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ABSTRACT Describing ecosystem carbon fluxes is essential for deepening the understanding of the Earth
system. However, partitioning net ecosystem exchange (NEE), i.e. the sum of ecosystem respiration (Reco)
and gross primary production (GPP), into these summands is ill-posed since there can be infinitely many
mathematically-valid solutions. We propose a novel data-driven approach to NEE partitioning using a deep
state space model which combines the interpretability and uncertainty analysis of state space models with
the ability of recurrent neural networks to learn the complex functions governing the data. We validate our
proposed approach on the FLUXNET dataset. We suggest using both the past and the future of Reco’s
predictors for training along with the nighttime NEE (NEEnight) to learn a dynamical model of Reco.
We evaluate our nighttime Reco forecasts by comparing them to the ground truth NEEnight and obtain the best
accuracywith respect to other partitioningmethods. The learned nighttimeReco model is then used to forecast
the daytime Reco conditioning on the future observations of different predictors, i.e., global radiation, air
temperature, precipitation, vapor pressure deficit, and daytime NEE (NEEday). Subtracted from the NEEday,
these estimates yield the GPP, finalizing the partitioning. Our purely data-driven daytime Reco forecasts are in
line with the recent empirical partitioning studies reporting lower daytime Reco than the Reichstein method,
which can be attributed to the Kok effect, i.e., the plant respiration being higher at night.We conclude that our
approach is a good alternative for data-driven NEE partitioning and complements other partitioningmethods.

INDEX TERMS Deep state space models, net ecosystem exchange, NEE partitioning, time series
forecasting.

I. INTRODUCTION
The task of net ecosystem exchange (NEE) partitioning is
highly relevant in environmental science, as it deepens the
understanding of the underlying mechanisms constraining
the ecosystem function, in the global warming context for
instance [1]. NEE is a measure of the net exchange of carbon
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between an ecosystem and the atmosphere given by:

NEE = Reco + GPP. (1)

Ecological variables in Eq. (1), Reco and GPP, denote the
total carbon flux by respiration processes of all organisms
in an ecosystem, and the gross amount of carbon uptake
by photosynthesis from plants, respectively. The NEE val-
ues are measured, but the problem of obtaining either Reco
or GPP from those measurements is ill-posed since there
can be infinitely many possible solutions contributing to the
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given sum. Since no photosynthesis occurs during the night,
GPP nighttime values are close to zero and hence nighttime
NEE (NEEnight) corresponds to the nighttime Reco.
Probabilistic state-space models are a rich framework for

an interpretable representation of the evolution of physical
processes (e.g., ecosystem respiration), and are of fundamen-
tal significance in ecological time series analysis since they
can take into account latent factors and the uncertainty in
the observations. Deep state space models combine the inter-
pretability and uncertainty analysis of state spacemodels with
the ability of recurrent neural networks (RNNs) to learn the
complex functions governing the data. In this paper, we pro-
pose to use a deep probabilistic state space model, namely
a deep state space model DeepState [2], to partition NEE.
We first learn the underlying dynamical model of Reco using
measured NEEnight data and both the past and the future
of Reco predictors. Once the model is learned with the assis-
tance of those predictors, we use it to predict daytime values
of Reco and can then subtract the predicted values of Reco
from the entire NEE time series to obtain GPP. To the best
of our knowledge, our approach is the first to employ a deep
probabilistic model for the task of NEE partitioning.

In addition to its ability to handle missing data, another
novelty of our approach is that we use both the past and
the future of Reco’s predictors. The candidate predictors we
use for learning the dynamical model of Reco and predict-
ing its values during the daytime are: global radiation (Rg),
air temperature (Tair), water vapor pressure deficit (VPD),
precipitation (PPT) and daytime NEE (NEEday). We choose
the predictors contributing to the best forecast of the ground
truth NEEnight and then use them for forecasting Reco during
the daytime.

