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Quantum emitters coupled to a waveguide are a paradigm of quantum optics, whose essential properties are
described by waveguide quantum electrodynamics (QED). We study the possibility of observing the typical
features of the conventional waveguide QED scenario in a system where the role of the waveguide is played by a
one-dimensional subwavelength atomic array. For the role of emitters, we propose to use antisymmetric states of
atomic dimers—a pair of closely spaced atoms—as effective two-level systems, which significantly reduces the
effect of free-space spontaneous emission. We solve the dynamics of the system both when the dimer frequency
lies inside and when it lies outside the band of modes of the array. Along with well-known phenomena of
collective emission into the guided modes and waveguide-mediated long-range dimer-dimer interactions, we
uncover significant non-Markovian corrections which arise from both the finiteness of the array and through

retardation effects.
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I. INTRODUCTION

The interaction between quantum emitters and a structured
reservoir leads to a rich phenomenology. It has recently at-
tracted renewed interest [1] due to experimental progress in
novel experimental platforms such as superconducting waveg-
uide quantum electrodynamics (QED) [2-5], cold atoms near
nanofibers [6,7] or photonic crystal waveguides [8—10], and
quantum dots [11-13]. The dynamics of emitters coupled to
such nonconventional reservoirs is expected to exhibit several
distinctive features such as collective super- and subradiant
emission into the reservoir [9,14], long-range dipole-dipole
interactions mediated by the reservoir [15-18], and non-
Markovian effects [19-21]. The observation of many of these
phenomena is, however, challenging even with the unprece-
dented level of control achieved today in several experiments.
These difficulties arise both from imperfections in the fab-
rication of these devices as well as from the unavoidable
absorption of photons in the waveguide (see [1] and references
therein).

Ordered atomic arrays have recently attracted significant
interest as a new paradigm for controlling the light-matter
interaction [22-34]. Subwavelength arrays, whose interatomic
spacing lies below the wavelength of the characteristic atomic
dipole transition, exhibit strong collective behavior such as
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superradiance and subradiance [22,23,28,33,35-38]. One can
draw an analogy between a one-dimensional atomic array
and a conventional waveguide, where collective subradiant
excitations can be thought of as propagating modes of the
waveguide [26,31,39].

Recently, Masson and Asenjo-Garcia have proposed the
concept of atomic waveguide QED [40]. Inspired by waveg-
uide QED, where optical emitters are coupled to a waveguide,
they considered the case in which atoms are coupled to a
one-dimensional subwavelength atomic array which plays the
role of the waveguide. The motivation is that an atomic waveg-
uide in free space is a conceptually simple, clean optical
medium that allows, in principle, the elimination of any intrin-
sic internal losses or imperfections which affect conventional
waveguides or photonic crystals, and may feature very low
disorder. The observation of characteristic waveguide QED
phenomena in an atomic waveguide setup poses, however,
several fundamental challenges [40]. On the one hand, ef-
ficient coupling between external “impurity” atoms and the
atomic waveguide is hindered by free-space decay due to
the presence of superradiant (bright) modes of the array. On
the other hand, the dynamics of the emitters shows signs
of non-Markovian effects, which ultimately spoil some of
the interesting phenomena of conventional waveguide QED.
Some of these difficulties may be overcome by reducing the
interatomic separation of the waveguide and by placing the
impurity atoms extremely close to the array [40,41], but it
is challenging to achieve the required deep subwavelength
regime experimentally.

In this article, we propose a modification of this setup to
mitigate these problems. Specifically, we propose (i) to use
atomic dimers—a pair of closely spaced atoms—as effective
two-level emitters coupled to the atomic waveguide, and (ii)
to control the dimers’ linewidth with a Raman transition. We
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FIG. 1. (a) Schematic representation of the setup studied in the
paper. The impurity atoms (blue, top) interact with collective states
of the atomic chain (black, bottom). (b) Real (top) and imaginary
(bottom) part of the coupling of a single-impurity atom (dashed) or a
dimer in the antisymmetric, A = —1, state (solid), with a chain mode
with quasimomentum k. The shaded region indicates the superradiant
part of the chain modes. The dimer is aligned with the center, and
the single atom with the closest site to the center of an array with
N =100 and d = h = Ao/4. The dimer antisymmetric state interacts
destructively (constructively) with the low-k (high-k) modes. Hence,
in comparison with a single atom, the coupling of the dimer to the
guided modes is stronger, while the coupling to the superradiant
modes is highly suppressed. The dark and light lines correspond to
the two different standing waves in a finite array [see Eq. (6) for
one atom or Eq. (A6) for the dimer]. The light line is exactly zero
in this case due to placing the dimer exactly in the center of the
chain (z = 0). (c) Atomic level scheme of the setup proposed in this
work. The two-level impurity atom is realized with a three-level A
atom, in which the transition |g;) — |e) is driven by a laser field
with detuning A. The detuning and spontaneous emission rate are
much larger than any other energy in the system and, thus, |e*) can
be eliminated resulting in an effective two-level atom |g)-|g3) (see
text for details). The decay rate from |e*) to |g{) is assumed to be
much slower than I'y. The chain modes are diagonalized in k space,
with energy J; and free-space decay I'.

show that a dimer behaves as an effective two-level system
formed by its ground state and its antisymmetric state. The

antisymmetric state features a reduced coupling to free-space
modes and, at the same time, an increased coupling to the ar-
ray’s guided modes. Additionally, we show that by controlling
the decay rate of the dimer atoms via a Raman transition, it
is possible to recover a Markovian regime for the dynamics
of dimers coupled to an atomic waveguide. We derive simple
models for our setup that predict collective emission from the
impurity dimers into an array’s subradiant mode, and coherent
long-range interactions between impurity dimers mediated by
the array. We verify both observations numerically for the case
of an atomic array with interatomic separation of a quarter
wavelength, a regime where the simpler case of single atoms
coupled to an atomic waveguide is hampered by free-space
decay and non-Markovian effects [40]. We also study the ef-
fects and different non-Markovian behaviors arising from the
finiteness of the chain and the reduced group velocity at the
band edge. Our results show a clear advantage of using dimers
over atoms and highlight a promising route toward observing
non-Markovian waveguide QED physics, which has received
considerable attention recently [21,42-44].

This article is organized as follows. The theoretical model,
as well as details on the dimer-array coupling and on the
Raman transition used to control the dimer’s linewidth, are
described in Sec. II. The physics of dimers coupled to an
atomic array is described in Sec. III (Sec. IV) for the case of a
dimer’s frequency lying inside (outside) the band of guided
modes of the array. A discussion on the feasibility of our
proposal and possible physical implementations is carried out
in Sec. V. We discuss possible generalizations of the case
presented here and draw our conclusions in Sec. VI. We leave
additional details on the derivation to the appendices.

II. SYSTEM DESCRIPTION

We consider a one-dimensional atomic array of N atoms
with resonance frequency wo and lattice spacing d, and n
impurity atoms with resonance frequency ;" placed at a
distance & from the chain [see Fig. 1(a)]. We assume all
atoms to be polarized along the z axis, which coincides with
the direction of the atomic array. The effective dynamics
of an atomic ensemble coupled to a continuum of quan-
tized electromagnetic modes was first derived in Ref. [45].
In the electric-dipole and rotating-wave approximation, and
in the Markovian regime, the photonic environment can be
eliminated yielding an effective non-Hermitian Hamiltonian
(h=1)

" _ > @040 3y Y Girirj)6l6] (1)
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that, together with stochastic quantum jump operators, de-
scribes the dynamics of the system [46—48]. Here, Iy is the
emission into free space of a single atom (we assume that
the chain and impurity atoms have the same decay rate I'y),
ko = 2 /Ao = wo/c, and Go(r;, r;) is the free-space Green’s
tensor describing the field at atom i generated by atom j at an
energy wy,

eik(] |ri—r|

1 1
Goriyrj)=—|14+ =V, @V, |——. @
o(ri, 1) 47rk0|: +k§ ® ]Iri—rjl (2)
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For the terms i = j, we use —37w G§'(r;, r;) = —i/2, implicitly
including the Lamb shift in the energy of the emitters. In the
absence of a driving term and within the single-excitation
sector, as we consider here, the dynamics of the system is
completely characterized by the non-Hermitian Hamiltonian
Eq. (1). In this case, in fact, a quantum jump prepares the
system in the collective ground state which does not evolve
under the action of Eq. (1).

