
RESEARCH ARTICLE

Avoiding costly mistakes in groups: The

evolution of error management in collective

decision making

Alan N. TumpID
1,2*, Max Wolf2,3, Pawel Romanczuk2,4,5, Ralf H. J. M. KurversID

1,2,3

1 Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany, 2 Science

of Intelligence, Technische Universität Berlin, Berlin, Germany, 3 Leibniz Institute of Freshwater Ecology and

Inland Fisheries, Berlin, Germany, 4 Institute for Theoretical Biology, Department of Biology, Humboldt

Universität zu Berlin, Berlin, Germany, 5 Bernstein Center for Computational Neuroscience Berlin, Berlin,

Germany

* tump@mpib-berlin.mpg.de

Abstract

Individuals continuously have to balance the error costs of alternative decisions. A wealth of

research has studied how single individuals navigate this, showing that individuals develop

response biases to avoid the more costly error. We, however, know little about the dynamics

in groups facing asymmetrical error costs and when social influence amplifies either safe or

risky behavior. Here, we investigate this by modeling the decision process and information

flow with a drift–diffusion model extended to the social domain. In the model individuals first

gather independent personal information; they then enter a social phase in which they can

either decide early based on personal information, or wait for additional social information.

We combined the model with an evolutionary algorithm to derive adaptive behavior. We find

that under asymmetric costs, individuals in large cooperative groups do not develop

response biases because such biases amplify at the collective level, triggering false infor-

mation cascades. Selfish individuals, however, undermine the group’s performance for their

own benefit by developing higher response biases and waiting for more information. Our

results have implications for our understanding of the social dynamics in groups facing

asymmetrical errors costs, such as animal groups evading predation or police officers hold-

ing a suspect at gunpoint.

Author summary

Decision makers must continuously balance the error costs of alternative decisions, espe-

cially in critical situations where the choices are associated with highly asymmetric error

costs—such as pedestrian groups crossing the street, or animal groups evading predation.

Acting independently, individuals can develop response biases to avoid more costly errors

(e.g., when in doubt, escape from a potential predator). In groups, early decisions can

spread via social influence and promote safe or risky behavior. Yet, little is known about

how individuals in groups avoid the more costly error. We investigate this by modeling
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the decision process of individuals in groups using an evidence accumulation model. We

derive the optimal strategies under different error costs, group sizes and pay off functions.

We find that cooperative individuals in large groups do not evolve response biases because

such biases rapidly amplify in groups. However, selfish individuals evolve high response

biases and wait longer for the information of others, thereby undermining the group’s

performance for own benefits. Our results shed light on the decision problems individuals

in groups face in the presence of asymmetric error costs and how they could resolve them.

Introduction

Individuals must continuously balance the error costs of alternative decisions. Is it, for exam-

ple, better to escape or stay given a noisy cue indicating the potential presence of a predator;

better to eat this new fruit or continue searching; or better to cross the red light or wait till it

turns green? A fundamental characteristic of most decision-making environments is that the

costs of different errors are not symmetrical [1–5]. For example, mistakenly identifying a stick

as a snake is largely harmless, whereas believing a snake is a stick can be a lethal mistake. It is

therefore crucial to incorporate such error cost asymmetries into accounts of adaptive decision

making. A large body of literature (e.g., signal detection theory and error management theory)

has investigated how individuals adjust their decision-making strategies to differences in error

cost (or base rate) asymmetries, showing that individuals facing asymmetric costs develop a

response bias—an increase in the probability of choosing a particular option—to avoid the

more costly error [5–9]. However, the question of how groups deal with asymmetric error

costs has received far less attention, even though individuals in collective systems often face

highly asymmetric costs—for instance, animal groups under predation risk have to balance the

risk of needlessly escaping versus getting predated [10], pedestrian groups crossing a busy

street have to balance the risk of long waiting times versus a potential accident [11], and police

officers holding a suspect at gunpoint have to trade-off the risk of shooting an unarmed sus-

pect versus getting shot [12]. In collective systems, individual choices can spread via social

influence through the group and steer others towards or away from making the more costly

error; the consequences can be devastating for both individuals and the group (or society) as a

whole. Understanding the dynamics of these cascades, in particular when and why they go

wrong (e.g., deadly crowd panics or police officers shooting unarmed suspects), is thus impor-

tant for a wide range of social systems.

Previous works have investigated collective decision making under asymmetric error costs,

but used highly idealized decision-making processes. Wolf et al. studied how to optimally pool

information in a collective decision-making scenario where individuals simultaneously indi-

cated their personal decision (i.e., independent voting) in a binary classification task [13]. In

binary classification, individuals categorise the world into one of two possible states: signal

(e.g., a predator, disease, or other threat) or no signal. In doing so, they trade off between two

possible types of error: misses (incorrectly deciding a signal is absent) and false alarms (incor-

rectly deciding a signal is present; [6, 9, 14, 15]). Wolf et al. [13] showed that in the presence of

a response bias, optimal decisions arise when individuals do not simply follow the majority but

instead set a quorum threshold between the true and false positive rate of their group mem-

bers. Building on this, [4] showed that such quorum thresholds are extremely powerful for

optimizing decision making across a broad range of environmental conditions (see also [16]).

The aforementioned studies assumed that all group members announce their personal deci-

sions independently, and that individuals have access to the group’s average opinion as social
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information. Both assumptions are, however, unrealistic for decision-making processes in

almost all biological systems (e.g., [17]). Rather, individuals often observe the choices (or

actions) of others to inform their own decisions. Thus, they decide sequentially whereby early

decisions can influence later-deciding individuals, and, in extreme cases, can trigger informa-

tion cascades in which all other individuals imitate these early decisions [18–21]. Sequential

decision making allows individuals to coordinate their (timing of) actions, with previous

research showing that more knowledgeable (or confident) individuals generally make faster

decisions and promote the spread of accurate information to less knowledgeable (or confident)

followers [22–26]. Both accurate leaders and less accurate followers can benefit from such self-

organisation as leaders save time and avoid potentially misleading social information, while

followers may benefit from accurate social information.

