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We discuss high-order calculations in perturbative effective field theory for fermions at low energy
scales. The Fermi-momentum or kFas expansion for the ground-state energy of the dilute Fermi gas
is calculated to fourth order, both in cutoff regularization and in dimensional regularization. For the
case of spin one-half fermions we find from a Bayesian analysis that the expansion is well-converged
at this order for |kFas| . 0.5. Furthermore, we show that Padé-Borel resummations can improve
the convergence for |kFas| . 1. Our results provide important constraints for nonperturbative cal-
culations of ultracold atoms and dilute neutron matter.

I. INTRODUCTION

Over the last two decades, striking progress in
quantum many-body physics has been achieved espe-
cially through well-controlled experiments with ultracold
atoms and the development of efficient computational
methods. Parallel to this, the conception of effective
field theory (EFT) has equipped advanced many-body
calculations with a firm theoretical basis. Here, we make
a new contribution to these advances by providing an-
alytic EFT results at high orders for a central problem
of many-body theory and experiment: the ground-state
energy of the dilute Fermi gas.

Effective field theory is deeply connected with the no-
tion of universality [1], for which the dilute Fermi gas is
a classic example. This universal many-body system de-
scribes both the physics of cold atomic gases as well as
that of the dilute nuclear matter present in the crust of
neutron stars. In ultracold-atom experiments, Feshbach
resonances allow one to tune the interaction strength via
the application of external fields. This makes it possible
to probe low-density Fermi systems over a wide range
of many-body dynamics, in particular at the unitary
limit of infinite scattering length and through the BCS-
BEC crossover [2–6]. Moreover, continuous progress with
quantum Monte Carlo (QMC) methods [5, 7, 8] has en-
abled computations of strongly interacting dilute Fermi
gases with a high precision comparable to that of ex-
perimental measurements. High-order analytic calcula-
tions that provide precision benchmarks for QMC and
experiment represent an important tool for making fur-
ther progress in this field. This is the focus of the present
work.

Effective field theory provides the basis for such ana-
lytic benchmark calculations. In this context, the prob-
lem of renormalization, which historically has presented
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a notable barrier for many-body calculations at high or-
ders in perturbation theory, has been cleared up com-
pletely (in the perturbative case) [9–11]. While pertur-
bative EFT calculations are generally restricted to low
densities and weak interactions, respectively, they are
still useful in many ways. Regarding the nuclear many-
body problem [12–16], they provide viable input for con-
straining nuclear matter computations and neutron-star
modeling. Via resummation methods, they also give ac-
cess to approximate analytic results of large-scattering
length physics.

Here, we present in detail the calculation and re-
sults to fourth order in the perturbative EFT for zero-
temperature many-fermion systems at very low energies,
i.e., the renowned Fermi-momentum or kFas expansion
for the ground-state energy of the dilute Fermi gas [17–
27]. In that, we follow up on our recent Letter [28] where
the first fourth-order results have been presented.1 In the
present paper, we expand substantially on the results and
presentation of Ref. [28]. First, in Sec. II we discuss in
more detail the contact EFT formalism for fermions at
very low energy scales. In Sec. III we then present the
details of the calculation of the Fermi-momentum expan-
sion to fourth order for the case of spin one-half fermions.
The case of spins greater than one-half is examined in de-
tail in Sec. IV using two different regularization schemes:
cutoff regularization and dimensional regularization. Our
fourth-order results for the ground-state energy of the
general dilute Fermi gas are then summarized in Sec. V.
Using Bayesian methods, in Sec. VI we investigate the
convergence of the Fermi-momentum expansion. There,
we also study various Padé and Borel approximants con-
structed from the expansion. Finally, Sec. VII provides
a short summary.

1 We note the following typos in Ref. [28]: in Eq. (21) and (25) a
factor M3 is missing, and below Eq. (24) it should read II6(ii)
instead of III6(ii).
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II. EFFECTIVE FIELD THEORY FOR
NONRELATIVISTIC FERMIONS

The effective field theory (EFT) Lagrangian LEFT for
dilute Fermi systems is composed of the most general
two- and many-body contact interactions consistent with
Galilean invariance, parity, and time-reversal invariance.
Up to field redefinitions, its leading terms are given by
(see, e.g., Refs. [11, 29–33])

LEFT = ψ†
[
i∂t +

−→
∇2

2M

]
ψ − C0

2
(ψ†ψ)2

+
C2

16

[
(ψψ)†(ψ

←→
∇2ψ) + H.c.

]
+
C ′2
8

(ψ
←→
∇ψ)† · (ψ

←→
∇ψ)− D0

6
(ψ†ψ)3 + . . . , (1)

where ψ are nonrelativistic fermion fields,
←→
∇ =

←−
∇−

−→
∇ is

the Galilean invariant derivative, H.c. is the Hermitian
conjugate, and M is the fermion mass. The couplings of
the contact interactions C0, C2, C

′
2, D0, . . . , called low-

energy constants (LECs), have to be fit to experimental
data or (if possible) matched to an underlying theory.
(For recent work aimed at rooting contact EFT for nu-
cleons in lattice QCD calculations, see Refs. [34, 35].)

A truncation scheme, known as power counting, is re-
quired to organize the (infinite number of) EFT opera-
tors in a systematic way. In particular, the power count-
ing needs to renormalize the ultraviolet (UV) divergences
at each order. For perturbative calculations within the
contact EFT given by Eq. (1), the power counting corre-
sponds to ordering contributions in perturbation theory
according to the (naive) mass dimension σ of the LECs,
i.e.,

σ(C
(′)
2n) = 2n+ 1 , (2)

σ(D
(′)
2n) = 2n+ 4 , (3)

σ(E
(′)
2n) = 2n+ 7 , (4)

etc., where the LECs E
(′)
2n correspond to four-body inter-

actions.

In the following, we first discuss in Sec. II A the rela-
tion between N -body scattering diagrams and the MBPT
series for dilute Fermi systems. This is followed by the
analysis of UV power divergences and two-body scatter-
ing diagrams in Sec. II B. In Sec. II C we then exam-
ine the ladder diagrams of MBPT. Next, in Sec. II D we
study the renormalization of logarithmic UV divergences
and the associated nonanalytic terms in the perturbative
EFT expansion. Finally, Sec. II E briefly discusses differ-
ent partial resummations for systems with a large S-wave
scattering length.

A. Renormalization from few-body to
many-body systems

The nonrelativistic field theory specified by the La-
grangian LEFT is equivalent to a Hamiltonian approach
with N -body potentials. The regularized two- and three-
body potentials are given by

〈p′|V (2)
EFT|p〉 =

[
C0(Λ) + C2(Λ)(p′

2
+ p2)/2

+ C ′2(Λ)p′ · p + . . .
]
f(p/Λ)f(p′/Λ) ,

(5)

〈p′q′|V (3)
EFT|pq〉 =

[
D0(Λ) + . . .

]
f(p/Λ)f(q/Λ)

× f(p′/Λ)f(q′/Λ) . (6)

Here, p(′) and q(′) are relative and Jacobi momenta, re-
spectively, and f(p/Λ) is a regulator function that sup-
presses high-momentum modes. Later we will also con-
sider dimensional regularization (DR), but for now we
use a (Galilean invariant) momentum regulator.

The superficial degree of divergence d of an N -body
scattering diagram is given by

d = 5L− 2I +

V∑
j=1

[σ(gj)− 1] , (7)

where L is the loop number, I the number of internal
lines, V the number of vertices, and gj ∈ {C2n, D2n, . . . };
see, e.g., Refs. [36, 37] for details. [If there are subdiver-
gences the actual degree of divergence can be larger than
d.] The MBPT diagrams are obtained from scattering
diagrams by closing the external lines (and excluding oc-
cupied states in loop integrals) of a single scattering dia-
gram, or by closing and connecting the external lines of
several diagrams. Since the hole propagators associated
with closed external lines are bounded (or exponentially
decaying at finite temperature), the renormalization of
MBPT follows from the renormalization of scattering di-
agrams. For nonrelativistic contact interactions, N -body
scattering diagrams can have only up to N intermediate
lines between adjacent vertices, so only N ′-body inter-
actions with N ′ 6 N appear in a given the N -body sec-
tor. This implies that the renormalization of the EFT
interactions can be set up hierarchically, starting from
the renormalization of two-body interactions in the two-
body sector, then three-body, and so on, up to a given
truncation order in the power counting.

B. Two-body scattering

In the nonrelativistic EFT, the only two-body scatter-
ing diagrams are ladder diagrams (corresponding to iter-
ations of the Lippmann-Schwinger equation), see Fig. 1.
This makes the two-body sector very simple: all loop



3

+ + + + . . .