A. RELATED WORK
1) NEE PARTITIONING
The most widely used approach for partitioning NEE into
Reco and GPP is the Reichstein method [3]. It uses tem-
perature sensitivity of NEEnight to predict the daytime Reco.
GPP is then obtained by subtracting Reco from NEE. Sim-
ilarly to other numerical NEE partitioning methods such as
that by Lasslop et al. [4], although very useful and easy to
implement, it does not considermultiple co-acting factors that
modulate GPP and Reco. Tramontana et al. [1] develop an
approach to account for the said factors modulating these two
carbon fluxes by implementing a hybrid data-driven method,
NNC-part, based on feedforward neural networks [5], that can
use a comprehensive dataset of soil andmicro-meteorological
variables. The expert knowledge is incorporated in the algo-
rithm by introducing a photosynthesis response based on the
radiation-use efficiency concept. In contrast to our approach,
however, this NEE partitioning approach has a limitation in
the sense that it does not handle the missing data values, nor
the missing predictors. This constrains its applicability to the
FLUXNET sites with large quantities of missing data, which
is often the case due to the sensitivity of the sensors used

for the measurements in combination with the unfavorable
weather conditions at the measuring sites. Since we use a
probabilistic time series forecasting method, the missing val-
ues in our Reco forecasts never occur. Moreover, we do not
need to approximate daytime Reco or create proxies for GPP
because we use both the past and the future of the selected
Reco predictor variables and thereby do not incur additional
approximation error.

A study by Oikawa et al. [6] analyzed several parti-
tioning methods, and conducted an independent empirical
NEE partitioning. This approach consisted of measuring
ecosystem-scale fluxes of stable C isotopes via a quan-
tum cascade laser spectrometer, and pairing those mea-
surements with the biophysical model CANVEG to obtain
GPP and Reco. These two carbon fluxes were on average
10-13% lower than both Reichstein-partitioned GPP and Reco
and GPP and Reco obtained by the gap filling [7] of NEE.
The authors further state that since both of these partitioning
methods use NEEnight to infer daytime Reco, they are likely
overestimating GPP and Reco during the day. Moreover, they
emphasize that the effect of plant respiration being higher
at night, known as the Kok effect [8], possibly supports this
claim. Despite our approach using NEEnight to estimate day-
time Reco, we also obtain lower Reco estimates than those of
the Reichstein- and NNC-part partitioning methods, in accor-
dance with Oikawa et al. [6], since we use the future of
Reco predictors in addition. We are thereby able to poten-
tially model the daytime Reco forecasts more realistically
with respect to these predictors. The study performed by
Lee et al. [9] uses continuous stable isotope measurements
in a Pacific Northwest Douglas-fir forest ecosystem for
NEE partitioning and also reports estimated daytime Reco
lower than the conventional approaches. Furthermore, similar
results were obtained in the most recent study on the topic
by Kira et al. [10], in which the authors used a parsimo-
nious Solar-Induced Chlorophyll Fluorescence (SIF)-based
approach for NEE partitioning and examined its performance
using synthetic simulations and field measurements.

2) TIME SERIES FORECASTING USING DEEP LEARNING
State space models have been used for decades as one of
the main methods for sequence modeling [11]. Other related
algorithms from a graphical model perspective are Kalman
filters [12] and conditional Markov processes [13]. With
the development of deep learning and variational inference
resulting in the rise of Variational Auto Encoders (VAE) [14],
several methods for sequential data based on VAEs have
appeared as well. Chung et al. [15] propose a recurrent latent
variable model for sequential data, namely the Variational
Recurrent Neural Network. It can model variability such as
that observed in highly structured data like natural speech
through the use of high-level latent random variables. When
it comes to other deep state space models for sequential data,
Doerr et al. [16] propose a probabilistic recurrent state space
model with a scalable training algorithm based on a dou-
bly stochastic variational inference and Gaussian processes.
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Krishnan et al. [17] introduce the deep Kalman filter – a
deep state space model, which can generate counterfactual
data given an action variable, apart from its capability of time
series forecasting. In 2017, Salinas et al. [18] introduced a
probabilistic forecasting method based on the training of an
autoregressive recurrent network model on a large number
of related time series called DeepAR. A year later, two deep
state space models were proposed. Namely, Zheng et al. [19]
proposed the State Space LSTM models alongside a sampler
based on sequential Monte Carlo method [20] that directly
draws samples from the joint posterior. The other deep state
space method, DeepState [2], parameterizes a per-time-series
linear state space model with a jointly-learned RNN and
scales from regimes with little training data to those where
large amounts of time series are available to learn accurate
models. It compares favorably to the state-of-the-art results
on probabilistic time series forecasting tasks which is a reason
why we employ it for the task of partitioning NEE.

