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ON THE SLOPES OF THE LATTICE OF SECTIONS OF

HERMITIAN LINE BUNDLES

T. CHINBURG, Q. GUIGNARD, AND C. SOULÉ

Abstract. In this paper we apply Arakelov theory to study the distribution of the

Petersson norms of classical cusp forms as well as the distribution of the sup norms

of rational functions on adelic subsets of curves. The method in both cases is to

study the limiting distribution of the successive minima of norms of global sections

of powers of a metrized ample line bundle as one takes increasing powers of the

bundle. We develop a general method for computing the measure associated to this

distribution. We also study measures associated to the zeros of sections which have

small norm.
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1. Introduction

The development of Arakelov theory has benefited from a close study of applications

to classical questions. The proofs of the conjectures of Mordell and Lang are famous

examples. We study in this paper the distribution of norms of two kinds of classical

objects. The first consists of the Petersson norms of modular forms with integral Fourier

coefficients and increasing weight for SL2(Z). The second consists of the distribution of

sup norms of polynomials with integer coefficients on compact subsets of the complex
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2 CHINBURG, GUIGNARD, AND SOULÉ

plane. More generally, we consider the sup norms of rational functions with prescribed

poles on adelic subsets of curves over number fields. These subjects are linked by

the fact that they both concern the successive minima of the norms of global sections

of increasing powers of metrized line bundles on arithmetic surfaces. We treat both

subjects in this paper because there is a substantial overlap in the underlying theory

needed to study them.

Finding successive minima of norms of global sections of powers of metrized line

bundles has a long history in Arakelov theory. The arithmetic Hilbert-Samuel theorem

([16], [1]) concerns the existence of sections with small norm. In [9], Chen developed a

theory of convergence for distributions associated to the successive minima of sequences

of lattices. He applied this theory to show the existence of limiting distributions associ-

ated to the successive minima of norms of sections of increasing powers of line bundles

with smooth metrics on arithmetic varieties. For our applications we need to work with

some particular metrics which are not smooth, using work on such metrics developed

by Bost [6] and Kühn [18]. In the case of Petersson norms of cusp forms, this leads to a

new phenomenon not appearing in the work of Chen. Namely, the limiting distribution

associated to the successive minima of norms as the weight of the cusp forms increases

does not have compact support.

One consequence of our results has to do with congruences between modular forms.

We show that most of the small successive minima of the Petersson norms of cusp

forms with integral Fourier coefficients arise from non-trivial congruences between

Hecke eigenforms. To see why congruences lead to small Petersson norms, suppose

f1 and f2 are distinct normalized Hecke eigencuspforms, so that the first coefficient in

each of their Fourier expansions at infinity is 1. A non-trivial congruence between these

forms amounts to the statement that g = (f1 − f2)/m has integral Fourier coefficients

for some integer m > 1. In this case, g will often have smaller Petersson norm than

either f1 or f2. More general congruences involving several eigenforms are involved in

the precise statements of our results in Definition 3.2.1 and Theorem 3.2.2(iii).

Classical arithmetic capacity theory was motivated by the problem of finding whether

there is a non-zero polynomial with integer coefficients which has sup norm less than

one on a given subset of the complex plane. The generalization of this problem to

arbitrary curves involves studying global sections of powers of lines bundles which have

particular Green’s metrics. Classical capacity theory produces an upper bound for the

minimal such sup norm which is not sharp in general. We develop in this paper an

approach via local Chebyshev constants for obtaining better bounds over schemes of

arbitrary dimension, and we obtain additional information on successive minima. This

leads to new results about classical questions.

For instance, suppose E is a compact subset of the complex plane which is invariant

under complex conjugation. Let m(n,E) be the minimal sup norm over E of a non-

zero polynomial with integer coefficients and degree n. Since m(ℓ + n,E) ≤ m(ℓ, E) ·
m(n,E), the classical Fekete Lemma [9, p. 10] shows M(E) = limn→∞m(n,E)1/n

exists. Classical capacity theory as in [22, 23] shows that if the capacity γ(E) of E
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satisfies γ(E) < 1 then M(E) < 1. Our work on local Chebyshev constants provides

more precise information about M(E). As an example, suppose E is the closed disk of

radius 1/2 centered at 1/2. Then γ(E) = 1/2, and we will use the machinery of §5 to

show 0.64 < M(E) < 0.67 (see Example 5.3.2).

The Chebyshev method is useful for showing that in some cases, the successive

minima are almost all equal. In this case, one says the associated metrized bundles are

asymptotically semi-stable, and the limiting measure associated to successive minima

is the Dirac measure supported on 0. We will show that this situation arises from

adelic subsets of curves which have capacity one. Motivated by work of Serre on

the distribution of eigenvalues of Frobenius on abelian varieties, we will also study the

distribution of zeros of sections of small norm with respect to capacity theoretic metrics.

We will show that in the case of adelic sets of capacity one, one can find sections

of approximately minimal norm whose zeros tend toward the associated equilibrium

distribution while avoiding any prescribed finite set of points.

A careful reader will notice that the classical questions we study involving Petersson

norms of cusp forms and the capacities of adelic sets lead to considering particular

metrics on line bundles. While some of our results could be generalized to other metrics,

we prefer to focus on the cases at hand. Similarly, we focus on the Petersson norms

of cusp forms for SL2(Z) rather than on developing in this paper generalizations to

arbitrary modular forms on reductive groups. Such generalizations are naturally of

interest. However, in this paper we are concerned with demonstrating the possibility

of obtaining explicit results. For example, we will show that the limiting measure

associated to Petersson inner products of cusp forms for SL2(Z) has support bounded
above by 2π+6(1− log(12)) = −2.62625.... We hope a detailed analysis of the SL2(Z)
case will motivate future research on more general modular forms.

This paper is organized in the following way.

In §2 we begin by recalling various kind of slopes associated to an hermitian adelic

vector bundle over a number field. The example of primary interest is provided by the

global sections of an ample metrized line bundle on an arithmetic variety. The naive

adelic slopes associated to such sections s arise from a height λ(s) recalled in Definition

2.1.1. Here λ(s) is the negative of the natural logarithmic norm of s. For this reason,

the successive minima of norms of sections correspond to successive maxima of heights.

We recall in §2 some results of Chen [9] concerning various kinds of successive maxima

of heights associated to the global sections of metrized line bundles.

In §3 we consider slopes associated to lattices of cusp forms f of increasing weight

for SL2(Z) which have integral q-expansions. We begin by recalling work of Kühn and

Bost concerning the interpretation of Petersson norms of such cusp forms via Arakelov

theory. When the g.c.d. of the Fourier coefficients is one, the height λ(f) of f is simply

one half the negative of the logarithm of the Petersson norm of f . A key issue is that

the adelic metrics which arise on the line bundle L appropriate to this application are

singular at infinity. Thus one cannot apply Chen’s work directly. Instead we consider

forms which vanish to at least prescribed orders at infinity, and then let these orders
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tend to 0. An interesting conclusion in our main result, Theorem 3.2.2, is that the

the probability measure ν which results in limit of large weights has support bounded

above but not bounded below. In Definition 3.2.1 we define a nonzero cusp form f to

not arise from a congruence between Hecke eigenforms if when we write f as a linear

combination
∑

i cifi of distinct normalized eigenforms fi, the ci are algebraic integers

divisible in the ring of all algebraic integers by the g.c.d. of the Fourier coefficients

of f . We will show that Petersson norms of such f are very large and contribute a

vanishingly small proportion of successive minima as the weight tends to infinity. The

measure ν thus has to do with non-trivial congruences between eigenforms which give

rise to forms with integral q expansions having much smaller Petersson norms.

In §4, we consider smooth projective curves X of positive genus. Building on work

of one of us in [27], we deduce an explicit upper bound on the largest minimum of

H0(X,L⊗n) in terms of arithmetic intersection numbers. However, this result falls

short of proving the asymptotic semi-stability of the metrics on H0(X,L⊗n).
In §5 we will apply the theory of Okunkov bodies to study successive maxima of

heights for X of any dimension. We introduce local and global Chebyshev transforms

which are maps from the Okounkov body of X to the real numbers. The global Cheby-

shev transform is the sum of the local ones. We prove in Corollary 5.1.0.1 that, if the

global Chebyshev transform is a constant function, the limit distribution ν is a Dirac

measure. We compute explicitly the local Chebyshev transforms in some particular

cases when X is a projective space. The main strength of this technique is that in

some cases one can compute explicitly the limit distributions of the successive maxima

associated to heights.

In §6 we study the distribution of zeros of those sections of powers of a metrized line

bundle which have at least a prescribed height, i.e. those sections whose norms are

small in the corresponding way. We begin with an example in §6.1 which suggests that

sections of “small” norm may have to have at least some of their zeros at particular

points, the remaining zeros being variable. To formulate this precisely we recall a

result of Serre concerning the decomposition in to atomic and diffuse parts of limits

of measures in the weak topology on the space of positive Radon measures. The

connection of this theory to zeros of cusp forms of small Petersson norms is discussed

in Remark 3.2.3 and Question 6.2.3.

In §7 we consider applications to adelic capacity theory. This has to do with the

possible sup norms of rational functions on adelic subsets of curves. We will apply

work of Rumely to show that in the case of capacity metrics associated to adelic sets

of capacity one, the associated metrized bundles are asymptotically semi-stable, and

the measure ν is the Dirac measure supported at 0. We will also study the locations

of the zeros of sections which arise in this case using the work in §6.

Acknowledgements. T.C. would like to thank the I.H.E.S. for support during the

Fall of 2015. Q.G. took part in this project during the preparation of his Ph.D. thesis,

and would like to thank I.H.E.S. and E.N.S for hospitality and support in that period.
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2. Semistability, successive maxima, slopes and prior results

2.1. Measures associated to successive maxima à la Chen. Let E = (E, (||·||v)v)
be an hermitian adelic vector bundle of rank r = rank(E) > 0 over a number field K

of degree δ over Q (see [14], Definition 3.1).

