
Journal of Combinatorial Optimization (2022) 44:2681–2699
https://doi.org/10.1007/s10878-021-00762-w

Constructing tree decompositions of graphs with bounded
gonality

Hans L. Bodlaender1 · Josse van Dobben de Bruyn2 · Dion Gijswijt2 ·
Harry Smit3

Accepted: 26 May 2021 / Published online: 2 August 2021
© The Author(s) 2021

Abstract
In this paper, we give a constructive proof of the fact that the treewidth of a graph is at
most its divisorial gonality. The proof gives a polynomial time algorithm to construct
a tree decomposition of width at most k, when an effective divisor of degree k that
reaches all vertices is given.We also give a similar result for two related notions: stable
divisorial gonality and stable gonality.

Keywords Tree decomposition · Gonality · Chip firing

This research was initiated at the Sandpiles and Chip Firing Workshop, held November 25–26, 2019 at the
Centre for Complex Systems Studies, Utrecht University. Josse van Dobben de Bruyn was supported by
NWO Grant 613.009.127. A preliminary version of this paper appeared in Proceedings of the 26rd
International Computing and Combinatorics Conference 2020 (Bodlaender et al. 2020).

B Dion Gijswijt
d.c.gijswijt@tudelft.nl

Hans L. Bodlaender
h.l.bodlaender@uu.nl

Josse van Dobben de Bruyn
j.vandobbendebruyn@tudelft.nl

Harry Smit
smit@mpim-bonn.mpg.de

1 Department of Information and Computing Sciences, Utrecht University, Princetonplein 5,
3584 CC Utrecht, The Netherlands

2 Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD
Delft, The Netherlands

3 Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-021-00762-w&domain=pdf
http://orcid.org/0000-0003-0734-4511

2682 Journal of Combinatorial Optimization (2022) 44:2681–2699

1 Introduction

In this paper, we investigate the relation between well-studied graph parameters:
treewidth and divisorial gonality. In particular, we give a constructive proof that the
treewidth of a graph is at most its divisorial gonality.

Treewidth is a graph parameter with a long history. Its first appearance was under
the name of dimension, in 1972, by Bertele and Brioschi (1972). It was rediscovered
several times since, under different names (see e.g. Bodlaender 1998). Robertson
and Seymour introduced the notions of treewidth and tree decompositions in their
fundamental work on graph minors; these notions became the dominant terminology.

The notion of divisorial gonality finds its origin in algebraic geometry. Baker and
Norine (2007) developed a divisor theory on graphs in analogy with divisor theory on
curves, proving a Riemann–Roch theorem for graphs. The graph analog of gonality
for curves was introduced by Baker (2008). To distinguish it from other notions
of gonality (which we discuss briefly in Sect. 5), we denote the version we study by
divisorial gonality. Divisorial gonality can be described in terms of a chip firing game.
A placement of k chips on the vertices of a graph (where vertices can have 0 or more
chips) is called an effective divisor of degree k. Under certain rules (see Sect. 2), sets of
vertices can fire, causing some of the chips to move to different vertices. The divisorial
gonality of a graph is the minimum degree of an effective divisor such that for each
vertex v, there is a firing sequence ending with a configuration with at least one chip
at v.

The treewidth of a graph is never larger than its divisorial gonality.1 A non-
constructive proof of this fact was given by van Dobben de Bruyn and Gijswijt
(2020). Their proof is based on the characterization of treewidth in terms of brambles,
due to Seymour and Thomas (1993). In this paper, we give a constructive proof of
the same fact. We formulate our proof in terms of a search game characterization
of treewidth, but with small modifications, we can also obtain a corresponding tree
decomposition. The proof also yields a polynomial time algorithm that, when given an
effective divisor of degree k, constructs a search strategy with at most k + 1 searchers
and a tree decomposition of width at most k of the input graph.

This paper is organized as follows. Some preliminaries are given in Sect. 2. In
Sect. 3, we prove the main result with help of a characterization of treewidth in terms
of a search game and discuss that we also can obtain a tree decomposition of width
equal to the degree of a given effective divisor that reaches all vertices. An example
is given in Sect. 4. In Sect. 5, we give constructive proofs that bound the treewidth of
a graph in terms of two related other notions of gonality. Some conclusions are given
in Sect. 6.

1 Conversely, graphs of treewidth 2 can have arbitrarily high divisorial gonality, which can be seen by
considering ‘chains of circuits’. See for instance Cools et al. (2012), Hendrey (2018).

123

Journal of Combinatorial Optimization (2022) 44:2681–2699 2683

2 Preliminaries

2.1 Graphs

In this paper, all graphs are assumed to be finite.We allowmultiple edges, but no loops.
Let G = (V , E) be a graph. For disjointU ,W ⊆ V we denote by E(U ,W) the set of
edgeswith one end inU and one end inW , and use the shorthand δ(U) = E(U , V \U).
The degree of a vertex v ∈ V is deg(v) = |δ({v})|, and given v ∈ U ⊆ V we denote
by outdegU (v) = |E({v}, V \ U)| the number of edges from v to V \ U . By N (U)

we denote the set of vertices in V \U that have a neighbor in U . The Laplacian of G
is the matrix Q(G) ∈ R

V×V given by

Quv =
{
deg(u) if u = v,

−|E({u}, {v})| otherwise.

2.2 Divisors and gonality

Let G = (V , E) be a connected graph with Laplacian matrix Q = Q(G). A divisor
on G is an integer vector D ∈ Z

V . The degree of D is deg(D) = ∑
v∈V D(v). We

say that a divisor D is effective if D ≥ 0, i.e., D(v) ≥ 0 for all v ∈ V . We will denote
by supp(D) = {v ∈ V | D(v) �= 0} the support of D.

The divisorial gonality can be defined in a number of equivalentways.Most intuitive
is the definition in terms of a chip firing game. An effective divisor D can be viewed as
a chip configuration with D(v) chips on vertex v. IfU ⊂ V is such that outdegU (v) ≤
D(v) for every v ∈ U (i.e., each vertex has at least as many chips as it has edges to
vertices outside U), then we say that U can be fired. If this is the case, then firing
U means that every vertex in U gives chips to each of its neighbors outside U , one
chip for every edge connecting to that neighbor. The resulting chip configuration is
the divisor D′ = D − Q1U . The assumption outdegU (v) ≤ D(v) guarantees that the
number of chips on each vertex remains nonnegative, i.e. that D′ is effective. Now, the
divisorial gonality of a graph is the minimum number k such that there is a starting
configuration (divisor) with k chips, such that for each vertex x ∈ V there is a sequence
of sets we can fire such that x receives a chip.