We can separate Eq. (1) into three terms including the
chain, the impurity, and impurity-chain interaction parts of the
Hamiltonian,

H = ﬂchain + ﬂimp + ginl- (3)
The chain Hamiltonian can be written as

Hcham = o Z aee —3nl Z G (zis Zj )O‘EgO'gIe )

ij

For the case of periodic boundary conditions, and thus for
infinite chains, Eq. (4) can be dlagonahzed analytically in
terms of Bloch eigenmodes b' = f > e’szé' as [23]

Hehain = Z (Jk - %'Fk>l;-/£l;k- &)

k

In the single-excitation regime, I;k can be taken to be bosonic
annihilation operators. Closed expressions for mode energy Ji
and decay rate 'y are derived in Ref. [31] for the case of an
infinitely long array. In the following, we are interested in the
experimentally relevant case of an array with open boundary
conditions. In this case, an analytical exact expression for
the single-excitation eigenmodes of Eq. (4) is not available.
However, when the atomic array is sufficiently long (N > 1),
the eigenmodes of H.pain can still be understood as spin waves
of a definite quasimomentum k, where the value k corresponds
to the point in reciprocal space where the eigenmode wave
function is peaked [22,23,31]. In this limit, an accurate ansatz
can be provided for the single-excitation eigenmodes 132 =
> iEk, (zi)6,, where [31]

| 557 cos(kyz), if v odd, ©
+/ Nil sin(k,z;), if v even,

where k,d = 7v/(N + 1) withv = 1,2, ..., N. Accordingly,
Jr and T’y in Eq. (5) do not have analytically expressions,
but are well approximated by the expressions for an infinite
chain whenever N >> 1. In the following, unless otherwise
specified, we will always refer to the case of finite chains with
open boundary conditions, as this is the most relevant case for
the experimental realization of atomic waveguide QED. For
d < Ao/2, there exist single-excitation eigenstates of Hepain
with a quasimomentum k > ko lying outside the light cone
of free-space electromagnetic modes. These collective states,
which are intuitively understood as excitations propagating
along the array, have been shown to decay at a rate ~I'g/N?
due to scattering of the field through the ends of the array
[31,49], and are referred to as the collective subradiant modes
of the atomic array.

&, () =

The second term in Eq. (3), which includes the impurity
atoms and interactions among them, reads

Himp = wompzc &+ Z (gz,

Here we defined (g;; — iyij/2) = =3n oG (r;, r;), and re-
placed the Pauli matrix of the impurity atoms with bosonic
operators (65{8 — ¢;) as we restrict to the one-excitation dy-
namics [23]. According to the definition above for the Green’s
tensor, when i = j we have (g;; — iy;;/2) = —ilo/2.

The last term in Eq. (3) contains the interactions between
chain atoms and impurity atoms. Using the definitions above,
the interaction Hamiltonian between the impurity atoms and
the eigenmodes of the chain reads

A =) 8¢ b +Hee). ®)

Sw)ee 0

Expanding Eq. (2) in spherical coordinates, the coupling of
a single-impurity atom at position r; to a chain mode with
quasimomentum k reads (see Appendix A)

. . i . i, ;
o= (g —3%) = &l - 5lv
where & (z;) is given in Eq. (6) and

) ©

|| — 517l
Lo
31
=2 Z[l — k(K THSV (kohy/ 1T — k(K )?). (10)
meZ
Here, k,,(k) = (k/ko + mAg/d), and H(gl) is the Hankel func-

tion of the first kind and zeroth order. Note that for k > kg,
Eq. (10) is purely real, which means that the coupling of
an impurity to those Bloch modes is coherent. The coupling
Eq. (10) between a single impurity and a mode k in the array
is plotted in Fig. 1(b). For the case of an infinite array, the
coupling can be obtained from Eq. (10) after the substitution
£(zi) > e //N.

Since achieving small d is increasingly challenging exper-
imentally, we consider here the case of d = Ay/4. For this
parameter choice, the free-space decay of the most superra-
diant state, I'y—o, is comparable to the width of the band J; in
Eq. (5). The dynamics of an emitter with energy lying within
the band of the array is thus dominated by the dissipative
resonant interaction with the array’s superradiant modes. We
overcome this problem using as impurity, instead of single
atomic emitters, the collective excitation of two neighboring
atoms, which we name an atomic dimer.

A. Atomic dimers

We consider a dimer to be formed by two neighbor-
ing impurity atoms at positions 7; = (h,0,z)7 and riy; =
(h, 0, zix1)T. For convenience, we label the two atoms form-
ing a dimer “a” and “b” with positions r¢ = r; and r? = r;yq,
respectively. We represent the collectlve single ex01tat10n of
an atomic dimer by the bosonic operator

1 ; N
&;;\:E(éfﬂ-"‘)\.éfﬂ), (11)
and its Hermitian conjugate, where c“T = c and ¢ c Ll

For A =—-1 (A=1), Eq. (11) creates an antlsymmetrlc
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(symmetric) excitation which predominantly couples to the
subradiant (superradiant) array modes exploiting their short-
wavelength (long-wavelength) nature. The coupling to the
chain modes of the states of a dimer centered at p; = Z - (r{ +
rf-’ )/2, with atoms aligned to the array atoms as depicted in
Fig. 1(a), writes (see Appendix A)

|| - 2|V"\| 3 sm(g), ifa=—1
T T 4424 |cos (%), ifa=1

X Y [ = sk 1H; (kohy/ T — 6 (K)?),

meZ

12)

and (gt — 27/kk) = &} (p)(I18¢] — 1y*1). This expression is
similar to Eq. (10) with an additional factor of V2 and a
quarter-sine-wave envelope. The antisymmetric configuration
(A = —1) eliminates the undesired dissipative coupling at
small k due to a destructive interference of the interaction of
each atom with the chain modes, as can be seen in Fig. 1(b). In
the case of the dimer, coupling to half of the modes becomes
zero at the center of the chain due to the particular symmetry
of the collective dimer states, as indicated in Eq. (A6) and
Eq. (A7). Unless otherwise specified, we set h = d.

The dimer states in Eq. (11) are the eigenstates of Eq. (1)
with two atoms. Their eigenvalues are E; — i, = (a)’mp +

Agab) — Z(Fo + Ayap), with
8ab 3 )
1"_ = Zk% 3 [cos(korap) + korap Sin(korap)],
0 o"ab
Yo

=03 5 lkorap cos(korap) — sin(korap)l, — (13)
To ko ab
for a separation r,;, between the two atoms. For r,, < X¢/2, as
is the case for subwavelength arrays in one dimension, the an-
tisymmetric dimer state has a reduced linewidth as compared
to the single atom. In particular, for d = X /4, the decay rate
[o— >~ I'y/4. We have considered alternative setups, such as
a2 x 2 quadrupole in an antisymmetric configuration, but the
reduction of free-space decay is hindered by the reduction of
its effective coupling to the chain modes (see Appendix A 1).
We have also investigated the case in which the dimer atoms
are separated by a smaller distance, for which we predict only
a small improvement in performance (see Appendix A 2).

When the emitter’s resonance energy is resonant with the
subradiant part of the band, or it lies outside of the band, it
is possible to adiabatically eliminate both the chain’s super-
radiant part as well as the symmetric state of the dimer. The
dynamics of the system can thus be modeled as an effective
two-level system—formed by the dimer’s ground and anti-
symmetric states—coupled coherently to a set of subradiant
modes (see Appendix B). In the rest of the text we often refer
to the resulting effective two-level system simply as a dimer.
Note that the expressions Eq. (12) and Eq. (13) are derived
here for the case of a single dimer coupled to the array. The
same derivation applies to the case of multiple dimers if these
are sufficiently distant, such that the interaction in Eq. (7)
between atoms belonging to different dimers is negligible.

Despite the reduced effective two-level system decay rate
['o—, the dimer’s linewidth is comparable to the bandwidth

(BW) of the array for d = Ay/4, leading to strong non-
Markovian effects. To enter the Markovian regime, we can
further reduce the dimer’s linewidth using a Raman scheme
as depicted in Fig. 1(c), and as we now describe.