Definition 2.1.1. We consider three sequences of slopes for E:

i. The (unnormalized) Harder-Narasimhan-Grayson-Stuhler slopes (λ̂i)
r
i=1 = (λ̂i(E))ri=1,

as defined in [14], Definition 5.10. One has

r∑

i=1

λ̂i(E) = d̂eg(E) = rλ(E),

where d̂eg(E) is the adelic degree of E ([14], Definition 4.1), and λ(E) =
1
r d̂eg(E) is the slope of E.

ii. The naive adelic successive maxima (λi)
r
i=1 = (λi(E))ri=1 of E, where λi(E) is

the largest real number λ such that the set E
≥λ

of elements of E satisfying

(2.1) λ(s) := −
∑

v

δv log ||s||v ≥ λ,

generates aK-vector space of dimension at least i. Here, δv is defined as follows,

for each valuation of v of K. When v is finite of residual characteristic p, if Kv

is the completion of K at v, δv is the degree of Kv over Qp. When v is real

δv = 1, and when v is complex δv = 2.

iii. The adelic successive maxima (λ′i)
r
i=1 = (λ′i(E))ri=1 of E (see [14], Definition

5.19) : the number λ′i(E) is the supremum of the quantities −∑
v δv log rv,

where (rv)v ranges over all families of positive real numbers such that the set

of elements s ∈ E satisfying

∀v, ||s||v ≤ rv,

generates a K-vector space of dimension at least i.

By [14], Theorem 5.20, one has

r∑

i=1

λ′i(E) = d̂eg(E) +OK(r log(2r)).

Since the same holds for the slopes (λ̂i(E))ri=1, the inequalities λ̂i(E) ≥ λi(E) ≥ λ′i(E)

ensure that the same estimate also holds for the slopes (λi(E))ri=1. From this one

deduce the following :

Proposition 2.1.2. Let (En)n≥1 be a sequence of hermitian adelic vector bundles of

ranks (rn)n≥1 over K, such that log rn = o(n). Assume that the sequence of probability

measures

ν̂En
=

1

rn

rn∑

i=1

δ 1
n
λ̂i(En)
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weakly converges to some probability measure ν with compact support on R. Then the

sequence

νEn
=

1

rn

rn∑

i=1

δ 1
n
λi(En)

,

weakly converges to ν.

Proof. Since smooth functions are dense within the space of continuous functions having

compact support, it will suffice to show that for every smooth function h with compact

support,

en =
1

rn

rn∑

i=1

(
h

(
1

n
λ̂i(En)

)
− h

(
1

n
λi(En)

))

converges to 0 as n tends to infinity. By the mean value theorem,

|en| ≤
||h′||∞
nrn

rn∑

i=1

|λ̂i(En)− λi(En)|.

The discussion preceding the statement of the proposition shows

rn∑

i=1

|λ̂i(En)− λi(En)| =
rn∑

i=1

λ̂i(En)−
rn∑

i=1

λi(En) = O(rn log(2rn)).

This gives

|en| = O(log(2rn)/n) = o(1)

as claimed. �

From now on, let X be a projective variety of dimension d over a number field K,

and let L be an ample line bundle on X, endowed with a continuous adelic metric

(| · |L,v)v, in the sense of [32]. We assume that for all but a finite number of places, the

metrics (| · |L,v)v come from a single integral model of (X,L) over OK . The K-vector

space H0(X,L⊗n) is an adelic vector bundle, in the sense of [14], if equipped with the

family of norms

||s||L⊗n,v = sup
x∈X(Cv)

|s(x)|⊗nL,v.

Even if the adelic vector bundle H0(X,L⊗n) is not hermitian, one can still define its

naive adelic successive maxima (λi,n)
rn
i=1 = (λi(H

0(X,L⊗n))rni=1. We will rely on the

following fundamental theorem of Chen.

Theorem 2.1.3. (Chen) Under the above hypotheses, the sequence of probability mea-

sures

νn =
1

rn

rn∑

i=1

δ 1
n
λi,n

converges weakly to a compactly supported probability measure ν on R.
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Indeed, replacing the L∞-norms at archimedean places by L2-norms with respect to a

fixed volume form only changes the normalized successive maxima 1
nλi,n by the negli-

gible amount O
(
log(n)
n

)
, so that one is left with a sequence of hermitian adelic vector

bundles over K which satisfies the hypotheses of Proposition 2.1.2 by Theorem 4.1.8

of [9].

Remark 2.1.4. The weak convergence of the sequence (νn)n also holds when the adelic

metric has mild singularities. More precisely, let us assume that d = 1, let (| · |L,v)v
be an adelic metric coming for all but a finite number of places from a single integral

model of (X,L) over OK , and let us allow (| · |L,v)v to have logarithmic singularities

at finitely many places. Namely, if L′ is the line bundle L endowed with a continuous

adelic metric (| · |L′,v)v as above then we require | · |L,v = φv| · |′L′,v where φv is a

non-negative continuous function such that

|1D|MO(D) ≤ φv

for some integer M and some continuous metric | · |O(D) on O(D). The homomorphism

H0(X,L⊗n) → H0(X,L′(MD)⊗n) then has operator norm at most 1 at each place.

Thus n−1λ1(H
0(X,L⊗n)) is bounded. With the help of Corollary 4.1.4 and Remark

4.1.5 of [9] one concludes that the corresponding sequence of measures (νn)n is weakly

convergent.

3. Modular forms and Petersson norms

In §3.1 we recall some work of Bost [6] and Kühn [18] concerning the interpretation

of holomorphic modular forms of weight 12k for SL2(Z) as sections of the k
th power of

a particular metrized line bundle on P1
Z for k ≥ 1. We then study in §3.2 the successive

maxima {λi,k}ki=1 associated to the lattice S12k(Γ,Z) of cusp forms of weight 12k with

integral Fourier coefficients with respect to the Petersson inner product.

3.1. Modular forms as sections of a metrized line bundle. Let H be the upper

half plane and let Γ = PSL(2,Z) be the modular group. Then X = Γ\(H ∪ P1(Q))

has a natural structure as a Riemann surface. The classical j function of z ∈ H has

expansion

j(z) =
1

q
+ 744 +

∞∑

n=1

anq
n in q = e2πiz.

The map z → j(z) defines an isomorphism X → P1
C.

The volume form of the hyperbolic metric on H is

(3.1) µ =
dx ∧ dy
y2

=
i

2

dz ∧ dz
Im(z)2

This form has singularities at the cusp and at the elliptic fixed points of Γ, as described

in [18, §4.2].
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Define

(3.2) ∆(z) = q
∞∏

n=1

(1− qn)24 = q +
∑

n>1

bnq
n

to be the normalized cusp form of weight 12 for Γ. Let Si∞ be the unique cusp of X,

so that Si∞ is associated with the orbit of P1(Q) under Γ.

Suppose k is a positive integer. In [18, Def. 4.6] the line bundle

M12k(Γ)∞ = OX(Si∞)⊗k

is defined to be the line bundle of modular forms of weight 12k with respect to Γ.

This is shown to be compatible with the usual classical definition of modular forms. In

particular, there is an isomorphism

(3.3) M12k(Γ) → H0(X,OX (Si∞)⊗k)

between the space M12k(Γ) of classical modular forms f = f(z) of weight 12k and

H0(X,OX (Si∞)⊗k) which sends f to the element f/∆k of the function field C(j) of X
over C.

The Petersson metric | |∞ on M12k(Γ)∞ is defined in [18, Def. 4.8] by

(3.4) |f |2∞(z) = |f(z)|2(4π Im(z))12k

if f is a meromorphic section of M12k(Γ)∞. It is shown in [18, Prop. 4.9] that this

metric is logarithmically singular with respect to the cusp and elliptic fixed points of

X. See [18, p. 227-228] for the reason that the factor 4π is used on the right side of

(3.4)

As in [18, §4.11], we define an integral model of X to be

X = Proj(Z[Z0, Z1])

with Z0 and Z1 corresponding to the global sections j · ∆ and ∆ of the ample line

bundle M12(Γ)∞. The point Si∞ defines a section Si∞ of X = P1
Z → Spec(Z). We

extend M12k(Γ)∞ to the line bundle

M12k(Γ) = OX (Si∞)⊗k

on X . This model then gives natural metrics | |v at all non-archimedean places v for

the induced line bundle M12k(Γ)Q on the general fiber XQ = Q⊗Z X . When v is the

infinite place of Q, we let | |v be the Petersson metric | |∞.

Proposition 3.1.1. The global sections H0(X ,M12k(Γ)) are identified with the Z-
lattice of all modular forms f of weight 12k with respect to Γ which have integral

q-expansions at Si∞. These are the the sections f of H0(XQ,M12k(Γ)Q) such that for

all finite places v of Q one has

(3.5) ||f ||M12k(Γ),v = supz∈XQ(Cv)|f |v(z) ≤ 1.

If f is not in B ·H0(X ,M12k(Γ)) for any integer B > 1 then

||f ||M12k(Γ),v = 1 for all finite v.
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The sublattice S12k(Γ,Z) of all cusp forms in H0(X ,M12k(Γ)) has corank 1 and rank

k. If f ∈ S12k(Γ,Z), the L
2 Hermitian norm at the infinite place v = ∞ of f is the

usual Petersson norm

(3.6) ||f ||2M12k(Γ),∞,herm =

∫

X(C)
|f |2∞(z)µ(z) =

∫

X(C)
|f(z)|2(4πy)12k dxdy

y2

associated to f , where µ(z) is the the volume form of the hyperbolic metric given in

(3.1).

Proof. The first statement is a consequence of the fact that the q expansions of j and

∆ have integral coefficients and begin with 1/q and q, respectively. The statements

concerning finite places v is just the definition of the metrics at such places which are

associated to integral models of line bundles. The rank of H0(X ,M12k(Γ)) over Z is

the dimension over C of H0(X,M12k(Γ)∞) = H0(X,OX (Si∞)⊗k), which equals k + 1

by Riemann Roch. The last statement concerning cusp forms is the definition of the

Petersson norm when this is normalized as in (3.4). �

Remark 3.1.2. Since the sections (jk−ℓ∆k)kℓ=0 form an integral basis ofH0(X ,M12k(Γ)),

the norm || · ||M12k(Γ),v is given at non archimedean places by

||
k∑

ℓ=0

aℓj
k−ℓ∆k||M12k(Γ),v = max

0≤l≤k
|al|v.