We nowgive themore formal definition, that is needed in our proofs. Two divisors D
and D′ are equivalent (notation: D ∼ D′) if D′ = D−Qx for some x ∈ Z

V . Note that
equivalent divisors have the same degree since QT1 = 0. If D and D′ are equivalent,
then, since the null space of Q consists of all scalar multiples of 1, D′ = D−Qx has a
unique solution x ∈ Z

V that is nonnegative and has xv = 0 for at least one vertex v.We
denote this x by script(D, D′) and write dist(D, D′) = max{xv | v ∈ V }. Note that if
t = dist(D, D′), then script(D′, D) = t1 − x and thus dist(D′, D) = dist(D, D′). If
D, D′, D′′ are pairwise equivalent, thenwe have the triangle inequality dist(D, D′′) ≤
dist(D, D′) + dist(D′, D′′) as script(D, D′′) = script(D, D′) + script(D′, D′′) − c1
for some nonnegative integer c.

Let D be a divisor. If D is equivalent to an effective divisor, then we define

123

2684 Journal of Combinatorial Optimization (2022) 44:2681–2699

rank(D) = max{k ∈ Z≥0 | D − E is equivalent to an effective divisor}
for every effective divisor E of degree at most k.

If D is not equivalent to an effective divisor, we set rank(D) = −1. The divisorial
gonality of a graph G is defined as

dgon(G) = min{deg(D) | rank(D) ≥ 1}.

In the remainder of the paper, we will only consider effective divisors. If we can
go from D to D′ by sequentially firing a number of subsets, then clearly D ∼ D′.
The converse is also true (part (i) of the next lemma) as was shown in van Dobben de
Bruyn and Gijswijt (2020, Lemma 2.3).

Lemma 1 Let D and D′ be equivalent effective divisors.

(i) There is a unique increasing chain ∅ � U1 ⊆ U2 ⊆ · · · ⊆ Ut � V of subsets on
which we can fire in sequence to obtain D′ from D. That is, setting D0 = D and
Di = Di−1 − Q1Ui for i = 1, . . . , t we have Dt = D′ and Di is effective for all
i = 0, . . . , t .

(ii) We have t = dist(D, D′) ≤ deg(D) · |V |.
Proof For part (i), let x = script(D, D′) and let t = dist(D, D′) = max{x(v) | v ∈
V }. We let U1 ⊆ · · · ⊆ Ut be the level set decomposition of x , i.e. let

Ui = {v ∈ V | x(v) ≥ t + 1 − i} (i = 1, . . . , t).

Note x = ∑t
i=1 1Ui . To conclude the proof of the existence part of (i), it suffices to

show that the divisors D0, D1, . . . , Dt are indeed effective. By assumption, this is
true for D0 = D and Dt = D′. Consider any v ∈ V . If v /∈ Ut , then 0 ≤ D0(v) ≤
D1(v) ≤ · · · ≤ Dt (v) since chips can only be added to v when firing a subset not
containing v. Otherwise, let i be the smallest index for which v ∈ Ui . Then

0 ≤ D0(v) ≤ D1(v) ≤ · · · ≤ Di−1(v)

and

Di−1(v) ≥ Di (v) ≥ Di+1(v) ≥ · · · ≥ Dt (v) ≥ 0.

Hence, Di (v) ≥ 0 for all i = 0, . . . , t .
Uniqueness in part (i) follows directly from the fact that x = script(D, D′) is the

unique solution to D′ = D − Qx with the additional property that x is nonnegative
with at least one entry equal to zero, together with the uniqueness of the level set
decomposition of x .

For part (ii), we note that a set U can occur at most deg(D) times in the chain
U1 ⊆ · · · ⊆ Ut , since each time we fire the setU at least one chip leavesU . It follows
that t ≤ deg(D) · |V |. ��

123

Journal of Combinatorial Optimization (2022) 44:2681–2699 2685

We see that the two definitions of divisorial gonality are equivalent. Lemma 1 shows
that we can even require the sets of vertices that are fired to be increasing.

For a given vertex q, a divisor D ≥ 0 is called q-reduced if there is no nonempty
set U ⊆ V \ {q} such that D − Q1U ≥ 0.

Lemma 2 (Baker and Norine 2007, Proposition 3.1) Let D be an effective divisor and
let q be a vertex. There is a unique q-reduced divisor equivalent to D.

A divisor D has positive rank if and only if for every q ∈ V the q-reduced divisor
has at least one chip on q. The ‘if’ part is clear. The ‘only if’ part follows from the
following lemma.

Lemma 3 Let D be an effective divisor, let q ∈ V and let Dq be the q-reduced divisor
equivalent to D. Then Dq(q) ≥ D(q). In particular, if D has positive rank, then
Dq(q) ≥ 1.

Proof We may assume that D �= Dq . By Lemma 1 we obtain Dq from D by firing
on a chain of sets U1 ⊆ · · · ⊆ Ut and, conversely, we obtain D from Dq by firing
on the complements of Ut , . . . ,U1. Since Dq is q-reduced, it follows that q is in
the complement of Ut , and hence q /∈ Ui for i = 1, . . . , t . It follows that x =
script(D, Dq) satisfies xq = 0 and Dq(q) ≥ D(q). ��

Given an effective divisor D and a vertex q, Dhar’s algorithm (Dhar 1990) (see
Algorithm 1) finds in polynomial time a nonempty subset U ⊆ V \ {q} on which we
can fire, or concludes that D is q-reduced.

Algorithm 1: Dhar’s burning algorithm
Input : Divisor D ≥ 0 on G and vertex q.
Output: Nonempty subset U ⊆ V (G) \ {q} s.t. D − Q1U ≥ 0 or U = ∅ if none exists.
U := V \ {q};
while outdegU (v) > D(v) for some v ∈ U do

U := U \ {v}
end
return U

Lemma 4 Dhar’s algorithm is correct, and the output is the unique inclusionwise
maximal subset U ⊆ V \ {q} that can be fired.

Proof The set returned by Algorithm 1 can be fired, as it satisfies the requirement
outdegU (v) ≤ D(v) for every v ∈ U . To complete the proof it therefore suffices to
show that U contains every subset W ⊆ V \ {q} that can be fired.