B. Raman transition

In the Raman scheme, the dimer atoms are initialized in
additional metastable levels |g‘i’b), and driven into the ex-
cited state of the dipole transition included in Eq. (1), |¢') =
6;'5, |g5), by a laser with Rabi frequency €, as illustrated in
Fig. 1(c). The driving frequency, wg, is detuned with respect
to the energy difference between the two states by A. The
dimer atoms are excited without affecting the chain atoms by
placing the chain on a node of the laser field. To describe the
dynamics of the system including the Raman transition on the
dimer atoms, we use the Hamiltonian in Eq. (3) and include
the energy of the levels | g‘f’b), and the interaction terms due to
the driving laser, %(|g‘f) (e*] e’r' + H.c.). To remove the time
dependence of the new interaction term, we move to a frame
rotating with wg, yielding

Hy=H+) (0p” — A) |g5){g]]

Q
+52a:(]g°{)(e°‘| +He). (14)

We use the evolution under the Hamiltonian in Eq. (14), with
H being the real-space expression of Eq. (3), for all numerical
results presented in this paper, which we use to benchmark the
predictions obtained with analytical derivations and additional
approximations.

For A, To > S, 8ab» Yabs & ¥/, the states |e“?) remain
weakly populated at all times, which we eliminate to second
order in perturbation theory (see Appendix C). The resulting
dynamics can be approximated by an effective Hamiltonian
that includes effective two-level impurity atoms |g7)-|g5). For
this, we define new creation operators for the dimer states,
al =@+ 22?2, with &7 |g%) = |gi). We can fur-
ther simplify the resulting Hamiltonian by eliminating the
dimer symmetric state and the superradiant modes of the
array. Using A > I'y, the effective coupling between chain
and dimer becomes coherent. Although we derive the effective
Hamiltonian considering one dimer, the extension to mul-
tiple dimers in the case in which their interaction through
free space is negligible is straightforward. Hence, for A >
Lo > 2, gab Vabs &, v{ and distant dimers, we observe the
dynamics of Eq. (14) to be well approximated by the effective
Hamiltonian

Hee = Z( E)mp - EFO )Aiifl;_

L

+ ) & (o b+ He.)
i,k>ko

i\
+ 2 (%= 3T )i, (15)

k>k0
with o™ = o™ — A — Q2/(4A), T} = Q2/(4A%)T,_,

and g, = Q/(2A)|g; |- Note that g’k2 /T4_ is independent of
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FIG. 2. Emitters in the band. (a) Population dynamics for a dimer antisymmetric state resonant with kd /7 = 0.956. The dimer is aligned
with the center of the chain. The dimer line represents the antisymmetric state of the dimer, and the chain integrates the population of all chain
modes. The population of all other states is negligible. The loss of total population is due to the dimer’s free-space decay. The unshaded region
corresponds to the Markovian regime, in which the population is predicted by Fermi’s golden rule (FGR). The shaded region corresponds to
the non-Markovian regime. (b) Purcell enhancement extracted from the population dynamics. I'p is obtained by fitting an exponential decay to
the corresponding region of the dimer’s population evolution, and ', which includes all sources of decay, by fitting the evolution of the total
population in the one-excitation subspace. The solid lines show the prediction using FGR. Note the difference in performance between using
a dimer or an atom. (b) and (c) The black arrow indicates the quasimomentum of the chain mode with which the dimer in (a) is at resonance.
The deviation of the points at higher k from the predictions is due to the non-Markovian dynamics close to the band edge. (c) Time until the
dynamics enter the shaded region in (a), measured from the numerical evolution as the time at which the population at the dimer differs from
the Markovian prediction by 6%. The solid line shows the prediction using the length of the chain and the group velocity at k to calculate the
time at which the excitation in the corresponding guided mode reaches the dimer after being reflected at the ends of the chain. (d) Dispersion
relation of the chain. The shaded regions indicate the energies for which the emission rate of a symmetric state of n = 3 dimers into the chain
shows nI"ip superradiance for dimer-dimer separations of L = 5,7, 9, and 11d. Since the possible spacing between the impurities in our setup
is a multiple of the array spacing, d, only a discrete set of energies give rise to such superradiance. The dashed lines indicate the predicted
energy at which superradiance is observed, which corresponds to k = 7w (L — d)/(Ld). The inset displays one of the plots used to obtain the
green shaded regions. For L = 9, it shows the ratio between the decay rate into the chain modes extracted from the numerical evolution with
n = 3 and the expected decay rate of a single dimer into the chain modes using FGR. Parameters for all the plots are N = 500, d = A¢/4,
A= SF(), and Q2 = 02[‘0

Q and A as long as A > o> Q, gub, Vabs &4, ¥¢ 18 ful-
filled. Obtaining smaller I'),_, however, makes the Markovian
regime accessible, since I',_ /BW ~ (Q/ A)?, while g, can be
modified with other system parameters, such as tuning the
resonance energy of the emitter with respect to the band, as
we discuss in Sec. III.

In conventional waveguide QED, different physics arises
when the emitter energy is inside the band of guided modes
compared to when it lies in the band gap. In the following, we
consider these two regimes separately in the context of atomic
dimers coupled to an atomic waveguide. For simplicity, except
when the finiteness of the chain is explicitly relevant, we use
the infinite array form of & (p;).

III. EMITTERS IN THE BAND

A. Markovian regime

When the resonance energy of a dimer lies within the sub-
radiant region of the chain’s band, there is a coherent transfer
of population between the dimer and the guided modes of
the chain. In the Markovian regime [see the white region in
Fig. 2(a)], the transfer of population can be modeled as a plane
wave emitted into the resonant chain mode %,

N i . i
= ik(pi—pp g/t ot _
H;, = 2F1D [Xj:e a;_a;_ 2F0— Xl:

AlT A
ata

i—"i—

(16)

where I'jp is the effective decay rate of the dimer excitation
into the chain. A large Purcell factor P = I'ip/I';_ corre-
sponds to the desired regime of predominant decay of the
emitters into the chain modes. The decay rate I'jp obtained
from numerical simulations agrees with the prediction using
Fermi’s golden rule (FGR),

&

I'egr = 2Nd .
FGR A

a7)

In Fig. 2(b), we plot P as a function of k as extracted from the
numerical evolution, and compare it to the prediction using
FGR. We compare the case of a dimer and of a single atom,
showing that the former allows for a substantial improvement
in P with respect to the latter. The coupling g increases with
k, while 9;J; decreases and becomes zero at the band edge.
Hence, larger k are favorable and lead to a divergence in
the I'ip predicted by Eq. (17). The Markovian assumption,
however, breaks down at large I'jp before reaching such di-
vergence, as observed from the deviation between the model
and the numerical results in Figs. 2(b) and 2(c). The value of
P at a certain k depends on the parameters d and A, but not
on 2 or A. The value of k at which the Markovian approx-
imation breaks down, however, depends on d, &, and also on
Q/A: smaller /A reduces both the coupling strength and the
linewidth of the dimer. Hence, the evolution stays Markovian
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at higher k, for which P is larger. This improvement in P is
achieved at the cost of slower dynamics.

The presence of a 1D bath allows for different dimers along
the chain to have a finite probability to interact with the photon
emitted by the originally excited dimer. Such interaction leads
to a constructive interference if n dimers are prepared in a

symmetric state 8¥™ " = 1= 3" 4T and placed in an atomic

n i=1"i—
mirror configuration: |p; — p;lk = 2mg, with g € Z. In this
state, the decay rate is enhanced by I'})" = nI"jp, while emis-
sion into free space is unaltered. This type of superradiance
is also observed in conventional waveguide QED [14]. In
Fig. 2(d), we show this feature with three dimers. Specifically,
we plot the band J; and indicate which energies correspond
to values of k that satisfy the atomic mirror condition. The
shaded regions indicate the resonance energy of the dimers
for which we observe a decay rate into the chain a factor of
three larger than the FGR prediction, Eq. (17). We extract
these regions from plots like the one that we show as an inset,
in which we obtain I'jp as a function of k. This collective
emission can be exploited to achieve larger I'jp /T,_.

