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We study the equation of state of neutron matter at finite temperature based on two- and three-
nucleon interactions derived within chiral effective field theory to next-to-next-to-next-to-leading
order. The free energy, pressure, entropy, and internal energy are calculated using many-body per-
turbation theory including terms up to third order around the self-consistent Hartree-Fock solution.
We include contributions from three-nucleon interactions without employing the normal-ordering
approximation and provide theoretical uncertainty estimates based on an order-by-order analysis in
the chiral expansion. Our results demonstrate that thermal effects can be captured remarkably well
via a thermal index and a density-dependent effective mass. The presented framework provides the
basis for studying the dense matter equation of state at general temperatures and proton fractions
relevant for core-collapse supernovae and neutron star mergers.

I. INTRODUCTION

Core-collapse supernovae and neutron star mergers are
energetic events at the extremes. These fascinating and
spectacular astrophysical phenomena probe strong in-
teractions over a wide range of densities and tempera-
tures. Their multimessenger observations can be con-
fronted with numerical simulations, which require infor-
mation on the equation of state (EOS) as a key input. To
date, all numerical EOS tables are based on phenomeno-
logical models, which make it difficult to assess strong
interaction uncertainties.

Microscopic calculations based on modern nuclear in-
teractions on the other hand make it possible to quantify
theoretical uncertainties, at least up to nuclear densi-
ties. In this density regime the relevant baryonic de-
grees of freedom are neutrons and protons. Chiral effec-
tive field theory (EFT) provides a systematic low-energy
expansion of the interactions between nucleons with a
direct connection to the symmetries of quantum chro-
modynamics (QCD) [1–3]. Calculations based on such
interactions at different orders in the expansion allow to
estimate uncertainties due to omitted higher-order terms.
Furthermore, three-nucleon (3N) interactions, known to
be important for observables of atomic nuclei and mat-
ter [4–6], are determined consistently with two-nucleon
(NN) interactions, and for neutrons they are predicted
parameter-free to next-to-next-to-next-to-leading order
(N3LO) [7, 8]. In this work we employ a set of modern in-
teractions that have been shown to predict masses of light
and medium-mass nuclei as well as empirical saturation
properties of symmetric nuclear matter at zero tempera-
ture in good agreement with empirical constraints [9–12].

While nuclear matter at zero temperature has been
investigated quite extensively based on chiral EFT in-
teractions [7, 9, 10, 13–22], studies at finite tempera-
ture are less advanced. This is an unsatisfying situation
as, e.g., recent core-collapse supernova simulations have
demonstrated the importance of a proper treatment of
finite-temperature effects in the EOS [23, 24]. In neu-

tron star merger simulations, thermal effects are some-
times approximated via a constant thermal index (see,
e.g., Ref. [25]). The availability of microscopic calcula-
tions over the full range of relevant temperatures would
make such approximations obsolete, at least up to den-
sities where nuclear interactions are applicable and reli-
able. For recent work that implements chiral EFT con-
straints into EOS functionals, with a focus on thermal
effects, see Ref. [26]. Because these dense astrophysi-
cal environments tend to be neutron-rich, this paper fo-
cuses on finite-temperature calculations of neutron mat-
ter, but the calculational framework can be extended in
a straightforward way to general proton fractions.

Nuclear matter at finite temperature has been stud-
ied with a range of many-body methods. In addition
to calculations using the Brueckner-Hartree-Fock ap-
proach [27] and nominally variational calculations [28],
the finite-temperature EOS has been calculated using
many-body perturbation theory (MBPT) [29–33], and
nonperturbatively using the self-consistent Green’s func-
tion (SCGF) approach [15, 34–36] and lattice EFT [37].

In this work, we take several steps towards improved
finite-temperature MBPT calculations. For an efficient
evaluation of individual diagrams, we represent NN and
3N interactions in a single-particle representation follow-
ing the framework of Ref. [10] and employ Monte Carlo
sampling techniques to reliably compute the resulting
high-dimensional MBPT phase space integrals in an ef-
ficient way. We treat 3N interactions explicitly, without
employing density-dependent two-body approximations
(see, e.g., Refs. [13, 38]). Moreover, we include NN and
3N interactions through partial-wave decomposed matrix
elements [6, 39], which enables MBPT calculations for
general nuclear forces. To provide systematic uncertainty
estimates, we employ a large set of chiral NN plus 3N in-
teractions at different orders in the chiral expansion up
to N3LO. We take into account all contributions of NN
interactions up to third-order in the MBPT expansion
around the self-consistent Hartree-Fock (HF) solution,
which implicitly includes contributions from anomalous
diagrams at second and third order in MBPT. Finally,
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we provide a detailed analysis of thermal interaction ef-
fects and to which extent they can be approximated by
a density-dependent effective mass and a thermal index,
which is of interest for astrophysical applications.

This paper is organized as follows. In Sec. II we dis-
cuss the general MBPT framework at finite tempera-
ture, in particular the role of anomalous contributions
and the simplifications when using a HF partitioning of
the Hamiltonian. In Sec. III we present results for var-
ious thermodynamic quantities and their uncertainties
based on different nuclear interactions obtained from chi-
ral EFT up to N3LO. Moreover, we study the different
contributions to thermal effects, and use the thermal in-
dex to extract the neutron effective mass. Finally, we
summarize and conclude in Sec. IV.

II. MANY-BODY FRAMEWORK

With the development of chiral EFT interactions at
low cutoff scales [1, 2] and renormalization group (RG)
methods that allow to evolve interactions to lower reso-
lution [40, 41], many-body perturbation theory (MBPT)
becomes a viable and systematic approach to the nu-
clear many-body problem [40, 42–44]. Here, in Sec. II A
we first provide a short review of the finite-temperature
MBPT expansion around a general one-body Hamilto-
nian. In zero-temperature MBPT calculations it is com-
mon to use a HF reference state, since this improves
the many-body convergence compared to MBPT around
the noninteracting Fermi gas. The generalization of HF-
MBPT to finite temperatures involves some subtleties
which we discuss in Sec. II B.