A general framework for modeling such realistic group dynamics are evidence accumula-

tion models. These are an extension of signal detection theory models but can additionally

account for the strategic decision timing of individuals [27]. These models propose that indi-

viduals accumulate evidence until there is sufficient evidence for one of the available options,

triggering a decision. Evidence accumulation models, and particularly its most prominent

member, the drift-diffusion model (DDM), have been very successful in shedding light on the

cognitive underpinnings of a wide range of individual-level decision problems, such as preda-

tor avoidance [28], speed-accuracy trade-off [29], memory retrieval [30] and the influence of

attention [31]. Recently, the DDM has also been applied to model information flow in groups

[25, 32–35]. As individuals’ decision timing plays a key role in the unfolding collective dynam-

ics, DDMs are ideally placed to model such dynamic collective processes because they explic-

itly model choice and timing. Thereby, they can account for the integration of personal and

social information dynamically over time in a single framework. Analysing collective patterns

by accounting for cognitive components of the decision–making process is a promising

approach to understand realistic dynamic social interactions [36, 37]. Here we utilize the

DDM’s ability to embody a realistic decision–making scenario of sequential decision making

to study adaptive strategies under asymmetric costs by implementing a social version of the

DDM (Fig 1).

In our implementation of the social DDM, each individual first accumulates its own per-

sonal information about the state of the world. During the social phase, individuals can gather

additional social information (i.e., they can incorporate the choices of others). When an indi-

vidual has gathered sufficient evidence (i.e., the decision boundary is exceeded), the decision is

made. Because individuals both emit and receive social information, the system is highly

dynamic and the final outcome is likely to be influenced by early responders with strong evi-

dence. To examine how individuals should strategically adjust decision–making traits to the

environment, we retrieved the adaptive behavioral parameters using evolutionary algorithms.

Evolutionary algorithms allow to find fitness-maximizing behaviour by exposing the underly-

ing behavioural traits to selection pressure, letting the traits evolve in concert [38]. We system-

atically varied group size and the asymmetry in error costs in order to study their combined

effect on the evolution of the three key decision-making traits: start point bias, social informa-

tion use, and the amount of evidence needed to decide.

We started with groups of individuals whose interests were completely aligned, with indi-

viduals equally sharing a group payoff (“cooperative groups”). We then investigated whether

the collective interest was at odds with individuals’ self-interest (i.e., a social dilemma; [39]), by

examining how introducing individual-level competition (i.e., a payoff solely based on own

performance) shaped evolved behaviors and corresponding payoffs across group sizes and

error cost asymmetries.
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Our results show that in small cooperative groups facing high asymmetric costs, individuals

optimized their payoff by evolving a high response bias towards the signal response. Large

cooperative groups did, however, not evolve a bias under high asymmetric costs, because the

influence of even small biases amplify rapidly in large groups undermining the collective pay-

off. Interestingly, adding competition leads individuals to evolve stronger biases to avoid the

costly error at the expense of providing less accurate information to others. Moreover, individ-

uals in competitive groups wait for more evidence, further reducing the group’s average

performance.

Materials and methods

The social DDM

In the social DDM, a group of individuals faces a binary decision task (signal present or

absent), with four possible decision outcomes: Individuals can correctly decide that a signal is

present, correctly decide that a signal is absent, incorrectly decide that a signal is present, or

incorrectly decide that a signal is absent. The model is formalized as a drift–diffusion process

where individuals continuously gather noisy evidence which updates their belief about the

likelihood of the signal being present or absent in a Bayesian manner. For binary decisions, the

evidence state—here denoted by L(t)—is typically formalized as the logarithm of the likelihood

ratio of the signal being present versus absent given the gathered evidence at time point t [27,

40]. We assume that individuals first independently accumulate personal information about

the state of the world, reflecting any experience prior to the second (i.e, social) phase. In a sec-

ond phase, individuals make a decision. They do not receive any personal information any-

more but they can gather social information (i.e., the choices of others).

Fig 1. Illustration of the social drift–diffusion model. Each individual, represented by a jagged line, must decide whether a signal is present (left

panel) or absent (right panel). If the signal is present, the individual can decide correctly (hit) or wrongly (miss). If the signal is absent, the individual

can decide correctly (correct rejection; CR) or wrongly (false alarm; FA). An individual’s start point depends on the information it gathered prior to the

social phase (δp) and its start point bias (zp). Here the start point bias is towards the decision boundary (i.e., the red horizontal line) of the signal,

implying that an individual is more likely to make a correct (wrong) decision when the signal is present (absent). At the start, no individual reached

either decision boundary, implying that social information was absent. As individuals diffuse they hit a decision boundary and make a decision.

Undecided individuals, in turn, start drifting towards the choice of the individual(s) that already decided, reflecting the process of social information

use.

https://doi.org/10.1371/journal.pcbi.1010442.g001
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In the first phase, individuals accumulate personal information [27, 41], whereby individu-

als start with a start point bias zp, which describes an initial preference for the signal or no sig-

nal option. Such start point biases allow individuals to account for asymmetries of the choice

alternatives, for example, asymmetries in base rate (e.g. signal more frequent than no signal),

or error costs (e.g., a miss being more costly than a FA; [5, 40]). Over time, individuals gather

on average correct evidence described by a drift rate δp towards the correct option. The total

amount of evidence L(tp) gathered until the end of the personal phase at time point tp is

described by a normal distribution with a mean of

E½LðtpÞ� ¼
zp þ dp � tp; if signal is present

zp � dp � tp; if signal is absent

(

ð1Þ

and a variance of

Var½LðtpÞ� ¼ s2
p � tp; ð2Þ

with σp being the diffusion rate (σp and tp are set to 1 for simplicity; see S1 Fig for sensitivity

analysis). The parameters zp and δp change the evidence state in distinct ways: A positive (neg-

ative) zp shifts the mean towards the decision boundary of the signal (no signal) option and is

related to the decision criterion in signal detection theory; a positive (negative) δp shifts the

mean towards the decision boundary of the correct (wrong) decision (Fig 1). The diffusion

rate (σp) describes the amount of random information (i.e., noise) and influences the variance

of personal information. The amount of time tp scales the mean and variance by influencing

how long personal information is integrated.