In particular, for any f in H0(X ,M12k(Γ))Qv , the norm ||f ||M12k(Γ),v belongs to the

valuation semigroup |Qv|.

3.2. Successive maxima and modular forms. To state our main result we need a

definition.

Definition 3.2.1. A non-zero form f ∈ S12k(Γ,Z) does not arise from a congruence

between eigenforms if when we write f as a linear combination
∑

i cifi of distinct nor-

malized eigenforms fi, the ci are algebraic integers divisible in the ring of all algebraic

integers by the g.c.d. of the Fourier coefficients of f .

This terminology arises from the fact that if the ci are integral but the last require-

ment in the definition fails, there is a non-trivial congruence modulo the g.c.d. of the

Fourier coefficients of f between the forms fi.

Theorem 3.2.2. Let {λi,12k}ki=1 be the naive adelic successive maxima associated to

S12k(Γ,Z) in Definition 2.1.1(ii) with respect to the L2 Hermitian norm defined by the

Petersson norm in (3.12).

i. The sequence of probability measures

ν12k =
1

k

k∑

i=1

δ 1
k
λi,12k

converges weakly as k → ∞ to a probability measure ν.
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ii. The support of the measure ν is bounded above by 2π + 6(1 − log(12)) =

−2.62625.... The support of ν is not bounded below.

iii. As k → ∞, the proportion of successive maxima which are produced by f ∈
S12k(Γ,Z) which do not arise from a congruence between eigenforms goes to 0.

This result shows that in Remark 2.1.4, the limit measure need not have compact

support when the metrics involved are allowed to have mild singularities. We will prove

in §3.3 more quantitive results about the successive maxima λi,12k in this Theorem.

Remark 3.2.3. Consider the divisors zer(f) of complex zeros of elements f of S =

∪k>0 S12k(Γ,Z). Recall that each such zer(f) =
∑

x∈P1(C)mxx defines a Dirac measure

µ(zer(f)) = 1
deg(f)

∑
xmxδx. It follows from work of Holowinsky and Soundarara-

jan [17, Remark 2] and Rudnick [21] that as f ranges over any sequence of non-zero

Hecke eigencusp forms of weights going to infinity, the corresponding Dirac measures

µ(zer(f)) converge weakly to the Petersson measure µ in (3.1). However, due to part

(iii) of Theorem 3.2.2, we cannot conclude from this much information about the mea-

sures associated to the zeros of forms with large height. For a discussion of the latter

measures, see §6.1 and §6.2. It would be interesting to know whether cusp forms

with integral q-expansions which have small Petersson norms must vanish at particular

points in the upper half plane.

3.3. Petersson norms and Fourier expansions. We begin with a well known ar-

gument for bounding Petersson norms from below.

Lemma 3.3.1. Suppose that 0 6= f =
∑∞

n=1 anq
n ∈ S12k(Γ,C). Let N = ord∞(f).

Then 1 ≤ N ≤ k, and the L2 Hermitian norm at the infinite place v = ∞ of f in

(3.12) has the property that

||f ||2M12k(Γ),∞,herm =

∫

X(C)
|f(z)|2(4πy)12k dxdy

y2

≥
∞∑

n=1

|an|24πe−4πn (12k − 2)!

n12k−1

≥ |aN |2 · 4πe−4πN (12k − 2)!

N12k−1
(3.7)
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Proof. Since the an are in C, we have f(q) =
∑∞

n=1 anq
n. For a fixed y ≥ 1 we have (as

in [26, p. 786]) that

∫ 1/2

−1/2
|f(x+ iy)|2dx =

∫ 1/2

−1/2
f(q)f(q)dx

=

∫ 1/2

−1/2

∞∑

n,m=1

anamq
nqm

=

∞∑

n,m=1

anam

∫ 1/2

−1/2
e2πi((n−m)x+(n+m)iy)dx

=
∞∑

n=1

|an|2e−4πny(3.8)

The standard fundamental domain for the action of SL2(Z) on H contains the set

T = {z = x+ iy : −1/2 ≤ x < 1/2 and y ≥ 1}. Therefore
∫

X(C)
|f(z)|2(4πy)12k dxdy

y2
≥

∫

T
|f(z)|2(4πy)12k dxdy

y2

=

∫ ∞

y=1

∫ x=1/2

x=−1/2
|f(x+ iy)|2dx(4π)12ky12k−2dy

= (4π)12k
∞∑

n=1

|an|2
∫ ∞

y=1
e−4πnyy12k−2dy(3.9)

For all constants c 6= 0 and all integers ℓ ≥ 0, one has the indefinite integral

(3.10)

∫
e−cyyℓdy = −e−cy ·

ℓ∑

j=0

yℓ−j ℓ!
cj+1(ℓ− j)!

as one sees by differentiating the right side. Setting c = 4πn and ℓ = 12k − 2 and then

integrating the left hand side from y = 1 to ∞ gives

(3.11)
∫ ∞

y=1
e−4πnyy12k−2dy = e−4πn

12k−2∑

j=0

(12k − 2)!

(4πn)j+1(12k − 2− j)!
≥ e−4πn (12k − 2)!

(4πn)12k−1

Substituting this back into (3.9) gives the claimed inequalities.

�

3.4. Bounds on successive maxima. The following result will be used later to an-

alyze the support of limit measures associated to successive maxima.

Theorem 3.4.1. The rank of S12k(Γ,Z) over Z is k, and S12k(Γ,Z) has {∆kjk−ℓ : 1 ≤
ℓ ≤ k} as a basis over Z. Suppose 0 6= f =

∑∞
n=1 anq

n ∈ S12k(Γ,Z). Let ord∞(f) be the

smallest n such that an 6= 0. Then 1/k ≤ ord∞(f)/k ≤ 1. Let λ(f) be the logarithmic
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height of f with respect to the metrics of Proposition 3.1.1. Let ℓ : R>0 → R be the

monotonically increasing function defined by

ℓ(c) = 2πc+ 6(log(c) + 1− log(12)).

i. For ǫ > 0, there are only finitely many k and f for which

λ(f)/k − ℓ(ord∞(f)/k) ≥ ǫ

up to replacing f by non-zero rational multiple of itself (which does not change

λ(f) or ord∞(f)).

ii. Suppose r0 > ℓ(1) = 2π+6(1− log(12)) = −2.62625.... Then for all sufficiently

large k and all f ∈ S12k(Γ,Z) one has λ(f)/k ≤ r0.

iii. Suppose 1 > c > 0 and ǫ > 0. For all sufficiently large k, there are at least ck

successive maxima λi,12k among the total of k successive maxima associated to

S12k(Γ,Z) for which

λi,12k
k

≤ ℓ(c) + ǫ.

One has limc→0+ ℓ(c) = −∞.

Proof. By Proposition 3.1.1, S12k(Γ,Z) has corank 1 in H0(X ,M12k(Γ)). The rank of

H0(X ,M12k(Γ)) is k+1, so S12k(Γ,Z) has rank k. The form ∆kjk−i lies in S12k(Γ,Z) for
0 < i ≤ k, and its first non-zero term in its Fourier expansion at ∞ is qi. Hence the set

of these forms is a Z-basis for S12k(Γ,Z), and 1 ≤ ord∞(f) ≤ k for 0 6= f ∈ S12k(Γ,Z).
The logarithmic height of f with respect to the metrics || ||L,v we have defined on

L = M12k(Γ) for each place v of Q is

λ(f) = −
∑

v

log||f ||L,v.

By the product formula, multiplying f by a non-zero rational number does not change

λ(f). We now replace f by a rational multiple of itself without changing λ(f) to be

able to assume f ∈ S12k(Γ,Z) is not in B ·M12k(Γ,Z) for any integer B > 1.

Proposition 3.1.1 shows ||f ||L,v = 1 for each finite v, while if v = v∞ is the infinite

place,

(3.12) ||f ||2L,v∞ =

∫

X(C)
|f(z)|2(4πy)12k dxdy

y2

is the Petersson norm. Since f has integral Fourier coefficients, we find from (3.7) of

Lemma 3.3.1 that

2λ(f) = −log(

∫

X(C)
|f(z)|2(4πy)12k dxdy

y2
)

≤ −log(4πe−4πN (12k − 2)!

N12k−1
)

= −log(4π) + 4πN − log((12k − 2)!) + (12k − 1)log(N).(3.13)
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Suppose N = ck for some constants r and c. Since log(N) ≥ 0, (3.20) gives

2
λ(f)

k
≤ − log(4π)

k
+ 4πc− log((12k − 2)!)

k
+ (12 − 1/k) · (log(c) + log(k))

≤ 4πc+
log(12k − 1) + log(12k)

k
− log(12k)!

k
+ 12 · (log(c) + log(k))

≤ 4πc+ 2log(12k)/k − 12(log(12) − 1) + 12log(c)

(3.14)

since log((12k)!) ≥ 12klog(12k) − 12k. We conclude from (3.14) that

(3.15)
λ(f)

k
− ℓ(c) ≤ log(12k)/k

when ℓ(c) = 2πc+6(log(c)+1− log(12)). Thus (3.15) implies that if λ(f)k −ℓ(c) ≥ ǫ > 0

then k is bounded above by a function of ǫ. For each fixed k, we have c = N/k ≥ 1/k

so ℓ(c) is bounded below. Thus λ(f)/k − ℓ(c) ≥ ǫ > 0 implies the Petersson norm

of f is bounded from above. So there are only finitely many possibilities for f up to

multiplication by a non-zero rational number, as claimed in part (i) of Theorem 3.4.1.

Part (ii) of Theorem 3.4.1 now follows from part (i).