B. OUTLINE OF THE PAPER
The ecological data is abundant and NEE has been measured
by more than 200 FLUXNET towers all over the world for
decades, yet there are very few machine learning approaches
for NEE partitioning. The existing ones rely on approxi-
mations of the daytime Reco using its nighttime values and
creating proxies of GPP with the use of NEEday which can
incur additional approximation error. The goal of this paper
is to introduce a purely data-driven approach to partition
NEE based on a deep state space model DeepState [2],
which we introduce in Section II. Instead of relying on
other method’s approximations of the daytime Reco, we use
the known Reco predictors’ both the past and the future
to obtain daytime Reco forecasts having plausible relation-
ships with those predictors. Our methodology is described
in detail in Section III. Our method’s performance compared
to that of other time series forecasting methods and other
NEE partitioning methods with respect to the ground truth
NEEnight is presented in Section III-C. Promptly thereafter, in
Section III-D, we present our daytime Reco forecasts.
Section IV concludes the paper.

II. DEEPSTATE
Before introducing the DeepState model [2] in more detail,
we will first discuss linear state space models, as they are
an important component of DeepState’s architecture. General
linear Gaussian state space models can be defined as follows:

zt = At lt + ηt , ηt ∼ N (0, 1) (2)

lt = Ft lt−1 + gtεt , εt ∼ N (0, 1). (3)

In Eqs. (2) and (3), zt denotes a vector of observations,
aptly called the observation vector, whereas lt is an unob-
served vector called the state vector or the latent state, both
at time t , for t = 1, . . . ,T , as per Durbin and Koopman [21].
Furthermore, by ηt , εt we denote the mutually-independent
error terms and by At , Ft , gt different matrices. Matrix At is

called the system matrix. Latent state lt ∈ RL at time t , for
L ∈ N, changes according to the influence of the transition
matrix Ft and a random innovation gtεt . The structure of Ft
and the innovation strength gt determine which type of time
series patterns are encoded by the latent state lt .
The desired benefits of using a state space model are esti-

mating the underlying evolution of the unobserved signal lt
given the data zi for i = 1, . . . , s, s ∈ N and the corresponding
system parameter updates. If s < t , the problem is called
forecasting. When s = t , it is called filtering, and if s > t ,
smoothing. We will concentrate on forecasting since we
would like to learn a data-driven time-dependent model
of Reco and estimate its daytime values to partition NEE.
The deep state space method we are using is based on

probabilistic forecasting. A probabilistic forecast consists of
a probability density function which estimates the respective
probability distributions for all possible future outcomes of
a random variable. To describe the concept more formally,
following Rangapuram et al. [2], we let {z(i)1:Ti}

N
i=1 be a set

of univariate target time series, where z(i)1:Ti = (z(i)1 , . . . , z
(i)
Ti )

and z(i)t ∈ R is the value of the i-th time series at time t , for
t = 1, . . . ,Ti and i = 1, . . . ,N , where Ti,N ∈ N. Further,
let {x(i)1:Ti+τ }

N
i=1 be a set of associated covariate vectors with

x(i)t ∈ RD, for D, τ ∈ N and i = 1, . . . ,N . The goal
is to produce a set of probabilistic forecasts, i.e. for each
i = 1, . . . ,N , we are interested in the probability distribution
of future trajectories z(i)Ti+1:Ti+τ given the past ones, as well as
all the past and τ future samples of the covariate vectors:

p(z(i)Ti+1:Ti+τ | z
(i)
1:Ti
, x(i)1:Ti+τ ;8). (4)