Let W ⊆ V \ {q} be any such subset. At the start of the algorithm U = V \ {q}
contains W . While U ⊇ W , we have outdegU (v) ≤ outdegW (v) ≤ D(v) for any
v ∈ W , so the algorithm never removes a vertex v ∈ W from U . ��

123

2686 Journal of Combinatorial Optimization (2022) 44:2681–2699

Note: in particular, Lemma 4 shows that the output of Algorithm 1 does not depend
on the order in which vertices are selected for removal.

If throughout the algorithm we keep for every vertex v the number outdegU (v) and
a list of vertices for which outdegU (v) > D(v), then we need only O(|E |) updates,
and we can implement the algorithm to run in time O(|E |).
Lemma 5 Let D be an effective divisor on the graph G = (V , E), let q ∈ V , and
let Dq be the q-reduced divisor equivalent to D. Let U be the set returned by Dhar’s
algorithm when applied to D and q, and suppose that U �= ∅. Let D′ = D − Q1U .
Then dist(D′, Dq) = dist(D, Dq) − 1.

Proof Let x = script(D, Dq). Since Dq is q-reduced, we have xq = 0. On the other
hand, since D �= Dq (as we can fire on U), the number t = max{xv | v ∈ V } is
positive. Let W = {v ∈ V | xv = t}. By Lemma 1, we can fire on W , so by Lemma 4
we have W ⊆ U .

Let x ′ = script(D′, Dq) and let t ′ = max{x ′
v | v ∈ V }. As Dq is q-reduced,

we have x ′
q = 0. Since there is a unique nonnegative y ∈ Z

V with yq = 0 and
Dq = D − Qy, and we have D − Qx = Dq = (D − Q1U) − Qx ′, it follows that
x = x ′ + 1U . Since U ⊇ W , it follows that x − 1W ≥ x ′, and hence t − 1 ≥ t ′. We
find that dist(D′, Dq) ≤ dist(D, Dq)− 1. Since dist(D, D′) = 1, equality follows by
the triangle inequality. ��
Since dist(D, Dq) ≤ deg(D) · |V |, we can find a q-reduced divisor equivalent to D
using no more than deg(D) · |V | applications of Dhar’s algorithm.

2.3 Treewidth and tree decompositions

The notions of treewidth and tree decomposition were introduced by Robertson and
Seymour (1986) in their fundamental work on graph minors.

Let G = (V , E) be a graph, let T = (I , F) be a tree, and let Xi ⊆ V be a set of
vertices (called bags) associated to i for every node i ∈ I . The pair (T , (Xi)i∈I) is a
tree decomposition of G if it satisfies the following conditions:

1.
⋃

i∈I Xi = V ;
2. for all e = vw ∈ E , there is an i ∈ I with v,w ∈ Xi ;
3. for all v ∈ V , the set of nodes Iv = {i ∈ I | v ∈ Xi } is connected (it induces a

subtree of T).

The width of the tree decomposition is maxi∈I |Xi | − 1. The treewidth of G is the
minimum width of a tree decomposition of G. Note that the treewidth of a multigraph
is equal to the treewidth of the underlying simple graph.

There are several notions that are equivalent to treewidth. We will use a notion that
is based on a Cops and Robbers game, introduced by Seymour and Thomas (1993).
Here, a number of searchers need to catch a fugitive. Searchers canmove from a vertex
in the graph to a ‘helicopter’, or from a helicopter to any vertex in the graph. Between
moves of searchers, the fugitive can move with infinite speed in the graph, but may
not move over or to vertices with a searcher. The fugitive is captured when a searcher
moves to the vertex with the fugitive, and there is no other vertex without a searcher

123

Journal of Combinatorial Optimization (2022) 44:2681–2699 2687

that the fugitive can move to. The location of the fugitive is known to the searchers
at all times. We say that k searchers can capture a fugitive in a graph G, if there is a
strategy for k searchers on G that guarantees that the fugitive is captured. In the initial
configuration, the fugitive can choose a vertex, and all searchers are in a helicopter. A
search strategy is monotone if it is never possible for the fugitive to move to a vertex
that had been unreachable before. In particular, in a monotone search strategy, there is
never a path without searchers from the location of the fugitive to a vertex previously
occupied by a searcher.

Theorem 1 (Seymour and Thomas 1993) Let G be a graph and k a positive integer.
The following statements are equivalent.

1. The treewidth of G is at most k.
2. k + 1 searchers can capture a fugitive in G.
3. k + 1 searchers can capture a fugitive in G with a monotone search strategy.

3 Construction of a search strategy

In this section, we present a polynomial time algorithm that, given a positive rank
effective divisor D of degree k as input, constructs a monotone search strategy with
k + 1 searchers to capture the fugitive.

We start by providing a way to encode monotone search strategies. Let G be a
graph. For X ⊆ V (G), the vertex set of a component of G − X is called an X-flap. A
position is a pair (X , R), where X ⊆ V (G) and R is a union2 of X -flaps (we allow
R = ∅).

The set X represents the vertices occupied by searchers, and the fugitive can move
freely within some X -flap contained in R (if R = ∅, then the fugitive has been
captured). In a monotone search strategy, the fugitive will remain confined to R, so
placing searchers on vertices other than R is of no use. Therefore, it suffices to consider
three types of moves for the searchers: (a) remove searchers that are not necessary to
confine the fugitive to R; (b) add searchers to R; (c) if R consists of more than one
X -flap, restrict attention to the X -flap Ri ⊂ R containing the fugitive. This leads us
to the following definition.

Definition 1 Let G be a graph and let k be a positive integer. A monotone search
strategy (MSS) with k searchers for G is a directed tree T = (P, F) where P is a set
of positions with |X | ≤ k for every (X , R) ∈ P , and the following hold:

(i) The root of T is (∅, V).
(ii) If (X , R) is a leaf of T , then R = ∅.
(iii) Let (X , R) be a non-leaf of T . Then R �= ∅ and there is a set X ′ ⊆ X ∪ R such

that exactly one of the following applies:

(a) X ′ ⊂ X and position (X ′, R) is the unique out-neighbor of (X , R).

2 Here we deviate from the definition of position as stated in Seymour and Thomas (1993) in that we allow
R to consist of zero X -flaps or more than one X -flap.

123

2688 Journal of Combinatorial Optimization (2022) 44:2681–2699

(b) X ′ ⊃ X and position (X ′, R′) is the unique out-neighbor of (X , R), where
R′ = R \ X ′.