To prove part (iii), suppose 1 ≤ j ≤ k. By part (i), if M(k, j) is the submodule of

forms f ∈ S12k(Γ,Z) for which ord∞(f) > j, the corank of M(k, j) in S12k(Γ,Z) is j.
So at least j successive maxima of S12k(Γ,Z) do not arise from forms in M(k, j). If f

is not in M(k, j), then (3.15) shows

λ(f)

k
≤ ℓ(ord∞(f)/k) + log(12k)/k ≤ ℓ(j/k) + log(12k)/k

since ℓ(c) is monotonically increasing with c. Therefore at least j of the successive

maxima {λi,12k}ki=1 associated to S12k(Γ,Z) satisfy the bound

λi,12k
k

≤ ℓ(j/k) + log(12k)/k

Since ℓ(c) → −∞ as c = j/k → 0+ and log(12k)/k → 0 as k → ∞, this proves part

(iii) of Theorem 3.4.1. �

Lemma 3.4.2. There exists a constant C > 0 such that for any element f of S12k(Γ,Z)
vanishing with order at least N at infinity, we have

λ(f) ≤ 6k log

(
N

k

)
+ Ck.

Proof. By Lemma 3.3.1 and by Stirling’s formula, we have

||f ||2M12k(Γ),∞,herm ≥ eO(k) (12k)
12k

N12k
,

hence the result by taking (opposite of) logarithms. �
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Lemma 3.4.3. There exists a constant c > 0 such that for any integers k, ℓ with

1 ≤ ℓ ≤ k, we have

λ(∆kjk−ℓ) ≥ 6k log

(
ℓ

k

)
− ck.

Proof. Since ∆kjk−ℓ has integral q-expansion and unit leading coefficient, we have

||∆kjk−ℓ||M12k(Γ),v = 1,

for any finite place v. In particular, we have

λ(∆kjk−ℓ) = − log ||∆kjk−ℓ||M12k(Γ),∞,herm.

Let

(3.16) F = {z = x+ iy : −1/2 ≤ x ≤ 1/2, x2 + y2 ≥ 1}
be the closure of the standard fundamental domain for the action of SL2(Z) on H.

There is a constant c ≥ 1 such that for any z = x+ iy in F , we have |∆(z)| ≤ ce−2πy

and |j(z)| ≤ ce2πy. We thus have

||∆kjk−ℓ||2M12k(Γ),∞,herm =

∫

F
|∆(z)|2k|j(z)|2k−2ℓ(4πy)12k

dxdy

y2

≤ c4k−2ℓ

∫ ∞

0
e−4πℓy(4πy)12k

dy

y2

≤ 4πc4k(12k − 1)!ℓ1−12k

=

(
k

ℓ

)12k

eO(k),

hence the result by taking the logarithms of both sides of this inequality. �

Lemma 3.4.4. Let (λj,k)
k
j=1 be the successive maxima of S12k(Γ,Q). We have

λj,k
k

= 6 log

(
1− j − 1

k

)
+O(1),

where the implicit constant in O(1) is absolute.

Proof. The inequality
λj,k
k

≥ 6 log

(
1− j − 1

k

)
+O(1)

follows from Lemma 3.4.3 by using the j linearly independent sections (∆kjk−ℓ)k−j+1≤ℓ≤k.
We now prove the converse inequality. Let s1, . . . , sj be linearly independent elements

of S12k(Γ,Q) such that λ(si) ≥ λj,k for any i. By Proposition 3.1.1, we can multiply

the si’s by appropriate non zero rational numbers to be able to assume that

||si||M12k(Γ),v = 1

for any finite place v and for any i. Therefore

λ(si) = − log ||si||M12k(Γ),∞,herm.
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The linear subspace of S12k(Γ,Q) consisting of forms vanishing at ∞ to order at least

k − j + 2 has dimension j − 1, and therefore can not possibly contain all si’s. Thus

there exists an index i such that si vanishes at ∞ to some order N ≤ k − j + 1. By

Lemma 3.3.1, we have

||si||M12k(Γ),∞,herm ≥ e−2πN (12k − 2)!
1
2

N6k− 1
2

≥
(
k

N

)12k

eO(k) ≥
(

k

k − j + 1

)12k

eO(k).

We therefore obtain

λj,k
k

≤ λ(si)

k
≤ 6 log

(
1− j − 1

k

)
+O(1).

�

Lemma 3.4.5. There exists constants c1, c2 > 0 such that for any element f of

S12k(Γ,R), the quantity ||f ||M12k(Γ),∞,sup = supz∈X(C) |f |∞(z) satisfies the inequalities

(3.17) c1||f ||M12k(Γ),∞,herm ≤ ||f ||M12k(Γ),∞,sup ≤ c2k
2 log(3k)||f ||M12k(Γ),∞,herm

Proof. One can take c1 = Vol(X(C))−
1
2 , and we therefore focus on the second inequal-

ity. The existence of a c2 for which (3.17) holds for a fixed k follows from the fact that

non-degenerate norms on a finite dimensional real vector space are comparable. So it

is enough to show that a c2 exists for all sufficiently large k.

Let f be an element of S12k(Γ,Z) and let F be as in (3.16). Since |f |∞(z) tends to

0 as the imaginary part of z ∈ F goes to infinity, there exists a point z0 = x0 + iy0
of F such that ||f ||M12k(Γ),∞,sup is equal to |f |∞(z0). Writing f(z) =

∑∞
n=1 anq

n with

q = e2iπnz, we obtain

|f(z0)| ≤
∑

n≥1

|an|e−2πny0 ,

and then the Cauchy-Schwarz inequality yields

|f(z0)|2 ≤


∑

n≥1

a2n
e−4πn

n12k−1





∑

n≥1

n12k−1e4πn(1−y0)




≤
||f ||2M12k(Γ),∞,herm

4π(12k − 2)!


∑

n≥1

n12k−1e4πn(1−y0)


 ,(3.18)

where the last inequality follows from Lemma 3.3.1.

Let us first assume that y0 ≥ k log(3k). There is a positive integer k0 such that if

k ≥ k0 and n ≥ 1 then

(12k − 1) log(n) + 8πn ≤ 4πk log(3k)(n − 1) + 8π ≤ 4πy0(n− 1) + 8π.

This implies

n12k−1e4πn(1−y0) ≤ e−4πy0+8πe−4πn.
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Therefore we can increase k0, if need be, so that if y0 ≥ k log(3k) we will have for

k ≥ k0 that

(4πy0)
12k 1

4π(12k − 2)!


∑

n≥1

n12k−1e4πn(1−y0)


 ≤ (4πy0)

12ke−4πy0+8π = eg(y0,k)

where g(y0, k) = 12k ln(4πy0) − 4πy0 + 8π. Using y0 ≥ k log(3k) and k ≥ k0 we find

that g(y0, k) ≤ 0 for k0 sufficiently large. We thus obtain from (3.18) that

||f ||2M12k(Γ),∞,sup = |f |2∞(z0) = |f(z0)|2(4πy0)12k ≤ ||f ||2M12k(Γ),∞,herm.

It remains to handle the case y0 ≤ k log(3k) and k sufficiently large. We first claim

that there exists a real number R such that 0 < R < 1/4 and for any z in F , the

projection from the disc D(z,R) = {w ∈ C : |z − w| ≤ R} to X(C) is at most three to

one. By a standard compactness argument, there exists a real number R ∈]0, 14 ] such
that this property holds for any z in F with imaginary part at most 2 because the inertia

groups in PSL2(Z) of points of F have order at most three. It will therefore suffice to

show that the projection D(z, 1/4) → X(C) is injective if z ∈ F has Im(z) ≥ 2. If this

is not true, there is a w ∈ D(z, 1/4) such that w 6= w′ = (aw+ b)/(cw+ d) ∈ D(z, 1/4)

for some

(
a b

c d

)
∈ SL2(Z). Then Im(w′) = Im(w)/|cw+ d|2 ≥ 1 and Im(w) ≥ 1 so we

have to have c = 0. But then w′ − w is an integer, so w,w′ ∈ D(z, 1/4) forces w = w′,
contrary to hypothesis.

Let Rk = k−1R. Then Rk < 1/4 <
√
3/2 ≤ y0 since z0 is in F . We have

πR2
k|f(z0)|2(4πy0)12k ≤ (4πy0)

12k

∫

D(z0,Rk)
|f(z)|2dxdy,

≤ y12k0

(y0 −Rk)12k−2

∫

D(z0,Rk)
|f |2∞(z)

dxdy

y2

≤ 3
y12k0

(y0 −Rk)12k−2
||f ||2M12k(Γ),∞,herm.

where the second inequality follows from y ≥ y0 − Rk > 0 for y = Im(z) and z ∈
D(z0, Rk). We therefore obtain for sufficiently large k that

||f ||2M12k(Γ),∞,sup = |f |2∞(z0) ≤ c4k
2y20||f ||2M12k(Γ),∞,herm,

for some absolute constant c4 > 0. Since y0 ≤ k log(3k), this yields

||f ||M12k(Γ),∞,sup ≤ c
1
2
4 k

2 log(3k)||f ||M12k(Γ),∞,herm.

We thus obtain the claimed inequality with c2 = max(1, c
1
2
4 ). �

Lemma 3.4.6. There exists a real number c such that for any elements f1, f2 of

S12k1(Γ,R) and S12k2(Γ,R) respectively, we have

||f1f2||M12(k1+k2)
(Γ),∞,herm ≤ eψ(k1)+ψ(k2)||f1||M12k1

(Γ),∞,herm||f2||M12k2
(Γ),∞,herm,

where ψ(k) = 2 log(k) + log log(3k) + c.
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Proof. Let c1, c2 be as in Lemma 3.4.5. We have

||f1f2||M12(k1+k2)
(Γ),∞,herm ≤ c−1

1 ||f1f2||M12(k1+k2)
(Γ),∞,sup

≤ c−1
1 ||f1||M12k1

(Γ),∞,sup||f2||M12k2
(Γ),∞,sup

≤ c−1
1 c22k

2
1 log(3k1)

2k22 log(3k2)
2||f1||M12k1

(Γ),∞,herm||f2||M12k2
(Γ),∞,herm,

and the result follows with c = log(c2)− 1
2 log(c1).