Next, individuals enter a social phase also formalized as a drift–diffusion process. In this

phase, individuals no longer sample personal information from the environment; instead, they

can update their evidence based on the decisions of others. During this social phase, the evi-

dence L(ts) changes continuously over time ts until a decision is made (i.e., the evidence level

exceeds either of the decision boundaries). In between the start of the social phase and the

moment an individual makes a decision (ts), they can observe the choices of others. The incor-

poration of social information is described by the social drift rate which changes as a function

of the majority of individuals who already decided. This Wiener process is approximated with

a biased random walk with small discrete time steps Δts:

Lðts þ DtsÞ ¼ LðtsÞ þ dsðtsÞ � Dts þ
ffiffiffiffiffiffi
Dts

p
� �; ð3Þ

with δs(ts) representing the social drift rate and ε representing Gaussian white noise with a

mean of 0 and a variance of 1 (changing the variance rescales the other parameters and does

not change the model prediction; see [8]). The social drift rate δs(ts) describes the change in an

individual’s drift rate depending on the decisions of others (i.e., the impact of social informa-

tion) and is modeled proportionally to the majority size M(ts) of individuals that already

decided at time point ts (e.g., [20, 25, 42, 43]):

MðtsÞ ¼ NþðtsÞ � N � ðtsÞ; ð4Þ

dsðtsÞ ¼ s�MðtsÞ; ð5Þ

where N+(ts) and N−(ts) are the number of individuals that decided the signal was present or

absent, respectively, at time point ts, and s is scaling the strength of the social drift. Note that

each choice added to a majority (or minority) has the same additive effect which is scaled by

the parameter s. The amount of evidence an individual accumulates before making a decision
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is determined by the boundary separation θ. It describes the distance between the upper (sig-

nal) and lower (no signal) decision boundary, with the decision boundaries set at� y

2
. Our

model directly links individuals’ established cognitive processes to the unfolding collective

dynamics. Note that the separation into two distinct phases allows a better interpretation of

the agents’ behaviour as personal and social information accumulation are not convoluted

[25]. Thus, boundary separation describes an individual’s willingness to wait for social infor-

mation only. This separation thus exemplifies situations in which individuals have collected

personal information prior to coming together in a social context, and exchange information

(e.g., migrating animal groups or human group discussions). Further, it ensures that individu-

als with strong personal information will, on average, start closer to one of the decision bound-

aries and thus make faster decisions, as observed in groups across many biological systems

[22–24, 44]. These fast decisions can, in turn, influence the drift rate of undecided individuals,

thus capturing the natural dynamic of information flow from highly informed to lowly

informed individuals [25]. See S2 Fig for the results of a scenario where additional personal

information is gathered during the social phase, reducing an individual’s ability to time their

decision according to information quality.

The evolutionary algorithm

While some model parameters are not fully under an individual’s control (e.g., amount of per-

sonal information available), other behavioral parameters can be adaptively adjusted, includ-

ing start point bias, social information use, and the amount of evidence needed to make a

decision. To determine the adaptive behavioral parameters we embedded the social DDM into

an evolutionary algorithm. Evolutionary algorithms allow fitness-maximizing parameter set-

tings to jointly evolve by exposing them to selection pressure and mutation [38], making them

highly suitable for game-theoretic problems, where the optimal behavior of individuals

depends on the behavior of others. Individuals repeatedly went through three phases: (i) a sim-

ulation phase in which individuals repeatedly (on average 10 times) made decisions in the

social DDM framework, (ii) an evaluation phase where the best individuals were selected and a

new generation was build, and (iii) a mutation phase in which parameter (or trait) diversity of

the new generation was ensured. This cycle was repeated a 1,000 times. At the start, we

Table 1. Description of the model parameters. Underlined parameters evolve in the evolutionary algorithm.

Model feature Parameter Description

Start point in

social phase

LðtpÞ � Nðzp � dp;spÞ Parameters influencing the evidence gathered during the personal

phase L(tp), which then served as the start point in the social phase. δp,
zp determine the mean and σp the variance of a normal distribution

(see Fig 1). A positive (negative) δp shifts the mean towards the correct

(wrong) option, reflecting the amount of correct evidence gathered. A

positive (negative) start point bias zp shifts the mean towards the

signal (no signal) response and allows the decision maker to account

for error cost asymmetries.

Boundary

separation

y The boundary separation determines the distance between the

decision boundary for signal and no signal, thereby influencing how

much evidence an individual accumulates before making a decision

(red horizontal lines in Fig 1). Increasing the boundary separation

increases the potential for social information use.

Social drift rate dsðtsÞ ¼ s �MðtsÞ δs(ts) describes the incorporation of social information with s
regulating its strength by scaling the influence of the majority size (of

the individuals who already decided for a particular option M(ts)) on

the social drift rate (see Fig 1).

https://doi.org/10.1371/journal.pcbi.1010442.t001
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populated the simulations with 1.000 individuals. Each individual had three evolving traits:

start point bias zp, boundary separation θ, and strength of the social drift s (Table 1). The

parameters covered a wide range, ensuring the best solutions were included (range for start

point bias: -0.5–2; boundary separation: 0.01–12; strength of social drift: 0–2). To ensure that

the endpoints of the simulations were independent of their starting conditions of the popula-

tion, we sampled the individuals’ initial parameters from a beta distribution with the mini-

mum and maximum scaled to the respective evaluated parameter range, whereby the

population mean of the beta distribution was sampled from a uniform distribution of the cen-

tral 80% of the parameter range (e.g., 0.2–1.8 for the strength of social drift). Accordingly, we

set the shape parameter a of the beta distribution to 1 and the parameter b to get a required

mean (init) with b ¼ a
init � a. In each generation, individuals were randomly and repeatedly

(on average 10 times) sampled from the population to perform the social DDM simulation.

When an individual was sampled, the likelihood to be sampled again was reduced by a factor

five, ensuring that individuals were roughly equally often sampled. Each sampled individual—

with their associated traits—performed the social DDM simulation as described above

together with other sampled individuals (in different-sized groups; see below). After these sim-

ulations, individuals produced offspring based on their sum payoff, implemented via tourna-

ment selection: Three individuals were randomly sampled from the population and the

individual with the highest payoff passed its traits to the next generation (results do not change

when sampling more than three individuals). Finally, the traits of the new generation were

exposed to mutation and crossover to ensure variation. Crossover was implemented by swap-

ping two traits between a focal and a randomly drawn individual with a probability of 0.05.