In Eq. (4), 8 denotes the set of learnable parameters
of the model, which are, in the case of DeepState, shared
between and learned jointly from all N time series. For any
i = 1, . . . ,N , we refer to the time range {1, . . . ,Ti} as the
training range, and to {Ti+1, . . . ,Ti+τ } as prediction range.
We assume that the covariate vectors x(i)t are given in both the
training and the prediction range, as seen in Eq. (4).
Constructed as a fusion of deep learning and state space

models, DeepState is a forecasting method that parameterizes
a particular linear state space model (Eqs. (2) and (3)) using
an RNN. The observations are generated from the latent
state lt according to the following model:

zt = yt + σtεt , εt ∼ N (0, 1)

yt = aᵀt lt−1 + bt (5)

where at ∈ RL , σt ∈ R>0 and bt ∈ R are addi-
tional model parameters. The initial state l0 is assumed
to follow an isotropic Gaussian distribution, namely l0 ∼
N (µ0,diag(σ 2

0 )). The state space model is entirely deter-
mined by the parameters 2t = (µ0, 60,Ft , gt , at , bt , σt ),
∀t > 0. One way of estimating them is by solving the
optimization problem:

argmax
21:t

pSS (z1:T |21:T ), (6)
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where

pSS (z1:T |21:T ) := p(z1|21)
T∏
t=2

p(zt |z1:t−1,21:t )

=

∫
p(l0)

[
T∏
t=1

p(zt |lt )p(lt |lt−1)

]
dl0:T (7)

denotes the marginal probability of the observations z1:T ,
given the parameters 2 under the state space model.

DeepState learns a function

9(x(i)1:t ,8) = 2
(i)
t , i = 1, . . . ,N , t = 1, . . . ,Ti + τ (8)

which maps the covariate vectors x(i)1:Ti associated with each

target time series z(i)1:Ti , as well as a set of shared parameters8,

to the (time-dependent) parameters2(i)
t of a linear state space

model for the i-th time series. This is done globally, over
all-time series, instead of learning the state space param-
eters for each time series independently. This mapping is
parameterized by a multi-layer RNN with LSTM cells [22]
and parameters from 8. The parameters of the RNN are
learned jointly from a dataset of raw time series and their
covariates, so that the model can extract features and learn
complex temporal patterns. During training, the inputs to the
network are the covariate vectors x(i)t , together with the pre-
vious network output h(i)t−1 at each time step t in the training
range {1, . . . ,Ti}. Then, the network output, computed by a

recurrent function h, namely h(i)t = h(h(i)t−1, x
(i)
t ,8) is used

to determine the parameters 2(i)
t of the state space model.

Those parameters are then used to obtain the likelihood of
the given observations z(i)1:Ti , as seen in Eq. (7). The shared
network parameters 8 are then learned by maximizing the
likelihood L(8) given by Eq. (9).

L(8) =
N∑
i=1

log p(z(i)1:Ti | x
(i)
i:Ti ,8)

=

N∑
i=1

log pSS (z
(i)
1:Ti
| 2

(i)
i:Ti ). (9)

The forecasts are obtained as follows, given a target time
series z(i)1:Ti in the training range i.e. for time steps 1, . . . ,Ti,

and associated covariate vectors x(i)1:Ti+τ in both the training

and the prediction range. Namely, first the posterior of the
latent state p(lTi |z1:Ti ) is computed for the last time step Ti
in the training range using the observations z(i)1:Ti and the

state space parameters 2(i)
1:Ti

obtained by unrolling the RNN
network in the training range. Given the posterior of the latent
state p(lTi |z1:Ti ), prediction samples are generated by recur-
sively applying the transition equation and the observation
model where the state space parameters for the prediction
range 2(i)

Ti+1:Ti+τ
are obtained by unrolling the RNN in the

prediction range. An illustration of the DeepState forecast
with NEEnight as the observation can be seen in Fig. 1. Lower
and upper bounds for the diagonal of the prior covariance

FIGURE 1. Illustration of forecasting using DeepState. Here we
substitute observations z by NEEnight to portray our training data.
By ẑ (i ) we denote the forecasted values of Reco for a given sample
i ∈ {1, . . . ,N}, with Ti = 288 and τ = 48. In our setup, vector x (i ) consists
of a subset of Reco predictors Rg, Tair, PPT, VPD and NEEday in both
training and prediction ranges separated by the vertical line.

matrix6 of the latent state lt are set to 10−6 and 1 by default,
respectively. Lower and upper bounds for the standard devi-
ation of the innovation function gt are by default set to 10−6

and 0.01, respectively. Throughout this paper, we refer to
covariate vectors as predictor variables or predictors.