�

3.5. Modified logarithmic heights. To apply Chen’s work in [9] on the distribution

of successive maxima, we will need some estimates for the behavior of a modification

of the logarithmic height of cusp forms.

The vector space V = S12k(Γ,Q) has a filtration defined by letting Va for a ∈ R be

the Q-span of all 0 6= f ∈ S12k(Γ,Q) for which λ(f) ≥ a. Lemma 3.3.1 shows that

Va = {0} if a is sufficiently large. Following Chen in [9, p. 15, eq. (2)], we define a

modified logarithmic height by

(3.19) λ̃(f) = sup{a ∈ R : f ∈ Va}

The proof of [9, Prop. 1.2.3] now shows λ̃(f) has the following properties:

Lemma 3.5.1. Suppose f and g 6= −f are non-zero elements of S12k(Γ,Q).

i. λ̃(rf) = λ̃(f) for r ∈ Q− {0}.
ii. λ̃(f + g) ≥ min(λ̃(f), λ̃(g)), with equality if λ̃(f) 6= λ̃(g)

Lemma 3.5.2. Let ψ be as in Lemma 3.4.6. For any elements f1, f2 of S12k1(Γ,Q)

and S12k2(Γ,Q) respectively, we have

(3.20) λ̃(f1f2) ≥ λ̃(f1) + λ̃(f2)− ψ(k1)− ψ(k2).

Proof. Let us write fi =
∑

j gi,j , where λ(gi,j) ≥ λ̃(fi). For any j1, j2 and any non-

archimedean place v, we have

||g1,j1g2,j2 ||M12(k1+k2)
(Γ),v ≤ ||g1,j1 ||M12k1

(Γ),v||g2,j2 ||M12k2
(Γ),v ,

and by Lemma 3.4.6, we also have

||g1,j1g2,j2 ||M12(k1+k2)
(Γ),∞,herm ≤ eψ(k1)+ψ(k2)||g1,j1 ||M12k1

(Γ),∞,herm||g2,j2 ||M12k2
(Γ),∞,herm.

This implies

λ(g1,j1g2,j2) ≥ λ(g1,j1) + λ(g2,j2)− ψ(k1)− ψ(k2)

≥ λ̃(f1) + λ̃(f2)− ψ(k1)− ψ(k2),

hence the result, since f1f2 =
∑

j1,j2
g1,j1g2,j2 . �
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3.6. Cusp forms vanishing to increasing orders at infinity. We study in this

section the successive maxima of heights associated to cusp forms f ∈ S12k(Γ,Z) for

which ord∞(f) is at least a certain positive constant times k.

Lemma 3.6.1. Suppose 1 ≤ L, k ∈ Z. The Z-lattice B(12k, L) all f ∈ S12k(Γ,Z) for

which ord∞(f) ≥ k/L is the free Z-module with basis {∆kjk−ℓ : k/L ≤ ℓ ≤ k}. One

has

(3.21) k(1− 1/L) < rankZ(B(12k, L)) = k + 1− ⌈k/L⌉ ≤ k(1 − 1/L) + 1

Proof. This is clear from the fact that ∆kjk−ℓ lies in S12k(Γ,Z) and its first non-zero

term in its Fourier expansion at ∞ is qℓ. �

Lemma 3.6.2. Let {λi,12k,L}k+1−⌈k/L⌉
i=1 be the naive successive maxima associated in

Definition 2.1.1(ii) to B(12k, L) with respect to the L2 Hermitian norm defined by the

Petersson norm. The sequence of probability measures

(3.22) ν12k,L =
1

k + 1− ⌈k/L⌉

k+1−⌈k/L⌉∑

i=1

δ 1
k+1−⌈k/L⌉

λi,12k,L

converges weakly as k → ∞ to a probability measure ν∞,L having compact support.

Proof. For integers r in the range 0 ≤ r < L, let BL(r) = ⊕∞
q=0B(12(qL + r), L). If

r = 0, then 12(qL + r)/L = 12q is an integer for all q ≥ 0 and BL(0) is a graded

algebra. It follows from Lemma 3.6.1 that the subgroup B(12qL,L) · B(12q′L,L) of

B(12(q+ q′)L,L) generated by all products of elements of B(12qL,L) and B(12q′L,L)
is equal to B(12(q + q′)L,L). The work in §3.5 now shows that BL(0) is integral and

ψ-quasifiltered in the sense of [9, Def. 3.2.1] with respect to the modified logarithmic

heights λ̃ on the summands of BL(0), where ψ is the function from Lemma 3.5.2. We

now observe that λi,12k,L is the ith successive maxima associated to the modified height

λ̃, since λi,12k,L is the largest real number a such that the vector space spanned by all

f ∈ B(12k, L) with λ̃(f) ≥ a has dimension at least i. Lemma 3.4.2 shows that there is

an upper bound independent of q on λ̃max(B(12qL,L))/(12qL) when λ̃max(B(12qL,L))

is the maximal value of λ̃ on B(12qL,L). One can now apply [9, Thm. 3.4.3] to conclude

that

(3.23) ν∞,L = lim
q→∞

ν12qL,L

exists and has compact support when ν12k,L is defined as in (3.22).

Suppose now that 0 < r < L. When k = qL + r and 0 ≤ q ∈ Z, B(12k, L) has

Z-basis b(12k, L) = {∆kjk−ℓ : k/L ≤ ℓ ≤ k}. Here k/L = (qL + r)/L = q + r/L and

0 < r/L < 1, so k/L ≤ ℓ ≤ k is the same as q + 1 ≤ ℓ ≤ k = qL+ r. We have

(3.24) (∆L−rjL−r−1) · (∆kjk−ℓ) = ∆L(q+1)jL(q+1)−ℓ−1

since k = qL + r, where 0 6= ∆L−rjL−r−1 ∈ S12(L−r)(Γ,Z). Taking the description of

bases for B(12k, L) and B(12(q + 1)L,L) in Lemma 3.6.1 into account, we see from

(3.24) that multiplication by (∆L−rjL−r−1) defines an injective homomorphism from
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B(12k, L) to B(12(q + 1)L,L). The dimension of the cokernel of this homomorphism

is

(q + 1)L+ 1− (q + 1)− (k + 1− (q + 1)) = L− r

which is bounded independently of q. From Lemma 3.5.2, we have

λ̃(f ·∆L−rjL−r−1) ≥ λ̃(f) + λ̃(∆L−rjL−r−1)) + c1 ln(k)

≥ λ̃(f) + c2 ln(k)(3.25)

for all 0 6= f ∈ B(12k, L) where the constants c1 and c2 depend only on L. It follows

that for any bounded increasing continuous function f : R → R, one has

ν12(qL+r),L(f) ≤ ν12(q+1)L,L(f) + o(1)

where o(1) → 0 as q → ∞. Hence

lim sup
q→∞

ν12(qL+r),L(f) ≤ ν∞,L(f).

From (3.24) we also have

(3.26) (∆kjk−ℓ−1) = ∆LqjLq−ℓ · (∆rjr−1)

In a similar way, this shows that multiplication by ∆rjr−1 ∈ S12r(Γ,Z) defines an

injection from B(12Lq,L) to B(12k, L). The dimension of the cokernel of this injection

is r, which is bounded independently of q. By arguments similar to the one above, we

obtain from (3.26) that

lim inf
q→∞

ν12(qL+r),L(f) ≥ ν∞,L(f).

This completes the proof of Lemma 3.6.2. �

3.7. Proof of parts (i) and (ii) of Theorem 3.2.2. In order to prove the weak

convergence of the ν12k stated in part (i) of the Proposition, we will use the limit mea-

sures (ν∞,L)L introduced in Lemma 3.6.2. The Lipschitz norm of a bounded Lipschitz

function h : R → R is defined to be

|h|Lip = sup
x

|h(x)| + sup
x 6=y

|h(x)− h(y)|
|x− y| .

Lemma 3.7.1. For every pair of positive real constants ε and M there is a constant

L0 = L0(ε,M) for which the following is true. Let h : R → R be a bounded Lipschitz

function with Lipschitz norm |h|Lip ≤ M . Suppose L ≥ L0(ε,M). Then there exists

k0 = k0(L, ε, h) such that for any k ≥ k0, we have

|ν12k(h)− ν12k,L(h)| ≤ ε.

Proof. Let k ≥ L ≥ 2 be integers, and let k′ = k+1−⌈k/L⌉ be the rank of B(12k, L).

We denote by (λj,k)1≤j≤k and (λj,k,L)1≤j≤k′ the successive maxima of S12k(Γ,Q) and

B(12k, L) respectively. Let us write

ν12k(h) − ν12k,L(h) = S1 + S2 + S3 + S4,
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where we have set

S1 =
1

k

∑

k′<j≤k
h

(
λj,k
k

)
,

S2 =
1

k

∑

j≤k′

(
h

(
λj,k
k

)
− h

(
λj,k,L
k

))
,

S3 =
1

k

∑

j≤k′

(
h

(
λj,k,L
k

)
− h

(
λj,k,L
k′

))
,

S4 =

(
1

k
− 1

k′

) ∑

j≤k′
h

(
λj,k,L
k′

)
.

For S1, we have the simple estimate

|S1| ≤
1

k

∑

k′<j≤k
M ≤ M

L
.

A similar estimate holds for S4:

|S4| ≤
k − k′

kk′
∑

j≤k′
M ≤ M

L
.

In order to estimate S3, we first notice that an argument similar to the proof of Lemma

3.4.4 yields
λj,k,L
k

= O

(
| log(1− k′

k
)|+ 1

)
= O(log(3L)).

Thus there exists an absolute constant c1 such that |λj,k,L| ≤ c1k log(3L). This implies

|S3| ≤
M

k

∑

j≤k′

k − k′

kk′
|λj,k,L| ≤

c1M log(3L)

L
.