Figure 1. The two-body scattering diagrams. By closing the external lines one obtains the particle-particle ladder diagrams
of MBPT. The momentum integration associated with the closed lines has the effect that the (MBPT) ladder series has zero
radius of convergence (renormalon divergence), in contrast to the series of two-body scattering diagrams (a geometric series).
See the text for details.

integrals factorize, with factors Jn(k,Λ) given by

Jn(k,Λ) =

∞∫
0

dq
q2n

k2 − q2 + iε
f2(q/Λ) . (8)

To extract the power divergence we rescale the loop mo-
mentum as q→ q/Λ, leading to

Jn(k,Λ) = IUV
n (k,Λ) + JRn (k) , (9)

where

JRn (k) =
iπ

2
k2n+1 (10)

and IUV
n (k,Λ) = IUV,∞

n (k,Λ) + IUV,0
n (k,Λ), with

IUV,∞
n (k,Λ) = −

n∑
m=0

α2mΛ2m+1k2(n−m) , (11)

IUV,0
n (k,Λ)

Λ→∞−−−−→ 0 , (12)

where α2m are regulator-dependent constants. The
effective-range expansion (ERE) for the on-shell T ma-
trix reads [11, 38]

T (k, cosϑ) =
4π

M

{ ∞∑
n=0

τ (s)
n kn︸ ︷︷ ︸

T (s)(k)

+

∞∑
n=2

τ (p)
n [k cosϑ)]n︸ ︷︷ ︸

T (p)(k,cosϑ)

+ . . .

}
,

(13)

where k and ϑ are the scattering momentum and angle,
and

τ (s)
n = {as,−ia2

s,−a3
s + a2

srs, i(a
4
s − 2a3

srs),

a5
s − 3a4

srs + a3
sr

2
s + a2

svs, . . .} , (14)

τ (p)
n = {a3

p, . . .} , (15)

with as and ap the S- and P -wave scattering length, re-
spectively, rs the S-wave effective range, and vs the S-
wave shape parameter. Matching the regularized EFT
perturbation series to Eq. (13) leads (in the infinite-cutoff
limit Λ→∞) to

C0(Λ) = C0 + C0

3∑
ν=1

(
α0C0

M

2π2
Λ

)ν
+ α2C2C0

M

3π2
Λ3

+ . . . , (16)

C2(Λ) = C2 + α2C2C0
M

π2
Λ + . . . , (17)

C ′2(Λ) = C ′2 + . . . , (18)

where the cutoff-dependent parts are counterterms that
cancel UV divergences and the omitted terms correspond
to counterterms beyond fourth order. Note that all the
counterterms required to renormalize C0-only contribu-
tions to the T matrix are included in C0(Λ); i.e., the C0

term corresponds to a perturbatively renormalizable in-
teraction. For spin multiplicities g > 2, this feature is
however restricted to the two-body sector (see Sec. II D).

The (renormalized) LECs are given by

C0 =
4πas
M

, C2 = C0
asrs

2
, C ′2 =

4πa3
p

M
, (19)

etc. The perturbative EFT expansion is viable through-
out the energy range appropriate to the EFT only if the
size of the LECs conforms to the power counting; i.e.,

C0 ∼
1

MΛb
, C2 ∼ C ′2 ∼

1

MΛ3
b

, (20)

etc., corresponding to as ∼ rs ∼ ap ∼ 1/Λb. Here, Λb
is the “hard scale” beyond which the EFT description
breaks down. The scaling given by Eq. (20) is commonly
referred to as the “natural” case [38]. The EFT pertur-
bation series then corresponds to an expansion in powers
of Q/Λb.

C. Many-body ladder diagrams and renormalons

Closing the external lines of two-body scattering dia-
grams, one obtains the particle-particle (pp) ladder dia-
grams of MBPT. For these diagrams, the factors corre-
sponding to the pp bubbles are given by

Jn(P, k,Λ) =

∫
d3q

4π

q2n

k2 − q2
n̄|P−q|/2n̄|P+q|/2f

2(q/Λ) ,

(21)

where n̄k = θ(k − kF), kF is the Fermi momentum, and
q is the relative momentum of the two particle lines in a
given pp bubble. The hole lines correspond to integrating
over P and k. The pp bubble can be separated as

Jn(P, k) = IUV
n (k,Λ) + I R

n (P, k) , (22)
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where the cutoff-independent part is given by

J R
n (P, k) =

∫
d3q

4π

q2n

k2 − q2

[
n̄|P−q|/2n̄|P+q|/2 − 1

]
=
kF

2
+
P

2
+
k

2
ln

∣∣∣∣kF + P − k
kF + P + k

∣∣∣∣
+
k2

F − P 2 − k2

4P
ln

∣∣∣∣ (kF + P )2 − k2

k2
F − P 2 − k2

∣∣∣∣ . (23)

Notably, the series of pp ladder diagrams is a di-
vergent asymptotic series with zero radius of conver-
gence [25, 39, 40]. The physical context of this so-
called “renormalon divergence” is the Cooper pairing
phenomenon [39]. Mathematically, the divergence is due
to the singularities of J R

n (P, k) at the boundaries of the
hole-line integrals (i.e., the Lebesgue dominated conver-
gence theorem is not satisfied).2

D. Multi-fermion scattering and logarithms

While the two-body scattering diagrams involve only
UV power divergences [see Sec. II B], multi-fermion scat-
tering involves also logarithmic divergences ∼ ln(Λ/Q),
where Q is an invariant kinematical variable. For scat-
tering diagrams, Q is an external momentum, and in
MBPT at zero temperature Q is the Fermi momentum
kF. That is, logarithmic UV divergences appear with a
ratio of scales, which implies that their coefficients must
be regulator independent (in contrast to the coefficients
of UV power divergences), see also Ref. [11]. Renormal-
ization removes the dependence on the UV cutoff Λ such
that the logarithms become ln(Λ0/Q), where Λ0 is an
arbitrary auxiliary scale [see Sec. IV for details]. The de-
pendence on Λ0 is canceled by the “running” with Λ0 of
the many-body coupling gj associated with the respective
counterterm. Note that this cancellation requires that
the involved terms are kept together, i.e., independent
partial resummations are inhibited by the requirement
of Λ0 independence.

For g > 2, the first logarithms in perturbative N -body
scattering (for N > 3) appear from the C0 interaction at
order 3N − 5, i.e., at fourth order in the three-body sec-
tor. (The first momentum-dependent logarithmic diver-
gence appears at order 3N − 3 and is renormalized byD2,
etc., conforming to the perturbative EFT power count-
ing.) The fourth-order three-body scattering diagrams
with logarithmic divergences, Γ1 and Γ2, are shown in
Fig. 2; the associated many-body diagrams are listed in
Fig. 3. They are renormalized by the contributions from

2 Note that (in contrast to, e.g., relativistic φ4 theory [41]) the
renormalon divergence occurs for both the renormalized and the
regularized perturbation series. The MBPT series has still zero
radius convergence if the ladders are resummed [39, 42]; the
large-order behavior is however (expected to be) dominated by
renormalons [39].

the leading three-body contact interaction with coupling
D0 (corresponding to the last diagram in Fig. 2). This
requires that the cutoff dependence of the D0 coupling is
then given by

D0(Λ) = D0(Λ0) + ηM3C4
0 ln(Λ/Λ0) . (24)

The regulator-independent coefficient η is obtained from
the evaluation of the diagrams Γ1 and Γ2 (plus the
bubble-counterterm diagram Γct

2 ) of Fig. 2, or equiva-
lently, from the evaluation of the corresponding many-
body diagrams; see Sec. IV for details. The dependence
of the first term D0(Λ0) is such that D0(Λ) is indepen-
dent of the auxiliary scale Λ0. The value of D0(Λ0) has
to be fixed (for a given choice of Λ0) by matching to few-
or many-body data.

For g = 2, all logarithmic divergences from S-wave in-
teractions cancel, as required by the Pauli principle (the
leading three-body contact interactions are Pauli blocked
for g = 2). That is, for g = 2 the S-wave part of the
MBPT series is completely determined by two-body scat-
tering (i.e., by the ERE). For P -wave interactions or S-
wave interactions in g > 2 systems on the other hand, an
increasing number of N -body couplings is needed for per-
turbative renormalization beyond the two-body sector.

Finally, we note that the contact interactions between
fermions can be rewritten such that they involve the
propagation of (so-called) dimer fields, and carrying out
the partial diagrammatic resummations that renormal-
ize the dimer propagator makes the C0 part of the per-
turbation series for three-body scattering UV finite also
for g > 2 [43]. Nevertheless, to achieve cutoff inde-
pendence of the integral equation that corresponds to
resumming the remaining diagrams requires to include
the leading three-body coupling D0 (but no higher-order
three-body interactions) [43, 44]. (Perturbatively ex-
panding the nonperturbative three-body scattering am-
plitude then allows one to determine the perturbative
D0 from nonperturbative three-body data [45].) Beyond
the two-body sector, the relation of the nonperturbative
renormalization of the C0 interaction (with a single three-
body coupling D0) to the perturbative case, which re-
quires in addition to C0 and D0 also many-body contact
interactions at higher orders, is thus nontrivial, and a
general understanding of this issue is still missing [46].

E. Resummations for large scattering length

If there is a two-body bound-state at threshold the S-
wave scattering length as is unnaturally large, and in this
case the perturbative EFT expansion is of limited use. In
the two-body sector, this case can be straightforwardly
dealt with by resumming the C0 contributions and adding
C2, . . . perturbatively, which leads to [29, 38]

T (s)(k) =
1

1
as

+ ik
+

rsk
2(

1
as

+ ik
)2 + . . . . (25)
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Γ1 Γ2 Γct
2 D0

Figure 2. The first three-body scattering diagrams with logarithmic divergences Γ1 and Γ2. Also shown is the counterterm
diagram Γct

2 for the pp bubble of Γ2 (the counterterm is depicted as a shaded blob). The fourth diagram is the leading three-
body contact contribution in three-fermion scattering, which includes the counterterm for the logarithmic UV divergences of
Γ1 and Γ2. Closing the external lines one obtains from Γ1 and Γ2 the MBPT diagrams with logarithmic divergences II5, II6,
IIA1, and III1 shown in Fig. 3 below. See Sec. IV for details on the evaluation of these diagrams.