III. PARTITIONING NEE USING DEEPSTATE
Our NEE partitioning approach relies on DeepState [2] to
learn the dynamical model of nighttime Reco and estimate it
during the day. This estimation is aided not only by the past
(days and nights) of the predictor variables but also by their
values during the period in which we want to estimate Reco,
i.e. in the prediction range. Once the daytime Reco forecast
is obtained, it is possible to subtract it from the observed
NEEday values to obtain GPP and thus partition NEE.

Our source code is available at https://github.
com/cvjena/nee-partitioning.

A. METHODOLOGY
We make use of the fact that NEEnight equals the night-
time Reco, thus putting our approach in the category of the
nighttime partitioning methods [23]. However, in contrast to
NNC-part method [1], for instance, we do not average the
nighttime Reco values to leverage the lack of daytime Reco,
since DeepState can handle missing values during training.
More precisely, DeepState approximates the distribution of
the target variable and samples from it during forecasting,
so there can be nomissing values in the forecasts.We separate
the NEE observations during day and night by retrieving
exact times of sunrise and sunset for each site according
to its timezone. We increase these values by one hour to
ensure that there is enough daylight to activate photosyn-
thesis in the morning and that there is no daylight in the
evening in order to separate nighttime observations. We train
on the NEEnight observations, which we do not normalize,
to learn the dynamical model of Reco as a function of its
previous values. To achieve this even during the daytime,
we use different Reco predictors Rg, Tair, VPD and PPT,
as well as NEEday as covariate feature vectors of the Deep-
State model. In regard to the model parameters, we use
the batch size of 32, the dropout rate of 0.1, the learning
rate of 10−4, and the LSTM configuration of two layers
and 40 cells. The training samples consist of half-hourly
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TABLE 1. Vegetation type and annual mean temperature of different
FLUXNET sites. Evergreen Broadleaf Forests are referred to as EBF,
Deciduous Broadleaf Forests as DBF, Evergreen Needleleaf
Forests as ENF, and Savannas as SAV.

NEEnight observations spanning one week, originating from
the four summer months, by shifting the aforementioned
one-week window by two days. We train on six days and
use the last day for testing. Training on longer samples, i.e.
13 or 55 days did not improve the results. We showcase the
DeepState’s training and test loss over 600 epochs in Fig. 5
given in the Appendix A. Adapting the hyperparameters of
the DeepState such as the number of training periods when
using different predictor variables did not yield a considerable
difference in the forecasts. Furthermore, we tested different
number of LSTM layers, dropout rates and learning rates
while predicting the NEEnight as shown in Fig. 6 given in
the Appendix A. This type of hyperparameter tuning also did
not substantially improve the DeepState’s NEEnight forecasts.
Moreover, the hyperparameter configuration which produces
this slight improvement differs for each FLUXNET site and
each subset of the predictor variables. Therefore, in order
to fix a hyperparameter configuration that achieves the best
NEEnight forecasts on average, we chose the above-mention
experimental setup to facilitate the application of our NEE
partitioning method.

We forecast one full day of Reco which can then be
subtracted from NEE for obtaining GPP. The quantita-
tive evaluation is performed for the nighttime samples
to assess the prediction accuracy of the learned night
Reco model with respect to the ground truth NEEnight. Due
to the non-stationarity of the training data, our method some-
times yields suboptimal nighttime Reco forecasts, however
this occurs in less than 3% of the forecasts and are shown
in Fig. 7 given in the Appendix B. The interpretation of the
daytime Reco forecast obtained by using its learned model
while conditioning on different daytime values of the pre-
dictors will be discussed in Section III-D with respect to
the multiple empirical studies as there is no ground truth
daytime Reco.