For the mutation process, we added Gaussian noise to a trait with a mutation probability of

0.02 and a standard deviation of 5% of the evaluated parameter ranges. These procedures were

repeated for 1,000 generations, which ensured that populations converged to stable endpoints.

We measured the evolved parameters by averaging the parameter values of the last 10 genera-

tions across eight populations.

We systematically varied three features: group size, error cost asymmetry, and payoff level,

to study their impact on the evolved parameter traits. First, we varied the group size (1, 5, 10,

20, and 50) in which individuals made decisions. Second, we varied error cost asymmetry to

investigate how individuals in groups should account for asymmetric error costs. Under sym-

metric costs, an individual received one unit of payoff for a correct decision (hit or correct

rejection) and lost one unit for a wrong decision (miss or false alarm). We modeled asymme-

tries in error costs by increasing the cost ratio of a miss compared to that of a false alarm,

reflecting that missing a signal (e.g., a predator or disease) is generally more costly than a false

alarm. Across the three cost scenarios, the average error cost was kept constant at 1 unit but

we varied the miss/false alarm cost ratio (1, 2, and 4). The cost of a miss was set at either 1, 4

3
, or

8

5
, and the cost of a false alarm at 1, 2

3
, or 2

5
. The average cost and benefits are thus constant across

cost conditions. The cost ratio scheme reflected cost schemes used in previous studies on sig-

nal detection problems (e.g., [5, 7, 45]). We kept the base rate (i.e., overall probability of signal

to occur) constant at 50% (see S3 Fig for a sensitivity analysis with varying base rates). More-

over, we added a time cost of 0.05 units per second (see S4 Fig for a sensitivity analysis with

varying time cost, and S5 Fig for an analysis of time cost asymmetries). This time cost reflects

the commonplace benefit of making fast choices [29]; it also means that at a certain point in

time, the benefit of a correct choice no longer outweighs the time cost. Third, we varied the

payoff level: Individuals received a payoff based on either the mean group payoff (cooperative

scenario) or their own payoff (competitive scenario). Individuals in the cooperative scenario
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were selected to maximize their group performance and individuals in the competitive sce-

nario to perform better than others.

After running the evolutionary algorithm we inspected the population trajectories. In all

scenarios, the populations converged to a single equilibrium, independent of the starting con-

ditions. This indicates that the algorithm found a single robust solution for each combination

of group size, error cost asymmetry, and payoff level. Thus, we did not find stable co-existences

of different strategies. S6 Fig shows the trajectories of the three evolving parameters for ran-

domly sampled exemplary scenarios, illustrating the convergence. S7 Fig shows example runs

of the social DDM simulations for each of the 24 conditions, using the parameters of the evolu-

tionary endpoints of the specific setting, to illustrate the temporal unfolding of the decisions in

a social context.

Performance evaluation

To gain a deeper understanding of individuals’ behavior at the evolutionary endpoints, we per-

formed additional social DDM analyses with fixed parameter settings (i.e., no evolution of

parameters). To investigate the effect of the start point bias zp, boundary separation θ, and

strength of social drift s, on individuals’ performance (i.e., their payoff and their hit and correct

rejection rates), we varied the parameter of interest—for different group sizes and error costs

—while fixing the other two parameters at their evolved level of cooperative groups, and mea-

sured individuals’ performance over 1,000,000 repetitions.

Evaluating the influence of competition

Because the endpoints of cooperative and competitive groups differed (see Results), we studied

how competition drives populations away from the optimal behavior of cooperative groups.

We again varied the start point bias zp, boundary separation θ, or strength of social drift s
while fixing the remaining two parameters at their evolved level of cooperative groups. We

also introduced interindividual heterogeneity by assigning half of the individuals of each

group a higher parameter value, and the other half a lower value, splitting groups of five ran-

domly (difference in start point bias: 0.2; boundary separation: 0.4; strength of social drift: 0.1).

This allowed us to measure the benefits of having a higher (or lower) parameter value than the

other group members and, thereby, the effect of competition. We measured payoffs over

1,000,000 repetitions for each parameter combination. Competitive groups are expected to

evolve parameters such that individuals do not gain a personal advantage by having higher or

lower parameters. Note that this analysis only approximates the evolutionary endpoints of

competitive groups because of a different implementation. In this evaluation, the group con-

sists of two distinct behavioral types with two fixed parameters; in the evolutionary algorithm

groups are heterogeneous across all parameters and the parameters can freely evolve in

concert.

Results

Asymmetry in error costs

Fig 2 shows the evolved parameters for different group sizes and error costs in cooperative

groups. When errors costs were symmetrical, no start point bias developed in cooperative

groups of any size (Fig 2A). With increasing cost asymmetry, individuals acting alone and in

small cooperative groups evolved a bias towards the signal decision boundary avoiding the

costly error. Large cooperative groups, however, did not evolve a bias even under high asym-

metric error costs. An explanation for the lack of bias in large cooperative groups can be found
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in Fig 3, which shows the hit and correct rejection rates, as well as the payoffs, for different

group sizes and biases (while fixing the boundary separation and the strength of the social drift

at the evolved level of the specific group size; see Fig 2). Across all group sizes, increasing the

start point bias increased the hit rate but decreased the correct rejection rate. Under symmetri-

cal costs, the highest payoffs were obtained at a bias level of 0, which maximizes the combined

sum of the hit and correct rejection rate. However, when misses became more costly than false

alarms, single individuals and small groups maximized their payoff at a relatively high bias to

avoid costly misses. In large groups, by contrast, a bias close to 0 was optimal. Large groups

achieved high hit and correct rejection rates without a start point bias, and were very sensitive

to small biases. Increasing their start point bias did increase their hit rate, but this did not out-

weigh the associated costs of the steep drop in the correct rejection rate. The steepness of this

drop increased with group size. In other words, a strong bias in large groups would lead to

many false alarms; this can be avoided by reducing the bias. This is further illustrated in Fig

4A, which directly compares the performance of different sized groups across different bias

levels at the highest level of error cost asymmetry. Large groups were sensitive to biases: They

outperformed small groups in the absence of a starting point bias, but were outperformed by

small groups under high levels of start point bias.