Such a simple analytic resummation of the C0 con-
tributions is however not possible for the much more
complicated MBPT series. A notable benchmark for
nonperturbative many-body treatments of the C0 term
is given by the as →∞ limit, corresponding to the
unitary Fermi gas. From dimensional analysis it fol-
lows that the ground-state energy density of the uni-
tary Fermi gas of spin one-half fermions is given by
E(kF) = ξE0(kF), where E0(kF) = k5

F/(10π2M) is the
noninteracting ground-state energy density and ξ is the
Bertsch parameter. From experiments with ultracold
atoms [2], the value ξ ≈ 0.376(4) has been inferred.

The most straightforward nonperturbative many-body
approximation consists of resumming a subclass of
MBPT diagrams. The analytic resummation of the
particle-particle (pp) ladders gives ξpp ≈ 0.237 [33, 47],
and resumming also hole-hole (hh) and mixed pp-hh lad-
ders gives ξladders ≈ 0.5076 [47].3 In addition, a value for
ξε ≈ 0.475 was deduced in Ref. [49] by expanding in terms
of ε = 4− d, where d is the number of space dimensions,
and subsequently interpolating between the ε = 2 and
ε = 0 results for E(kF). Even more close comes the value
ξLW ≈ 0.36 obtained from a self-consistent Luttinger-
Ward type approach with resummed ladders [50] (see also
Ref. [51]). (See also Ref. [42] for finite-temperature cal-
culations based on Borel-resummed diagrammatic Monte
Carlo calculations.) The most accurate value has been
obtained from QMC computations, ξQMC = 0.372(5) [7].

Predictions for ξ may also be obtained by applying
resummation methods such as Padé approximants to the
as part of the Fermi-momentum expansion [52, 53]. We
will present results from this approach in Sec. VI B.

III. FOURTH-ORDER TERM FOR
SPIN ONE-HALF FERMIONS

We now start with the discussion of the perturba-
tive EFT expansion for dilute many-fermion systems at
fourth order. Logarithms and many-body interactions

3 The resummation of particle-hole ladders (“ring diagrams”) be-
comes relevant for large values of g, in particular regarding the
expansion about the large-g limit [48].

arise only for spin multiplicities g > 2, the intricacies of
this case are postponed until Sec. IV. Here, we discuss
the spin one-half case, g = 2, but we leave the notation
general such that the results not affected by logarith-
mic terms can be carried over to g > 2. There are two
different types of contributions at fourth order: (i) the
second-order MBPT diagram with one C0 and one C2

vertex, and (ii) fourth-order MBPT diagrams with four
C0 vertices (for g > 2 there is also the first-order diagram
with the D0 vertex). In each case, (in cutoff regulariza-
tion) one has also two-body counterm contributions from
lower-order MBPT diagrams.

For the calculation of the contribution (i), see Refs. [28,
54]. The calculation of the contribution (ii) is much more
involved. Among the possible MBPT diagrams with four
C0 vertices, only those without single-vertex loops have
to be considered at zero temperature. This is because
all diagrams with single-vertex loops are removed by
first-order mean-field (i.e., Hartree-Fock) insertions [55],
and for a momentum-independent interaction, first-order
mean-field renormalization at zero temperature has no
effect for a uniform system. Therefore, as can easily be
verified explicitly, these diagrams cancel each other at
each order. The 39 remaining fourth-order many-body
diagrams can be divided into four topological species:

• I(1-6): ladder diagrams,

• IA(1-3): ring diagrams,

• II(1-12), IIA(1-6): other two-particle irreducible di-
agrams,

• III(1-12): two-particle reducible diagrams,

where we have labeled diagrams according to groups
that are closed under permutations of the vertices:
I(1–6), IA(1–3), II(1–12), IIA(1–6), III(1–12). Diagrams
III(3,6,11,12) are anomalous and thus give no contribu-
tion in zero-temperature MBPT [55, 56]. The 33 remain-
ing diagrams are shown in Fig. 3.

Diagrams I1, I6, and IA1 are the fourth-order versions
of the third-order pp, hh, and ph diagrams; see, e.g.,
Ref. [57]. Diagrams I(2-5) are mixed pp-hh ladder di-
agrams. The diagrams in the pairs I(3,4), III(7,8) and
III(9,10) can be combined to get simplified energy de-
nominators; I(2,5), II(1,2), II(3,4), II(7,8), II(11,12) and
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I1 I2 I3 I4 I5 I6

IA1 IA2 IA3

II1 II2 II3 II4 II5 II6

II7 II8 II9 II10 II11 II12

IIA1 IIA2 IIA3 IIA4 IIA5 IIA6

III1 III2 III7 III8 III9 III10

Figure 3. The 33 fourth-order Hugenholtz diagrams I(1-6), IA(1-3), II(1-12), IIA(1-6), and III(1,2,7-10. Diagrams II5 and IIA1
(corresponding to Γ1) as well as II6 and III1 (corresponding to Γ2) have logarithmic UV divergences.

IIA(2,4) give identical results for a spin-independent po-
tential; and for a momentum-independent potential the
contribution from I(3+4) is half of that from I(2+5).

The ladder diagrams I(1-6) are most conveniently com-
puted by expanding the semianalytic formula for the lad-
der resummation derived by Kaiser [47]. The expressions
obtained in this way can be derived from the usual many-
body expressions by introducing relative momentum co-
ordinates and applying various partial-fraction decom-
positions as well as the Poincaré-Bertrand transforma-
tion formula [58]. For the numerical evaluation of the
IA diagrams, it is more convenient to use single-particle
momenta instead of relative momenta, because then the
phase space is less complicated. The II, IIA and III dia-
grams without divergences can be evaluated in the same
way as the IA diagrams. The following diagrams involve
divergences:

• I(1,2,4,5), II(1,2,6), III(1,8): UV power diver-
gences,

• II(5,6), IIA1, III1: logarithmic UV divergences,

• III(1,2,8,10): energy-denominator divergences.

The UV power divergences, corresponding to pp bub-
bles, are renormalized in terms of (low-order) diagrams
with two-body counterterm vertices. For g = 2, the log-
arithmic UV divergences cancel in the sums II5+IIA1
and II6+III1. Finally, the energy-denominator diver-
gences correspond to higher-order poles at the integra-
tion boundary; they cancel in the sums III(1+8) and
III(2+10).

The counterterms for power divergences can be imple-
mented by performing subtractions in the bubble parts
of the integrands. For example, using a sharp cutoff,
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f(p/Λ) = θ(Λ− p), and scaling all momenta by a factor
kF, the regularized expression for II(1+2) is given by

E4,II(1+2)(Λ) = −ζ(g − 3)
∑
i,j,k
d

θcdθkcθjeθde
nijkn̄cde
Dcd,ijDde,ik

×
∑
a

θab
n̄ab
Dab,ij

∣∣∣∣ dummyb=i+j−a
c=i+j−d
e=i+k−d

. (26)

Here,
∑

i ≡
∫
d3i/(2π)3, the distribution functions are

nij... ≡ ninj · · · and n̄ab... ≡ n̄an̄b · · ·, with ni ≡ θ(1− i)
and n̄a ≡ θ(a− 1), and the energy denominators are
given by Dab,ij ≡ (a2 + b2 − i2 − j2)/(2M). Moreover,
ζ = k9

Fg(g − 1)C4
0 , and θab ≡ θ(Λ/kF − |a− b|/2). The

dependence of a given MBPT diagram on g is obtained
by inserting a factor δσ1,σ′

1
δσ2,σ′

2
− δσ1,σ′

2
δσ2,σ′

1
for each

vertex and summing over the spins σ
(′)
1 , σ

(′)
2 of the in-

and outgoing lines. (For P -wave interactions the factor is
δσ1,σ′

1
δσ2,σ′

2
+ δσ1,σ′

2
δσ2,σ′

1
.) For details on the diagram-

matic rules, see, e.g., Ref. [11, 59]. The renormalized
expression is given by4

ER
4,II(1+2) = −ζ(g − 3)

∑
i,j,k
a,d

nijkn̄cde
Dcd,ijDde,ik

×
[
n̄ab
Dab,ij

− 1

Daa,00

] ∣∣∣∣ dummyc=i+j−d
e=i+k−d
b=i+j−a

, (27)

where the part ∼ 1/Daa,00 corresponds to the countert-
erm contribution. This expression can be further simpli-
fied such that only one unbounded integral appears, i.e.,
using∑

a

[
n̄ab
Dab,ij

− 1

Daa,00

]
= −

∑
a

na + nb − nab
Dab,ij

(28)

we find

ER
4,II(1+2) = 2ζ(g − 3)

∑
i,j,k,a

d

nijkan̄cde
Dcd,ijDde,ik

P
Dab,ij

∣∣∣∣ dummyc=i+j−d
e=i+k−d
b=i+j−a

,

(29)

where P denote the Cauchy principal value. The direct
application of Eq. (28) is prohibited for II6 and III1, be-
cause in that case the pertinent energy denominators in-
volve additional particle momenta. The regularized ex-
pression for II6 is given by

E4,II6(Λ) = −ζ(g − 3)
∑
i,j,k
a,c

θabθkaθcdθjeθbe

× nijkn̄abcde
Dab,ijDbe,ikDbcd,ijk

∣∣∣∣∣ dummyb=i+j−a
d=k+a−c
e=k+a−j

. (30)

4 Throughout the paper, we label the cutoff-independent renormal-
ized expressions corresponding to UV divergent diagrams with a
subscript “R”.