We apply our NEE partitioning approach to data from
the FLUXNET sites of different climate regions. European
sites in France (FR-Pue), Germany (DE-Hai), theNetherlands
(NL-Loo), and Italy (IT-Ro1), as well as equatorial sites in
Brazil (BR-Sa3) and Congo (CG-Tch) were analyzed. Table 1
shows an overview of vegetation types and the average annual
temperature at each site. The sites are chosen to enable a
fair overview in context of other NEE partitioning meth-
ods and provide a broader analysis of our NEE partitioning
method across different vegetation and climate conditions.
We selected the FLUXNET sites IT-Ro1 and NL-Loo specif-
ically so that the correlation of Tair and Reco is the lowest
compared to all the sites we use. We did this to prevent
the DeepState from simply learning the Tair dynamics and

FIGURE 2. Two-week data sample - FR-Pue. Two weeks of half-hourly
Rg, Tair, VPD, PPT and NEE, measured at the French site Puechabon.

Nighttime Reco used for training DeepState is shown in orange.

FIGURE 3. Nighttime Reco qualitative evaluation. One day Reco forecast
of different time series forecasting methods and NEE partitioning
methods on the site IT-Ro1.

producing good Reco forecasts due to the high correlation
between these two variables. The data is selected from June to
September of each year in the case of sites FR-Pue, DE-Hai,
IT-Ro1, and NL-Loo. For BR-Sa3 and CG-Tch, we selected
data from January to April of each year. These equatorial
sites are chosen to analyze how different climate regions and
different Tair and PPT variation during the day vs during the
night influence the learned Reco model. As Reco predictors,
we use SW_IN_F_MDS, TA_F_MDS, P_F, VPD_F_MDS
and NEE_VUT_USTAR50 during the daytime, correspond-
ing to Rg, Tair, PPT, VPD, and NEEday, respectively.
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TABLE 2. NEEnight estimation accuracy. Quantitative results of forecasting one day of nighttime Reco, using different predictor variables for training
DeepState on sites FR-Pue, DE-Hai, BR-Sa3 and CG-Tch. The best results are shown in bold.

B. EVALUATION METRICS
The error metrics we use for evaluating our method in com-
parison with the other partitioning methods with respect
to the ground truth NEEnight are the Root Mean Square
Error (RMSE) and the Mean Absolute Percentage Error
(MAPE), defined as:

RMSE(P,R) =

√√√√ 1
T

T∑
t=1

(Rt − Pt )2 (10)

MAPE(P,R) =
1
T

T∑
t=1

|Rt − Pt |
|Rt |

(11)

In Eq. (10) and Eq. (11), by R = [R1, . . . ,RT ] we denote
the vector of real target values and by P = [P1, . . . ,PT ] the
vector of prediction values, while T ∈ N denotes the number
of time steps.

C. LEARNING A DATA-DRIVEN TIME-DEPENDENT MODEL
OF NIGHTTIME Reco

For training DeepState, we used the past values of NEEnight,
i.e. the nighttime Reco, together with the past and the
future of Rg, Tair, VPD, PPT and NEEday in all possi-
ble combinations as predictors. This allowed the model to
learn the underlying dynamics of Reco at night on multiple

FLUXNET sites. We evaluate how well this nighttime
dynamical model is learned by comparing our nighttime Reco
forecasts with the ground truth NEEnight on multiple sites,
as shown in Table 2. We find that using Rg, Tair, VPD and
NEEday as predictors provides the best ground-truth NEEnight
estimates on the European sites FR-Pue and DE-Hai. For
the equatorial site BR-Sa3, the best predictors are PPT and
NEEday, whereas the combination of predictors Rg, Tair and
PPT, and the combination of Rg, PPT, VPD and NEEday yield
the best NEEnight estimates on the Congolese site CG-Tch.