A. MBPT at finite temperature

We determine the thermodynamic properties of neu-
tron matter starting from the grand-canonical potential

Ω(T, µ) = − 1

β
lnZ (T, µ) , (1)

where Z(T, µ) = Tr
(
e−β(H−µN)

)
is the partition func-

tion of the system, with T = 1/β the temperature, N
the particle number, and µ the chemical potential. The
Hamiltonians H considered in this work consist of the ki-
netic term (H0) plus contributions from two- and three-
nucleon interactions (see Sec. III):

H = H0 + VNN + V3N . (2)

Many-body perturbation theory offers the freedom to
choose a specific partitioning of the Hamiltonian which
defines the reference basis that is used for the pertur-
bative expansion. The simplest choice consists in ex-
panding Ω(T, µ) about the noninteracting system with
Hamiltonian H0. However, usually the convergence of

the expansion can be improved by choosing a more gen-
eral partitioning of the form

H = (H0 + U) + λ (VNN + V3N − U) , (3)

where the perturbation parameter λ is eventually set to
λ = 1. Here, the operator U corresponds to an effective
single-particle potential, i.e.,1

U =
∑
α

Uαa
†
αaα , (4)

with creation and annihilation operators a†α and aα. The
single-particle spectrum of the reference system is then
given by

εα =
k2

2M
+ Uα . (5)

The perturbation series of the grand-canonical potential
is then obtained as (see, e.g. Refs. [45, 46])

Ω(T, µ) =

∞∑
l=0

λlΩl(T, µ) , (6)

where Ω0(T, µ) = − 1
β

∑
α ln

(
1 + e−β(εα−µ)

)
is the

grand-canonical potential of the reference system. The
first-order contribution reads

Ω1(T, µ) =−
∑
α

nαUα

+
1

2

∑
αβ

nαnβ 〈αβ| A12VNN |αβ〉

+
1

6

∑
αβγ

nαnβnγ 〈αβγ| A123V3N |αβγ〉 , (7)

where A12 and A123 are two- and three-particle antisym-
metrizers, and the Fermi-Dirac distributions are given by

nα =
1

eβ(εα−µ) + 1
. (8)

Equation (7) matches the corresponding contribution
to the ground-state energy in zero-temperature MBPT,
with the Fermi-Dirac distributions replaced by θ(kF−k).
This correspondence is lost at second order and beyond,
where additional so-called anomalous contributions [45–
47] appear in finite-temperature MBPT. The second-
order contribution from two-body interactions is given
by

ΩNN
2 (T, µ) = ΩNN

2,normal(T, µ) + ΩNN
2,anomalous(T, µ) , (9)

1 Here and in the following we use collective labels α = (k, σ) for
momentum k and spin projection σ = ±1/2, and the shorthand

notation
∑
α fα =

∑
σ

∫
d3k
(2π)3

f(k, σ).
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where

ΩNN
2,normal(T, µ) = −1

8

∑
αβγδ

Pαβγδ |〈αβ| A12VNN |γδ〉|2 ,

(10)

with

Pαβγδ =
nαnβ(1− nγ)(1− nδ)− (1− nα)(1− nβ)nγnδ

εγ + εδ − εα − εβ
,

(11)

and

ΩNN
2,anomalous(T, µ) = − 1

2T

∑
β

nβ (1− nβ)

×

(∑
α

nα 〈αβ| A12VNN |αβ〉

)2

.

(12)

Furthermore, there are diagrams at second order that
involve the effective one-body potential, which are shown
in Fig. 2 below. Their analytical expressions are given
by

ΩNN-U
2 (T, µ) =

1

2T

∑
β

nβ (1− nβ)

×

(∑
α

nα 〈αβ| A12VNN |αβ〉

)
Uβ , (13)

ΩU-NN
2 (T, µ) =

1

2T

∑
α

nα (1− nα)

× Uα

∑
β

nβ 〈αβ| A12VNN |αβ〉

 ,

(14)

ΩU-U
2 (T, µ) = − 1

2T

∑
β

nβ (1− nβ)U2
β . (15)

The anomalous contributions given by Eq. (12)–(15) are
absent in the zero-temperature formalism [45–47]. Note
that the expression given by Eq. (11) has no poles at finite
T . In the T → 0 limit the two parts of the numerator in
Eq. (11) separate into two identical contributions (with
integrable poles at the integration boundary) whose sum
matches the corresponding zero-temperature expression.
The expressions for the second-order contributions in-
volving three-nucleon interactions have similar features,
and similar for contributions beyond second order.

While we focus the discussion here mostly on the con-
tributions from two-body interactions, in our calculations
we include the complete set of second-order contribu-
tions. In particular, we include also the residual 3N con-
tribution at second order [10, 48]. At third order we
include all contributions that involve only NN interac-
tions. Regarding the nonresidual third-order terms with

3N interactions, we have checked that their contribution
in neutron matter is small compared to the correspond-
ing diagrams containing only NN interactions. This is
consistent with the findings of Ref. [10]. There are also
residual 3N contributions at third order. Based on our
results for the second-order residual term we expect them
to be small, but this needs to be confirmed by explicit cal-
culations. A more detailed study of the zero-temperature
MBPT convergence including selected diagrams up to
fourth order can be found in Ref. [10]. The convergence
behavior of the expansion at finite temperature is simi-
lar, with well-converged results for neutron matter being
obtained at third order (e.g., for the EMN 450 N3LO
interaction the truncation error at third order is at the
100 keV level at n = 0.2 fm−3).