Substituting K = (i + j)/2, p = (i − j)/2, z = k, A =
(a − b)/2, and Y = (c − d)/2, and omitting redundant
regulator functions, we have

E4,II6(Λ) = −8M3 ζ(g − 3)
∑
K,p,z
A,Y

nijkn̄abcde θAθY
1

A2 − p2

× 1

(A + p) · (A−K + z)

1

Y 2 +R
, (31)

where R = (3A + K− z) · (A−K + z)/4− p2. The UV
power subdivergence can now be separated via

1

Y 2 − p2 +R
=

1

Y 2︸︷︷︸
;E4,II6(i)

− R
(Y 2 +R)Y 2︸ ︷︷ ︸

;E4,II6(ii)

. (32)

For the UV power divergence of II6(i), the counterterm
can be implemented analogous to Eq. (28). The sec-
ond part II6(ii) is only logarithmically UV divergent.
For g = 2, the logarithmic divergence is canceled if we
add the III1 term, which requires (due to the energy-
denominator divergence) to add also III(7+8). The reg-
ularized expression for III(1+7+8) is given by

E4,III(1+7+8)(Λ) = −ζ(g − 1)
∑
i,j,k
a,c

θabθab
nijkn̄abc
D2
ab,ij

×
(
θkaθcd

n̄d
Dbcd,ijk

−θcd′
n̄d′

Dcd′,ik

) ∣∣∣∣∣ dummyb=i+j−a
d=k+a−c
d′=i+k−c

. (33)

The energy-denominator divergence corresponds to
Dab,ij = 0, and in that case the two terms in the large
parentheses cancel each other. For III(1+8) also the lin-
ear UV divergences are removed.5 For g = 2, the con-
tribution from the sum II6(ii)+III(1+7+8) is then given
by

ER
4,II6(ii)+II(1+7+8)

∣∣
g=2

=− 8M3ζ
∑
K,p,z
A,Y

nijkn̄abc
A2 − p2

× G ,

(34)

with

G =
1

(A + p) · (A−K + z)

R
(Y 2 +R)Y 2

+
1

A2 − p2

[
1

Y 2 +R
− 1

Y 2 +R′

]
, (35)

5 The counterterms for the power divergences of III1 and III8
would come from diagrams with single-vertex loops.
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where R′ = −(K + p− Z)2/4. Finally, the regularized
expressions for II5 and IIA1 are given by

E4,II5(Λ) = −ζ(g − 3)
∑
i,j,k
a,c

θabθkbθcdθadθkeθce

× nijkn̄abcde
Dab,ijDce,ijDacd,ijk

∣∣∣∣ dummy
b=i+j−a

d=i+j+k−a−c
e=i+j−c

, (36)

E4,IIA1(Λ) = −ζ(3g − 5)
∑
i,j,k
a,c

θabθkbθcdθadθjeθce

× nijkn̄abcde
Dab,ijDce,ikDacd,ijk

∣∣∣∣ dummy
b=i+j−a

d=i+j+k−a−c
e=i+k−c

. (37)

For g = 2, the sum of these contribution is UV finite, and
is given by

ER
4,II5+IIA1

∣∣
g=2

=ζ
∑
i,j,k
a,c

nijkn̄abcd
Dab,ijDacd,ijk

∣∣∣∣ dummy
dummy
b=i+j−a

d=i+j+k−a−c

×
(

n̄e
Dce,ij

∣∣∣∣ dummydummy
e=i+j−c

− n̄e′

Dce′,ik

∣∣∣∣ dummydummy
e′=i+k−c

)
. (38)

The contributions from II5+IIA1 as well as
II6(ii)+II(1+7+8) can of course also be evaluated
by subtracting the individual logarithmic divergences,
i.e., by adding the respective (counterterm) parts of
D0(Λ) (only the sum of these parts vanishes for g = 2),
see Sec. IV. We have however found that evaluating the
sums II5+IIA1 and II6(ii)+II(1+7+8) provides better
numerical precision (see Table I).

IV. FOURTH-ORDER TERM FOR
HIGHER SPINS

For g > 2, the logarithmic divergences of II6, IIA1, II5
and III(1+7+8) are canceled by the contribution from
the first-order MBPT diagram with D0 vertex. In cutoff
regularization, this cancellation is tantamount to

Λ
∂

∂Λ
D0(Λ) = ηM3C4

0 , (39)

where the coefficient η is determined by the logarithmic
UV divergence. This can be integrated as

D0(Λ) = D0(Λ0) + ηM3C4
0 ln(Λ/Λ0) , (40)

where Λ0 is an arbitrary auxiliary scale, and D0(Λ) is
independent of Λ0, as evident from the running with Λ0

according to Eq. (39) of the integration constant D0(Λ0):
D0(Λ′0) = D0(Λ0) + ηM3C4

0 ln(Λ′0/Λ0). The value of
D0(Λ0) has to be fixed (for a given choice of Λ0) by
matching to few- or many-body data (see, e.g., Ref. [45]).

For further details we refer to the general discussion of
logarithmic divergences in EFT provided in Sec. II D.

Below, we first show how the fourth-order term for
g > 2 is calculated in cutoff regularization, and then dis-
cuss the calculation in dimensional regularization (DR).
The pendant of Eq. (39) in DR is given by Eq. (85) below.

A. Cutoff regularization

The coefficient η = η1 + η2 is determined by the log-
arithmic divergence of II6+IIA1+II5+III(1+7+8), or
equivalently, by the logarithmic divergence of the three-
body scattering diagrams Γ1 and Γ2 (see Fig. 2). Using a
sharp cutoff, f(p/Λ) = θ(Λ− p), the regularized expres-
sion for diagram Γ1 is given by

Γ1(Λ) = −3324

3!
C4

0J1(Λ) , (41)

with

J1(Λ) =
∑

x1,x2,x3,l1,l2

θx1l1θx1k1
θx2l1θx2l2θx3l2θx3k′

3

× 1

D∗x1l1,k2k3
D∗x2l1l2,k1k2k3

D∗x3l2,k′1k
′
2

× δx1l1,k2k3
δx2l1l2,k1k2k3

δx3l2,k′
1k

′
2
, (42)

where k1,2,3 and k′1,2,3 are the three-momenta of
the in- and outgoing particles, respectively, with
k1 + k2 + k3 = k′1 + k′2 + k′3, and x1,2,3 and l1,2 are the
loop momenta, and D∗ = D − iε. The factor 33 comes
from cyclic permutations of the initial and final lines,
the factor 24 is due to the number of equivalent contrac-
tions for a given choice of final and initial lines, and the
factor 1/3! is due to final-state antisymmetrization. Sim-
ilarly, the regularized expression for the sum of diagrams
Γ2 and Γct

2 of Fig. 2 is given by

[Γ2 + Γct
2 ](Λ) = −3223

3!
C4

0J2(Λ) , (43)

with

J2(Λ) =
∑

x1,x2,x3,l1,l2

θx1l1θx1k1
θx2l2θx3l2θx3k′

1

× 1

D∗x1l1,k1k2
D∗x3l1,k′1k

′
2

[
1

D∗x2l1l2,k1k2k3

− 1

D∗l2l2

]
× δx1l1,k2k3δx2l1l2,k1k2k3δx3l1,k′

1k
′
2
, (44)

where the term in squared brackets involves the countert-
erm for the two-particle bubble. Overall, the logarithmic
divergence is given by

Γ1(Λ)
Λ→∞−−−−→ −η1M

3C4
0 ln(Λ) , (45)

[Γ2 + Γct
2 ](Λ)

Λ→∞−−−−→ −η2M
3C4

0 ln(Λ) . (46)
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To determine η1,2 we can set all external momenta to
zero, i.e.,

J1,2(Λ)
k
(′)
1,2,3→0
−−−−−−→M3I1,2(Λ) . (47)

Introducing relative momenta q1 and q2 such that
{l1,2,x1,2,3} = {q1, (q1 + 2q2)/2,q1, (q1 − 2q2)/2,−q1},
the integral I2(Λ) is given by

I2(Λ) =

Λ∫
ℵ

d3q1

(2π)3

Λ∫
ℵ

d3q2

(2π)3

1

q4
1

[
1

3q2
1/4 + q2

2

− 1

q2
2

]
, (48)

where the integral boundaries are with respect to the
radial coordinates. To have an infrared finite expres-
sion we have, as a formal intermediate step, intro-
duced an arbitrary infrared cutoff ℵ. This integral can
be expressed in terms of the inverse tangent integral
Ti2(x) = [Li2(ix)− Li2(ix)]/(2i), with Li2(z) the com-
plex dilogarithm, i.e.,

−3324

3!
I2(Λ) = −

√
3

23π4
Ti2

(
2q2√
3q1

) ∣∣∣∣Λ,Λ
ℵ,ℵ

. (49)

Using Ti2(x) = Ti2(1/x) + (π/2)sgn(x) lnx as well as
Ti2(0) = 0 we find (for ℵ → 0)

η2 = −3
√

3

4π3
. (50)