We compared the DeepState’s nighttime Reco forecasts
to the corresponding Reco estimates of other partitioning
methods and to two other time series forecasting methods
in order to justify our choice of this deep state space model.
Namely, we compared to the Reichsteinmethod, theNNC-part,
as well as to a more traditional time series forecasting method
ARIMA [24] and to the RNN-based deep learning method
for time series forecasting, namely, DeepAR [18]. In the case
of ARIMA however, since our training data contains only
the nighttime Reco values, the missing daytime values are
imputed by a Kalman filter [12]. In Table 3 we present the
quantitative comparison of the nighttime Reco to the ground
truth NEEnight for all the sites we apply our method to when
using different partitioning and time series forecasting meth-
ods. We conclude that DeepState provides the best nighttime
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FIGURE 4. One-day Reco forecast (green) using DeepState with Tair as a predictor. Observed NEE is shown in orange, the Reco obtained by the
Reichstein method in blue and Reco estimated by the NNC-part method is shown in red.

Reco forecasts with respect to the ground truth NEEnight in
comparison to other partitioning methods, i.e. Reichstein and
NNC-part, and attains very similar MAPE values to those of
ARIMA on the two European sites FR-Pue and DE-Hai.
Even though ARIMA sometimes performs slightly better,
it is not suitable for the daytime Reco forecasts, as depicted
in Fig. 3 for the site IT-Ro1. Moreover, the ARIMA model

tends to be difficult to fit due to the non-stationarity of the
data.

We consider the Reco forecasts from midnight to 5 a.m.
and from the 7 p.m. until 11:59 p.m. to denote the nighttime.
We note that in the period from midnight to 5 a.m. our
method produces considerably better nighttime Reco forecasts
than the other NEE partitioning approaches. Furthermore, our
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TABLE 3. Comparison of different methods’ nighttime Reco forecasts to
the ground truth NEEnight. For the sites where NNC-part can be applied,
we show the NEEnight estimation MAPE error metric of other methods
both on the same (reduced) amount of data samples as provided by the
NNC-part method, and on the entire data in brackets when these two
values differ. The best results on each site are shown in bold.

Reco forecasts using Tair as a predictor are depicted in Fig. 4
for each of the six above-mentioned sites. The DeepState’s
ability to model the ground truth NEEnight better than the
Reichstein’s method is particularly visible in Fig. 4e and
Fig. 4f on the sites BR-Sa3 and CG-Tch, respectively. This
is expected since we use the past NEEnight values during
the training phase, but the results on other sites in Fig. 4
show that DeepState fits the nighttime NEEnight better than
NNC-part as well. Additionally, the identification of the best
predictors gives us a valuable insight into which variables
to use when partitioning NEE. In addition, the results from
Table 2 confirm that Tair is a goodReco predictor, as suggested
by Platenius in 1942 [25]. Namely, when considering a single
Reco predictor, the NEEnight estimation error metrics when
using Tair tend to be among the two best ones across all sites.

D. DAYTIME Reco FORECAST EVALUATION
In the previous section we have seen how well DeepState
learns the dynamical model of Reco at night, as well as
how it is trained. Now we can interpret our daytime Reco
forecasts having in mind that there is no ground truth with
which to compare these forecasts directly. We compare our
findings to those of the recent empirical NEE partitioning
methods [6], [9], [10] which suggest that Reco is lower during
the day than during the night, and can be attributed to the
Kok effect [8]. In Fig. 4, we observe that this is also the case
with our daytime Reco forecasts on most of the inspected
sites. Oikawa et al. [6] report on average 10-13% lower
daytime Reco than that of the Reichstein method, whereas our
forecasts are on average 16-17% lower than the Reichstein
method’s Reco. The lower Reco forecasts during the day might
also be attributed to the findings of Wehr et al. [26], i.e. that
the nighttime Reco is twice as large as daytime Reco during the
first half of the growing season in a temperate forest.
The NNC-part method’s Reco estimates also tend to be slightly
lower than the Reichstein method’s, but are very sparse due to
many missing values in the training data. The influence of the
missing data on theNNC-part model’s performance is reflected
in the fact that there are much less output Reco estimation
values and that some FLUXNET sites are not considered for
partitioning using NNC-part due to many missing values in
any given year for which a threshold can be set. In contrast,
since DeepState’s predictions are sampled from the estimated
probability distribution, themissing values do not occur in our

FIGURE 5. DeepState’s training and test loss.

forecasts. Moreover, deep state space models are more robust
to themissing values during trainingwhichmakes ourmethod
applicable to any FLUXNET site without further restrictions.