Usually we are interested in properties of the EOS at
a specific number density n. Thus, the relevant thermo-
dynamic potential is the free energy, which is obtained
from Ω(T, µ) in terms of the Legendre transformation

F (T, n) = Ω(T, µ) + µn(T, µ) , (16)

where the number density is given by

n(T, µ) = −∂Ω(T, µ)

∂µ
. (17)

In the T → 0 limit the free energy gives the ground-state
energy of the system.

The free energy determined from Eq. (16) and the
perturbation series for Ω(T, µ) up to a given order
will in general not reproduce the corresponding zero-
temperature perturbation series for the ground-state en-
ergy. This is because the zero-temperature formalism
uses the reference Fermi momentum kF whereas grand-
canonical MBPT at finite temperature uses the chemical
potential µ. In principle one could just use the grand-
canonical perturbation series also at T = 0. However,
formal arguments and numerical comparisons lead to the
conclusion that in general the grand-canonical perturba-
tion series is deficient compared to the zero-temperature
one [49].2 To obtain a finite-temperature perturbation
series that is consistent with the zero-temperature for-
malism, we follow Kohn and Luttinger [47] and formally
expand the chemical potential as

µ =

∞∑
l=0

λlµl , (18)

where µ0 is the chemical potential of the reference system
with formally the same density as the interacting system,
i.e.,

n(T, µ0) = −∂Ω0(T, µ0)

∂µ0
. (19)

2 This is particularly evident for a system with a first-order phase
transition (like, e.g., symmetric nuclear matter) [31].
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By inserting the expansion Eq. (18) into Eq. (16) and
reexpanding Ω and n around µ0 we obtain

F =
(

Ω
(0)
0 − µ0Ω

(1)
0

)
+ λΩ

(0)
1

+ λ2
(

Ω
(0)
2 − F a2

)
+ λ3

(
Ω

(0)
3 − F a3

)
+O

(
λ4
)
, (20)

where Ω
(m)
l = ∂mµ Ωl (T, µ)

∣∣
µ=µ0

. Here, the leading part

F0 = (Ω
(0)
0 − µ0Ω

(1)
0 ) is the free energy of the reference

system, and the additional contributions (due to the ex-
pansion about µ0) at second and third order are given
by

F a2 =

(
Ω

(1)
1

)2
2Ω

(2)
0

, (21)

F a3 =
Ω

(1)
1 Ω

(1)
2

Ω
(2)
0

−
(
Ω

(1)
1

)2
Ω

(2)
1

2
(
Ω

(2)
0

)2 +
Ω

(3)
0

(
Ω

(1)
1

)3
6
(
Ω

(2)
0

)3 . (22)

These expressions are obtained by fixing the higher-order
contributions µi in Eq. (18) such that Eq. (19) is main-
tained up to higher-order terms in the expansion of µ
about µ0.

One can show that for isotropic systems the addi-
tional terms given by Eqs. (21), (22), etc., cancel the
corresponding anomalous contributions in the T → 0
limit [47, 50].3 That is,

Ω
(0)
l (T, µ0)− F al (T, µ0)

T→0−−−→ E
(0)
l (kF) , (23)

where E
(0)
l (kF) is the contribution of order l in zero-

temperature MBPT, with kF = (3π2n)1/3 and n the den-
sity. Hence, the reexpanded perturbation series for the
free energy, Eq. (20), is consistent with zero-temperature
MBPT (in the isotropic case). In fact, since it does not
use the exact chemical potential anymore but only µ0

whose correspondence to the density is to all orders given
by Eq. (19), the reexpanded series may be seen to corre-
spond to perturbation theory for the canonical ensemble.

B. Finite-temperature HF-MBPT

The calculations in our paper are carried out using
the generalization of HF-MBPT to finite temperatures.
Compared to calculations with a noninteracting reference

3 The additional terms given by Eqs. (21), (22), etc., have a di-
agrammatic representation that is very similar to the one of
anomalous contributions (see, e.g., Refs. [31, 49]). Note also
that these contributions do not vanish individually in the T → 0

limit, as follows from 1
T
nβ
(
1− nβ

)
= ∂

∂µ
nβ

T→0−−−→ δ
(
εβ − µ

)
.

FIG. 1. Definition of the single-particle potential Uα (left
side) as the self-consistent Hartree-Fock self-energy. Solid
dots (squares) represent VNN (V3N) interactions.

system, using a HF basis is expected to improve the con-
vergence behavior of MBPT [10, 42, 49, 51]. In zero-
temperature and grand-canonical MBPT, respectively,
the HF single-particle potential is given by

Uα(kF) =
δE1(kF)

δnα
, Uα(T, µ) =

δΩ1(T, µ)

δnα
. (24)

Here, the functional derivative is defined via

∂

∂µ

∑
αβ...

f(nα, nβ , . . .) =

∑
αβ...

δf(nα, nβ , . . .)