(c) X ′ = X and the out-neighbors of (X , R) are the positions
(X , R1), . . . , (X , Rt) where t ≥ 2 and R1, . . . , Rt are the X -flaps contained
in R.

If condition (ii) does not necessarily hold, we say that T is a partial MSS. Note that
we do not consider the root node to be a leaf even if it has degree 1.

It is clear that if T is an MSS for k searchers, then, as the name suggests, k searchers
can capture the fugitive, the fugitive can never reach a vertex that it could not reach
before, and a searcher is never placed on a vertex fromwhich a searcher was previously
removed.

We should point out that Definition 1 is slightly different from existing (formal or
informal) definitions of a monotone search strategy in the literature. Compared to Sey-
mour and Thomas (1993), we also allow a position to consist of zero X -flaps or more
than one X -flap. At the end of this section, we will show that an MSS with k searchers
yields a tree decomposition of width at most k − 1 in a relatively straightforward
fashion.

First we focus on constructing an MSS in polynomial time. For this we use the
following lemmas.

Lemma 6 Let G be a graph on n vertices and let T be a (partial)MSSwith k searchers
for G. Then T has no more than n2 + 1 nodes.

Proof For any position (X , R), define f (X , R) = |R|(|X | + |R|). For any leaf node
(X , R) we have f (X , R) = 0. For any non-leaf node (X , R), the value f (X , R) is
at least the sum of the values of its children plus the number of children. Indeed,
in case (a) and (b) we have f (X , R) ≥ f (X ′, R′) + 1, and in case (c) we have
f (X , R) ≥ f (X , R1) + · · · + f (X , Rt) + t since

f (X , R) − (f (X , R1) + · · · + f (X , Rt))

=
∑

1≤i< j≤t

2|Ri | · |R j | ≥ 2|R1| · (|R2| + · · · + |Rt |) ≥ 2(t − 1) ≥ t .

It follows that f (X , R) is an upper bound on the number of descendants of (X , R)

in T . Since every non-root node is a descendant of the root, it follows that the total
number of nodes is at most 1 + f (∅, V) = 1 + n2. ��
Lemma 7 Let R be an X-flap. Let D be a positive rank effective divisor such that
X ⊆ supp(D) and R ∩ supp(D) = ∅. Then we can find in polynomial time an
effective divisor D′ ∼ D such that X ⊆ supp(D′), R ∩ supp(D′) = ∅, and such that
from D′ we can fire a subset U with U ∩ R = ∅ and U ∩ X �= ∅.
Proof Let q ∈ R. Since D(q) = 0 and D has positive rank, it follows by Lemma 3
that D is not q-reduced. Let U be the set found by Dhar’s algorithm (with respect
to q). Since R is connected and U does not contain R, it follows that U ∩ R = ∅
(otherwise outdegU (r) ≥ 1 > D(r) for some r ∈ U ∩ R). If U ∩ X is nonempty, we

123

Journal of Combinatorial Optimization (2022) 44:2681–2699 2689

set D′ := D and we are done. Otherwise, we set D := D−Q1U . Then X ⊆ supp(D),
R ∩ supp(D) = ∅ and we iterate. We must finish in no more than deg(D) · |V (G)|
iterations by Lemma 1 and Lemma 5. Hence, we can find the required D′ and U in
time |E(G)| · |V (G)| deg(D). ��
Construction of a monotone search strategy Let G be a connected graph and let D be
an effective divisor on G of positive rank. Let k = deg(D). We will construct an MSS
for k + 1 searchers on G. We do this by keeping a partial MSS, starting with only the
root node (∅, V) and an edge to the node (X , V \ X), where X = supp(D). Then,
we iteratively grow T at the leaves (X , R) with R �= ∅ until T is an MSS. At each
step, we also keep, for every leaf (X , R) of T , an effective divisor D′ ∼ D such that
X ⊆ supp(D′) and R ∩ supp(D′) = ∅. We now describe the iterative procedure.

While T has a leaf (X , R) with R �= ∅, let D′ be the divisor associated to (X , R)

and perform one of the following steps.

I. If R consists of multiple X -flaps R1, . . . , Rt , then we add nodes
(X , R1), . . . , (X , Rt) as children of (X , R) and associate D′ to each. Iterate.

II. If X ′ := N (R) is a strict subset of X , then add the node (X ′, R) as a child of
(X , R), associate D′ to this node and iterate.

III. The remaining case is that N (R) = X and R is a single X -flap. By Lemma 7 we
can find an effective divisor D′′ ∼ D′ such that X ⊆ supp(D′′), R∩supp(D′′) = ∅
and from D′′ we can fire on a setU such thatU ∩ R = ∅, andU ∩ X �= ∅. We set
U ∩ X = {s1, s2, . . . , st }. That we can fire on U implies that

D′′(si) ≥ |N (si) ∩ R| fori = 1, . . . , t . (1)

For i = 1, . . . , t we define positions (Xi , Ri) and (X ′
i , Ri) as follows:

Xi = X ′
i−1 ∪ (N (si) ∩ R), Ri = R \ Xi , and X ′

i = Xi \ {si },

where we set X ′
0 = X . Using (1) and the fact that X ⊆ supp(D′′), we see that

|X ′
i | = |X \ {s1, . . . , si }| + |(N (s1) ∩ R) ∪ · · · ∪ (N (si) ∩ R)|

≤ |X \ {s1, . . . , si }| + |N (s1) ∩ R| + · · · + |N (si) ∩ R)|
≤

∑
v∈X\{s1,...,si }

D′′(v) +
∑

v∈{s1,...,si }
D′′(v)

=
∑
v∈X

D′′(v)

for i = 0, . . . , t . Hence, |X ′
i | ≤ k and |Xi | ≤ k + 1 for every i .

Since every edge in δ(R) has at least one endpoint in every X ′
i , it follows that

indeed Ri is a union of X ′
i -flaps (and of Xi -flaps). We add the path (X , R) →

(X1, R1) → (X ′
1, R1) → · · · → (Xt , Rt) → (X ′

t , Rt) to T (it may happen that
(Xi , Ri) = (X ′

i−1, Ri−1) in which case we leave out one of the two). We associate
D′′ − Q1U to the leaf (X ′

t , Rt).

123

2690 Journal of Combinatorial Optimization (2022) 44:2681–2699

By Lemma 6, we are done in at most |V (G)|2 steps. This completes the construction.
Construction of a tree decomposition.By combining the construction described above
with that of Lemma 8, we obtain Theorem 2 below. Note that so far only a non-
constructive proof was known of the fact that the divisorial gonality of a graph is an
upper bound for the treewidth (van Dobben de Bruyn and Gijswijt 2020).