On certain sites, such as CG-Tch, depicted in Fig. 4f, our
daytime Reco forecasting is fluctuating more than expected
in comparison to the other two partitioning methods, but as
shown empirically by Oikawa et al. [6], this behaviour can
sometimes indeed occur.

IV. CONCLUSION
In this paper we have proposed an NEE partitioning approach
based on the deep probabilistic state space model DeepState,
thus leveraging the interpretability and uncertainty analysis of
state space models with the advantages of deep networks in
learning complex dynamical models. The quantitative analy-
sis of our method for estimating Reco during the nighttime
justified our choice of DeepState for learning the dynami-
cal model of Reco. Furthermore, our daytime Reco forecasts,
aided by both the past and the future of the Reco predictors,
are in line with the empirical studies which suggest that Reco
during the day is usually lower than that of the Reichstein
method. This discrepancy can also be attributed to the obser-
vation that nighttime Reco is twice as high as the daytime
Reco in temperate forests during the first half of the growing
season [26] and to the Kok effect [8]. Therefore, we conclude
that our approach offers a good alternative to data-driven
NEE partitioning across a diverse set of vegetation types
when the right Reco predictors are selected and complements
other NEE partitioning methods.

APPENDIX A
DEEPSTATE TRAINING PROCESS
In Fig. 5 we depict the DeepState’s training and test loss
after each 20th epoch. The training is done for 600 epochs
without validation, but we note that the forecasts are no longer
improving after about 300 epochs when the plateau occurs.
We can therefore stop after 600 epochs despite the difference
between the training and the test loss becoming larger if
trained further. The training data is from the Congolese site
CG-Tch when using Tair as a predictor. We note that the
loss can be negative as DeepState optimizes the negative
likelihood of the Student-t distribution.
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FIGURE 6. Hyperparameter optimization. Nighttime NEE forecast accuracy on the site CG-Tch using Tair as a predictor, for a different number of the
LSTM layers and dropout rates, while varying the learning rate.

In Fig. 6, we show the MAPE and the RMSE metrics
of the DeepState’s nighttime Reco forecast with respect to
the ground truth NEEnight. The forecasts are performed on
the data from the site CG-Tch with Tair as a predictor,
as was previously the case for calculating the training and

the test losses above. We varied the number of the LSTM
layers between 2, 3 and 5, the dropout rate between 0.1
and 0.5, whereas the learning rates we tested are 10−5,
5 · 10−5, 10−4, 2 · 10−4, 10−3 and 5 · 10−3. The con-
figuration that we used throughout all our experiments,
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FIGURE 7. Sub-optimal forecasts. In green we show the one-day Reco forecast from NEEnight on different FLUXNET sites with Tair as a predictor.
Observed NEE is shown in orange, the FLUXNET Reco in blue and Reco estimated by the NNC-part method is shown in red.

i.e., 2 LSTM layers, the dropout rate of 0.1 and the learning
rate of 10−4 provides theMAPE of 0.21 and the RMSEmetric
of 0.5, whereas tuning the above-mentioned hyperparameters
lowered these error metrics by 0.01 when using 3 LSTM
layers. Using 2 layers, however, provided the best NEEnight
forecasts on average, which is why we fixed this hyperparam-
eter configuration for all our experiments and thus facilitated
the use of our NEE partitioning approach.

APPENDIX B
SUBOPTIMAL Reco FORECASTS
We here present our method’s suboptimal forecasts. Namely,
in Fig. 7, we illustrate samples where our method does worse
at reproducing NEEnight, as well as in comparison to the
FLUXNET Reco baseline. This is mostly due to more drastic
changes of the NEE levels of the prediction range compared
with those during training. These forecasts, however, occur in
less than 3% of all forecasts over all tested sites.
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