B. Non-Markovian regime

The breakdown of the Markovian regime due to the diverg-
ing density of states at the edge of the band discussed before is
also observable in waveguide QED setups [50,51]. In our sys-
tem, we observe another type of non-Markovianity due to the
finite chain length. Note that the results discussed above are
independent of the number of chain atoms, N, except that the
decay rate 'y of the subradiant chain modes is slightly larger
for smaller N. However, the length of the chain determines the
time for which the dynamics stays Markovian [see the shaded
region in Figs. 2(a) and 2(c)]. For a dimer aligned with the
center of the chain, the outgoing plane waves return to the
dimer after a characteristic timescale T = Nd /vy = Nd /0 J;,
where v, is the mode’s group velocity, due to reflection at the
ends of the chain. We understand these non-Markovian effects
as the retarded back-action via the reflected electric field of the
emitter. Mathematically, these non-Markovian effects origi-
nate from the discrete spectrum of the atomic waveguide [52],
as the dynamics of the emitter at long times is able to resolve
the energy difference between two chain modes.

The evolution of the chain and dimer population in the
non-Markovian regime is highly dependent on the resonance
energy of the dimer, which makes the system highly tunable.
We can distinguish two particular cases: (i) when the dimer is
resonant with an antisymmetric chain mode and (ii) when its
energy is resonant with a symmetric chain mode. The phase
of the reflected wave at the dimer’s position differs by a factor
of 7t in the two cases. In the first case, the reflected wave is
in phase with the dimer and leads to an enhanced emission
[note the kink in Fig. 2(a)]. In the second case, the reflected
wave accumulates a difference in dynamical phase. Since the
coupling rate of the dimer with a symmetric mode, ¥, at the
center of the chain is zero, the dimer energy effectively lies
between two antisymmetric modes. For large N, the energy
difference with the two modes is approximately equal, AE =~
|Jkyy — Jiy |, and © = 7w /|Ji,,, — Ji, |, accumulating a phase
difference ¢ = AE v >~ . The reflected wave is, thus, out
of phase and leads to an increase of population in the dimer

(see Fig. 6). The interaction with the reflected field can also
be understood as the dimer interacting with its mirror image
[53,54], in which the non-Markovian effects are a form of
retarded Dicke super- or subradiance, with the emitters having
(i) parallel or (ii) opposite polarization, respectively [21]. The
slow propagation of the guided modes, especially close to the
band edge, enhances the retardation effects responsible of the
non-Markovian behavior.

IV. EMITTERS IN THE BAND GAP

If the dimer state resonance energy is located at the band
gap and the detuning with the band edge, § = wy™ — Jx, is
much larger than the coupling strength to the corresponding
chain modes, g-, the emission into the chain is blocked.

However, an ato?n-photon bound state with an exponentially
decaying tail is formed [15]. The width of the tail scales as
1/+/8 and, for sufficiently small 8, an overlap between distant
atoms can be obtained [17,18]. Adiabatically eliminating the
chain modes in Eq. (15), we obtain the following expression
for the effective long-range coupling between distant dimers
(see Appendix E):

2
HLR _ gk
eff — imp’

— Mgt o (18)
ik @ —Jt 5Tk

For small 8, the major contributions to the sum over k above
are concentrated around the band edge. We thus approximate
the band at the edge of the Brillouin zone as Jz(_y) = Jz —
Aqgx*, and g ~ glg’ since g varies slowly close to k = 7w /d
[see Fig. 1(b)]. Likewise, the decay rate of the most subradiant
modes can be approximated by I'z_y) = yy x? [31], with
yn/To = 1/N. For subwavelength arrays, yy/Aqs < 1/N. For
compactness, we use Ay = Ay + %yN. With these approxima-
tions and in the continuum limit, = — 5§¢ [ dk, we obtain
a closed form for the effective coupling between two dimers
mediated by the guided modes of the array,

LR
Heff -

iJ

gle]ff e:g(pf—p,‘)&l’i&/ji’ 19)

with
.. Nm g/ 12
8ot = -
T 2JAs
where we identify the length scale of the interactions dis-

cussed above, [ = V/Ag /8. These expressions are valid as long
as 8 > g, such that elimination of the chain modes is justi-

e—%\ﬂi—p/\/l, (20)

fied. For a sufficiently large giejff in relation to the free-space
decay, Eq. (19) predicts Rabi oscillations between the two
dimers with a fidelity dictated by the ratio g'gff /T¢_. This ratio
does not depend on the Raman transition parameters A and
Q. However, a small €2/A allows one to reduce g;jff and, thus,
one can still fulfill § > g’e]ﬁ with a smaller detuning §. Fixing
€= gi’& /8, we can rewrite Eq. (20) as

2/3

.. 2
ij 1/3 2/3( Nm |g%
geff _ € (A) gz e—%‘pi_pj‘/l' (21)

Co.  To-\Q N/
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Note that, as expected from the continuum limit, Eq. (21) is
independent of N, since [g. |~ 1 /~/N, with the exception
of small corrections due to a finite I'y(N), that vanishes at
large N. The dependency on A/ indicates that the effective
coupling can be made arbitrarily large at the expense of slower
dynamics. We consider a system of two dimers separated by a
distance L. Initializing the system with the excitation in one of
the dimers, the chain mediates Rabi oscillations between the
two otherwise noninteracting dimers, as shown in Fig. 3(a)
for a distance L = 14d. We aim at maximizing the fidelity
of preparing the first dimer again in the excited state after a
single Rabi cycle. The total error of the protocol, defined as
the population lost to free space after one full cycle, comes
from (i) the free-space decay rate I';_ of the dimers and (ii)
the finite linewidth 'y of the guided modes. There is also
a small dephasing contribution in the exponential envelope,
which we neglect in our discussion. We measure the error
from the numerical evolution as one minus the first relative
maximum of population at the initial dimer. Another source
to the measured error is (iii) the transfer of population to
the chain modes. When I'j_ < Re[g'gﬁ], the first contribution
is approximated as 7I")_ / Re[g\;;] ~ €1/, which is min-
imized for large values of €. The third contribution, instead,
grows with €, as the maximum population transferred to the
chain during the dynamics can be shown to be upper bound
by a function proportional to € (see Appendix E 1). The sec-
ond contribution to the error is independent of €, and has a
value yy/(2A4) ~ 1/N, which sets a lower bound to the error
independent of the ratio 2/A.

In Fig. 3(b), we plot the error for dimers interacting with
chains of different lengths. We compare the numerical re-
sults with the predictions by Eq. (18) and Eq. (19), which
both include the first and second sources of error described
above. We discuss four scenarios labeled (1)-(4) in Fig. 3(b).
Case (1) corresponds to the regime & > g, for which the
only relevant source of error is I'j_. Case (2) corresponds
to the regime § ~ g, in which a smaller error is obtained
at the expense of an exchange of population with the chain
modes. Case (3) shows that placing the dimer closer to the
chain as compared to the lattice spacing d reduces the error
thanks to the larger effective coupling rate g’% /T(_ [40]. The

improvement is remarkable already at small N. Because of the
discrete nature of the modes, the prediction in the continuum
limit, Eq. (19), leads to an overestimation of the resonance
frequency of the modes near the band edge (see Appendix E 2)
and, hence, to the disagreement with the case of a finite chain,
especially at smaller N. A larger effective coupling between
distant dimers can, thus, be obtained by taking § < 0, while
staying off-resonant with the chain modes. For this, we define
a new detuning between the dimer and the highest-energy
array mode, 8, = w,"" — Ji, > 0. The condition 8, > g\,
can again be made arbitrarily small by tuning €2/A. For small
8>, however, I'; also becomes a dominant source of error.
Minimizing the error for the simplified model including only
the interaction with the highest-energy chain mode, we obtain
an optimal &, (see Appendix E 3), for which we predict an
error that scales as 1/N, as in case (4) in Fig. 3(b). The
error deviates from the prediction at larger N, as the energy

(a) —— 1st dimer = 2nd dimer chain
1.0 A
e—I‘é_t
0.8 1
C
S 0.61
©
=
8 0.4+
o
0.2 1
0.0 A
0.0 0.2 0.4 0.6 0.8 1.0
time (units of T}™1)
(b)
e=2x10"3 h=d
0121 1 Oe=10"  h=d
A optimal dy, h=d
2\ (D) v e=2x10"3 h=0.5d
0.08 -
S
@
0.04 -
0.00