δnξ

∂nξ
∂µ

∣∣∣∣
ξ∈{α,β,...}

. (25)

Explicitly, the expression for the HF potential reads [13]

Uα =
∑
β

nβ 〈αβ| A12VNN |αβ〉

+
1

2

∑
βγ

nβnγ 〈αβγ| A123V3N |αβγ〉 . (26)

This matches the expression for the first-order self-energy
correction to the in-medium single-particle propagator,
as shown diagrammatically in Fig. 1. Note that while
(for isotropic systems) the evaluation of the HF poten-
tial in the zero-temperature formalism is straightforward,
in the grand-canonical case it has to be computed self-
consistently by solving

εα(T, µ) =
k2

2M
+ Uα[T, µ; εα(T, µ)] (27)

at fixed T and µ.
The key part is now to consistently incorporate the HF

potential in the reexpanded perturbation series for the
free energy, Eq. (20). Since it depends on the chemical
potential, including the HF potential in the reexpansion
would generate additional contributions (via µ deriva-
tives) that spoil the consistency with zero-temperature
MBPT. To rectify this we “decouple” the self-consistent
HF potential from the thermodynamics by substituting

Uα(T, µ) −→ Uα(T, µ̃) , (28)

where µ̃ is an auxiliary “chemical potential” (introduced
solely as an intermediate tool) that is independent of µ.
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FIG. 2. Cancellation of anomalous NN contributions at sec-
ond order in Hartree-Fock MBPT at finite temperature. The
diagrams correspond to Eqs. (12), (13), (14), and (15) in that
order.

The reexpansion about µ0 now leaves the HF potential
invariant, and after it is performed we set

Uα(T, µ̃) −→ Uα(T, µ0) , (29)

leading to the consistent (i.e., canonical) generalization
of HF-MBPT to finite T .

Apart from improving the convergence of MBPT, the
self-consistent HF potential has also the benefit that it
removes all contributions associated with diagrams that
have single-vertex loops. In particular, it removes the
anomalous contributions as well as the additional ones
from the reexpansion about µ0 at second order [29] and
third order. For the second-order anomalous contribu-
tions from two-body interactions, this cancellation is de-
picted diagrammatically in Fig. 2. The cancellation oc-
curs because with our choice of Uα, the four diagrams
of Fig. 2 give matching expressions up to an additional
minus sign for the second and third diagram. Fur-

thermore, with our Uα it is Ω
(1)
1 = 0 after applying

Eq. (29), which implies that the correction terms given
by Eqs. (21) and (22) are zero [since they involve powers

of Ω
(1)
1 ]. Hence, with Uα given by the self-consistent HF

self-energy (incorporated as described above), the canon-
ical perturbation series for the free energy takes the sim-
ple form

F (T, µ0) = F0 + λΩ
(0)
1 + λ2Ω

(0)
2,normal + λ3Ω

(0)
3,normal

+O
(
λ4
)
, (30)

and the consistency with the zero-temperature formalism
is evident.4

4 Note, however, that new types of anomalous contributions that
are not canceled by the HF potential arise at fourth order and
beyond. These would either have to be kept as additional finite-
temperature diagrams (together with the corresponding terms
from the reexpansion about µ0), or higher-order corrections to
the single-particle potential would have to be included [49].

III. RESULTS

In this section we present a systematic study of the
neutron matter EOS based on different nuclear interac-
tions obtained from chiral EFT. First, we employ the
NN potentials of Entem, Machleidt, and Nosyk (EMN)
[52] with cutoffs Λ = 450 MeV and Λ = 500 MeV at
orders N2LO and N3LO. Three-nucleon interactions are
included up to the same order in the chiral expansion as
two-nucleon interactions, using nonlocal regulators with
the same cutoff Λ [10]. Note that the N2LO 3N contri-
butions from the mid- and short-range couplings cD and
cE vanish in neutron matter for nonlocal regulators [13],
and hence our results are independent of the particular
cD, cE fits for all employed interactions in this work.5

To explore the cutoff dependence we show the variation
from Λ = 450 MeV to Λ = 500 MeV as a band with
borders labeled “EMN N2LO” or “EMN N3LO”, respec-
tively. These interactions were studied in Ref. [10] up to
fourth order in the zero-temperature MBPT expansion,
which provides a benchmark for our calculations.

Second, to improve the convergence of the MBPT cal-
culations, we apply the similarity renormalization group
(SRG) [53] to decouple low and high momenta via uni-
tary transformations. The resulting low-resolution inter-
actions lead to less correlated wave functions and can
lead to a significantly improved convergence of many-
body calculations [40]. (Note, however, that unevolved
EMN interactions are still sufficiently perturbative to be
applicable for the neutron matter calculations presented
here.) In practical calculations the SRG flow cannot be
computed exactly but needs to be truncated, typically by
discarding all induced operators beyond the three-body
level (see, e.g., Refs. [54–57]). The Hebeler+ interac-
tions of Ref. [9] are derived by evolving the N3LO NN
potential of Ref. [58] to resolution scales λSRG, while the
3N interactions at N2LO are determined at the corre-
sponding resolution scale by fits to the 3H binding en-
ergy and the 4He radius using the cutoff Λ3N. In Ref. [9],
different NN+3N interactions were derived, each char-
acterized by λSRG/Λ3N. In this work we in particular
employ the interactions “1.8/2.0”, “2.8/2.0”, “2.0/2.5”
and “2.0/2.0 (PWA)”, where for the last a different set
of long-range 3N couplings has been used (see Ref. [9] for
details). Finally, we also employ new interactions from
Ref. [6], where NN+3N interactions are consistently SRG
evolved to scales λSRG using the framework of Ref. [59].
For all interactions, we include NN partial waves up to
total angular momentum J12 6 8. Three-nucleon par-
tial waves are included up to Jtot 6 9/2 and J12 6 5 or
6 for SRG-evolved and EMN interactions, respectively.
We have checked that these truncations give converged
results below the 100-keV level.

5 Note that three-body contributions proportional to c4 are absent
as well in pure neutron matter for all regulators [13].
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0 2 4 6 8 10

k [fm−1]

−40

−30

−20

−10

0

10
Σ

H
F

(k
)

[M
e
V

]

NN SRG + 3N SRG

n = 0.05 fm−3

n = 0.10 fm−3

n = 0.15 fm−3

n = 0.20 fm−3

T = 0

T = 20 MeV

FIG. 3. Self-consistent Hartree-Fock self-energy ΣHF(k) as
a function of momentum k at temperatures T = 0 (dashed)
and T = 20 MeV (solid lines) for different densities, obtained
from the consistently SRG-evolved NN+3N interaction with
λSRG = 1.8 fm−1.