For Γ1, this method to extract logarithms is prohibited
by the θx3l2 factor and a nontrivial angular integral. This
problem can be avoided in DR where loop integrals re-
main invariant under translations of the integration vari-
ables. As shown in Sec. IV B, one obtains

η1 =
1

π2
. (51)

From this, the renormalized fourth-order contribution to
the ground-state energy is

E4(kF) = χ
[
D0(Λ0) + ηM3C4

0 ln(kF/Λ0)
]

+
∑
i

ER
4,i + . . . , (52)

where i ∈ {II5,IIA1,II6,III(1+7+8)}, and the ellipses re-
fer to contributions from other fourth-order diagrams.
The factor χ corresponding to the first-order three-body
diagram is

χ =
g(g − 1)(g − 2)

6

∑
ijk

nijk = α(g − 2)
M

108π4a4
s

, (53)

with α = nεF(kFas)
4(g−1), where n = g k3

F/(6π
2) is the

fermion number density and εF = k2
F/(2M) the nonin-

teracting Fermi energy. Finally, the terms ER
4,i are given

by6

ER
4,II5 = lim

Λ→∞
[E4,II5(Λ) + (g − 3)L1(Λ)] , (54)

ER
4,IIA1 = lim

Λ→∞
[E4,IIA1(Λ) + (3g − 5)L1(Λ)] ,

(55)

ER
4,II6 = lim

Λ→∞

[
ER

4,II6(i) + E4,II6(ii)(Λ) (56)

+(g − 3)L2(Λ)] ,

ER
4,III(1+7+8) = lim

Λ→∞

[
E4,III(1+7+8)(Λ) + (g − 1)L2(Λ)

]
.

(57)

Here, the terms L1(Λ) and L2(Λ) cancel the logarithmic
parts of the respective many-body diagrams, ∼ ln(Λ/kF),
with 4(g − 2)L1(Λ)+2(g − 2)L2(Λ) = χηM3C4

0 ln(Λ/kF)
matching the form of the logarithm in Eq. (52). They are
given by

L1(Λ) = α
16

27π2
ln(Λ/kF) , (58)

L2(Λ) = −α 8
√

3

9π3
ln(Λ/kF) , (59)

which matches (with different phase-space prefactors) the
logarithmic parts of the three-body scattering integrals
J1(Λ) and J2(Λ), respectively. One finds that

ER
4,II5 = α(g − 3)× 0.0645(1), (60)

ER
4,IIA1 = α(3g − 5)× 0.0647(1) , (61)

ER
4,II6 = −α(g − 3)× 0.0265(2) , (62)

ER
4,III(1+7+8) = −α(g − 1)× 0.0513(2) . (63)

The sum of the first and second two contributions is given
by

ER
4,II5+IIA1 = α

[
0.00018(1) + (g − 2)× 0.2586(4)

]
,

(64)

ER
4,II6+III(1+7+8) = α

[
− 0.0248(1)

− (g − 2)× 0.0778(3)
]
, (65)

where in each case the leading term corresponds to the
result obtained in the g = 2 calculation of Sec. III.

B. Dimensional regularization

The DR calculation of the logarithmic terms is similar
to the calculation of the corresponding terms for bosonic
systems carried out by Braaten and Nieto [60]. In DR,

6 See Eq. (32) for the splitting of II6 into a power-divergent part
II6(i) and a logarithmically divergent part II6(ii).
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the coefficient of the logarithm arising from diagram Γ1

is determined by the integral

ID1 = µ2(3−D)

∫
dDl1

(2π)D

∫
dDl2

(2π)D
1

(l21 + ℵ2)

× 1

(l21 + l22 + l1 · l2 + ℵ2)

1

(l22 + ℵ2)
. (66)

Here, µ is a momentum scale introduced to maintain the
correct mass dimension, and the scale ℵ serves to admit
the use of Eq. (72) below. [Note that this is a different
scale from the ℵ used in Sec. IV A within cutoff regular-
ization.] Introducing Feynman parameters we obtain

ID1 = µ2(3−D)

∫
dDl1

(2π)D

∫
dDl2

(2π)D

1∫
0

dx

1−x∫
0

dy

× 2

[l21(x+ y) + l22(1− x) + l1 · l2y + ℵ2]
3 . (67)

Shifting l1 → l1 − l2y/(2x + 2y) and rescaling the inte-
gration variables leads to

ID1 = µ2(3−D)FD1
∫
dDl1

(2π)D

∫
dDl2

(2π)D
2

(l21 + l22 + ℵ2)3
,

(68)

with

FD1 =

1∫
0

dx

1−x∫
0

dy

[
(x+ y)(1− x)− y2

4

]−D/2
. (69)

We can expand this in ε = D− 3, FD=3+ε
1 = F1 + εF ′1 +

O(ε2), with

F1 =

1∫
0

dx

1−x∫
0

dy

[
(x+ y)(1− x)− y2

4

]−3/2

=
4π

3
,

(70)

F ′1 = −
1∫

0

dx

1−x∫
0

dy
ln
(
x+ y)((1− x)− y2

4

)
2
[
(x+ y)(1− x)− y2

4

]3/2 ≈ 4.71849 .

(71)

Applying the relation [36]∫
dDq

1

(q2 + ℵ2)n
= πD/2

1

ℵ2n−D
Γ(n−D/2)

Γ(n)
, (72)

and analytically continuing to D = 3 + ε, we then find

ID=3+ε
1 =

1

48π2

[
−1

ε
− 2 ln(ℵ/µ) + ζ1 +O(ε)

]
, (73)

where ζ1 = ln(4π)− γE − 3F ′1/(4π) ≈ 0.827352, with
γE ≈ 0.577216 the Euler-Mascheroni constant. This
agrees with the corresponding result for bosonic systems

derived by Braaten and Nieto [60]. Note that for D = 3
the left side of Eq. (72) is UV divergent for n > −3/2,
but the right side is singular only for n = 3/2. This is
the well-known feature that power divergences are auto-
matically set to zero in DR.

Efimov [20] and Bishop [26] extracted the leading log-
arithms by introducing a cutoff Λ on one of the loop mo-
menta l1,2 only. DR makes it clear why this method gives
the correct result: the analytic continuation D → 3 + ε
can be performed for individual subintegrals individually.
For diagrams with subdivergences this procedure would
in fact be required to obtain finite results. This is the
case for diagram Γ2, where the divergent integral is

ID2,a = µ3−D
∫
dDl1

(2π)D
1

(l21 + ℵ2)

1

(l21 + ℵ2)

× µ3−D
∫

dDl2
(2π)D

1

(l21 + l22 + l1 · l2 + ℵ2)
. (74)

Shifting l2 → l2 − l1/2, performing the l2 integration,
and analytic continuation to D = 3 + ε leads to

ID2,a = −µ
3−D

4π

∫
dDl1

(2π)D
1

(l21 + ℵ2)

1

(l21 + ℵ2)

√
3

4
l21 + ℵ2 ,

(75)

which, for D = 3, indeed diverges only logarithmically in
the UV.7 Note that also the IR divergence (for ℵ = 0,
D = 3) of the l2 integrals has been eliminated. However,
to get to a form where we can apply Eq. (72) we would
proceed instead as

ID2,a = µ2(3−D)

∫
dDl1

(2π)D

∫
dDl2

(2π)D

1∫
0

dx(1− x)

× 2

[l21 + l22x+ l1 · l2x+ ℵ2]
3 . (76)

Shifting l1 → l1 − l2x/2 and rescaling the integration
variables leads to

ID2,a = µ2(3−D)FD2,a
∫
dDl1

(2π)D

∫
dDl2

(2π)D
2

(l21 + l22 + ℵ2)3
,

(77)

with

FD2,a =

1∫
0

dx(1− x)

[
x− x2

4

]−D/2
, (78)

which is singular for D > 2, obviously a manifestation of
the subdivergence. This singularity can be removed by

7 In particular, setting D = 3 and ℵ = 0, and introducing an UV
cutoff on l1 is equivalent to the calculations by Efimov [20] and
Bishop [26].



11

adding the term

ID2,b = −µ2(3−D)

∫
dDl1

(2π)D
1

(l21 + ℵ2)

1

(l21 + ℵ2)

×
∫

dDl2
(2π)D

1

(l22 + ℵ2)
, (79)

i.e.,

ID2,b = µ2(3−D)FD2,b
∫
dDl1

(2π)D

∫
dDl2

(2π)D
2

(l21 + l22 + ℵ2)3
,

(80)

where

FD2,b = −
1∫

0

dx(1− x)
[
x− x2

]−D/2
(81)

is also singular for D > 2, but FD2 = FD2,a + FD2,b is finite.

Expanding FD=3+ε
2 = F2 + εF ′2 +O(ε)2, where

F2 = −2
√

3, (82)

F ′2 = −8π

3
−
√

3
(

ln (4/3)− 2
)
≈ −5.41176 , (83)

we find for ID2 = ID2,a + ID2,b:

ID2 = −
√

3

32π3

[
−1

ε
− 2 ln(ℵ/µ) + ζ2 +O(ε)

]
, (84)

with ζ2 = ln(4π)− γE + F ′2/(2
√

3) ≈ 0.39157. This
again matches the corresponding result for bosons de-
rived by Braaten and Nieto [60]. As required, the coeffi-
cient of lnµ matches the one of ln Λ in the cutoff calcu-
lation, see Eq. (50).