FIG. 3. Emitters outside the band. (a) Population dynamics for
two dimers with a separation L = 14d, and a detuning with the band
edge § = e_lgie’;f, with € =2 x 1073. N = 100. The dimer lines rep-
resent the antisymmetric state of the dimers, and the chain integrates
the population of all chain modes. The population of the rest of the
states is negligible. The dashed line indicates the dimer’s free-space
decay. (b) Error defined as the population loss in the initial dimer
after one full Rabi cycle, i.e., one minus the first relative maximum
of the “Ist dimer” in (a). The black arrow indicates the point ex-
tracted from (a). The markers represent the values extracted from
the numerical evolution of the full system initialized at one of the
dimers’ antisymmetric state, while the lines correspond to analytical
predictions for the markers with the same color. The solid lines are
computed with Eq. (18), the dashed lines represent the continuum
limit, Eq. (19), and the dash-dotted line corresponds to Eq. (E15) for
an optimal §, given by Eq. (E14). Parameters for all the plots are
d = X /4, A =200T, and Q2 = 0.03T.

spacing between chain modes is reduced with N and, thus, the
contribution of further chain modes becomes non-negligible,
for which one should go back to use Eq. (18). Note that,
although barely captured in the plots, the population in the
chain modes becomes non-negligible for smaller §/g%;, as in
cases (2) and (4) with larger N.
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V. PHYSICAL FEASIBILITY

Throughout this paper, we have assumed a lattice spacing
of d = 0.254¢. Our methods apply equally well to smaller
interatomic separations. They also offer a substantial improve-
ment at larger separations (d < 0.5A¢). The suppression of the
coupling of the dimer’s antisymmetric state to the superradiant
modes of the chain might be only partial at larger d, resulting
in increased decay rates. Nevertheless, the features of interest
discussed in this paper are still recovered, as we show for
d = 0.4 in Appendix F. At any rate, creating lattices with
d < 0.5M is currently an experimental challenge and, in this
section, we briefly discuss some of the issues and potential
solutions.

To create an atomic array with a subwavelength lattice
spacing, there are some proposals that exploit the fact that
one can use one transition to trap atoms in an optical lattice,
and another—Iless energetic—transition as the main dipole
transition. A scheme for alkaline-earth atoms has been pro-
posed [55]. In this scheme, a trapping laser with wavelength
Aopt ~ 400 nm is used to trap atoms which are then ex-
cited on a dipole transition with characteristic wavelength
Ao ~ 2.6 um, thus achieving in principle a ratio d /1y ~ 0.08
(where d = Aoy /2). While this proves the possibility of re-
alizing highly subwavelength lattices in the future, a less
demanding interatomic separation of order 1y/4 might be
already within reach, as in [56], where the experimental real-
ization of a A¢/4 stroboscopic optical lattice has been recently
demonstrated.

An emitter-chain separation smaller than the inter-
atomic spacing of the chain could be achieved by engi-
neering the trapping potential using optical superlattices
[57-61]. This is experimentally more challenging, but
leads to large improvements in the fidelity as shown in
Fig. 3.

Coupling light to the subradiant modes of the array is
also a challenge itself. There are different proposals using,
for instance, phase-imprinting techniques (proposed in [62]
and realized in [63]), or exciting a multiphoton transition
[64]. In our setup, we study the case in which the impurity
atoms are excited, and these couple to the subradiant modes.
We propose to excite the dimer atoms without affecting the
chain atoms by placing the chain on a node of the laser field.
Optionally, the Raman laser could be used to shift the transi-
tion frequency to outside the chain bandwidth, which allows
for frequency-selective coupling. Driving the antisymmetric
excitation of the dimer, however, might also be challenging
due to its reduced coupling to light. Similar techniques to
the ones mentioned above to excite the subradiant modes of
the array could be used on the antisymmetric state of the
dimer.

Finally, the atomic chain may have imperfections in its
preparation. Although we have not studied the effect of va-
cancies in the chain, we expect this to be a problem, as they
create defects that scatter the photon propagating in the array.
This issue is discussed in the Supplemental Material of [33].
One could consider repeating the preparation of the array until
a perfect array is created.

VI. OUTLOOK

In this work, we have proposed a setup to achieve a co-
herent and Markovian interaction between an emitter and the
subradiant modes of an atomic chain, a system which mirrors
conventional waveguide QED of atoms coupled to waveg-
uides. Our proposal is based on two main ingredients: (i) the
use of ground and antisymmetric dimer states as an effective
two-level system and (ii) the use of a Raman transition to
control the linewidth of the dimer. The first method exploits
the particular symmetry of the dimer state to improve the
coherent coupling to the chain’s guided modes by decoupling
the emitter from the highly radiating modes of the chain. The
second method allows one to reduce the dimer’s linewidth
as compared to the chain’s bandwidth, thus achieving the
regime of Markovian dynamics. Accordingly, we observe sim-
ilar dynamics as in conventional waveguide QED both in the
in-band and band-gap regimes for the case of an atomic chain
with interatomic separation of a quarter wavelength. Along
with the well-known Markovian dynamics, we also observe
non-Markovian effects due to the finiteness of the chain and
retardation effects introduced by the slow group velocity at
the band edge.

Another approach to suppress the coupling of the emitter
to the superradiant modes of the chain consists of positioning
the emitter at “magic points” [40]. It could be interesting to
combine this idea with the methods used in this paper to yet
further improve the optical depth of the system. The reflection
of the excitations at the ends of the atomic waveguide gives
rise to non-Markovian effects, as discussed in Sec. III B. To
increase the time during which the dynamics stays Markovian,
it could be interesting to study ways of engineering the ends
of the chain to encourage emission, as in [31]. While in this
work we focused on a simple linear geometry for both the
chain and the dimers, in analogy to the conventional setup of
atoms coupled to a waveguide, several generalizations could
be considered. In particular, since in the band-gap regime of
emitter-chain coupling the fidelity is ultimately limited by the
intrinsic decay of the chain’s dark modes, we could consider
emitters coupled to an atomic ring—the atomic equivalent of a
ring resonator—where subradiant modes are expected to have
an exponential suppression of the decay rate as ~I"g exp(—N)
[31,65]. Furthermore, it would be interesting to exploit the
dimer interference to reduce the coupling to the array’s bright
modes also in 2D and 3D lattices. In higher-dimensional lat-
tices, the use of dimers (or the corresponding generalization)
could be be particularly advantageous due to the scaling with
the array’s size of the superradiant modes’ linewidth [23].
Finally, while we only considered d = A(/4, our methods
apply equally well to smaller interatomic separations, where
the system’s dynamics would benefit from the additional re-
duction in the decay to free space.

This work paves the way toward observing and exploit-
ing the rich phenomenology of waveguide QED in a clean,
atom-based setup. The additional non-Markovian effects due
to the finiteness of the array are difficult to observe in stan-
dard waveguide QED and are a distinguishing feature of this
platform.
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APPENDIX A: INTERACTION BETWEEN EMITTERS AND
CHAIN MODES

In this Appendix we outline the derivations of a closed
expression for the coupling between a single-atom emitter and
a chain mode k, as in Eq. (10), and of the extension to an
atomic dimer to obtain Eq. (12). We then go on to discuss
alternative setups.

The coupling between an impurity atom at r; and a Bloch
mode of the chain in Eq. (8) reads

gl}c B %ykl 3r —ik-r; ~zz
2k 27k — N e R GRrL ). (AD
FO \/N Zj: 0 J

We express Eq. (2) in cylindrical coordinates by using

el (@—90) ik(z—z1)
- _ dk im j i l 2%
ri—r 2 Z / ¢
m=—0oQ
x Ju(ky p)HD (ki po), (A2)

where p; > p;, and J,, and H{" are Bessel and Hankel func-
tions of the first kind, respectively. For chain atoms sitting on
the 2 axis, p; = 0 and ¢; = 0, multiplying Eq. (A2) by e~
and summing over the array atoms yields

% Z / dk/eik/(Zf*Zi)efikZ,'Hél)(klpi)

27
_ dk/ k/ k _ _lk“H(l) k ;
=i Z / ( 7 ) (kipi)
meZ
=i Y B k). (A3)
meZ
Plugging Eq. (A3) into Eq. (A1) yields Eq. (10).