To test the sensitivity to the SRG resolution scale
λSRG, we show the variation from λSRG = 1.8 fm−1

to λSRG = 2.8 fm−1 as bands with borders labeled
“NN SRG + 3N fit” for the Hebeler+ interactions (with
Λ3N = 2.0 fm−1) and “NN SRG + 3N SRG” for the con-
sistently evolved interactions. The cutoff and SRG scale
variations are only one source of uncertainty. Uncertainty
estimates based on the convergence of the EFT expansion
are studied in Sec. III B and are depicted in Figs. 9 and 11
as bands without borders.

For all results in the following we employ a HF parti-
tioning of the Hamiltonian. Therefore, we first show the
HF self-energy ΣHF(k) in Fig. 3 for different densities at
T = 0 and T = 20 MeV. Here and in the following we use
T = 10−3 MeV to obtain zero-temperature results with
our finite-temperature code. We have checked that using
even lower temperatures does not change the results and
verified that our T = 10−3 MeV results can reproduce
zero-temperature results from Ref. [10] very well. The
expression for the HF self-energy is given by Eq. (26).
Note that Fermi-Dirac distribution functions nβ depend
on the self-energy, such that a self-consistent solution is
necessary, in contrast to zero-temperature calculations.
We start with a free spectrum and iterate Eq. (27) un-
til convergence is reached. The self-consistent HF self-
energy is more conveniently obtained by working at fixed
density; i.e., we perform the self-consistent iterations of
Eq. (27) while adjusting at each iteration step µ0 (resp. µ̃,
see Sec. II B) to n according to Eq. (19).

The results shown in Fig. 3 are for the
“NN SRG + 3N SRG” interaction at λSRG = 1.8 fm−1.
We find that the self-energy is mainly attractive up
to high momenta around k ≈ 6 fm−1. Three-particle
interactions yield repulsive net contributions for mo-
menta k . 5 fm−1 while the temperature dependence

of the results is remarkably small. At the highest
density shown (n = 0.2 fm−3), the NN contribution to
the self-energy is −69.1 MeV while 3N contributions
yield 33.7 MeV for k = 0 and T = 0. For very high
momenta (k & 10 fm−1), the self-energy vanishes due to
the employed regulators for the NN and 3N interactions.

A. Free energy, pressure, and entropy

The free energy is calculated within MBPT using the
formalism discussed in Sec. II. We include contributions
from NN interactions up to third order, while we ne-
glect 3rd order diagrams involving 3N interactions. Mo-
mentum integrals in the individual diagrams are evalu-
ated using the Vegas integration algorithm from Ref. [60]
where we take the implementation from Ref. [61] (see also
Ref. [10]).

In Fig. 4 we present results for the free energy per
particle for T = 0 (left) and T = 20 MeV (right panel).
The different bands (and lines) correspond to different
interactions, and the bands result from variations of the
interaction cutoff scale and the SRG resolution scale (see
legend and the previous section for details). Lines at the
borders of bands always represent results for one of the
Hamiltonians in that given set. Theoretical uncertainty
estimates based on the EFT expansion are provided in
Sec. III B.

While our results at low densities are almost insen-
sitive to the interactions considered, differences emerge
with increasing density. In particular, the size of the
cutoff variation bands increases, as expected. We note
that the cutoff dependence of the EMN N3LO interac-
tions is larger than for N2LO in our calculation. This
could be due to a slower MBPT convergence at N3LO.
Furthermore, we find that the SRG scale dependence
of the “NN SRG + 3N fit” interactions is comparable
to the cutoff sensitivity of the EMN interactions, while
the variation of the results for the consistently evolved
“NN SRG +3N SRG” interactions is much smaller, only
about 400 keV at n = 0.2 fm−3 for T = 0. This indicates
that effects from neglected four- and higher-body forces
in the SRG evolution are very small for neutron matter
in this resolution scale regime (see also Ref. [6]), and that
higher-order MBPT contributions are likely small.

We determine the pressure as the density derivative of
the free energy, i.e.,

P = n2
∂

∂n

F

N

∣∣∣∣
T

. (31)

At finite temperature the free energy per particle di-
verges logarithmically in the zero-density limit (see, e.g.,
Ref. [31]). This is a result of the free Fermi gas contri-
bution and is also present without interactions. To eval-
uate Eq. (31) accurately, we separate the free Fermi gas
contribution, which is treated exactly, and differentiate
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FIG. 5. Pressure P as function of the density n at T = 0 (left) and T = 20 MeV (right) for different chiral interactions. For
details on how the bands are constructed for the different interactions see the caption of Fig. 4 and the text. The density
derivative P = n2∂n(F/N) has been calculated analytically by first fitting the results for the interaction free energy Fint via
Eq. (34) while treating the free gas contribution analytically (see text for details).

numerically only the interaction free energy,

Fint(T, n) = FFG(T, n)− F (T, n) . (32)

(Note that for convenience we define the interaction free
energy Fint as the negative of F − FFG.) The pressure is
then expressed as

P (T, n) = PFG(T, n)− n2 ∂
∂n

Fint(T, n)

N

∣∣∣∣
T

, (33)

where the pressure of the free gas PFG(T, n) can be eval-
uated using polylogarithms. To evaluate the interaction
contribution to the pressure, we employ a fit function and
calculate the derivative of the fit analytically. We use the
function from Ref. [62],

Fint(T, n)

N
= a0(T ) +

4∑
i=1

ai(T )

(
n

n0

) i+1
3

, (34)

with saturation density n0 = 0.16 fm−3 to set the scale.
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the divergence of the free energy per particle for vanishing density originates from the free Fermi gas contribution.