Lemma 8 Let T ′ = (P, F) be a monotone search strategy for k searchers in the con-
nected graph G and let T be the undirected tree obtained by ignoring the orientation
of edges in T ′. Then (T , {X}(X ,R)∈P) is a tree decomposition of G of width at most
k − 1.

Proof Let v ∈ V . We first show that v ∈ X for some (X , R) ∈ P . Let P ′ :=
{(X , R) ∈ P : v ∈ R}. Note that P ′ contains the root node (∅, V). Let (X , R) ∈ P ′
have maximum distance from the root. Since v ∈ R, it follows from the definition of
MSS that (X , R) has a child (X ′, R′) with v ∈ X ′ ∪ R′. Hence, by the maximality
assumption, we have v ∈ X ′.

Next, we show that the set of nodes {(X , R) ∈ P | v ∈ X} is a subtree of T .
Equivalently, we must show that if node (X2, R2) lies on a path from (X1, R1) to
(X3, R3) in T , then X1 ∩ X3 ⊆ X2. It suffices to check this in two cases: the case
that (X3, R3) is a descendant of (X1, R1) in T ′, and the case that (X2, R2) is the last
common ancestor of (X1, R1) and (X3, R3). In the first case, it is easy to see that
X3 ⊂ X2 ∪ R2 and R2 ⊆ R1 hold. It follows that

X1 ∩ X3 ⊆ X1 ∩ (X2 ∪ R2) ⊆ X1 ∩ (X2 ∪ R1) ⊆ X2

since X1 and R1 are disjoint. In the second case, node (X2, R2) has more than one
out-neighbor, so its out-neighbors are positions (X2, R), where R runs over the X2-
flaps contained in R2. It follows that X1 ⊆ X2 ∪ R′ and X3 ⊆ X2 ∪ R′′ for distinct
X2-flaps R′ and R′′. Hence, X1 ∩ X3 ⊂ X2.

To complete the proof, it suffices to show that for every edge {u, v} ∈ E(G) there
is some node (X , R) of T with u, v ∈ X . Suppose for contradiction that this is not the
case for edge {u, v}.

We first show that there is a node (X , R) such that u ∈ X and v ∈ R (or vice versa).
To this end, consider the nodes (X , R) of T with u, v ∈ R (e.g. the root node), and
take such a node that has maximum distance from the root. This node cannot be a leaf
since R � v is non-empty. Since u and v belong to the same X -flap, it follows by the
maximality assumption that (X , R) has a child (X ′, R′) with u ∈ X ′ and v ∈ R′ (or
vice versa).

Now consider all nodes (X , R) with u ∈ X and v ∈ R and take such a node for
which the distance to the root is maximised. This node cannot be a leaf (since R � v

is non-empty). Consider a child (X ′, R′) of (X , R). If we are in case (iii)(a) then
v ∈ R′ and we must have u ∈ X ′ since otherwise R′ is not a union of X ′-flaps as
{u, v} is an edge. This contradicts the maximality assumption. If we are in case (iii)(b),
then u ∈ X ′ and v ∈ R′ contradicting the maximality assumption. If we are in case
(iii)(c), we may assume that R′ is the X -flap containing v and again this contradicts
the maximality assumption. ��

123

Journal of Combinatorial Optimization (2022) 44:2681–2699 2691

Fig. 1 An example graph G.
The divisor D = 3a has positive
rank. (It is not optimal, as
dgon(G) = 2, since the divisor
b + f also has positive rank)

a

b c

d e f g

Fig. 2 The monotone search strategy obtained from G with divisor D = 3a. Each node shows the corre-
sponding pair (X , R) with the root being (∅, {a, b, c, d, e, f , g}). The labels I–III refer to the steps in the
construction

Theorem 2 There is a polynomial time algorithm that, when given a graph G and an
effective divisor of degree k, finds a tree decomposition of G of width at most k.

4 An example

We apply the constructions of the previous section to a relatively small example. Let
G = (V , E) be the graph depicted in Fig. 1 and let3 D = 3a be the divisor on G that
has value 3 on vertex a and value 0 elsewhere.

If we follow the construction of Sect. 3, we will end up with the monotone search
strategy found in Fig. 2. Recall that every node of the search tree is a pair (X , R) of
subsets of V such that R is a union of X -flaps in G. For every node, the sets X and
R are indicated in the figure. The three ways of growing the tree (steps I, II, III of the
construction) at a node with R �= ∅ are indicated by downward arrows. Steps of type
I are the only steps that involve branching of the tree. Steps of type III are the most
involved: a path of nodes is added to the tree (depicted horizontally) and the divisor

3 For compactness of notation, we write the divisors as a formal sum. For instance, if divisor D′ has 2 chips
on b and 1 chip on g, we write D′ = 2b + g.

123

2692 Journal of Combinatorial Optimization (2022) 44:2681–2699

Fig. 3 Tree decomposition of G derived from the MSS

D′ changes. For reference, the four steps of type III are labelled (1)–(4). Below, we
will elaborate on the construction.

Root The initial partial MSS consists of a root (X , R) = (∅, V) connected
to a leaf node (supp(D), V \ supp(D)) = ({a}, {b, c, d, e, f , g}). The
divisor associated to the leaf node is D′ = 3a.

Step III(1) For the leaf node (X , R) = ({a}, {b, c, d, e, f , g}), the set R is a single
X -flap and N (R) = X , so we apply step III. Dhar’s algorithm applied
to divisor D′ = 3a (and an arbitrary vertex in R) gives the set U = {a}
to fire on. We have U ∩ X = {s1} with s1 = a. We obtain

X1 = X ∪ (N (s1) ∩ R) = {a, b, c}, R1 = R \ X1 = {d, e, f , g}, X ′
1 = {b, c}.

The path (X1, R1) → (X ′
1, R1) is attached to leaf node (X , R). The

divisor D′ − Q1U = a + b + c is associated to the new leaf node
(X ′

1, R1).
Step I For the leaf node (X , R) = ({b, c}, {de f g}), the set R is the union of

two X -flaps: R = {d} ∪ {e, f , g}. Hence, we apply step I to obtain two
new leaf nodes ({b, c}, {d}) and ({b, c}, {e, f , g}.

Step II In the left-hand leaf node (X , R) = ({b, c}, {d})we have N (R) = {b} ⊂
X , so we apply step II and add a new leaf node ({b}, {d}).