Boundary separation

Fig 2B shows that individuals in larger groups evolved a larger boundary separation, implying

that they required more evidence to trigger a decision. This effect was independent of asymme-

try in error costs. Fig 4B directly compares the payoffs of different-sized groups for different

levels of boundary separation at the highest level of error cost asymmetry, further confirming

the benefits of evolving higher boundary separations for larger groups. Individuals need more

information in larger groups because the potential benefits of social information are higher in

larger groups; the relative benefits of waiting longer for social information should therefore

also be higher. The benefits of waiting for social information were influenced by the time

costs: the higher the time costs the lower the amount of evidence individuals required to make

a decision (S4 Fig).

Fig 2. Outcomes of the evolutionary algorithms per group size and error cost in cooperative groups. (A) When costs are symmetrical (i.e., error

cost asymmetry = 1), no start point bias evolves at any group size. With increasing cost asymmetry, small (but not large) groups evolve a larger bias. (B)

Across all error costs, larger groups evolve a higher boundary separation. (C) Across all combinations of group size and error cost, a high social drift

evolves. Dots and error bars represent the mean and standard deviation, respectively, across the eight evolved populations. For exemplary evolutionary

trajectories see S6 Fig.

https://doi.org/10.1371/journal.pcbi.1010442.g002

PLOS COMPUTATIONAL BIOLOGY Avoiding costly mistakes in groups

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010442 August 19, 2022 9 / 21

https://doi.org/10.1371/journal.pcbi.1010442.g002
https://doi.org/10.1371/journal.pcbi.1010442


Social drift

Across all group sizes and error costs, the strength of the social drift evolved to the maximum

level (Fig 2C). The evolution towards the maximum value indicates the effectiveness of a sim-

ple “copy-the-first” heuristic, whereby individuals are very likely to imitate the decision of the

first responders via a strong social drift (see S7 Fig for exemplary simulations). This simple

heuristic performs so well because of the way personal information is gathered. Individuals

with more accurate personal information start, on average, closer to a decision boundary than

individuals with less accurate information. This gives rise to a process of self-organization,

with more accurate individuals making faster decisions [25]. The first responders therefore

generally achieve a higher payoff compared to later-deciding individuals, independent of

strength of the social drift or group size (indicated by the dashed lines being higher than the

solid lines in Fig 4C). For later deciding individuals, the best strategy is thus to increase the

social drift to the maximum level in order to imitate the first decisions, thereby saving costly

time. We set the maximum strength of the social drift to two. Allowing a higher maximum

level would have a minor effect as indicated by the saturation of the curves at s = 2 in Fig 4C.

Competitive versus cooperative groups

Next, we investigate how the evolved strategies in cooperative groups—with individuals

selected to maximize the group payoff—differ to the evolved strategies in competitive

groups—with individuals selected to maximize their own payoff. Across all group sizes, com-

petitive groups developed a stronger start point bias towards the signal boundary than did

cooperative groups (Fig 5A). To investigate this result, we introduced interindividual

Fig 3. Hit and correct rejection rates (black lines, left axis) and payoff (colored lines, right axis) as a function of start point bias for different

group sizes and error costs for cooperative groups. Across all group sizes, increasing the start point bias towards the decision boundary of the signal

leads to an increase in the hit rate, but simultaneously to a decrease of the correct rejection rate. Under symmetrical error costs, individuals across all

group sizes maximize their payoff by maximizing the hit and correct rejection rate alike; this occurs at a bias close to 0. Under asymmetric costs,

individuals need to ensure a high hit rate in order to avoid costly misses. Small groups achieve this by developing a bias. Large groups achieve a high hit

(and correct rejection) rate without a start point bias, and therefore maximize the payoff at a much lower bias. The boundary separation and strength of

the social drift were fixed at the endpoints of the evolutionary algorithms for each combination of group size and error cost.

https://doi.org/10.1371/journal.pcbi.1010442.g003
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heterogeneity in the bias level within competitive groups and compared the payoffs of these

different bias levels. When the average start point bias was set to a level that maximized the

mean group payoff (dots in Fig 4A and 4D), competitive individuals with a higher start point

bias gained higher individual payoffs, and this advantage only disappeared when the group

had a substantially higher mean bias (Fig 4D). This could be due to the tension between pro-

viding good information to group members and maximizing one’s own payoff. Reducing their

start point bias enables individuals to provide more accurate social information, while increas-

ing their start point bias helps them avoid the high personal costs of a miss—but this comes at

the expense of accuracy and therefore results in more misleading social information.

For all group sizes, competitive groups evolved higher boundary separations than did coop-

erative groups (Fig 5B). Fig 4E shows that, at the maximum payoff level of cooperative groups

(dots), competitive individuals benefited from having a slightly higher boundary separation.

Only at substantially higher levels of mean group boundary separation did this benefit disap-

pear, thus driving the boundary separation in competitive groups to higher values.

Both cooperative and competitive groups evolved to the maximum level of social drift

strength (Fig 5C). In line with this, individuals with a lower social drift strength never outper-

formed individuals with a higher social drift strength (indicated by the strictly positive values

Fig 4. Payoff analysis with varying start point bias, boundary separation or strength of the social drift. (A–C) The mean payoff of individuals in

different-sized, cooperative groups across the three key parameters under high asymmetric error costs (cost asymmetry: 4). In these simulations, one

evolved parameter was varied (x-axis), while the other two were fixed at their evolved level of cooperative groups. Larger groups maximized their

payoffs (indicated by dots) at (A) a lower start point bias and (B) higher boundary separation compared to small groups. (C) All group sizes maximized

their payoff at the highest level of social drift strength. Dashed horizontal lines show the mean payoff of the first responder. With increasing strength of

the social drift, the mean payoff of all group members approximated the payoff of the first responder. (D–F) The benefits of individuals in competitive

groups having above-average values in the three key parameters under high asymmetric error costs. Positive (negative) y-values indicate that individuals

with above-average (below-average) values in the respective parameter achieved a higher payoff. Competitive groups evolved parameter values at which

their members did not profit from having a higher (or lower) parameter value (i.e, where colored lines meet the solid horizontal line at zero), which

approximates the outcomes of the evolutionary algorithm. These values partly differed from optimal outcomes in cooperative groups (dots), indicating

a social dilemma. At these evolved endpoints of the cooperative groups individuals in competitive groups benefited from having a higher (D) start point

bias and (E) boundary separation. (F) Cooperative and competitive groups did not differ in their evolved value of social drift.

https://doi.org/10.1371/journal.pcbi.1010442.g004
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in Fig 4F). This suggests strong benefits of using social information, or even copying the first

responder, independent of group size or cooperative setting.