For an even N, setting z = 0 at the center of the chain, r; =
djz with j = —N + %, —N + %, .., N— %, and for a dimer’s
atoms in position r = [hp + (p; £ po)Z], the coupling to the
symmetric (A = 1) and antisymmetric (A = —1) states reads

gl — v
Iy

- JWZ e Gt r) + AGE (7 r)]. (Ad)

Assuming that the dimer is located far from the edges of the
chain, we can extend the sum to infinite j without affecting its
total value. Shifting the origin to p;Z, the sum above writes

Z e * =PI [GE (po, j) + AGF (—po, J)]
jez+!

= e 37 (G (oo, e ™ + AGi (=po, —j)e* "]
jeZ+}4

— ko Z Géz(p(),j)[eiik‘rf+)\.€ik‘r"']

JEZ+}
= 2% " G (po — d /2, ))
JjeZ
sin[k(r; + %)],  ifa=-1,
x {cos [k(ry+ 2], ifa =1, (A3)
+(=)

where (—)pg and j stand for [r, — piZ] and r, respectively.
For pop =d/2, i.e., the emltters are aligned with the chain
atoms as in the text, we obtain Eq. (12). Repeating the above
treatment with the finite-chain ansatz in Eq. (6) to replace
e % we derive the following definitions in the final result

forA = —1,
/v sin(k, p;), if v odd,
£ (pi) = Nj Nl , (A6)
Ve cos(k,p;), ifveven,
and for A =1,
/ w—=cos(k,p;), ifvodd,
£ () = v (A7)

‘/N+1 sin(k, p;), if v even.

Note that, for a finite chain, the eigenstates of the array con-
sist of standing waves. In the infinite-chain limit, neighboring
even and odd modes as defined above are separated by an
infinitesimally small energy. By considering the superposition
of a pair of neighboring even and odd modes, the plane wave
result is recovered.

1. Alternative setup: A 2 x 2 quadruplet

Let us now consider a 2 x 2 plaquette of atoms and com-
pare it to the case of a dimer considered in the main text.
In general, we consider an effective two-level impurity with
levels |0) and |W ™). For the dimer, we use |0) = |gg), and
(W) = (leg) — |ge))/ V2 is the antisymmetric state of the two
atoms. For the case of a plaquette, |0) = |gggg) is the ground
state of the four plaquette atoms, and

) = |lggeg) + |ggge)) (A3)

1(leggg) — |gegs) —

is the antisymmetric state of the plaquette in both x and z
directions, where the general state of the plaquette is given by
|[vavpvevp), with v = g, e. In Fig. 4, we compute the evolution
of the system initialized in |¥ ™) in the presence of an atomic
chain for both the dimer (left panel) and plaquette (right panel)
configurations. We tune the atomic transition of the single-
impurity atoms differently for a dimer and a plaquette, such
that in both cases the collective state | W ™) has the same energy
with respect to the band of subradiant modes of the array.
Figure 4 shows that, while the 2 x 2 plaquette allows one to
attain a smaller free-space decay as compared to the dimer, it
also leads to a reduction of the coupling with the chain modes
and, thus, to a longer timescale for the transfer of population
to the chain. After normalizing the time axis of the two plots
by the timescale of the decay rate of the respective impurity
state, one can observe no qualitative difference between the
evolution of the two systems.
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FIG. 4. Dynamics of an impurity prepared in the state |¥ ™)
resonant with the chain subradiant modes for the case of a dimer
(left panel) and a 2 x 2 plaquette (right panel). The dashed line
corresponds to the free-space decay of |[W~) at a rate I'p_. The
colored lines correspond to different populations according to the
legend, where chain refers to the sum over all chain modes,
and others refers to all the eigenstates of the impurity exclud-
ing |V ™). Parameters for this plot are N = 50, d = Ay/4, and the
energy of the state |W™) is resonant with the chain mode with
k-d/m =0.95.

2. Alternative setup: po < d /2

For py < d/2, we can repeat the steps above to obtain

g | = v |

T = — 4dm Z sin [kpo + (23 — l)nn]
x [1 — Km(k)z]Hél)(koh\/ 1 — & (k)?),

(A9)

and (¢ — £y/7) = & (o)(Ig | — 1y{~ ). for the coupling
rate of the antisymmetric eigenstate of the dimer, and re-
placing the sine with a cosine for the symmetric state. From
Eq. (13), we know that y,;, can be further reduced by re-
ducing pg. Equation (A9), however, is also reduced in value
for pyp < 0.5. A plot of the ratio | g’; |2/To_ (a ratio we want
to optimize as we see in Secs. III and IV) as a function of
po shows a slow monotonic increase when moving toward
smaller pg. The values of the ratio at pg = d/2 and pg — 0
for d = Xy /4 differ by a factor of two.

APPENDIX B: EFFECTIVE MODEL FOR
DIMER-CHAIN INTERACTION

In this Appendix, we derive the effective Hamiltonian for
the interaction between the antisymmetric state of a dimer
and the subradiant modes of the chain. According to Eq. (3),
the evolution of the dimer and of the chain within the single-
excitation subspace reads

a, = —l<E,\ - —Fox)

lzgkbk,
by = —i(Jk - irk)bk —iY Za, B1)
A

2

where a; are defined in Eq. (11). Here, we stop using the hat
notation for the operators and consider a single dimer for sim-
plicity. The extension to multiple dimers is straightforward.

As we can see in Fig. 1, interference suppresses the
coupling between the antisymmetric state of the dimer and
the most dissipative modes of the chain. The same ap-
plies between the symmetric state and the subradiant modes.
For a dimer antisymmetric state energy, E_, resonant with
the subradiant array modes, Ji-t,, and d = A¢/4, the sym-
metric state energy, E,, is resonant with the superradiant
modes, Jyk,- In such case, \/Ng;ko &L |Jksky — E+| and

VN 8- o K [Jk<k, — E—|. We set the zero of energy at E_ and
define A, = (Ey — E_) and A = (Jr — E_). Under these
conditions and assuming that the system is initialized in the
dimer antisymmetric state, a_, we adiabatically eliminate the
symmetric dimer state and the superradiant modes of the chain
by assuming that they acquire a negligible population, a; =
bk, = 0, solve the corresponding equations in Eq. (B1), and
substitute the resulting expressions for a, and by, in the
expressions for a_ and by.x,. We obtain effective equations
of motion of the form of Eq. (B1) including only the antisym-
metric dimer state and the subradiant modes of the chain by
doing the substitutions

B*
E_— — _(1 + ; ),
Ay —A* — iTg,
~+*
k>k0
Jisky = Disky — gl
—A* — F(H' k' >ko
o o B .
8ksky = Sksky T A, —At — % o 8k>ky? (B2)
with
A =hx S =t
A,xzz gigi , _Z gkgk (B3)
Ap — imy
k<ko 2 k<ko
where 2" = (&;* — 2v*) = E1*(Ig;] — %|J/k'\|)~

These corrections are negligible at the edge of the chain’s
band, as verified numerically by comparing the evolution un-
der the full Hamiltonian and the effective Hamiltonian derived
in this Appendix. This is true because the coupling rate of the
dimer antisymmetric state with the most superradiant chain
modes around k = 0, with which the dimer is resonant due
to their large linewidth, is close to zero. Since the edge of
the band is our region of interest, we can hence model the
system with a two-level impurity consisting of the ground and
antisymmetric state of the dimer interacting coherently with
the guided (k > ko) modes of the array. For lower impurity
energies closer to Ji,, the dimer becomes resonant with addi-
tional, less broad superradiant modes with which the coupling
is nonzero (see Fig. 2). In this case, Eq. (B2) introduces
finite corrections to the effective dynamics. This additional
coupling to superradiant channels is further suppressed after
we introduce a Raman transition in the dimer atoms due to
the reduction of the dimer states’ linewidth, as we see in
Appendix C.

APPENDIX C: EFFECTIVE HAMILTONIAN WITH A
RAMAN TRANSITION

In this Appendix, we extend the effective description
developed in Appendix B to the case of impurity atoms driven
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on a Raman transition (see Sec. II B). We start from Eq. (14)

and separate it into a bare, Hy, and an interacting, V, part as
Hy = Hy+V, (€l

with
A= 3 (= 570 ) )
SIEEED> (Jk - Erk)zs b

+ Z imp
(€2

+ (8a le*) (g3] ® |85) (eI + Hoc),

and for impurity atoms at position (4, 0, z;)7

@
V=22 (s +He) + 3 (@ e

o ko

) (g3 by + H.c.),

(C3)

where we use the definition of g; in Appendix B.