Step III(2–4) The remaining steps in the construction of the MSS are of type III. We
summarise the details below.

(2) Divisor D′ is equal to a + b + c. Applying Dhar’s algorithm to D′ and the
vertex d, we obtain the set U = {a, b, c, e, f , g}. Firing on U , we obtain the
new divisor a + c + d.

(3) Divisor D′ is equal to a + b + c. Applying Dhar’s algorithm to D′ and any of
the vertices in R = {e, f , g} we obtain the set U = {a, c}. Firing on U , we
obtain the new divisor 2b + g.

(4) Divisor D′ is equal to 2b+ g. Applying Dhar’s algorithm to D′ and the vertex
e (or equivalently f) we obtain the set U = {a, b, c, d, g}. Firing on U , we
obtain the new divisor e + 2 f .

From the search tree, we obtain a tree-decomposition of width deg(D) = 3 by
labeling each node (X , R) by the set X and ignoring arc directions. Removing nodes
with label ∅ and contracting edges of the tree between nodes with equal labels, we
obtain the following tree decomposition (Fig. 3).

123

Journal of Combinatorial Optimization (2022) 44:2681–2699 2693

5 Other notions of gonality

5.1 Stable divisorial gonality

The stable divisorial gonality of a graph G is the minimum of dgon(H) over all
subdivisions H of G (i.e., graphs H that can be obtained by subdividing zero or more
edges of G). The bound for divisorial gonality can easily be transferred to one for
stable divisorial gonality. If G is simple, then the treewidth of G equals the treewidth
of any of its subdivisions. (This is well known.) If G is not simple, then either the
treewidth of G equals the treewidth of all its subdivisions, or G is obtained by adding
parallel edges to a forest (i.e., the treewidth of G equals 1), and we subdivide at least
one of these parallel edges (thus creating a graph with a cycle; the treewidth will be
equal to 2 in this case.) In the latter case, the (stable) divisorial gonality will be at least
two. Thus, we have the following easy corollary.

Corollary 1 The treewidth of a graph G is at most the stable divisorial gonality of G.

Standard treewidth techniques allow us to transform a tree decomposition of a sub-
division of G into a tree decomposition of G of the same width. (For each subdivided
edge {v,w} replace each occurrence of a vertex representing a subdivision of this edge
by v in each bag.)

5.2 Stable gonality

Related to (stable) divisiorial gonality is the notion of stable gonality; see Cornelissen
et al. (2015). This notion is defined using finite harmonic morphisms to trees.

Let G and H be undirected nonempty graphs. We allow G and H to have parallel
edges but not loops. A graph homomorphism from G to H is a map f : V (G) ∪
E(G) → V (H) ∪ E(H) that maps vertices to vertices, edges to edges, and preserves
incidences of vertices and edges:

– f (V (G)) ⊆ V (H),
– if e is an edge between vertices u and v, then f (e) is an edge between f (u) and

f (v).

A finite morphism from G to H (notation: f : G → H) is graph homomorphism f
from G to H together with an index function r f : E(G) → Z>0. A finite morphism
f : G → H with index function r f is harmonic if for every vertex v ∈ V (G), there
is a constant m f (v) such that for each edge e ∈ E(H) incident to f (v), we have

∑
e′ incident to v; f (e′)=e

r f (e
′) = m f (v)

If H is connected and |E(G)| ≥ 1, then there is a positive integer deg(f), the degree
of f , such that for all vertices w ∈ V (H) and edges e ∈ E(H), we have

deg(f) =
∑

v∈V (G); f (v)=w

m f (v) =
∑

e′∈E(G); f (e′)=e

r f (e
′);

123

2694 Journal of Combinatorial Optimization (2022) 44:2681–2699

Fig. 4 A graph G with tree H
and harmonic morphism f given
by projecting the edges and
vertices of G downward to H .
The degree of f equals 3. The
value of r f resp.m f is displayed
at every edge resp. vertex of G

Fig. 5 A refinement G′ of G and a harmonic morphism f ′ to a tree H ′ given by projecting the edges and
vertices of G′ to the right. The degree of f ′ equals 2. The values of r f ′ resp. m f ′ are displayed at every
edge resp. vertex of G′

see Urakawa (2000, Lemma 2.12) and Baker and Norine (2009, Lemma 2.3). In par-
ticular, f is surjective in this case.

A refinement of a graph G is a graph G ′ that can be obtained from G by zero or
more of the following two operations: subdivide an edge; add a leaf (i.e., add one new
vertex and an edge from that vertex to an existing vertex).

The stable gonality of a connected non-empty graph G is the minimum degree of
a finite harmonic morphism of a refinement of G to a tree.

Example 1 We look at an example that illustrates the above definition and shows how
taking refinements might lead to harmonic morphisms of low degree. Consider Fig. 4.
Here the map f : G → H is given by projecting each edge and vertex downward. The
value of the index function r f is given at every edge and the value of m f is given at
every vertex. One can check that for every edge in H , the sum of the indices of the
pre-images equals 3, and that the sum of the values of m f also equals 3. The degree
of f equals 3.

By refining G one obtains a harmonic morphism of degree 2, see Fig. 5. The map
f ′ is given by projecting to the right, and again the values of the index function are
given at every edge. The two horizontal edges in G are mapped to the horizontal edge
in H ′. This map has degree 2. As G is not a tree, the stable gonality of G is greater
than 1, hence we conclude that the stable gonality of G is 2.

123

Journal of Combinatorial Optimization (2022) 44:2681–2699 2695

Lemma 9 Let G be an undirected connected graph without loops and at least one
edge. Given a tree T and a finite harmonic morphism f : G → T of degree k, a tree
decomposition of G of width at most k can be constructed in O(k2|V (G)|) time.

Before proving the lemma, we make some simple observations. Recall that indices
r f (e) are positive integers. We thus have for each edge e ∈ E(T):

|{e′ ∈ E(G) | f (e′) = e}| ≤
∑

e′∈E(G); f (e′)=e

r f (e
′) = deg(f).

Since G is connected and has at least one edge, it follows thatm f (v) ≥ 1 for every
v ∈ V (G). Hence, for each vertex i ∈ V (T):

|{v ∈ V (G) | f (v) = i}| ≤
∑

v∈V (G); f (v)=i

m f (v) = deg(f).