Finally, we investigated how competition influences the evolved behaviour. We found that

individuals in cooperative groups made, on average, faster choices and achieved a higher pay-

off than individuals in competitive groups (Fig 5D and 5E). Cooperative groups made faster

choices with increasing group size, whereas competitive groups took slightly longer with

increasing group size (Fig 5D). Although both cooperative and competitive groups achieved a

higher payoff at larger group sizes, cooperative groups benefited much more from larger

groups (Fig 5E). This is because the larger start point bias and boundary separation that

evolved in competitive groups partly undermined the benefits of collective decision making.

As a sensitivity analysis, we repeated the simulations with varying time costs and distribution

characteristics of personal information, replicating the main findings (see S1–S4 Figs).

Discussion

We investigated the evolution of individuals’ adaptive decision rules across different group

sizes, error cost asymmetries, and competitiveness. When the cost of a miss was higher than

the cost of a false alarm, individuals in small groups evolved a start point bias to avoid costly

Fig 5. Evolutionary outcomes of cooperative and competitive groups at an error cost ratio of 4. Across all group sizes, competitive groups evolved

(A) a larger start point bias and (B) larger boundary separation, indicating a conflict between individual- and group-level interests. (C) Both cooperative

and competitive groups evolved the maximum strength of the social drift. (D) Cooperative groups made, on average, faster choices than competitive

groups, and this difference increased with group size. (E) At large, but not small, group sizes, cooperative groups outperformed competitive groups.

Dots and error bars represent the mean and standard deviation of the endpoints of the evolutionary simulations, respectively.

https://doi.org/10.1371/journal.pcbi.1010442.g005
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misses. This corroborates earlier findings showing that individuals faced with asymmetric

error costs shift their decision criterion (in a signal detection theory analysis; [7]) or their start

point bias (in a DDM framework; [5, 45]) to avoid the more costly error. Strong start point

biases are adaptive in small groups, but in large groups they amplify quickly, typically leading

groups to decide for signal. This results in a high hit rate, but also a high false alarm rate; larger

collectives may therefore suffer when individuals do not adjust their biases accordingly.

Such individual response biases may have important implications for collective systems

such as crowds. If individuals adjust their response bias to avoid the more costly error, their

adjustment must be tuned to the expected group size. While large adjustments might be wise

in a small group, such large adjustments can quickly escalate in large crowds, which are more

vulnerable to false alarms. For instance, after terrorist attacks like 9/11 in 2001 or the Paris

attacks in 2015, some individuals may have adjusted their response bias towards an alarm

response. Such adjustments might play a role in increases of deadly panics in large crowds

after terroristic events. In post-9/11 Chicago, for example, several club visitors mistook pepper

spray for a poison gas attack; the resulting panic left 21 dead [46]. The risk of amplification

might be further worsened in competitive groups, which evolve a higher bias than cooperative

groups. When individuals aim to maximize their own payoff, they are willing to accept a higher

level of false alarms at the expense of the collective well-being. In our model, large competitive

groups performed substantially worse than large cooperative groups, partly due to a higher

evolved start point bias. In other words, competition comes with a price to the whole group as it

reduces the efficiency of social information exchange (see also ‘Price of Anarchy’: [47]). In high-

stress situations (e.g., a perceived terrorist attack) people’s behavior often shifts from cooperative

to competitive [48, 49]. Taken together, our results highlight a social dilemma and the potential

danger posed to groups by individuals with a high response bias. Future research should aim to

provide a more detailed understanding of how information spreads in such situations.

Groups are particularly vulnerable to information cascades due to their high reliance on

social information [20]. We found that the strength of the social drift evolves to a maximum

across group size, cost asymmetry, and competitiveness, indicating a reliance on a copy-the-

first strategy. This finding confirms previous studies on strategic delay, which describe a Nash

equilibrium in which everyone initially delays their choice [50, 51]. As time passes, the individ-

ual with the best information can assume that, since no-one else has made a decision, their

information is better than that of other group members. Because the individual with the best

information is expected to decide first, others then simply imitate this decision. Adopting a

copy-the-first strategy allows individuals to rely on the social source with the strongest evi-

dence; it also saves time, since individuals do not need to wait for others to decide.

Crucially, these studies—and ours—assume that accurate choices are made faster than inac-

curate choices, which is often observed empirically [25, 52]. We implemented this accuracy-

response time correlation by allowing individuals to gather personal information prior to the

social phase. Consequently, the start point during the social phase was, on average, closer to

the correct decision boundary. Alternatively, researchers assumed collapsing boundaries or

varying drift rates to explain such patterns [52]. When correct choices are not made faster and

the first responders do not provide above-average information quality, lower levels of social

drift can be adaptive under some conditions (see S2 Fig). Furthermore, previous studies

assumed that individuals have a similar speed–accuracy trade-off (e.g., the same boundary sep-

aration; [29]). If individuals differ in their speed–accuracy trade-off [53], the positive associa-

tion between first responder and information quality will attenuate. In this scenario, the first

responder is more likely to emphasize speed, at the expense of accuracy. When individuals dif-

fer in their speed–accuracy trade-off, favoring the decisions of individuals who respond

quickly might thus undermine the benefits of a copy-the-first strategy. Individual differences
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in speed–accuracy trade-offs and inefficient coordination of decision time and accuracy could

explain why former empirical studies studying sequential decision making in real time, have

not found that individuals copy the first decision maker [11, 23, 25]. Future research could

investigate how individual heterogeneity in speed–accuracy trade-offs undermines the pres-

ence of fast and accurate choices and their consequences for the collective.