J

~A*g¢}()>

We shift the energy by A — w™, such that the excited
states |e“) evolve fast, and define the projectors

P=(lgD (gl ® |&5)(eh] + |&5) (5] ® |&h){gh]) ©10) (O]

+ g5 (5] ® |5) (] ® D 1) (Ll (C4)
k
and
0=1-P
= (le”) (eI ® |g5) (5] + | 43) (5] ® Ie”) (") ® 10) (Ol .
(C5)

where l;,t |0) = [1x). We then calculate PV(QI—?OQ)’IVFA’ and
use that, for A, I'o > 2, ga, Yab, &> V4> and to second order
in perturbation [66,67],
Her = P(Hy + V)P — PV(OH,0)"'VP. (C6)
The resulting effective Hamiltonian in the dimer eigenstate
basis and after undoing the previous energy shift reads

N i '
Hap = (J———F)Sr— k
z[k S e

kk'

NN}

Q2 (A+Aga) + 5o+ hva) ]
4 (A + )\gab)z + %(FO + )\yab)z

In the regime A > I'o > 2, gub, Vabs &4 ¥, the dimer en-
ergy and the dimer-chain coupling can be approximated as in
Eq. (15). For the dimer energy resonant with the subradiant
region of the chain’s band, we can eliminate the symmetric
dimer state and the superradiant chain modes in the same way
as in Appendix B. Note that with the Raman transition, the
symmetric state is also resonant with the subradiant modes.
Nevertheless, its coupling is smaller and its linewidth larger
than the one of the antisymmetric state, and we verify that it
can be safely neglected when studying the dynamics of the
latter. In contrast to Appendix B, the reduced dimer linewidth
due to the Raman transition maintains the correction due to
the superradiant chain modes small at energies close to Ji,.
The additional ~g§ term in Eq. (C7) introduces small shifts
in the energy of the chain modes. We account for them by
correcting the k axes in Fig. 2 with the momentum extracted
from the chain mode being excited, which might not coincide
exactly with the k expected from J;. In Fig. 5, we compare
the evolution of a dimer antisymmetric state resonant with
the band of subradiant chain modes computed with both the
full Hamiltonian in Eq. (14) and the effective Hamiltonian in
Eq. (15), and verify that the approximations discussed here
are reasonable.

APPENDIX D: NON-MARKOVIAN DYNAMICS DUE TO
RETARDATION AND THE FINITENESS OF THE ARRAY
FOR A DIMER RESONANT WITH A
SYMMETRIC ARRAY MODE

In this Appendix, we show the non-Markovian dynamics
of a dimer relaxing into an atomic chain when the dimer

Aandp, —

bt imp
Wb+ [
5(To+ )»)/ab)] Z

Q/2

> ()
Ak (A+ )"gah) -

l; + H.c.
(Fo+xyab>( ‘ )

(

is resonant with a symmetric array modes. At long times,
comparable to one over the energy difference between the dis-
crete guided modes of the array, we observe non-Markovian
effects in the dynamics of a dimer with energy inside the
chain’s band. We understand these effects as the retarded
back-action via the electric field of the emitter, which is

1.0 1

population

full
effective

0.0 1

0.0 0.1 0.2 0.3 0.4
time (units of T}™!)

FIG. 5. Population dynamics for a dimer antisymmetric state
resonant with k- d/m = 0.945 for N =500, d = Ao/4, A = 81,
and Q = 0.2I". The dimer (top) line represents the antisymmetric
state of the dimer, and the chain (bottom) integrates the population
of all chain modes. The population of all other states is negligible.
The loss of total population is due to the dimer’s free-space decay.
The solid lines are computed with the full-system Hamiltonian,
Eq. (14), and the dotted lines with the effective Hamiltonian in
Eq. (15).
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1.01

population

oof’” - TTT--==
00 05 10 15 20 25 30
time (units of T

FIG. 6. Population dynamics for a dimer antisymmetric state res-
onant with k - d/m = 0.922 for N = 500, d = A¢/4, A =8Iy, and
© = 0.2Iy. The dimer is aligned with the center of the chain. The
dimer line represents the antisymmetric state of the dimer, and the
chain line integrates the population of all chain modes. The popula-
tion of all other states is negligible. The loss of total population is due
to the dimer’s free-space decay. The white region corresponds to the
Markovian regime, in which the population is predicted by Fermi’s
golden rule. The shaded region corresponds to the non-Markovian
regime.

reflected back at the ends of the chain. For a dimer aligned
with the center of the chain, and with its antisymmetric state
energy resonant with a chain mode with even symmetry, such
as k-d/m = 0.922 in Fig. 6, the coupling rate to that mode
is zero. Therefore, the dimer’s energy effectively lies between
k-d/m =0.920 and k - d/m = 0.924. The reflected wave is,
thus, out of phase with the dimer, as discussed in the text, and
leads to an increase of the dimer’s population, as we see when
the evolution enters the shaded area in Fig. 6.

APPENDIX E: EFFECTIVE DIMER-DIMER LONG-RANGE
INTERACTION IN THE BAND GAP

In this Appendix, we provide additional detail to the case
of a multiple dimers interacting with an atomic chain when the
dimers’ energy lies within the chain’s band gap. In particular,
we derive the effective model for the dimer-chain evolution in
this regime, we explain the origin of the discrepancy between
the case of finite and infinitely long chain, and we derive the
optimal error’s scaling for the excitation swapping between
dimers mediated by the chain.

The evolution of the operators a;_
tonian in Eq. (15) is

and by, under the Hamil-

d_(1) = —z(wg“*’ - —FO )

Zg e*Pi by,

be(t) = —i(Jk _ %Fk)bk —iY gt g (ED

Moving to a rotating frame, a; (t) =a;_(¢) €@ and

b(t) = by(t) €', solving for by(t), and substituting into the

equation for ﬁ;_ (t), we obtain an effective equation for the
dimer’s population,

Iy
L= - —-a

12 ik(pj—pi)
i—_IE 8k !

/ Gl - (JréFk)]U*f’)a;_(z’) dt'. (E2)

0

We assume that, after summing over momenta, the time inte-
gral only contributes for a small correlation time t. (Markov
approximation). Since g is approximately constant close to
the band edge, the region that is closest in resonance with
the dimers, t. is short. Assuming that the dimer operator
evolves over timescales much longer than 7., we approximate
a;j ) ~ ~” '(t). Fort > 1, and ), — Jr/a > 0, the equation
for the evolutlon of the dimer populatlon reads

d_(t) = —z(wgnp _ %F{F)a;f(t)

—i)
imp’

k.j @o

2

eik(p-"fp")a;_(t), (E3)
(Jk = 5T%)

from which we can infer the effective dimer-dimer interaction
in Eq. (18).

The biggest contributions to g come from the k near the
band edge. To obtain a closed form of the effective coupling
between dimers through the guided modes of the chain, we
approximate g >~ g’% , and do a quadratic band approximation
of J; around the band edge. Expanding the analytical form
of the dispersion relation for an infinite chain [31] around k =
7 /d and truncating to second order, we obtain Jz () ~ Jz —
Ay x%, with

2
Iﬁ:l ln 2COS M +@tan M s
Lo 2kid> 2 2 2
(E4)

for d < Xo/2. For d = Ao/4, Ayg/To = 4 3. Defining pu €
[1, N1, such that the discrete k,, = %(1 N+1 ), the decay rate
of the most subradiant modes scales as I';, >~ v /N? [31].
Thus, F%(l,x) ~ yyx2, and in the continuous band approxi-
mation,

Z g etk(p, Pj)
= o™ — ]+ Ty
Ng’%2 o % (pi—p)(1—x)
~ dx , (ES)
28 Jo1 1++ (Ad + 2)/1\/)

where § = a):)mp/ — Jz. For § < Ay, the integration limits can
be extended to infinity without affecting the solution. We
introduce n by substituting (1 — x) with (n — x). Using the
convolution theorem (f * g)(n) = F~{F(f) - F(g)}, and the
results of the Fourier transform F(e**?*)(v) = §(kp — v), and
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F((A+A) DY) = —'”'/f , Eq. (E5) becomes

. 2
Z < 2 pik(pi=p;) N ]ﬂg/i S |
k a)gmp —h+AT 2 8 VAt sw

oo
ivn z L
x/; dve S(d(p,

pj) — V)
> e—‘V|\/5/(Ad+%VN)’ (E6)

and Eq. (19) and Eq. (20) follow trivially. Note that the expo-
nential envelope in real space introduces a length scale for the

interactions: [ = y/A;/$.