We also checked that the simpler function Fint/N =

a (n/n0)
α

+ b (n/n0)
β

yields similar results, but with
worse fit quality. The results for the pressure are shown
in Fig. 5. They demonstrate that the model dependence
is increased compared to the free energy, as expected for
a quantity obtained through a derivative.

To obtain a better insight into the temperature depen-
dence of the EOS, we show the free energy per particle
for T = 0, 8, 12, 16, and 20 MeV as a function of den-
sity in the left panel of Fig. 6. For comparison we also
show the free energy of the free Fermi gas. Here, for each
temperature the respective band combines the individual
bands from the different interaction sets shown in Fig. 4.
The width of the bands increases with increasing density
in a comparable way for all temperatures. This reflects
the fact that the shift of F for different temperatures is
mainly caused by the free Fermi gas contribution; i.e., the
temperature dependence of the interaction contribution
is small by comparison. The temperature dependence is
investigated in more detail in Sec. III C.

Finally, we calculate the entropy per particle,
S/N = −∂TF/N |n, via

S(T, n) = SFG(T, n) +
∂

∂T
Fint(T, n)

∣∣∣∣
n

, (35)

where again the free gas contribution is treated analyti-
cally and the interaction contribution is evaluated by em-
ploying a fit function. The results are shown in the right
panel of Fig. 6. The entropy is dominated by the free gas
contribution SFG, which is a direct consequence of the
weak temperature dependence of Fint (see also Fig. 10
and corresponding discussion). As a consequence, the
entropy also exhibits only a very weak sensitivity to the
employed Hamiltonian.

B. Chiral expansion

Chiral EFT provides a formal expansion in powers of

Q =
p

Λb
, (36)

where p is the relevant momentum scale for the observ-
able of interest and Λb the breakdown scale of the EFT.
To further investigate the interaction uncertainties, we
first show in Fig. 7 the free energy per particle for dif-
ferent orders in the chiral EFT expansion (LO, NLO,
N2LO, and N3LO, corresponding to different orders Q0,
Q2, Q3, and Q4 in the NN+3N interactions). The nar-
row bands show the cutoff variation from Λ = 450 MeV to
Λ = 500 MeV. The convergence of the chiral expansion is
evident in Fig. 7 as the relative contributions get consis-
tently smaller with increasing chiral order. The only ex-
ception is the N2LO contribution which is larger than the
NLO contribution at densities around n ≈ 0.2 fm−3. This
is a result of 3N interactions, which start to contribute at
N2LO. These give a repulsive contribution which becomes
sizable for n & 0.1 fm−3 (see the qualitative difference be-
tween the NLO and N2LO results shown in Fig. 7).

The convergence of the chiral expansion at finite tem-
perature is examined in Fig. 8 where we plot the un-
certainty bands for the interaction free energy Fint =
FFG − F as a function of density at the different chiral
orders for T = 0 (left) and T = 20 MeV (right). Ob-
viously, the convergence behavior is similar at T = 0
and at finite temperature. This again reflects the fact
that the dominant part of the temperature dependence
corresponds to the free gas contribution. For example,
the shift Fint(T = 20 MeV) − Fint(T = 0) is only about
1 MeV at n = 0.2 fm−3, while the shift of the free gas
contribution is −13.8 MeV (see also Fig. 10).
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A crucial asset of the EFT expansion is the possibility
to estimate errors associated with the truncation of the
expansion at a finite order. Following Refs. [63, 64] we
estimate the uncertainty of an observable X(p) in the
following way:

∆X(j) = Q ·max
{∣∣X(j) −X(j−1)∣∣,∆X(j−1)

}
, (37)

where X(j) denotes the observable calculated from inter-
actions up to order NjLO. To apply this prescription to
the EOS of neutron matter at a specific density n, we fol-
low Ref. [10] and choose the breakdown scale in Eq. (36)
equal to Λb = 500 MeV and the momentum scale equal to
p =

√
3/5 kF, with kF = (3π2n)1/3 the zero-temperature

Fermi momentum.
Note that for our uncertainty estimates we omit

the leading-order (LO) error. The estimate ∆XLO =
Q2
∣∣XLO

∣∣ is problematic in the present context in several
ways. First, at nonzero temperature there exists a finite
density at which the free energy has a zero crossing, re-
sulting in vanishing errors. Second, at low densities the
free energy per particle at finite temperature is domi-
nated by the free gas contribution, and clearly the corre-
sponding enhancement of ∆XLO is unwarranted. These
two features could be amended by separating the non-
interacting (free Fermi gas) contribution, i.e., by using
∆XLO = Q2

∣∣XLO −XFG
∣∣ instead. However, we regard

it as a clearer strategy to omit the LO error as well as
the LO contribution at higher orders in Eq. (37).

Recently a new Bayesian framework for estimating cor-
related EFT truncation errors based on Gaussian pro-
cesses (GP-B) was introduced in Refs. [65, 66]. To pro-
vide an alternative error estimate, we apply their pub-
licly available code [67] using p = kF and Λb = 600 MeV
(see Ref. [65]). A comparison of the prescription by Epel-
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FIG. 8. Interaction free energy per particle, Fint/N =
FFG/N − F/N , for T = 0 (left) and T = 20 MeV (right)
as a function of density n for the EMN interaction (see Fig. 7
for details and the definition of the bands).

baum, Krebs, and Meißner (EKM), Eq. (37), to the GP-B
estimate (68% credible interval) is shown in Fig. 9 for
the free energy (left) and pressure (right). The EKM
prescription Eq. (37) provides slightly larger error esti-
mates, but overall both methods give very similar uncer-
tainty bands.

