OSF.
2In a Cloze completion test, an independent sample of participants completed prime words with a subsequent word. Target

cloze was the percentage of participants using the target, prime constraint was the highest cloze value obtained for that prime.
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NMA2021 pre-registered a statistical Base model (1) of log-
transformed reaction time as a function of trial type, trial number,
list and all interactions. They reported that the difference between
High-Low and Low-Low trials (taken as indexing the relative
costs of disconfirmed prediction) was smaller in the High-Low
list than in the Low-Low list. However, this result in itself does not
conclusively support rational adaptation, and evidence for the
crucial three-way interaction with trial number was insufficient.

1) Base model: log RT∼ Trial type ∗ Trial number ∗ List
NMA2021 further pre-registered a Bayesian adaptation model
that weighted prediction error (PE: prime constraint minus target
cloze) with the estimated probability of prediction confirmation
given the history of confirmation at each given trial (µ), with the
formula: PE∗µ. Themodel output was dubbed “inhibition index,”
the assumed processing costs from inhibiting disconfirmed
predictions. The inhibition index is higher overall for High-Low
trials than for Low-Low trials and High-High trials (Figure 1,
top row). Displaying rational adaptation, the inhibition index of
High-Low trials rapidly decreases with trial position in the High-
Low list, slower in the mixed list and slowest in the Low-Low list.

Crucially, the inhibition index was a statistically significant
predictor when added to the Base model (2), and in an
Adaptationmodel (3) along with cloze.Moreover, the Adaptation
model yielded a better fit than models that weighted PE by either
trial number/position (4) or by HL/LL trial counts (5). NMA2021
therefore concludes that “the assumptions of the Bayesian
adaptation model indeed increase its explanatory power, relative
to other models including the basic information entered into its
calculations, but without its additional assumptions.”

2) Base model with inhibition: log RT ∼ Trial Type ∗ Trial
Number ∗ List+ Inhibition

3) Adaptation model: log RT∼ Inhibition Index+ Cloze
4) Position model: log RT∼ PE ∗ Trial Position
5) Count model: log RT∼ PE ∗ HL trial count ∗ LL trial count.

CRITIQUE

NMA2021’s claims regarding rational adaptation rest on
two findings. First, the Base model showed that prediction
disconfirmation costs (High-Low minus Low-Low) were smaller
in the High-Low list compared to the Low-Low list. However,
their analysis erroneously included filler trials, which may
have generated spurious results. Moreover, the Base model
suffered from massive multicollinearity (e.g., Alin, 2010). After
z-transforming List and Trial Position, analysis of critical trials
alone did not support NMA2021’s claims.

Second, NMA2021’s conclusions rest on the behavior and
statistical significance of the inhibition index. However, the
observed responses and predicted values from the Base model
(Figure 1, middle and bottom row, respectively) were not
consistent with the inhibition index. Differences between High-
Low and Low-Low trials occur in the initial trials of the
Low-Low list, but not in the High-Low list. So, why did the
inhibition index yield an effect at all? This is because the
inhibition index is linearly related to other predictors and
competes for explained variance, which is why multicollinearity

FIGURE 1 | Model output and reaction time (log RT) results from NMA2021’s

Experiment 2. Top row: output of the rational adaptor model (inhibition index)

for each trial type and trial list at each trial position in the experiment (adapted

from NMA2021). Middle row: observed reaction times (regression fitted with

‘Local Polynomial Regression Fitting’ and t-value based confidence bounds).

Bottom row: predicted reaction times from the linear regression Base model

with which NMA2021 tested for a three-way interaction between trial position,

trial list, and trial type. N.B. Like NMA2021’s graphs, these graphs use both

critical and filler trials, but results and graphs for critical trials only are available

on OSF.

remained problematic for the Base model with inhibition even
after z-transforming List and Trial Position. As visible from
NMA2021’s, adding the inhibition index weakens previously
strong effects of trial type and trial position. Importantly, the
inhibition index enjoys an unfair advantage, not because of
µ, but because it relies on PE, a continuous measure that is
closer to the actual manipulation than the categorical predictor
trial type.

Comparisons between the Adaptation model and the Position
and Count models are also problematic. Only the Adaptation
model includes Cloze, even though the argument for including
Cloze applies to all models, namely to account for facilitatory
effects of correct predictions which are not captured by PE.
Because Cloze is a strong predictor of reaction time (Figure 1;
see also Smith and Levy, 2013), this model comparison is
“unfair” because a model with Cloze will outperform a model
without. This is easily addressed: a Position model with Cloze (6)
outperforms the Adaptation model [χ2

(2)
= 53.6, p < 0.001], and

the original Position model outperforms the Adaptation model
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without Cloze (7), [χ2
(2)

= 37.96, p < 0.001]. The same goes

for a Count model3. Of note, the Adaptation model is possibly
suboptimal because it does not capture separate variance of PE
and µ. But even compared to an alternative Adaptation model
that does (8), the simpler Position model with Cloze still fits the
data as well, and even better when random slopes are retained.

(6) Position model with Cloze: log RT ∼ PE ∗ Trial Position
+ Cloze

(7) Adaptation model without Cloze: log RT ∼

Inhibition Index
(8) Alternative adaptation model: log RT∼ PE ∗

µ + Cloze
Finally, NMA2021’s conclusions are refuted not just by these
exploratory analyses, but also by their own pre-registered
analyses. NMA2021 erroneously compared the Position and
Count models with the Base model with inhibition, not with
the Adaptation model as per their pre-registration. In the pre-
registered comparison, the Adaptation model was outperformed
by the Count model (Experiment 2) and by the Position model
(Experiment 1).

CONCLUSION

The current reanalyses show that NMA2021’s conclusions do
not uphold. Responses changed during the experiment but
not in a way that supported rational adaptation to prediction
disconfirmation. Moreover, the key assumption of their Bayesian
adaptation model, weighted prediction error, does not increase
and may even decrease its explanatory power compared to other
relevant models. Therefore, prediction disconfirmation was not a
crucial trigger for adaptation.With related conclusions (Delaney-
Busch et al., 2019) similarly debunked by Nieuwland (2021),
the rational adaptation hypothesis of prediction is now left on
shaky ground. Linguistic prediction may be more robust to
changes in statistical regularities in the local environment than
is sometimes thought.

3NMA2021’s Count model suffers from multicollinearity because the HL and LL

trial counts are correlated. But a model that avoids multicollinearity by counting

HL and LL trials together also outperforms the Adaptation model.

One key question remains: why was the response time
difference between High-Low and Low-Low trials large at the
beginning of the Low-Low list, but not the High-Low list?
This pattern is possibly a spurious result from having different
subjects per list or low trial numbers, or could be caused
by another variable that was not included in the statistical
models. Regardless, responses to low cloze targets sped up in all
lists, which may have impacted slowest responses most thereby
yielding an interaction pattern (see also Prasad and Linzen,
2019). While such changes are not “rational” within the rational
adaptation framework, they can be viewed as rational in a
colloquial sense because they nevertheless reflect adaptation to
the task environment (see also Nieuwland, 2021).

Without a doubt, NMA2021 deserves credit for pre-
registering analyses and making data and scripts publicly
available. But NMA2021 also demonstrates that pre-registration
and data availability during peer review are no panacea (see also
Szollosi et al., 2020). Pre-registered analyses can bemisconceived,
and such problems and analysis errors can be overlooked by
researchers, peer reviewers and journal editors alike. This merely
strengthens the case for scientific transparency and open data, to
allow for post-publication re-analyses such as reported here and
in Nieuwland (2021).
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