1. Error due to populating the chain modes

In the regime in which & > g’v is not satisfied, but € =
g /46 is still small, the transition probablhty at time ¢, from an

1n1t1al dimer state with energy Jz + & to the chain modes, to
first order [68] reads

[(Jz +8—J)t/2
P@)=4 ’ZZ““[ FOZIIPRL gy
P (Jz +8—J)

In the continuum limit, X; — % f dk, we extract an expres-
sion for the absolute maximum of population at the chain

/ §x
max[P ()] ~ Ne3/2 A_d' (E8)

Note that this probability is an upper bound both because
it is the maximum of population at the chain, and because
the integral in the continuum limit overestimates the value
of the sum over k for a small § compared to Jz — Jz_1/y),
as discussed in Sec. IV and Appendix E2. Since now we
compute 1/8%, the mismatch between the results from using
a continuum or a discrete band scales faster than in the calcu-
lation of g3;. Finally, the error defined in the text is not well
suited to capture error due to populating the chain modes, as
the timescale of the oscillations between chain and dimers is
much shorter than the one of the oscillations between dimers.
The error at the dimer’s maximum is, therefore, most likely
measured at a moment in which the population in the chain is
zero, and the probability that such point of time exists close to
the maximum of dimer population is high.

2. Prediction mismatch due to the finite N

In Fig. 3, we observe a difference between the effective
dimer-dimer interaction as described by Eq. (18) and Eq. (19)
for a dimer’s energy in the band gap, as depicted in Fig. 7
(left). This disagreement is due to the discreteness of the chain
modes, for which the highest-energy mode has quasimomen-
tum k,—; (see Appendix E), with ky—1 >~ % (1 —1/N). Since
the biggest contributions to geff come from the modes closest
in energy to the band edge, and Ji,,_, < Jz, the larger detuning
between the dimer and the mode with’ kﬂ 1 (8, in Fig. 7)
explains the smaller coupling rates predicted by Eq. (18).
In other words, the approximation in Eq. (ES) may not be
appropriate below a certain N.

f(z) (arb. units)

1.F )\ [N=500 N=100 1
Energy
4 dimer — ¢=2x10"3
116 iz —e=10"
et 3
| 0.5F ]
! o
™ ! -
| |
| |
1 1 g

FIG. 7. Left panel: Sketch of the energy of the system consisting
of emitters in the chain’s band gap discussed in Sec. IV. The solid
line represents the chain’s band in the continuum limit, while the
markers point at the discrete levels of a finite chain. The dimer energy
is detuned by § with the band edge, and by 8, with the highest-energy
discrete state. nght panel: f(x) [see Eq. (E9)] for the different
values of € = g;/8 used in Fig. 3 (a wider bell shape corresponds
to a smaller €). The three vertical lines indicate, from left to right,
x = 0, and the value of x corresponding to k,—; [x = /(N + 1)] for
N =500 and N = 100, respectively. The shaded regions highlight
the area under f(x) obtained by integrating between x = 1 and x =
1/(N + 1), notice k,—, and using the discrete sum from that point to
x = 0. Parameters used are d = Ag/4, A = 2007, and 2 = 0.03T.

o
o
o
=
o
oF
N
o
o
@

We can better understand the mismatch between the dis-
crete and infinite chain predictions by looking at the integrand
in Eq. (ES),

cos [Z(p;i — pj)x]
1+ A, x?

f) = , (E9)

as we do in Fig. 7 (right). For simplicity, we focus the com-
parison on the most dominant term of the discrete sum, the
one with k,_, for which the difference in total value between
the two sides of Eq. (ES) is captured by the nonshaded ar-
eas in Fig. 7. For instance, the ratio between the nonshaded
part of the area under f(x) and the full integral is rather
small for € = 2 x 1073 and N = 500, and the offset between
the corresponding marker and dashed line in Fig. 3 is also
small. However, the steepness of the function at small x can
lead to large underestimations of the area under the function.
This becomes critical at smaller N. For € =2 x 10~ and
N = 100, the nonshaded part amounts to multiple times the
shaded part of the area under f(x). The value of the mismatch
between the discrete and continuum predictions also depends
on §, as smaller § are better able to resolve the detuning
of the mode k,—; with the band edge. In other words, f(x)
becomes steeper, and the amount of underestimation of the
integral using the discrete sum is larger, as shown in Fig. 7 for
€ = 107!, This, again, can be verified by observing Fig. 3.

The predictions with Eq. (19) are, thus, in general overly
optimistic. However, by studying the discrete spectrum, we
can optimize the predicted coupling rates, as we do in the
following section.

3. Optimal error for § < 0

Analyzing the system from the picture of a discrete spec-
trum of array modes with momenta k,,, as defined above and
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FIG. 8. Population dynamics of a dimer antisymmetric state in a
setup with d = 0.41,. The dimer lines represent the antisymmetric
state of the dimer, and the chain line integrates the population of
all chain modes. The population of all other states is negligible.
The loss of total population is due to free-space decay. The dimer
and chain lines are computed with the full-system Hamiltonian,
Eq. (14). (a) Dynamics for an emitter in the band, resonant with
k-d/m =0.967. The dashed line indicates the prediction includ-
ing FGR and the dimer’s free-space decay. (b) Dynamics in the
band gap. (a) and (b) The offset of the dimer population with
respect to the dashed lines is due to the coupling of the anti-
symmetric dimer’s state to the superradiant modes of the chain,
which is not entirely suppressed at larger d. Parameters used are
N =500, (a) A = 8T, and 2 = 0.2I'¢; (b) e = 1, A = 200T"y, and
2 =0.01T.

sketched in Fig. 7 (left), instead of a continuous band, we can
improve the long-range coupling rate between dimers. In this
case, the expression for the effective dimer-dimer coupling
reads

Jl ~ /zi & () & " (p))
3+(Ad+2VN)M—z.

(E10)

Defining a detuning §, from the highest energy mode of the

array (u = 1),
Ny Z 5;:(/71')5;:*(/?;) _
¢ 8+ Lyt + A2 — 1)

To stay off-resonant with the mode ky—1, we need 8, > N2
For N > 1, (6, — Ji,) = 3A—“ >> ~ §,. Thus, we approxi-
mate Eq. (E11) with the ﬁrst term of the sum,

(E11)

.. 52 — iz
o g2 e
8etf — 8z

—_— El12
R G "
where for simplicity we have also used 51:, (,o,-)ék’] *(pj) =1,
valid for a long chain and dimers located near its center.

As discussed in Sec. IV, the dimer-dimer long-range cou-
pling has three main sources of error. One is due to I'j_,
given by the decay of the dimer population after one full
Rabi cycle, 7 I';_ /Re[gieﬁ»f]. A second source is due to the
small but finite linewidth of the array modes that mediate the
interaction, I'y, and write 27 Im[ geﬁ] /Re[geff] The third is
the finite population transfer to the array mode if §; > g’%
is not satisfied. The maximum of population in the chain is
4g7/(83 + 4g2).

The error in Fig. 3 is due to the free-space decay of the
dimers and that of the array modes and reads

o w1

~ ——3§ — —. E13
error h + JTNZ 5 (E13)

By minimizing the error, we obtain an optimal value of §,,

opt gl,
8y, = ———, (E14)
VN2To_/yn
for which we predict an error
2w o/To—
T V0 (E15)

erroropt >
- N3/2
€ |
Since |g7 | scales as 1/+/N, the optimal error scales as 1/N.
Y
d

APPENDIX F: RESULTS WITH LATTICE SPACING
d = 0.4,

The methods used in this paper provide the biggest im-
provement for larger lattice spacing d < 0.5A¢. Although,
with our setup, the suppression of the coupling of the impurity
to the superradiant modes of the chain is not perfect at larger
d, the desired features described in the text are retained. As an
example, we show in Fig. 8 the dynamics of emitters both in
the band and in the band gap.
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