Proof (of Lemma 9) We build a tree decomposition of G in the following way. For
each edge e ∈ E(T), we have that |{e′ ∈ E(G) | f (e′) = e}| ≤ k. Call this number
�(e). We subdivide e precisely �(e) times; that is, we add �(e) new vertices on this
edge. Let T ′ be the tree that is obtained in this way.

To the nodes i of T ′, we associate sets Xi in the followingway. If i is a node of T (i.e.,
not a node resulting from the subdivisions), then Xi = f −1(i), i.e., all verticesmapped
by the morphism to i . By the observation above, we have that |Xi | ≤ deg(f) = k.

Consider an edge {i, j} in T .Write k′ = �({i, j}). Recall that there are k′ ≤ k edges
of G that are mapped to {i, j}. Suppose these are e1 = {v1, w1}, . . . , ek′ = {vk′ , wk′ }
with f (v1) = f (v2) = · · · = f (vk′) = i and f (w1) = f (w2) = · · · = f (wk′) = j .
Let i1, i2, . . . , ik′ be the subdivision nodes of the edge {i, j}, with i1 incident to i and
ik′ incident to j . Set Xir = {vs | r ≤ s ≤ k′} ∪ {wt | 1 ≤ t ≤ r} for r ∈ {1, . . . , k′}.
The construction is illustrated in Fig. 6. We claim that this yields a tree decomposition
of G of width at most k.

For all edges {v,w} ∈ E(G), we have { f (v), f (w)} ∈ E(T). Suppose without
loss of generality that f (v) has the role of i , f (v) the role of j , v = vr and w = wr

in the construction above. Then v,w ∈ Xir .
Finally, for all v ∈ V , the sets Xi to which v belongs are the following: v is in

X f (v), and for each edge incident to f (v) ∈ T , v is in zero or more successive bags of
subdivision nodes of this edge, with the first one (if existing), incident to f (v). Thus,
the bags to which v belongs form a connected subtree.

The first condition of tree decompositions follows from the second and the fact that
G is connected. Hence T ′, with bags as defined above, yields a tree decomposition of
G.

Finally, note that each set Xi is of size at most k + 1: vertices in T have a bag of
size k and subdivision vertices have a bag of size k′ + 1 ≤ k + 1. So, we have a tree
decomposition of G of width at most k.

It is straightforward to see that the construction in the proof can be carried out in
O(k2|V (G)|) time. (Use that |V (T)| ≤ |V (G)|, since f is surjective.) ��

123

2696 Journal of Combinatorial Optimization (2022) 44:2681–2699

Fig. 6 Example of a step in the proof of Lemma 9. Here k′ = 4. Left: four edges are mapped to the edge
{i, j} by the finite harmonic morphism. Right: the corresponding bags in the tree decomposition

Theorem 3 Let G be an undirected connected graph without loops. Suppose that G
has stable gonality k. Then G has treewidth at most k. Given a refinement G ′ of G
and a finite harmonic morphism f : G ′ → T of degree k, a tree decomposition of G
of width at most k can be constructed in O(k2|V (G ′)|) time.
Proof The degenerate case that G has no edges must be handled separately; here we
have that the treewidth of G is 0, which is equal to its stable gonality.

SupposeG has at least one edge. ByLemma9,we obtain a tree-decomposition ofG ′
of width k in O(k2|V (G ′)|) time. Standard treewidth techniques allow us to transform
a tree decomposition of a refinement of G into a tree decomposition of G of the same
or smaller width. Added leaves can just be removed from all bags where they occur.
For each subdivided edge {v,w}, replace each occurrence of a vertex representing a
subdivision of this edge by v in each bag. ��

5.3 Comparison of the tree decompositions

Divisorial gonality and stable gonality are unbounded in one another (Gijswijt et al.
2020, Sect. 5). In particular, the existence of a harmonic morphism G → T of degree
k does not imply the existence of a positive rank divisor of degree k on G and vice
versa. Thus one cannot expect the minimal width of the tree decompositions of a graph
G obtained through harmonic morphisms to be equal to the minimal width obtained
through positive rank divisors, let alone that the tree decompositions themselves are
equal.

However, we can relate the two constructions as follows. Given a graph G and a
harmonic morphism f : G → T of degree k one can obtain a positive rank divisor on
a graph G ′ with V (G) = V (G ′): replace every edge e of G by r f (e) parallel edges
to obtain G ′. Choose any vertex t ∈ T and let Dt be the divisor with m f (v) chips
on every vertex v ∈ f −1(t) and no chips on the other vertices. Then Dt is a positive
rank divisor on G ′ of degree k. Indeed, given a neighbor t ′ ∈ T of t , let Tt,t ′ be the
vertex set of the connected component of T − {t, t ′} that contains t . We can fire the
set f −1(Tt,t ′), which moves all chips from vertices in f −1(t) to vertices in f −1(t ′).
As v ∈ f −1(t) has exactly m f (v) edges to vertices in f −1(t ′) and v′ ∈ f −1(t ′)
has exactly m f (v

′) edges to vertices in f −1(t), we find that the resulting divisor has
m f (v

′) chips on every vertex v′ ∈ f −1(t ′) and no chips on other vertices. That is, it
is precisely the divisor Dt ′ . Repeating this process shows that Dt is a positive rank
divisor.

123

Journal of Combinatorial Optimization (2022) 44:2681–2699 2697

We can use the divisors Dt and firing sets Tt,t ′ to construct a monotone search
strategy as in Sect. 3. Indeed, suppose we are in Step III of the construction of a
monotone search strategy, and D′ = Dt for some node t ∈ T . Let r ∈ R∩N (X). Then
t ′ = f (r) is a neighbor of t in T . Since R is connected, f (R) = Tt ′,t = V (T) \ Tt,t ′ .
Hence, we can take D′′ = Dt and fire on U = Tt,t ′ .

In this way we obtain a decomposition that is basically the same as the tree decom-
position obtained from the harmonic morphism f . Indeed, if t and t ′ are neighbors
in T , we let f −1(t) = {v1, . . . , vn} and denote the neighbors of vi in f −1(t ′) by
v′
i,1, . . . , v

′
i,ai

. Then the tree decomposition obtained from Dt will have a path of bags

f −1(t) = {v1, . . . , vn} → {v1, . . . , vn, v1,1, . . . , v1,a1}
→ {v2, . . . , vn, v1,1, . . . , v1,a1}
→ {v2, . . . , vn, v1,1, . . . , v1,a1 , v2,1, . . . , v2,a2}
→ . . .

→ {v1,1, . . . , v1,a1 , . . . , vn,1, . . . , vn,an } = f −1(t ′).