Another interesting extension of our framework is the evolution of more complex strategies

when integrating social information. We assumed a linear relationship between majority size

and drift rate to minimize the number of free parameters and improve the interpretability of

the results. Although such simple strategies are commonly assumed (e.g., [20, 42, 43]), a

diverse set of more complex responses to social information have been described, such as quo-

rum thresholds [4, 54–57]. Quorum thresholds initially downweight small minorities, before

ramping up social information use once the majority reaches a critical threshold. Other possi-

ble strategies include the use of the relative difference in the numbers of individuals favoring

each option [58, 59], the incorporation of decision order (e.g. by up-weighting recent choices

[60, 61], the consideration of conflicting preferences [62], or the incorporation of social infor-

mation by a one-time update in the evidence [34, 35]. The exact strategy of social information

integration can influence the temporal dynamic of the collective process. For example, groups

using quorum thresholds are expected to have an initial phase with few sporadic choices until

the quorum is reached and the undecided individuals follow the majority option within a

short amount of time [56]. Groups integrating social information by a one-time update of the

evidence are expected to decide in a round-based manner (i.e., in short waves) instead of mak-

ing choices continuously over time [34, 35]. The DDM framework not only accounts for

choices but also their response times. The time it takes for an individual to make a choice can,

therefore, convey important information. Individuals, for example, can infer the accuracy of

choices from their response times [63]. Karamched et al., showed that even non-decisions can

convey information if one choice alternative is, on average, selected faster [35]. Future work

unraveling the dynamics underlying sequential choice, could thus benefit from taking a mech-

anistic approach to the dynamics of social updating, to understand the temporal dynamics of

such systems in more detail.

Next to the process of social updating, the process of social information transmission is also

likely to play a key role. The social information in sequentially deciding groups—as studied

here—is signalled by a one-time choice of the individual. Other influential models of collect-

ives assume that individuals continuously have access to the current belief or opinion of the

connected group members such as the Vicsek model [64] or Voter model [65]. Biased (or

informed) individuals in this kind of interaction process establish their influence via a contin-

ues pull force which determines how they contribute to the collective outcome. For example,

in these models the influence of strongly biased (or informed) individuals on the outcome is

predicted to be strongly mediated by the presence of unbiased (or uninformed) individuals

[66, 67]. Whether uninformed individuals promote or undermine the influence of early decid-

ing strongly biased individuals in groups of sequentially deciding individuals would be another

interesting future investigation.

The willingness to wait for social information—described by boundary separation—also

influences collective dynamics. We found that boundary separation increased with group size,

meaning that individuals in larger groups required more evidence to make a decision. This

increase was, however, relatively small in cooperative groups (Fig 5B), and cooperative groups

made even faster choices at larger group sizes. This can be explained by larger groups also

being more likely to contain strongly informed individuals (e.g., the many eyes principle;

[68]). Similar mechanisms have been described in shoaling fish, which have been shown to

make faster (and more accurate) choices in larger groups [43]. However, in competitive
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groups, individuals profited from requiring even more evidence at the expense of decision

speed and group performance. This result shows similarities with a well-known finding in

social psychology first demonstrated by [69]: the bystander effect. According to the bystander

effect, people are less likely to offer help the more other people are present. We show that wait-

ing longer to see whether others respond can be an adaptive strategy, as individuals in larger

groups should only make a choice (e.g., whether to offer help) with strong evidence. Matching

this prediction, a study using CCTV footage found that increased bystander presence reduced

individuals’ likelihood of intervening (e.g., via increased boundary separations) while simulta-

neously increasing the likelihood of someone intervening [70]. The bystander effect could be

explained as a rational adaptation to maximize informational gain in competitive groups with

varying group sizes. However, future work should investigate this further as previous work on

the social dynamics in situations less fraught with moral connotations did not find a larger

boundary separation in larger groups [25].

Although—as discussed above—some aspects of the evolved behaviours resemble real

behaviour others seem to differ. We, therefore, emphasize that animal and human cognition is

shaped by not accounted evolutionary processes and constraints. Thus, animals and humans

typically only approximate normative predictions. Such predictions are, however, insightful as

they shed light on the game-theoretical problems collectives are facing, how they could resolve

them and what consequences they impair if they fail.

Conclusion

To conclude, in the presence of asymmetric error costs, individuals adjust their response bias

to the group size in order to maximize their payoff. In particular, individuals in large groups

should avoid strong start point biases, which would frequently trigger false information cas-

cades. Further, individuals face a social dilemma: The indifference of competitive individuals

to the negative consequences of their response bias and their tendency to wait for more social

information leads groups—especially large groups—to fail to reap the collective benefits of

making collective decisions. In the real world, asymmetric costs are the rule rather than the

exception; our results therefore might have important implications for understanding a wide

range of social dynamics, including police officers’ decisions to shoot, crowd panics, and

escape responses under predation risk.

Supporting information

S1 Fig. Sensitivity analysis showing the outcomes of the evolutionary algorithm for differ-

ent distributions of personal information in competitive and cooperative groups at an

error cost ratio of 4. Left (right) panels show very low (high) mean start points δp; upper

(lower) panels show very small (large) variance s2
p (both indicated in gray). Central panels

show the personal information distribution used in the main analysis. The results approximate

the main results for a wide range of characteristics of the personal information distribution.

For a few conditions populations did not evolve to a single equilibrium, as evidenced by the

broad error bars. This is further investigated in S8 Fig. Dots and error bars represent the mean

and standard deviation across the eight populations.

(TIFF)

S2 Fig. The outcomes of the evolutionary algorithm if both personal and social informa-

tion are aggregated during the second phase. Results are shown for different personal drift

rates with a highly asymmetric error cost. Note that the first phase is the same as described in

the main text. The results approximate the main results for most parameters and personal drift

PLOS COMPUTATIONAL BIOLOGY Avoiding costly mistakes in groups

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010442 August 19, 2022 15 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010442.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010442.s002
https://doi.org/10.1371/journal.pcbi.1010442


rates. However, large cooperative groups with high personal drifts evolve lower social drift

rates. This is because accuracy-response time correlations (which allow individuals to coordi-

nate their choice according to their information quality) originate from the start point being

closer towards the correct option. If fast individuals are more accurate the ‘copy-the-firsts’

pays off. High personal drift causes choices to be more driven by the personal drift instead of

start point, undermining the individuals ability to coordinate according to their information

quality. In such cases, it is better for cooperative individuals in large groups to follow a slowly

emerging majority. Note that, in contrast to the main setting, boundary separation in this

implementation does not only describe the individuals’ willingness to wait for social informa-

tion but additionally their preferred speed-accuracy trade-off. Dots and error bars represent

the mean and standard deviation across the eight evolved populations.