It remains to estimate S2. The inclusion homomorphism of B(12k, L) into S12k(Γ,Q)

preserves slopes, hence λj,k,L ≤ λj,k for any j ≤ k′. We therefore have

|S2| ≤
M

k2

∑

j≤k′
(λj,k − λj,k,L)

=
M

k2


∑

j≤k′
λj,k


−M

(
k′

k

)2

ν12k,L(id)

≤ M

k2


∑

j≤k′
λj,k


−Mν12k,L(id) +

2c1M log(3L)

L
.

Let us consider the isomorphism S12k(Γ,Q) → B(12(k+s), L) induced by multiplication

by ∆s, where s = ⌊ k−1
L−1⌋ ≥ 1. Lemma 3.4.6 yields

λ(∆sg) ≥ λ(g) + sλ(∆)− ψ(k)− ψ(s),



ON THE SLOPES OF THE LATTICE OF SECTIONS OF HERMITIAN LINE BUNDLES 21

for any non zero element g of S12k(Γ,Q). Correspondingly, we have

λj,k+s,L ≥ λj,k + sλ(∆)− ψ(k) − ψ(s),

for any j ≤ k. We thus have

1

k2

∑

j≤k′
λj,k ≤

1

k2

∑

j≤k′
λj,k+s,L +

ψ(k) + ψ(s)− sλ(∆)

k

≤


 1

k2

∑

j≤k
λj,k+s,L


+

2c1 log(3L)

L
+
ψ(k) + ψ(s)− sλ(∆)

k
.

This implies

|S2| ≤M
(
ν12(k+s),L(id)− ν12k,L(id)

)
+
c2M log(3L)

L
,

for some absolute constant c2. Gathering our estimates, we obtain the existence of

L0 = L0(ε,M) such that for any k ≥ L ≥ L0, we have

|S1|+ |S3|+ |S4| ≤
ε

2
,

and

|S2| ≤M
(
ν12(k+s),L(id)− ν12k,L(id)

)
+
ε

4
.

Since the sequence (ν12k,L(id))k is convergent by Lemma 3.6.2, we further obtain the

existence, for any L ≥ L0 of k0 = k0(L, ε,M) such that for any k ≥ k0, we have

|S2| ≤ ε
2 , hence the result. �

Corollary 3.7.2. Let h be a bounded Lipschitz function from R to R. Then the se-

quences (ν12k(h))k and (ν∞,L(h))L are convergent and have the same limit.

Proof. Let ε > 0 be a positive real number. Let L0 = L0(ε, h) be as in Lemma 3.7.1.

For any L ≥ L0, we have

lim sup
k→∞

ν12k(h) ≤ ν∞,L(h) + ε,

and

lim inf
k→∞

ν12k(h) ≥ ν∞,L(h) − ε.

In particular, we have

lim sup
k→∞

ν12k(h) ≤ lim inf
k→∞

ν12k(h) + 2ε.

Since ε is arbitrary small, this yields the convergence of the sequence (ν12k(h))k. More-

over, for any L ≥ L0 we have

|ν∞,L(h)− lim
k→∞

ν12k(h)| ≤ ε,

hence the convergence of the sequence (ν∞,L(h))L to the limit limk→∞ ν12k(h). �
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There exists a finite Borel measure ν on R such that for any continuous function h

with compact support,

(3.27) ν(h) = lim
k→∞

ν12k(h) = lim
L→∞

lim
k→∞

ν12k,L(h).

A limit of a weakly convergent sequence of probability measures on R might not be

a probability measure. However, it is true in our case that the weak limit ν is a

probability measure. Indeed, we have the following result, which shows that the sets

of measures {ν12k}k and {µ12k,L}k≥L are uniformly tight.

Lemma 3.7.3. The equalities (3.27) hold for every bounded continuous function h.

In particular, ν is a probability measure, and the sequences of probability measures

{ν∞,L}L and {ν12k}k converge weakly to ν.

Proof. It sufficient to prove that (3.27) holds for any bounded Lipschitz function on R.
Let h : R → R be such a function. Let a, b > 0 be real numbers such that the supports

of the measures (ν12k)k and (ν12k,L) are all contained in the interval ]−∞, b], and let

χ : R → [0, 1] be a continuous function with compact support, whose restriction to the

interval [−a, b] is equal to 1. Lemma 3.4.4 implies that we have

ν12k,L(]−∞,−a]) ≤ ce−
a
6 ,

for all k ≥ L ≥ 1, where c is an absolute constant. The same estimate holds as well for

the measure ν. In particular, we have

|ν12k,L(h)− ν12k,L(χh)| = |ν12k,L((1− χ)h)| ≤ c||h||∞e−
a
6 .

Letting k, and then L, tend to infinity, we obtain by Corollary 3.7.2 that

| lim
k→∞

ν12k(h)− ν(χh)| ≤ c||h||∞e−
a
6 .

Since we also have

|ν(h)− ν(χh)| ≤ c||h||∞e−
a
6 ,

this yields

|ν(h)− lim
k→∞

ν12k(h)| ≤ 2c||h||∞e−
a
6 .

Letting a tend to infinity, we obtain that the common limit of the sequences (ν12k(h))k
and (ν∞,L(h))L is ν(h), hence the result.

�

Part (i) of Theorem 3.2.2 is shown by Corollary 3.7.2. Part (ii) of this Theorem

concerns the support of ν now follows directly from this and Theorem 3.4.1.

3.8. Proof of part (iii) of Theorem 3.2.2. We suppose 0 6= f ∈ S12k(Γ,Z) and

that f does not arise from a congruence between eigenforms, in the sense of Definition

3.2.1. We will develop an upper bound on λ(f). We have λ(f) = λ(f/m) when m

is the g.c.d. in Z of the Fourier coefficients of f . In view of Definition 3.2.1 we can

replace f by f/m in order to be able to assume that

(3.28) f =
∑

i

cifi
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in which the ci are non-zero algebraic algebraic integers and the fi are distinct normal-

ized Hecke eigenforms in S12k(Γ,C). The Fourier coefficients of each fi are algebraic

integers. Since f is fixed by Gal(Q/Q), the terms on the right side of (3.28) break into

orbits under Gal(Q/Q) in the following sense. If σ ∈ Gal(Q/Q) and fi is given, then

σ(fi) = fj and cj = σ(ci) for a unique j.

Since the g.c.d. of the Fourier coefficients of f is now 1, we have

(3.29) 2λ(f) = − ln(〈f, f〉)
where 〈f, f〉 is the Petersson norm. The Petersson inner product 〈fi, fj〉 is 0 if i is not

j since then fi and fj have distinct Hecke eigenvalues and the Petersson inner product

is Hermitian with respect to Hecke operators. So

(3.30) 〈f, f〉 =
∑

i

|ci|2〈fi, fi〉.

Since each 0 6= ci is by assumption an algebraic integer, and we have shown that every

Galois conjugate of ci arises as cj for some j, we conclude there must be an i for which

|ci| ≥ 1. Thus (3.30) gives

(3.31) 〈f, f〉 ≥ 〈fi, fi〉
Recall now that since fi is a normalized eigenform, fi =

∑∞
n=1 anq

n has a1 = 1. So

N = 1 in Lemma 3.3.1. Combining Lemma 3.3.1 with (3.29), (3.30) and (3.31) gives

(3.32) 2λ(f) = − ln(〈f, f〉) ≤ − ln(〈fi, fi〉) ≤ − ln(4πe−4π(12k − 2)!)

It follows that λ(f)/k is bounded above by −c ln(k) for some constant c. Since the

measure ν in part (i) of Theorem 3.4.1 is a probability measure on the real line, it

follows that as k → ∞ the proportion of successive maxima arising from f of the above

kind among all the successive maxima associated to S12k(Γ,Z) must go to 0.

4. A result from Arakelov theory

Let X be a projective smooth curve over K. We assume that X is geometrically

irreducible, of positive genus g. Let L be a line bundle on X of degree d ≥ 2g + 1.

Assume X is a regular model of X, and L a line bundle extending L to X . Denote by

ω the relative dualizing sheaf of X over Spec(Z). Choose a positive metric h on the

restriction LC of L to the Riemann surface X(C) . We equip X(C) with the Kähler

form c1(LC, h), and ω with the associated metric.

Fix a positive integer n. We endow

E = H0(X ,L⊗n)

with the L2-norm hL2 . Let E = H0(X,L⊗n).
Given two hermitian line bundles L̄1 and L̄2 over X , we denote by L̄1 · L̄2 ∈ R the

arithmetic intersection number of the first Chern classes of L̄1 and L̄2 [2] [13]. Let

∆K be the absolute discriminant of K, and r = [K : Q] its absolute degree. We let

BV ∈ R be the value on X(C) of the real number defined by Bismut and Vasserot in

[4], Theorem 8 (see [15], p. 536).
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Theorem 4.0.1. Let s ∈ H0(X ,L⊗n) be a nonzero global section of L⊗n. Then

λ(s) ≤ n log(n)
3rd

4g
+ n

L̄2 + d ω̄.L̄

2 gd
+ nd

log(|∆K |)
2g

− n
BV

4g

+
nd

g
(r1 + r2) log(2) +

nrd

2g
(1 + log(2π)) + ε,(4.1)

where ε is a function of n, L̄2, ω̄.L̄, ω̄2, LC, and of the metric h. When L̄2, ω̄.L̄, ω̄2,

LC and h are fixed, if n tends to infinity, ε/n goes to zero.

4.1. To prove Theorem 4.0.1, we let P(E) be the (Grothendieck) projective space of E

and X ⊂ P(E) the canonical embedding of X in P(E). Denote by h(X) the projective

height of X. Let N = rn = nd+1− g be the rank of E and, for every k between 1 and

N , let µk = −λk,n be the k-th successive minimum of (E , hL2). Define

µ =
µ1 + . . . + µN

N
.

If C is the constant

(4.2) C =
2 dn g (nd− 2g)

n2d2 + nd− 2g2

it is proved in [27], Theorem 4, that

(4.3)
h(X)

r
+ 2ndµ ≥ C(µ− µ1).

4.2. If O(1) is the restriction to X of the canonical hermitian line bundle on P(E),

the height h(X) is, by definition, the number

(4.4) h(X) = O(1) · O(1).