Subtracting in Eqs. (73) and (84) only the di-
vergent parts ∼ 1/ε corresponds to minimal sub-
traction (MS). The coupling D0 is then fixed as
D0 = D?

0(µ) + ηM3C4
0/(2ε), where the scaling of D?

0(µ)
with µ is identical to the scaling of D0(Λ0) with Λ, i.e.,
instead of Eq. (39) we have

µ
∂

∂µ
D?

0(µ) = ηM3C4
0 . (85)

The couplings D?
0(µ) and D0(Λ0) are not identical for

µ = Λ0, i.e., they differ in terms of a subtraction constant
specific to the respective regularization and subtraction
procedure. Instead of Eq. (52) we have

E4(kF) = χ
[
D?

0(µ0) + ηM3C4
0 ln(kF/µ0)

]
+
∑
i

EMS
4,i + . . . , (86)

with8

EMS
4,II5 = E4,II5(ℵ) + (g − 3)L?1(ℵ) , (87)

EMS
4,IIA1 = E4,IIA1(ℵ) + (3g − 5)L?1(ℵ) , (88)

EMS
4,II6 = ER

4,II6(i) + E4,II6(ii)(ℵ) + (g − 3)L?2(ℵ) ,

(89)

EMS
4,III(1+7+8) = E4,III(1+7+8)(ℵ) + (g − 1)L?1(ℵ) , (90)

where 4L?1(ℵ) + 2L?2(ℵ) = χηM3C4
0 ln(ℵ/kF), with

L?1(ℵ) = α
16

27π2

[
ζ1
2

+ ln(ℵ/kF)

]
, (91)

L?2(ℵ) = −α 8
√

3

9π3

[
ζ2
2

+ ln(ℵ/kF)

]
, (92)

and the terms E4,i(ℵ) are given by subtracting from the
respective integrands their values with the denominators
replaced by those corresponding to ID1,2. For example,
the term E4,II5(ℵ) is given by

E4,II5(ℵ) = −ζ(g − 3)
∑
i,j,k
a,c

nijk

×

[
n̄abcde

Dab,ijDce,ijDacd,ijk

∣∣∣∣∣ dummy
b=i+j−a

d=i+j+k−a−c
e=i+j−c

− 1

DℵabDℵceDℵacd

∣∣∣∣∣ dummyb=−a
d=−a−c
e=−c

]
, (93)

with Dℵab = Dab + ℵ2/(k2
FM). One finds

EMS
4,II5 = −α(g − 3)× 0.0500(1) , (94)

EMS
4,IIA1 = −α(3g − 5)× 0.0498(1) , (95)

EMS
4,II6 = α(g − 3)× 0.0664(2) , (96)

EMS
4,III(1+7+8) = α(g − 1)× 0.0416(2) . (97)

The sums of the first two and the last two contributions
are given by

EMS
4,II5+IIA1 = α

[
0.00018(1)− (g − 2)× 0.1995(4)

]
,

(98)

EMS
4,II6+III(1+7+8) = α

[
− 0.0248(1) + (g − 2)× 0.1079(2)

]
.

(99)

From Eqs. (64) and (65), the relation between the “MS”
values and the “R” ones is given by

EMS
4,II5+IIA1 = ER

4,II5+IIA1 − α(g − 2)× 0.4581(8),

(100)

EMS
4,II6+III(1+7+8) = ER

4,II6+III(1+7+8)

+ α(g − 2)× 0.1857(8) . (101)

As required, the difference between the “MS” values and
the “R” values vanishes for g = 2, see Sec. III.

8 For II6 we separate again the power-divergent part II6(i), see
Eq. (32).
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V. GROUND-STATE ENERGY AT
FOURTH ORDER

Here, we summarize the results for the low-density ex-
pansion for the ground-state energy density E(kF) of the
dilute Fermi gas. The expansion reads

E(kF) = n εF

[
3

5
+ (g − 1)

∞∑
ν=1

Cν(kF)

]
, (102)

with n = g k3
F/(6π

2) the fermion number density,
εF = k2

F/(2M) the noninteracting Fermi energy, and g
the spin multiplicity. The expansion coefficients up to
fourth order are given by

C1(kF) =
2

3π
kFas, (103)

C2(kF) =
4

35π2
(11− 2 ln 2)(kFas)

2, (104)

C3(kF) =
[
0.0755732(0) + 0.0573879(0) (g − 3)

]
(kFas)

3

+
1

10π
(kFas)

2kFrs +
1

5π

g + 1

g − 1
(kFap)

3, (105)

C4(kF) = −0.0425(1) (kFas)
4

+ 0.0644872(0) (kFas)
3kFrs

+ γ4(kF) (g − 2) (kFas)
4 . (106)

The first two terms are the only ones for which closed-
form expressions are known; these where first derived
by Lenz [17] in 1929 and Lee and Yang [18] as well as
de Dominicis and Martin [19] in 1957, respectively. The
third-order term was first computed by de Dominicis and
Martin [19] in 1957 for hard spheres with two isospin
states, by Amusia and Efimov [21] in 1965 for a single
species of hard spheres, and then by Efimov [23] in 1966
for the general dilute Fermi gas. It was also computed
subsequently by various authors [11, 24–26, 47, 54, 57].
Initial studies of the fourth-order term for g = 2 were
performed by Baker in Refs. [22, 25, 52, 53], see also
Ref. [28] for a discussion of these.

Up to third order, only two-body (i.e., ERE) param-
eters appear and the expansion is a polynomial in the
Fermi momentum kF. At higher orders N > 4, logarith-
mic terms ∼ knF ln(kF/Λ0) enter, starting at N = 4 for
g > 2; for g = 2, no logarithms emerge from S-wave in-
teractions (as a consequence of the Pauli exclusion prin-
ciple). The logarithms are accompanied by many-body
couplings [at fourth order, the coupling D0(Λ0)] whose
dependence on the auxiliary scale Λ0 is such that the
Fermi-momentum expansion is independent of Λ0. The
many-body couplings are renormalization scheme depen-
dent and have to be matched to few-body (or many-
body) observables calculated in the same scheme. Using
a Galilean invariant regulator function and subtracting
only divergent terms (“R” scheme), the g > 2 part γ4(kF)

Table I. Results for the contributions to the regular (i.e., non-
logarithmic) a4s part of C4(kF). Diagrams with ∗ (∗∗) have UV
power (logarithmic) divergences, which are subtracted by the
respective counterterm contributions. Diagrams with ∗∗∗ have
energy-denominator singularities. For the diagrams with loga-
rithmic divergences, “(R)” denotes the result obtained using a
regulator function and subtracting only divergent terms, and
“(MS)” the result corresponding to DR with minimal sub-
traction. The uncertainty estimates take into account both
the statistical Monte Carlo uncertainties and variations of the
cutoff. The g factors are listed without the generic factor
g(g − 1). See Fig. 3 for the diagrams.

diagram g factor value
I1∗ 1 +0.0383115(0)
I2∗+I3+I4∗+I5∗ 1 +0.0148549(0)
I6 1 −0.0006851(0)
IA1 g(g − 3) + 4 −0.003623(1)
IA2 g(g − 3) + 4 −0.001672(1)
IA3 g(g − 3) + 4 −0.003343(1)
II1∗+II2∗ g − 3 +0.058359(1)
II3+II4 g − 3 −0.003358(1)
II5∗∗(R) g − 3 +0.0645(1)
II5∗∗(MS) g − 3 −0.0500(1)
II6∗∗,∗(R) g − 3 −0.0265(2)
II6∗∗,∗(MS) g − 3 +0.0664(2)
II7+II12 g − 3 +0.003923(1)
II8+II11 g − 3 +0.007667(1)
II9 g − 3 −0.000981(1)
II10 g − 3 −0.000347(1)
IIA1∗∗(R) 3g − 5 +0.0647(1)
IIA1∗∗(MS) 3g − 5 −0.0498(1)
IIA2+IIA4 3g − 5 +0.004122(1)
IIA3 3g − 5 −0.000461(1)
IIA5 3g − 5 +0.003542(1)
IIA6 3g − 5 +0.003331(1)
III1∗∗∗,∗∗,∗(R)+III7+III8∗∗∗,∗ g − 1 −0.0513(2)
III1∗∗∗,∗∗,∗(MS)+III7+III8∗∗∗,∗ g − 1 +0.0416(2)
III2∗∗∗+III9+III10∗∗∗ g − 1 +0.001650(1)
(II5+IIA1)g=2 1 +0.00018(1)
(II6+III1+III7+III8)∗g=2 1 −0.0248(1)∑

diagrams,g=2 1 −0.0425(1)

of the fourth-order term takes the form9

γR
4 (kF) =

MD0(Λ0)

108π4a4
s

+ 0.2707(4)− 0.00864(2) (g − 2)

+
16

27π3

(
4π − 3

√
3
)

ln(kF/Λ0) . (107)

On the other hand, using DR with minimal subtraction

9 The logarithmic part of Eq. (107) was first derived by Efimov [20,
23] and subsequently in Refs. [10, 24, 26, 60]. Note that in the
literature [10, 11, 20, 23, 24, 26, 45, 60] the arbitrary scale Λ0 is
usually set to Λ0 = 1/as.
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(“MS” scheme) one obtains

γMS
4 (kF) =

MD?
0(Λ0)

108π4a4
s

− 0.0017(4)− 0.00864(2) (g − 2)

+
16

27π3

(
4π − 3

√
3
)

ln(kF/Λ0) . (108)

The scaling of D0(Λ0) and D?
0(Λ0) with Λ0 is identical,

and determined by the Λ0 independence of γ4(kF). The
values of D0(Λ0) and D?