(TIFF)

S3 Fig. Sensitivity analysis showing the outcomes of the evolutionary algorithm for differ-

ent base rates with the error costs being symmetrical. The overall probability of a signal

being present varies from 50% (as in the main text) to 80% (i.e., the signal being 4 times as fre-

quent). Individuals should adapt to varying base rates in a similar fashion as to varying cost

asymmetries by adjusting their start point. In the presence of base rate asymmetries, they

should adjust their start point towards the choice alternative which is a-priori more likely to be

correct (here signal). If the signal was very likely to be present, competitive groups did not

evolve a single equilibrium and some populations developed the simple strategy of always

choosing signal. This is further investigated in S8 Fig. Dots and error bars represent the mean

and standard deviation across the eight populations.

(TIFF)

S4 Fig. Sensitivity analysis showing the outcomes of the evolutionary algorithm for differ-

ent time costs and group sizes in competitive and cooperative groups at an error cost ratio

of 4. Central panels show the time cost (indicated in gray) used in the main analysis. Upper

(lower) panels show very small (large) time costs. Under very small and large time costs almost

all main results were reproduced: (A) Small (but not large) groups evolved a start point bias,

with competitive groups evolving a higher bias; (B) larger groups evolved a higher boundary

separation, with competitive groups evolving a higher boundary separation; (C) groups

evolved a high social drift strength, reflecting a copy-the-first heuristic; and (D) larger groups

performed better, with cooperative groups outperforming competitive groups. Two scenarios

deviated slightly from the main results. First, at very low time costs (0.01), large (50) coopera-

tive groups did not evolve a social drift strength close to 2, but instead fluctuated around a

value above 1. In large groups such social drift values already result in a high likelihood to copy

first responders. Given the extremely low time costs, further increasing the drift does not

improve the performance. Second, in large groups (50) facing high time costs (0.25), not all

competitive populations converged to the same solution, as evidenced by the broad error bars.

This is further investigated in S10 Fig. Dots and error bars represent the mean and standard

deviation, respectively, across the eight populations.

(TIFF)

S5 Fig. Sensitivity analysis showing the outcomes of the evolutionary algorithm without

(upper panel) and with (lower panel) time costs asymmetries. To exemplify situations

where time costs in one state of the world are much higher (i.e., responding fast when signal is

present is much more important), we introduced time costs asymmetries by implementing

time costs only if the signal was present. We doubled the time costs of the main analysis to

keep the average time cost constant (i.e., we increased time costs from 0.05 to 0.1). The results
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with and without time costs asymmetries are similar indicating that it is not beneficial to adjust

the start point to adapt to time cost asymmetries. If time costs are only present in one state of

the world, agents still try to make fast choices as they are not aware of the state of the world

they are in.

(TIFF)

S6 Fig. Example trajectories of the evolutionary algorithm. Shown are the evolutionary tra-

jectories of bias (left), boundary separation (center), and social drift strength (right), for six

additional scenarios. These scenarios were randomly drawn from all 30 analysed scenarios.

The corresponding parameter settings are shown in the right panels. Colored lines represent

the average parameter value within each of the eight evolving populations; black lines indicate

the average across all eight populations.

(TIFF)

S7 Fig. Example simulations of the social DDM with the parameters obtained from the

evolutionary endpoints. Shown are a single exemplary runs for each group size, error cost

asymmetry and competition level with a 50% probability of the signal being present or absent.

The red horizontal lines indicate the decision thresholds.

(TIFF)

S8 Fig. Examples of evolutionary algorithm simulations of scenarios shown in S1 Fig

where populations did not converge to a single equilibrium. (A–D) In competitive groups

(group size = 20) with low δp and intermediate s2
p populations either converged to be highly

biased, making rapid choices (i.e., low boundary separation; e.g., pink and purple lines) or to

be less biased with larger boundary separation (green and light red lines). (E–H) Similarly, in

competitive groups (group size = 20) with high s2
p and intermediate δp, populations converged

either to highly biased groups with low boundary separation (e.g., brown and blue lines) or

less biased groups with higher boundary separation (green and purple lines). For both exam-

ples of nonconvergence, reducing the start point bias (or increasing the boundary separation)

in a highly biased population is likely to be disadvantageous. Such a strategy would likely result

in similar choices, since the group members are likely to pull the individual towards the signal

response, but at higher time costs because the response would be slightly delayed. Each line

represents the average parameter value of one of the eight evolving populations.

(TIFF)

S9 Fig. Example of evolutionary algorithm simulations shown in S3 Fig where populations

did not converge to a single equilibrium. If signal was present in 80% of the simulations, pop-

ulations with large competitive groups (group size = 50) either converged to be highly biased

and make rapid choices or to be less biased with a larger boundary separation. While popula-

tions with lower start point bias would, on average, perform better, reducing the start point

bias (or increasing the boundary separation) in a highly biased population is likely to be disad-

vantageous. Less biased individuals would likely be pulled towards the signal response. These

results mirror the behaviour found when providing individuals with low quality information

(see also S2 and S8 Figs).

(TIFF)

S10 Fig. In large (50) competitive groups under high time costs (0.25), populations con-

verged to one of two equilibria. One equilibrium (blue, turquoise, green and light green

lines) followed the pattern of our main result, namely (A) low start point bias, (B) medium

boundary separation, (C) maximum social drift, and (D) high performance. In the other equi-

librium (purple, pink, orange and brown lines), populations converged to a nonsocial behavior
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with individuals (A) being highly biased, (B) barely waiting, and (C) not incorporating social

information, resulting in (D) low performance. This solution is stable, since a less biased indi-

vidual with larger boundaries is likely to suffer from higher time cost by waiting for and ulti-

mately following other individuals (who almost always choose ‘signal’). Each line represents

the average parameter value of one of the eight evolving populations.
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