Numbering the edges4 {vi , vi, j } =: ea1+···+ai−1+ j , the tree decomposition obtained
from f will have a path of bags

f −1(t) = {v1, . . . , vn} → {v1, . . . , vn, v1,1}
→ . . .

→ {v1, . . . , vn, v1,1, . . . , v1,a1}
→ {v2, . . . , vn, v1,1, . . . , v1,a1 , v2,1}
→ . . .

→ {v2, . . . , vn, v1,1, . . . , v1,a1 , v2,1, . . . , v2,a2}
→ . . .

→ {v1,1, . . . , v1,a1 , . . . , vn,1, . . . , vn,an } = f −1(t ′).

The second sequence of bags can be easily contracted to obtain the first. Hence, a
tree decomposition constructed from a harmonic morphism can also be obtained from
a positive rank divisor on an associated graph.

It is unknown to the authors whether or not any tree decomposition obtained from
a positive rank divisor can be obtained from a finite harmonic morphism on some
associated graph, as it is unclear how to obtain a harmonic morphism from a positive
rank divisor.

4 For simplicity, we assume here that G has no parallel edges. If it does, the path will have additional,
repeated, bags.

123

2698 Journal of Combinatorial Optimization (2022) 44:2681–2699

6 Conclusions

In this paper, we gave a constructive proof that the divisorial gonality of a graph
is an upper bound for its treewidth. Before this, only a non-constructive proof was
known (van Dobben de Bruyn and Gijswijt 2020). There are several graph theoretic
notions with the property that they give an upper bound for treewidth; see e.g. Bod-
laender (1998) for an older overview. One consequence of our result is that problems
which can be solved efficiently (e.g., in linear time) on graphs of bounded treewidth
(e.g., when they can be formulated in Monadic Second Order Logic (see Courcelle
(1990) or Cygan et al. (2015, Chapter 7)) also can be solved efficiently on graphs of
bounded divisorial gonality. It is a natural question to ask whether there are problems
that are intractable even when the treewidth is small, but become tractable for small
divisiorial gonality; however, it appears hard to come with natural examples for this.
The same applies to the notions stable divisorial gonality

An interesting open problem is to establish the parameterized complexity of diviso-
rial gonality, and the other gonality notions. It is known that theDivisorial Gonality
problem (i.e., given a graph G, and an integer k, decide if dgon(G) ≤ k) is in XP
(Baker and Shokrieh 2013; Dobben de Bruyn 2012), but it is unkown if the problem
is in FPT, i.e., if there is an algorithm with running time of the form O(f (k) · nc) for
constant c. Likewise, are Stable Divisorial Gonality or Stable Gonality in
XP or even in FPT? (See e.g. Cygan et al. (2015)) for an introduction to parameterized
complexity.)

Acknowledgements We thank Gunther Cornelissen, Bart Jansen, Erik Jan van Leeuwen, Marieke van der
Wegen, and Tom van der Zanden for helpful discussions.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Baker M (2008) Specialization of linear systems from curves to graphs. Algebra Number Theory 2(6):613–
653

BakerM, Norine S (2007) Riemann–Roch and Abel–Jacobi theory on a finite graph. AdvMath 215(2):766–
788

Baker M, Norine S (2009) Harmonic morphisms and hyperelliptic graphs. Int Math Res Not 15:2914–2955
Baker M, Shokrieh F (2013) Chip-firing games, potential theory on graphs, and spanning trees. J Comb

Theory Ser B 120:164–182
Bertele U, Brioschi F (1972) Nonserial dynamic programming. Academic Press, New York
Bodlaender HL (1998) A partial k-arboretum of graphs with bounded treewidth. Theor Comput Sci 209(1–

2):1–45. https://doi.org/10.1016/S0304-3975(97)00228-4
Bodlaender HL, van Dobben de Bruyn J, Gijswijt D, Smit H (2020) Constructing tree decompositions of

graphswith bounded gonality. In:KimD,UmaRN,CaiZ,LeeDH(eds)Computing and combinatorics.
Springer, Cham, pp 384–396

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0304-3975(97)00228-4

Journal of Combinatorial Optimization (2022) 44:2681–2699 2699

Cools F, Draisma J, Payne S, Robeva E (2012) A tropical proof of the Brill–Noether theorem. Adv Math
230(2):759–776

Cornelissen G, Kato F, Kool J (2015) A combinatorial Li–Yau inequality and rational points on curves.
Mathematische Annalen 361(1–2):211–258. https://doi.org/10.1007/s00208-014-1067-x

Courcelle B (1990) The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inform
Comput 85(1):12–75. https://doi.org/10.1016/0890-5401(90)90043-H

Cygan M, Fomin FV, Kowalik L, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S (2015)
Parameterized algorithms. Springer, Berlin. https://doi.org/10.1007/978-3-319-21275-3

Dhar D (1990) Self-organized critical state of sandpile automaton models. Phys Rev Lett 64(14):1613
Dobben de Bruyn JV (2012) Reduced divisors and gonality in finite graphs. Bachelor the-

sis, Leiden University. https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/
bachvandobbendebruyn.pdf

van Dobben de Bruyn J, Gijswijt D (2020) Treewidth is a lower bound on graph gonality. Algebr Combin
3(4):941–953. https://doi.org/10.5802/alco.124

Gijswijt D, Smit H, van der Wegen M (2020) Computing graph gonality is hard. Discrete Appl Math
287:134–149

Hendrey K (2018) Sparse graphs of high gonality. SIAM J Discrete Math 32(2):1400–1407
Robertson N, Seymour PD (1986) Graphminors. II. Algorithmic aspects of tree-width. J Algorithms 7:309–

322
Seymour PD, Thomas R (1993) Graph searching and a minimax theorem for tree-width. J Combin Theory

Ser B 58:239–257
Urakawa H (2000) A discrete analogue of the harmonic morphism and Green kernel comparison theorems.

Glasgow Math J 42(3):319–334

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s00208-014-1067-x
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachvandobbendebruyn.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachvandobbendebruyn.pdf
https://doi.org/10.5802/alco.124

	Constructing tree decompositions of graphs with bounded gonality
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Divisors and gonality
	2.3 Treewidth and tree decompositions

	3 Construction of a search strategy
	4 An example
	5 Other notions of gonality
	5.1 Stable divisorial gonality
	5.2 Stable gonality
	5.3 Comparison of the tree decompositions

	6 Conclusions
	Acknowledgements
	References