0(Λ0) differ by a subtraction con-
stant, i.e.,

D?
0(Λ0) = D0(Λ0)− 108π4a4

s

M
× 0.2724(8) . (109)

Although the subtraction constant is arbitrary, it is nev-
ertheless pertinent to specify its value (i.e., to specify the
renormalization scheme) in order to predict many-body
results from few-body data, or vice versa.

The individual diagrammatic contributions to the C4
0

part of the fourth-order term are listed in Table I. The
computations have been carried out using the Monte
Carlo framework introduced in Ref. [61] to evaluate high-
order many-body diagrams, see also Ref. [28]. The re-
sults for the contributions that involve logarithmic di-
vergences, II5, II6, IIA1, and III(1+7+8), have the
largest numerical uncertainties. For g = 2, slightly
more precise results can be given for II5+IIA1 and
II6+III(1+7+8), because then no logarithmic diver-
gences occur (see Sec. III).

VI. CONVERGENCE ANALYSIS AND
RESUMMATIONS

As discussed above, for spin one-half fermions (g = 2)
the logarithmic terms from S-wave interactions cancel
(by virtue of the Pauli principle). Logarithms still arise
from P -wave interactions at higher orders, i.e., at a cer-
tain order Nlog. The Fermi-momentum expansion for
E = E/E0, truncated at an order N < Nlog, is thus a
polynomial in δ = kFas:

EN (δ) = 1 +

N∑
ν=1

ενδ
ν , (110)

where E0 = 3nk2
F/(10M) is the energy density of

the free Fermi gas, and the expansion coefficients
εν ≡ εν(as, rs, ap, . . . ) are completely determined by the
ERE. In the following, we analyze the convergence be-
havior of Eq. (110) for two different cases. First, we
examine the case where all ERE parameters beyond as
are zero, which we denote by LO. Here, the coefficients
in the kFas expansion are given by

{εν} =

{
10

9π
,

44− 8 ln 2

21π2
,

0.0303089(0),−0.07076(39), . . .

}
. (111)

Second, we consider the hard-sphere gas (HS) where as =
3rs/2 = ap, leading to

{εν} =

{
10

9π
,

44− 8 ln 2

21π2
, 0.383987(0), 0.00089(39), . . .

}
.

(112)

In Sec. VI A we examine the convergence behavior of
the LO and HS expansions and analyze the uncertainties
of the predictions for E/E0. We will find that in both
cases the Fermi-momentum expansion is well-converged
at fourth-order for |δ| . 0.5. In Sec. VI B we then show
that Padé and Borel resummations allow us to extend the
domain of convergence to |δ| . 1. Finally, in Sec. VI C
we discuss the challenges regarding the calculation of the
Fermi-momentum expansion beyond fourth order.

A. Perturbative convergence and
uncertainty estimates

In Ref. [28] we assessed the convergence pattern of the
kFas expansion at a given order N 6 4 by setting the
next-higher coefficient εN+1 = ±max [εν6N ]. This spans
an uncertainty band of width ∆EN = 2 |εN+1| δN+1.
Here, we use the pointwise Bayesian model with conju-
gate distributions developed in Refs. [62, 63] to estimate
εN+1 given the computed coefficients. This model al-
lows one to evaluate posterior distributions analytically
(given the conjugate prior) rather than through Monte
Carlo sampling. Specifically, we treat the coefficients εν
as random numbers drawn from a single normal distri-
bution,10

pr
(
εν | c̄2

) i.i.d.∼ 1√
2πc̄2

exp

[
− ε2

ν

2c̄2

]
, (113)

with mean zero and variance c̄2. The computed coeffi-
cients εν64 are assumed to be known draws from this
a priori unknown distribution function, while εν>4 are
unknown. We also assume a scaled inverse-χ2 prior on c̄2,

pr
(
c̄2
)
∼

(τ2
0
η0
2 )

η0
2

Γ(η02 )

exp
[
−η0τ

2
0

2c̄2

]
c̄2(1+

η0
2 )

, (114)

with η0 degrees of freedom and scale parameter τ0. By
adjusting the hyperparameters we can incorporate our
prior estimate of the (not computed) higher-order co-
efficients. We fix η0 = 3 and determine τ2

0 by the re-
quirement that the mean value η0τ

2
0 /(η0 − 2) equals

|max [εν6N ]|. This prior choice disfavors high values for

10 z ∼ · · · is a common notation in statistics that reads “the vari-
able z is distributed as · · · ”. The “i.i.d.” above the ∼ indicates
a set of independent and identically distributed (i.i.d.) random
variables.
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c̄2 and thus εν>N . Using Bayes’ theorem and marginal-
izing over c̄2, one then finds that the posterior for a co-
efficient at order n > N is given by the Student’s t dis-
tribution [62], i.e.,

pr
(
εν>N | {εν}Nν=1, τ

2
)
∼ tη

(
εν ; 0, τ2

)
, (115)

with

tη(x;µ, τ2) =
1√
πητ2

Γ(η+1
2 )

Γ(η2 )

(
1 +

(x− µ)2

ητ2

)− η+1
2

.

(116)

Here, the scale parameter τ2 satisfies

ητ2 = η0τ
2
0 +

N∑
ν=1

ε2
ν . (117)

Furthermore, η = η0 + nc, where nc is the number of co-
efficients in the set {εν}ncν=1 used to inform the probability
distribution. We consider all available coefficients, i.e.,
nc = 4, so that all four known coefficients are used for
each N ∈ {1, 2, 3, 4} in Eq. (115). Finally, from Bayes’
theorem one then finds that the posterior distribution
representing the uncertainty of EN (δ) is given by [62]

pr
(
EN (δ) | {εν}Nν=1, τ

2
)
∼ tη

(
E(δ); EN (δ), δ2(N+1)τ2

)
,

(118)

where the variable E(δ) corresponds to the presumed ex-
act results.

The convergence behavior of the Fermi-momentum ex-
pansion for the LO and the HS case is examined in Fig. 4.
There, we show the perturbative results for E = E/E0

obtained for truncation orders N = 2, 3, 4 together with
the respective 68% credibility intervals of our Bayesian
analysis. Also shown are data points obtained from non-
perturbative QMC computations [8, 64, 65]. One sees
that the perturbative results are very close to the QMC
data for |δ| . 0.5 but start to deviate strongly for |δ| & 1.
In the LO case the relative error with respect to the QMC
point at δ = −0.5 (EQMC ≈ 0.862) is 4.5% (E1 ≈ 0.823) at
first, 0.8% (E2 ≈ 0.870) at second, 0.4% (E3 ≈ 0.866) at
third, and 0.1% (E4 ≈ 0.861) at fourth order, while in the
HS case the relative error at δ = +0.5 (EQMC ≈ 1.254)
is 6.2% (E1 ≈ 1.177) at first, 2.5% (E2 ≈ 1.223) at sec-
ond, 1.3% (E3 ≈ 1.271) at third, and 1.3% (E4 ≈ 1.271)
at fourth order. The convergence of the expansion is
slower in the HS case, which is signified by the relatively
large size of the third-order coefficient there, ε3 ≈ 0.38
(in the LO case it is ε3 ≈ 0.03). The fourth-order HS co-
efficient ε4 ≈ 0.0009 on the other hand is very small (due
to a large cancellation between S- and P -wave contribu-
tions), so the third- and fourth-order HS curves in Fig. 4
are almost indistinguishable.

The Bayesian uncertainty bands in Fig. 4 are similar to
those from the simple εN+1 = ±max [εν6N ] analysis, see
Fig. 2 of Ref. [28]. In both schemes, going to higher orders

in the expansion reduces the width of the uncertainty
bands for |δ| . 1, and for |δ| . 0.5 the bands are very
small for N = 4. This supports the conclusion that the
expansion is well-converged at fourth order for |δ| . 0.5,
and diverges for |δ| & 1.11 Note that these results do not
depend on as being of natural size; only kFas has to be
small.

B. Padé and Borel resummations

Resummation methods provide a means to extrapo-
late a (truncated) series beyond the region where well-
converged results are obtained, |δ| . 0.5 in the present
case. The two most common methods are Padé approx-
imants [66, 67] and Borel resummation [68–71]. Below,
we apply these two methods to the Fermi-momentum ex-
pansion for the LO case (with negative δ). We do not
consider the HS case, because higher-order ERE param-
eters become relevant there at stronger coupling. Re-
garding Padé approximants, we restrict the discussion
to those that give predictions for the Bertsch parameter
ξ = E(−∞).12 In the Borel case we focus on the region of
weak-to-intermediate coupling since only there (i.e., for
|δ| . 1) the extrapolations are well converged.

1. Padé approximants

For a given formal power series

E(δ) = 1 +

∞∑
ν=1

ενδ
ν , (119)

the Padé[n,m] approximant is the rational function

Padé[n,m](δ) = 1 +

∑n
k=1 akδ

k

1 +
∑m
l=1 blδ

l
, (120)

whose Maclaurin expansion matches the series up to or-
der N = n+m. Only “diagonal” Padés with n = m have
a nontrivial unitary limit, i.e., Padé[n, n] −→ 1 + an/bn
for δ → −∞. To have meaningful results in the strong-
coupling regime thus mandates the restriction to even
N = 2n, i.e., (N,n) = (2, 1) and (N,n) = (4, 2).