We denote by hFS the metric on L⊗n induced by the canonical isomorphism L⊗n ≃
O(1). Let s1, . . . , sN be an orthonormal basis of (E, hL2), and let

B(x) =

N∑

j=1

‖sj(x)‖2

be the Bergman kernel. For any global section s ∈ H0(X,L⊗n) we have

‖s‖2 = B(x) ‖s‖2FS .
Therefore, if ϕ(x) = logB(x), we get

(4.5) n2L̄2 = O(1)
2 − 1

2

∫

X(C)
ϕ(c1(O(1)) + nc1(L̄))

(see, for example, [5] (3.2.3)). Bouche [7] and Tian [28] proved that, when n goes to

infinity,

B(x) = n+ η(x),
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where the function x → η(x) depends only on the restriction to X(C) of O(1) and L̄.

Therefore ϕ(x) = log(n) +O
(
1
n

)
.

Using (4.4) and (4.5) we conclude that

(4.6) h(X) = n2 L̄2 + rdn log(n) +O(1).

4.3. Let d̂eg (Ē) be the arithmetic degree of Ē = (E , hL2), and r1 (resp. r2) the

number of real (resp. complex) places of K. The second Minkowski theorem, extended

to number fields by Bombieri and Vaaler, says that

(4.7) r µ ≤ − d̂eg (Ē)
N

+ C(N,K),

where

C(N,K) =
log(|∆K |)

2
+ (r1 + r2) log(2)−

1

N
(r1 log VN + r2 log(V2N ))

VN being the volume of the standard euclidean unit ball in RN .

By the Stirling formula, when N goes to infinity,

log(VN ) = −N
2
log(N) +

N

2
(1 + log(2π)) +O(log(N)).

Therefore

− 1

N
(r1 log(VN ) + r2 log(V2N )) = r

(
log(N)

2
− 1 + log(2π)

2
+O(log(N)/N)

)
,

with an absolute constant appearing in O(log(N)/N . Thus

C(N,K) =
log(|∆K |)

2
+ (r1 + r2) log(2)

+ r

(
log(N)

2
− 1 + log(2π)

2
+ o(N)

)
.(4.8)

4.4. According to [15], Theorem 8, as n goes to infinity

d̂eg (Ē) = n2 L̄2

2
+ n

(
− ω̄ · L̄

2
+
BV

4

)
+
rd

4
n log(n) + o(n),

where o(n) depends only on the restriction to X(C) of O(1) and L̄. Using (4.7) we get

n2 L̄2 + 2nd r µ ≤ n2 L̄2 − 2nd

nd+ 1− g(
n2 L̄2

2
+
rd

4
n log(n) + n

(
− ω̄ · L̄

2
+
BV

4

)
+ o(n)

)

+ 2ndC(N,K)

= −n(g − 1)

d
L̄2 + n ω̄ · L̄− nBV

2
− rd

2
n log(n)

+ 2ndC(N,K) + o(n) .(4.9)
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From (4.2) we deduce that, when n ≥ g,

C ≥ 2g(1 − (2g + 1)/(nd)).

Therefore (4.3) and (4.6) imply that

r µ1 ≥ −n
2 L̄2

2nd
− n2 L̄2

2g
− rdnµ

g
+
rd

2g
n log(n) + o(n),

and, using (4.9) and (4.8), we deduce that

r µ1 ≥ n
−L̄2 − dω̄ · L̄

2 gd
− nd

log(|∆K |)
2g

− 3rd

4g
n log(n) +

nBV

4g

− nd

g
(r1 + r2) log(2)−

rdn

2g
(1 + log(2π)) + o(n).(4.10)

Theorem 4.0.1 follows.

4.5. One can also get an upper bound for rµ1 when g > 1 as follows. Since µk ≤ µk+1

we have

rµ1 ≤ rµ ≤ − d̂eg (Ē)
N

+ C (N,K) = −n
L̄2

2d
+O(log n).

The difference between this upper bound of rµ1 with its lower bound (4.10) is bounded

from below because of the following lemma.

Lemma 4.5.1. Suppose g > 1. Then

−n
L̄2

2d
+ n

L̄2 + d ω̄ L̄

2gd
≥ nd

8 g (g − 1)
ω̄2.

4.6. To prove Lemma 4.5.1 we note that the hermitian line bundle d ω̄ − 2 (g − 1) L̄

has degree zero on X. Therefore, by the Hodge index theorem of Faltings and Hriljac,

its square is non positive:

0 ≥ (d ω̄ − 2 (g − 1) L̄)2,

i.e.

−(g − 1) L̄2 + d ω̄ L̄ ≥ d2

4 (g − 1)
ω̄2

and Lemma 4.5.1 follows.

5. Chebyshev transforms

5.1. Overview. Let X be a projective variety of arbitrary dimension d over a number

field K, and let L be a metrized line bundle on X. We will assume that L is big, in the

sense that dimKH
0(X,L⊗m) > c md for some c > 0 and all m >> 0. In this section

we will develop a Chebyshev transform method for obtaining an upper bound on the

height λ(s) defined in (2.1). We need lower bounds on the sup norms ||s||v as v varies.

We obtain such lower bounds by considering the behavior of s near a regular point

x ∈ X(K). Consider the first non-vanishing coefficient a = a(s, x) in a suitably defined

Taylor expansion of s at x. This a lies in K. The product formula shows there is some
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place v where |a|v is not too close to 0. At this v we will obtain a lower bound for ||s||v
which leads to a useful lower bound for λ(s).

To illustrate the details involved in this method, let us first consider the case d = 1,

so that X is a curve. Choosing a local parameter t for the local ring OX,x and a local

trivialization σx of the stalk Lx, we find that s has a local expansion at x given by

sx = (
∞∑

n=ordx(s)

ant
n) · σx

where an ∈ K and aordx(s) 6= 0. Here the an depend on the choice of σx, but ordx(s)

does not.

The integer α = ordx(s) lies in the interval [0,deg(L)]. To bound

λ(s) := −
∑

v

kv log ||s||v

from above, we define the local Chebychev constant cx,σ,tL,v (α) to be the supremum over

all non-zero sections s of L with ordx(s) = α of

(5.1) − log ||s||v + log |aordx(s)|v = log

∣∣∣∣
|aordx(s)|v

||s||v

∣∣∣∣

This may be studied by v-adic analysis. We obtain an upper bound

(5.2) λ(s) ≤
∑

v

kvc
x,σ,t
L,v (α) = cx,tL (α)

if s is a section of L vanishing to order α at x, since
∑

v kv log |aordx(s)|v = 0 by the

product formula.

The function cx,tL : [0,deg(L)] → R defined by α → cx,tL (α) is a global Chebychev

transform. Since we know that α lands in [0,deg(L)] for all s, we obtain finally a bound

of the form

λ(s) ≤ sup
0≤α≤deg(L)

cx,tL (α).

We now generalize the above approach to regular varieties X of arbitrary dimension

d over K using Okounkov bodies. Following Witt-Nystrôm [20] and Yuan [30], we take

a regular point x ∈ X(K), and t1, . . . , td ∈ OX,x a system of parameters of the reg-

ular local ring OX,x, which identifies the completion ÔX,x to the ring of power series

K[[t1, . . . , td]] in d variables over K. We also choose a local trivialization σ ∈ Lx of L

around x.

Any section s ∈ H0(X,L⊗n) has a germ at x in L̂x
⊗n

= L⊗n
x ⊗OX,x

ÔX,x = ÔX,xσ
⊗n,

which can be uniquely written as a a power series

sx =


∑

α∈Nd

aαt
α


σ⊗n,
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with aα ∈ K. Here we have set tα = tα1
1 . . . tαd

d . The order of vanishing of s at x is

defined by the formula

ordx,t(s) = min{α ∈ Nd | aα 6= 0},

where the minimum is taken with respect to the lexicographic order on Nd : this does

not depend on σ. Likewise, we define the leading coefficient of s at x as

leadx,σ,t(s) = aordx,t(s) 6= 0.

This depends in general on the choices of t and σ.

One strategy for upper bounding the height λ(s) of a section s is to apply the product

formula

1 =
∏

v

|leadx,σ,t(s)|kvv ,

and to give an upper bound of |leadx,σ,t(s)|v in terms of ||s||L⊗n,v, which is a problem

of local nature; namely it only depends on the v-adic metric on L. This motivates the

introduction of the local quantities

F x,σ,tL,v (α) = sup
s∈H0(X,L)v
ordx,t(s)=α

|leadx,σ,t(s)|v
||s||L,v

,

where α belongs to the finite set ordx,t(H
0(X,L) \ {0}). It is shown in [30] that the

quantity

cx,σ,tL,v (α) = lim
n→∞

1

n
logF x,σ

⊗n,t
L⊗n,v

(αn),

where (αn)n is a sequence such that αn ∈ ordx,t(H
0(X,L⊗n) \{0}), and such that 1

nαn
converges to α, is well-defined for any α in the interior of the closure ∆x,t(L) of the set

⋃

n≥1

1

n
ordx,t(H

0(X,L⊗n) \ {0}).

The set ∆x,t(L) is a convex body in Rd : this is the Okounkov body of L, which

depends on the choice of t = (t1, . . . , td). For example, if X is a curve then ∆x,t(L) is

the interval [0,deg(L)]. Also, if (X,L) = (PdK ,O(1)), then ∆x,t(L) is a d-dimensional

simplex, as can be seen be reducing to the case in which x is the origin of AdK and t is

the vector of standard coordinate functions of AdK .

The concave function

cx,σ,tL,v : α ∈ ˚∆x,t(L) 7−→ cx,σ,tL,v (α) ∈ R

is called the local Chebychev transform of L at x. The domain ˚∆x,t(L) of cL,v does

not depend on the metric on L, but cx,σ,tL,v itself does.
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Example 5.1.1. Consider the particular case (X,L) = (P1
Q,O(1)), with the line bundle

metric

|s([x0 : x1])|L,v =
|s(x0, x1)|v

max(|x0|v, r−1
v |x1|v)

,

for some rv > 0. The maximum modulus principle if v is archimedean, and a direct

computation otherwise, shows that when ∞ is the archimedean place of Q, we have

||s||L⊗n,∞ = sup
|z|v=rv

|s(1, z)|∞.