C. Thermal interaction effects

Next, we explore thermal effects of the interaction con-
tributions to the EOS. First, in Fig. 10 we examine the
interaction free energy Fint = FFG − F as a function of
temperature for different densities. The results show
that the temperature dependence of Fint is very small
for all considered densities, as noted above. To charac-
terize thermal interaction effects in more detail we de-
fine the thermal part of a given thermodynamic quantity
X(T, n) as the difference between finite-temperature and
zero-temperature value, i.e.,

Xth(T, n) = X(T, n)−X(T = 0, n) . (38)

From the thermal components of the pressure and inter-
nal energy density one obtains a very useful quantity that
characterizes thermal effects, the so-called thermal index
Γth:

Γth(T, n) = 1 +
Pth(T, n)

Eth(T, n)
, (39)

where Eth = Eth/V is the thermal energy density. The
free Fermi gas has ΓFG,th = 5/3 independent of den-
sity and temperature. Any deviations of Γth(T, n) from
5/3 is thus due to thermal interaction effects. The ther-
mal index is often used to parametrize the temperature
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obtained from the EMN N3LO NN+3N interactions (the
bands are the same as in Fig. 4). The temperature depen-
dence for the other interactions is similarly flat.

dependence of nuclear EOS used in astrophysical simu-
lations [25, 68], where a constant Γth independent of T
and n (e.g., Γth = 1− 2) is sometimes adopted.

Our results for the thermal energy (top), the ther-
mal pressure (middle) and the thermal index (bottom)
at T = 20 MeV are displayed in Fig. 11. For compar-
ison, we also show as a black solid line the thermal in-
dex obtained in Ref. [62] using the self-consistent Green‘s
function (SCGF) approach with the “2.0/2.0” interaction
of Ref. [9]. Our MBPT calculations are consistent with

these nonperturbative SCGF results as the SCGF line is
very similar to the NN SRG + 3N fit band, which in-
cludes the same interaction.

Compared to the thermal pressure and the thermal
index, the thermal energy exhibits a much smaller inter-
action dependence. This can be understood in terms of
the decomposition (at fixed density)

Eth(T ) = (FFG(T )− FFG(T = 0)) (40)

− (Fint(T )− Fint(T = 0)) + T S(T ) .

Here, Fint(T ) − Fint(T = 0) is small (see Fig. 10), and
the entropy S deviates only slightly from its free Fermi
gas value (see Fig. 6). Hence, the thermal energy Eth

is dominated by the free gas contribution. The ther-
mal pressure and the thermal index, however, involve the
density derivative of Fint(T, n) and thus deviate more sig-
nificantly from the corresponding Fermi gas values and,
as a consequence, have larger uncertainties. In particu-
lar, 3N interactions have a crucial effect on their density
dependence. The thermal pressure would increase with
increasing density if 3N interactions were not included,
as found also in Ref. [62].

The temperature dependence of the thermal index Γth

is shown in Fig. 12 for the EMN N3LO interaction. Since
the index is defined as Γth = 1 +Pth/Eth, the thermal in-
dex is very sensitive to uncertainties in Pth and Eth at
low temperatures (and low densities) where both these
quantities are small. Therefore, in addition to the cutoff-
variation band we include in Fig. 12 also an estimate of
the numerical Monte Carlo integration errors for these
quantities, where we have chosen ∆Pth = 20 keV fm−3

and ∆Eth/N = 20 keV. As seen in Fig. 12, this leads
to sizable uncertainties for Γth at low temperatures. For
T & 10 MeV the uncertainties are better controlled and
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we see only a weak temperature dependence of the ther-
mal index. This behavior is similar for all the other in-
teractions considered.
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FIG. 12. Temperature dependence of the thermal index
Γth of the EMN N3LO interaction for n = 0.05, 0.1, 0.15,
and 0.2 fm−3. The bands combine cutoff variation from
Λ = 450 MeV to Λ = 500 MeV with a constant error esti-
mate for the Monte Carlo integration (see text for details).
The dotted line marks ΓFG,th = 5/3.

D. Effective mass approximation

In the previous section we showed that the thermal
index Γth(T, n) exhibits only a very weak temperature
dependence (see Fig. 12). Here, we now make use of
this feature to construct an approximate parametrization
of thermal effects in terms of a density-dependent effec-
tive neutron mass m∗n(n). The thermal index Γ∗th(n) of
an ideal gas of fermions with density-dependent effective
mass m∗n(n) can be expressed as (see, e.g., Ref. [69])

Γ∗th(n) =
5

3
− n

m∗n

∂m∗n
∂n

. (41)

In Ref. [62] it was demonstrated that Γ∗th determined
via Eq. (41), with an effective mass taken from micro-
scopic calculations, agrees well with the thermal index
determined by Γth = 1 + Pth/Eth. That means, by tak-
ing for Γ∗th(n) our microscopic results for Γth(T, n) at
T = 20 MeV shown in Fig. 11, we can integrate Eq. (41)
to obtain6 m∗n(n). For this we use m∗n/mn(n = 0) = 1,
Γth(n = 0) = 5/3, and interpolate linearly to our lowest-
density result for Γth at n = 0.01 fm−3.

The results for the neutron effective mass m∗n(n) de-
termined by this procedure are shown in Fig. 13. The
bands display cutoff or SRG scale variations (see caption
of Fig. 4). We observe that m∗n(n) first decreases with
increasing density, while at around n & 0.1 fm−3 the ef-
fective mass starts to increase again. This effect is related

6 Note that uncertainties of Γth are enhanced at low densities
(see Fig. 12 and discussion) so that m∗ obtained by integrat-
ing Eq. (41) is an approximation.