The results obtained from the Padé[1, 1] and [2, 2] ap-
proximants (which were already studied in Ref. [28]) are
shown in the left panel of Fig. 4.13 One sees that the

11 More precisely, the Fermi-momentum expansion is an asymptotic
series that diverges forN →∞ for all |δ| > 0, see Sec. II C. “Well-
converged” means here that the result seems to be insensitive to
lowering the truncation order.

12 Padé predictions for the Bertsch parameter were previously stud-
ied by Baker [52, 53], see also Ref. [28].

13 For a more extensive study of the Padé[1, 1] approximant, see
Ref. [72].



15

4 3 2 1 0
(kF as) 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
E/

E 0
g = 2, ap = rs = 0

fourth order
third order
second order
Padé [1/1]
Padé [2/2]
QMC

0.0 0.2 0.4 0.6 0.8 1.0
kF as

1.0

1.2

1.4

1.6

1.8

2.0

E/
E 0

g = 2, as = 3
2 rs = ap

Figure 4. Convergence behavior of the Fermi-momentum expansion for the ground-state energy E/E0 of a dilute Fermi gas
of spin one-half fermions with ap = rs = 0 (LO, left panel) and as = 3rs/2 = ap (HS, right panel) at negative and positive
kFas, respectively. The respective uncertainty bands correspond the the 68% credibility intervals from our Bayesian estimation
of the next-higher coefficient in the kFas expansion. In the LO case we also show results obtained from two different Padé
approximants, Padé[1, 1] (gray line) and Padé[2, 2] (black line). Finally, the thick red dots in each panel correspond to results
from nonperturbative QMC computations [8, 64, 65]. Note that the x-axes in the two panels are different, and based on the
available QMC data we show the attractive regime with as < 0 in the left panel and the repulsive regime with as > 0 in right
panel. See the text for more details.

Padé[2, 2] approximant is very close to the QMC results
for δ . −1.2, while Padé[1, 1] is in better agreement close
to the unitary limit δ → −∞. Note however that pair-
ing correlations become relevant for larger values of −δ,
and it is questionable that Padés can capture pairing ef-
fects (which are expected to be encoded in the high-order
behavior of the kFas expansion [39]) at low truncation
orders. The range for the Bertsch parameter obtained
from Padé[1, 1] and [2, 2], ξPadé ∈ [0.326, 0.541], is consis-
tent with the value ξ ≈ 0.376 extracted from experiments
with cold atomic gases, and also with the extrapolated
value for the normal (i.e., nonsuperfluid) Bertsch param-
eter ξn ≈ 0.45 [2]. Altogether, these results seem to indi-
cate that Padé approximants converge in a larger region,
compared to the Fermi-momentum expansion.

2. Borel resummation

Borel resummation is based on the Borel(-Leroy) trans-
formed perturbation series, i.e.,

B(t) ' 1 +

∞∑
ν=1

εν
Γ(ν + 1 + β0)

tν , (121)

where the standard Borel transform corresponds to
β0 = 0. In contrast to the perturbative series [Eq. (119)],
the Borel transformed series has a finite convergence ra-
dius: from the large-order behavior

εν
ν→∞∼ aνΓ(ν + 1 + β), (122)

one finds that the leading singularity of B(t) is at
t = 1/a [69, 73, 74]. Formally, in the so-called Borel-
summable case where all singularities of B(t) are off the
positive real axis (in particular, a < 0), the exact E(δ)
is then obtained by first analytically continuing B(t) be-
yond t = 1/|a| and then carrying out the inverse Borel
transform:

E(δ) =

∫ ∞
0

dt e−t t β0B(tδ) . (123)

Regarding practical applications where the perturbative
series is only known up to a finite order N , this procedure
allows one to construct approximants BN (δ) for E(δ) in
terms of approximants BN (t) for B(t):

E(δ) ≈ BN (δ) =

∫ ∞
0

dt e−t t β0BN (tδ) . (124)

A straightforward approach to construct BN (t) is the
Padé-Borel method, which uses Padé approximants
matched to the Borel series [Eq. (121)]. [We note
that while the conjectured large-order behavior a = −1/π
(and β = 0) [39] would imply a non-Borel summable se-
ries for δ < 0, we find that the Padé-Borel BN (tδ) ap-
proximants for N 6 4 have no poles on the positive t axis
for δ < 0.]

In Fig. 5, we show the results for E(δ) from the second-,
third-, and fourth-order Padé-Borel approximants ob-
tained using the standard choice β0 = 0 for the Borel
transform. Also shown are the corresponding perturba-
tive results as well as the results from QMC computations
from the left panel of Fig. 4. One sees that, compared to
the perturbative results, the Borel approximants for E(δ)
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Figure 5. Results for the ground-state energy E/E0 of a
dilute Fermi gas of spin one-half fermions with ap = rs = 0
obtained from the Padé-Borel resummation method, see the
text for details. The numbers in parentheses denote the un-
derlying truncation order N . Also shown are results from
QMC computations (filled red circles) as well as the pertur-
bative results at second (dotted blue line), third (solid yellow
line) and fourth order (dashed red line), see also Fig. 4.

have a much better convergence behavior for δ > 0.5.
Moreover, for |δ| . 1 the fourth-order Borel results are
very close to the QMC data.

Overall, the results depicted in Figs. 4 and 5 show that
Padé and Borel resummation methods allow to improve
the convergence behavior of the C0 part of the Fermi-
momentum expansion. To investigate this further would
require future computations of higher-order series coef-
ficients beyond fourth order. As discussed below, this
however faces serious challenges.

C. Beyond fourth order

The first complication regarding the calculation of co-
efficients beyond fourth order is the rapid increase of
the number of Hugenholtz diagrams with N . Graph
theory methods allow one to automatically generate di-
agrams [75–77], from which one finds that the num-
ber of diagrams without single-vertex loops increases
as (1, 1, 3, 39, 840, 27300, . . .) for N = (1, 2, 3, 4, 5, 6, . . .),
where the number of the relevant normal diagrams in-
creases as (1, 1, 3, 33, 668, 21572, . . .).

For a given set of higher-order diagrams, the evaluation
of those without UV divergences and those that have only
simple ladder-type divergences (which are renormalized
by two-body counterterms) would be relatively straight-
forward. That is, for a given diagram the only complica-

tion compared to a fourth-order diagram of similar type
would be additional three-momentum integrals.

The main challenge concerning higher-order calcula-
tions lies (as in the fourth-order case) with UV diver-
gences that are not renormalized by two-body countert-
erms. For instance, at fifth order one encounters several
three-body scattering diagrams of the form of diagrams of
Fig. 2 but with two additional intermediate states. These
diagrams have logarithmic subdivergences that cancel if
the diagrams are summed. The remaining linear UV di-
vergence cancels for g = 2 and is otherwise renormalized
by a momentum-independent three-body counterterm.
For the next diagonal Padé approximant (Padé[3, 3]) one
would have to go to sixth order, where a much larger
number of diagrams with complementary subdivergences
and also the first momentum-dependent logarithmic di-
vergence ∼ Q2 ln(Λ/Q) appears in three-body scattering
(see Sec. II D).

VII. SUMMARY

In this paper we have discussed high-order perturba-
tive EFT calculations for fermions at very low energy
scales. In particular the issue of renormalization has
been investigated in detail. We have then elaborated and
expanded on our recent calculation [28] of the fourth-
order term in the Fermi-momentum or kFas expansion
for the ground-state energy of the general dilute Fermi
gas. The result for the complete (i.e., including both an-
alytic and logarithmic terms) fourth-order coefficient has
been given for two different regularization and renormal-
ization schemes: cutoff regularization (with divergence
subtraction) and dimensional regularization (with mini-
mal subtraction).

The central results for the Fermi-momentum expan-
sion are summarized in Sec. V, where in Table I the
various contributions to the regular (i.e., nonlogarith-
mic) (kFas)

4 part of the fourth-order term are listed.
In Sec. VI we have then investigated the convergence
behavior of the expansion for the case of spin one-
half fermions. Using Bayesian methods and compar-
ing against results from nonperturbative QMC compu-
tations, we found that the expansion is well-converged at
fourth order for |kFas| . 0.5, and exhibits divergent be-
havior for |kFas| & 1, see Fig. 4. (To be precise, the kFas
expansion is a divergent asymptotic series; by “divergent
behavior” we mean that the accuracy of the result at low
truncation orders is deficient.)

Furthermore, we have shown that Padé-Borel resum-
mations (of the as-only part of the expansion) improve
the convergence and give well-converged results at fourth
order in the region |kFas| . 1, see Fig. 5. Accurate re-
sults throughout the entire BCS regime with negative
kFas (and into the BEC region) can however be obtained
via resummations that incorporate constraints on the be-
havior for kFas → −∞ from QMC computations [78, 79].
Given the technical challenges that arise beyond fourth
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order, it is unlikely that the kFas expansion will be eval-
uated to even higher precision in the near future.

Our results for the Fermi-momentum expansion at
fourth order provide important constraints for ultracold
atoms and dilute neutron matter. Specifically, our results
serve as useful benchmarks for future QMC simulations
of dilute Fermi systems and may be used to construct
improved models of neutron -star crusts. Future work
may be targeted at high-order calculations of the dilute
Fermi gas expansion at finite temperature.
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