12

0 0.05 0.1 0.15 0.2

n [fm−3]

0.9

0.95

1

1.05

1.1
m
∗ n
/
m
n

NN SRG + 3N fit

NN SRG + 3N SRG

EMN N2LO

EMN N3LO

2.0/2.0 (PWA)

2.0/2.5

FIG. 13. Results for the neutron effective mass m∗n(n) as a
function of density n derived from the thermal index Γth(T, n)
at T = 20 MeV as discussed in the text. Results are shown
for different NN+3N interactions (same as in Fig. 4).

to the contribution of 3N interactions. Based only on NN
interactions, the resulting effective mass would decrease
with density. A similar qualitative behavior is also found
in the SCGF calculations of Ref. [62].

From our results for the effective mass m∗n(n) we can
construct an approximate parametrization of the temper-
ature dependence of the EOS. For this, we again separate
thermodynamic quantities into cold and thermal parts,
e.g., for the pressure

P (T, n) = P (T = 0, n) + Pth(T, n) . (42)

The thermal part Pth(T ) is now approximated by

Pth(T, n) ≈ Pm
∗

FG,th(T, n) , (43)

where Pm
∗

FG,th is the thermal pressure of an ideal gas of

neutrons with density-dependent mass m∗n(n), i.e.,

Pm
∗

FG,th(T, n) = n2
∂

∂n

FFG,th(T, n,m∗n(n))

N
, (44)

where FFG,th(T, n,m∗n(n)) is the expression for the ther-
mal free energy of the free neutron gas withm substituted
by m∗n(n).

With the microscopic calculations at zero and finite
temperature at hand, we now investigate the quality of
such an approximation. That is, we compare the results
for the pressure P (T, n) obtained using three different
ways to calculate its thermal part Pth:

1. the full finite-temperature calculation for Pth(T, n),

2. the ideal gas approximation with bare neutron mass
Pth(T, n) ≈ PmFG,th(T, n), and

3. the ideal gas approximation with density-
dependent effective mass Pth(T, n) ≈ Pm∗

FG,th(T, n).
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FIG. 14. Comparison of the full temperature-dependent pres-
sure (solid lines) to ideal Fermi gas approximations of the
thermal contribution with bare neutron mass PmFG,th(T ) (dot-

ted lines) and with effective neutron mass Pm
∗

FG,th(T ) from
Fig. 13 (dashed lines). The employed effective mass m∗n(n) is
extracted at T = 20 MeV. See text for more details. Shown
are temperatures T = 8, 14, and 20 MeV (different colors)
for the consistently SRG-evolved NN+3N interaction with
λSRG = 1.8 fm−1. The dashed lines overlap excellently with
the respective solid lines for T = 8 MeV and T = 14 MeV.

The results are shown in Fig. 14. The effective-mass ap-
proximation Pm

∗
FG,th reproduces excellently the full finite-

temperature calculation Pth, whereas results based on the
bare mass PmFG,th deviate from the full finite-temperature
calculation, with an increasing error as the density in-
creases. This demonstrates that Γth(T, n) ≈ Γ∗th(n) and
m∗n(n) capture the finite-temperature effects of the neu-
tron matter EOS very well.

IV. CONCLUSION AND OUTLOOK

In this paper, we studied the neutron matter EOS
at finite temperature using MBPT. After discussing the
many-body formalism for a general partitioning of the
Hamiltonian and the anomalous diagrams at finite tem-
perature, we showed how the many-body expansion sim-
plifies when using a HF partitioning and performed cal-
culations in this scheme. In contrast to previous finite-
temperature MBPT studies, we included the full HF
self-energy momentum dependence and do not employ
normal-ordering approximations for the 3N interactions.
For the practical calculations we employed Monte Carlo
integration techniques that allow to evaluate highly di-
mensional integrals very efficiently and make it possible
to include all contributions from NN interactions com-
pletely up to third order in the many-body expansion
and contributions from 3N interactions up to second or-
der including residual contributions.

We then presented a systematic study of the thermo-
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dynamics of neutron matter based on a range of chiral
EFT interactions. This included the Hebeler+ potentials
from Ref. [9] as well as for the first time consistently
SRG-evolved interactions [6] in nuclear matter calcula-
tions. In addition, we studied the EMN potentials at
N2LO and N3LO [52] supplemented with 3N interactions
used for nuclear matter and nuclei in Refs. [10, 70]. Our
results based on the consistently SRG-evolved interac-
tions exhibit a remarkably small SRG scale dependence
over the full range of temperatures, which indicates that
the effects of induced higher-body forces are very small
for these interactions and also that the many-body calcu-
lation is well converged. In addition, we studied the the-
oretical uncertainties due to the truncation of the chiral
expansion using the EKM prescription [63] and employ-
ing the recently developed Bayesian framework based on
Gaussian processes [65, 66]. Our results show that both
methods provide very similar error estimates.

Finally, the temperature dependence of different ther-
modynamic quantities was studied in detail. We found
that the dominant contribution to the temperature de-
pendence originates from the Fermi gas contribution, and
that the thermal interaction part is well captured by us-

ing a density-dependent effective mass. This was shown
by studying the thermal index, which allows to diagnose
in a simple way thermal interaction effects.

The present work lays the foundation for microscopic
studies of the thermodynamics of isospin-asymmetric nu-
clear matter based on modern NN and 3N interactions up
to high orders in the chiral expansion. The framework
allows to incorporate any nuclear interactions that are
available in a partial-wave decomposed form and makes
it possible to extend the many-body calculations in a
transparent way by including higher-order terms, which
might be necessary at nonzero proton fractions. Finally,
it will be interesting to explore the resulting EOSs at
finite temperatures in astrophysical simulations of core-
collapse supernovae and neutron star mergers.
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