Let us consider the regular point x = [1 : 0] with a local parameter t = X1
X0

, and a local

trivialization σ = X0. We have

F x,σ
⊗n,t

L⊗n,v (α) = sup
s∈C[X0,X1]n−α

|s(1, 0)|v
||Xα

1 s||L⊗n,v
,

with

||Xα
1 s||L⊗n,v = sup

|z|∞=rv

|zαs(1, z)|∞ = rαv ||s||L⊗n−α,v,

so that F x,σ
⊗n,t

L⊗n,v
(α) equals r−αv . In particular, we have

cx,σ,tL,v (α) = −α log rv

for α ∈ [0, 1] = ∆x,t(L).

We now define the global Chebychev transform as the sum

cx,tL =
∑

v

kvc
x,σ,t
L,v ,

which still depends on t, but not on the choice of the local trivialization σ any more.

While this global Chebychev transform breaks down into a sum of local components,

it allows to control global invariants, such as the heights of nonzero sections :

Proposition 5.1.2. The height of a nonzero global section s of L⊗n satisfies

λ(s) ≤ n sup
β∈ ˚∆x(L)

cx,tL (β).

Proof. If a section s ∈ H0(X,L⊗n) \ {0} vanishes at order α at x, then one has

|leadx,σ,t(s)|v ≤ F x,σ
⊗n,t

L⊗n,v
(α)||s||L⊗n,v ≤ enc

x,σ,t
L,v ( 1

n
α)||s||L⊗n,v.

Raising this inequality to the power kv, and taking the product over all places v yields

1 =
∏

v

|leadx,σ,t(s)|kvv ≤ enc
x,t
L ( 1

n
α)

∏

v

||s||kv
L⊗n,v

= enc
x,t
L ( 1

n
α)−λ(s),

so that λ(s) ≤ ncx,tL ( 1nα) ≤ n sup
β∈ ˚∆x,t(L)

cx,tL (β). �
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Likewise, a theorem of Yuan [30] ensures that under the hypotheses of Theorem 2.1.3,

the mean value of cx,tL computes the expectation of the limit distribution ν appearing

in Theorem 2.1.3:
1

vol(∆x,t(L))

∫

˚∆x,t(L)
cx,tL (α)dα =

∫

R
xdν.

In particular, if cx,tL is a constant function, then by the preceding proposition, the left

hand side is an upper bound for the support of ν, so that the expectation of ν is an

upper bound for its support. This proves:

Corollary 5.1.0.1. If the global Chebychev transform cx,tL is a constant function, then

the limit distribution ν is a Dirac measure supported at one point.

Intuitively, the limit distribution ν is expected to be completely described by cx,tL
when the zeroes of sections of large height concentrate at the point x. Since this is

not the case in general (see for instance the introductory paragraph of Section 6), we

should obtain better results by considering

sup
s∈H0(X,L)v

ordx1,t(s)=α1,...,ordxr,t(s)=αr

|leadx1,σ,t(s)|v
||s||L,v

,

where x1, . . . , xr are distinct rational regular points (with a choice of local parameters

at each of these points).

5.2. Computation of Chebychev local transforms at archimedean places :

the L2 method. Here we assume for simplicity that X is a curve, i.e. d = 1, so that

∆x,t(L) = [0,D] where D = deg(L), and we focus on a particular archimedean place

v. We choose a volume form dV on X(Cv), so that H0(X,L⊗n)v is endowed with the

hermitian norm

||s||2L⊗n,v,herm =

∫

X(Cv)
|s(x)|2L⊗n,vdV (x).

One can show using Gromov’s lemma (see [30, Lemma 2.7] and [29, Prop. 2.13]) that

the Chebychev local transform cx,tL (α) can be computed using

F x,σ
⊗n,t

L⊗n,v,herm
(α) = sup

s∈H0(X,L⊗n)v
ordx,t(s)=α

|leadx,σ⊗n,t(s)|v
||s||L⊗n,v,herm

instead of F x,σ
⊗n,t

L⊗n,v
(α). Let us denote by [α] the linear form on H0(X,L⊗n(−αx))v

which takes a section s to the coefficient of tα in its Taylor series expansion around x,

so that

F x,σ
⊗n,t

L⊗n,v,herm
(α) = sup

s∈H0(X,L⊗n(−αx))v

|[α](s)|v
||s||L⊗n,v,herm

is the operator norm of [α] on the hermitian space H0(X,L⊗n(−αx))v . In particular,

if (sx,α,j)j is an orthonormal basis of H0(X,L⊗n(−αx))v , then we have

F x,σ
⊗n,t

L⊗n,v,herm
(α)2 =

∑

j

|[α](sx,α,j)|2v .
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For α = 0, this equals the value of the n-th Bergman kernel at x, for which precise

asymptotics are known. The case α > 0 is much more elusive in general, but we will see

in the remaining of this section how to handle completely the case of the Fubini-Study

metric, and partially the case of the capacity metric of a disc on the projective line, by

computing F x,σ
⊗n,t

L⊗n,v,herm
(α) with an explicit orthonormal basis.

5.3. The L2 method in use : the Chebychev local transform of the capacity

metric of a disc. Let us consider (X(Cv), L) = (P1(Cv),O(1), with the line bundle

metric

|s([x0 : x1])|L,v =
|s(x0, x1)|v

max(|x0|v, r−1
v |x1|v)

,

at an archimedean place v, which is the capacity metric associated to a disc of radius

rv in the complex projective line, just as in example 5.1.1. Contrary to the situation

considered in 5.1.1, we choose the point x = [1 : rv] with a local parameter t = X1−rvX0
X0

,

and a local trivialization σ = X0. Instead of considering a volume form dV as above,

we rather use the distribution dV defined by
∫

P1(Cv)
fdV =

1

4

∫ π

−π
f([1 : rve

iθ])| sin(θ)|dθ.

By approximating this distribution by volume forms, one can check that the corre-

sponding FL⊗n,v,herm still computes cL,v. We now show that we have the formula

F x,σ
⊗2n,t

L⊗2n,v,herm
(2α)2 = 4−2αr−4α

v

n−α∑

j=0

(2j + 2α+ 1)

(
j + 2α

j

)2

.

Using Stirling’s formula, this will imply the following :

Proposition 5.3.1. With x, σ, t as above, the local Chebychev transform of the capacity

metric associated to a disc of radius rv on the complex projective line, as defined above,

with respect to a point on the boundary of the disc, is given by the formula

cx,σ,tL,v (α) = −α log(4rv) +
1

2
(1 + α) log(1 + α)− 1

2
(1− α) log(1− α)− α log(α).

for α ∈ [0, 1].

In order to compute F x,σ
⊗2n,t

L⊗2n,v,herm
(2α), let us consider the orthogonal decomposition

Cv[X0,X1]2n−2k = V + ⊕ V −,

where V ± is the space of polynomials s ∈ Cv[X0,X1]2n−2k such that s(X0,X1) =

±s(r−1
v X1, rvX0). Since any s in V − satisfies s(1, rv) = 0, we get

F x,σ
⊗2n,t

L⊗2n,v,herm
(2α) = sup

s∈V +

|s(1, rv)|v
||(X1 − rvX0)2αs||L⊗n,v,herm

.

However, the linear map

Ψ : T = T (Y0, Y1) ∈ Cv[Y0, Y1]n−k 7−→ T (rvX0X1, r
2
vX

2
0 +X2

1 ) ∈ V +
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is an isomorphism, with

||(X1 − rvX0)
2αΨ(T )||2L⊗n,v,herm =

r4nv
4

∫ π

−π
|T (1, 2 cos(θ))|2| sin(θ)||eiθ − 1|4αdθ

=
r4nv
4

∫ 2

−2
|T (1, y)|2(2− y)2αdy,

by using the substitution y = 2cos(θ). There is an explicit orthogonal basis of

Cv[Y0, Y1]n−α for this scalar product, given by the Jacobi polynomials

Jacα,j(Y0, Y1) = (2Y0 − Y1)
−2α ∂j

j!∂Y j
1

Y n−α−j
0 (2Y0 + Y1)

j(2Y0 − 2Y1)
j+2α.

for 0 ≤ j ≤ n− α. The explicit formulae

Ψ(Jacα,j)(1, rv) = r2n−2α
v (−4)j

(
j + 2α

j

)
,

||(X1 − rvX0)
2αΨ(Jacα,j)||L⊗n,v,herm = r2nv 4j+α(2j + 2α+ 1)−

1
2 ,

yield

F x,σ
⊗2n,t

L⊗2n,v,herm
(2α)2 =

n−α∑

j=0

|Ψ(Jacα,j)(1, rv)|2v
||(X1 − rvX0)2αΨ(Jacα,j)||2L⊗n,v,herm

= 4−2αr−4α
v

n−α∑

j=0

(2j + 2α+ 1)

(
j + 2α

j

)2

,

hence the result.

Example 5.3.2. Let us consider (X,L) = (P1
Q,O(1)), with the line bundle metric

|s([x0 : x1])|L,v =
|s(x0, x1)|v

max(|x0|v, |x1|v)
,

for non-archimedean v, and

|s([x0 : x1])|L,v =
|s(x0, x1)|v

max(|x0|v, |4x1 − 1|v)
,

at the archimedean place. We pick the point x = [1 : 0], with the parameter t = x1
x0
.

Then Proposition 5.3.1 yields

cx,σ,tL,v (α) =
1

2
(1 + α) log(1 + α)− 1

2
(1− α) log(1− α)− α log(α),

which attains its maximum log(1 +
√
2) = 0, 881... at α = 1√

2
. By Proposition 5.1.2

and by using Example 5.1.1 for the archimedean places, we obtain that any nonzero

global section s of O(n) satisfies

1

n
λ(s) ≤ log(1 +

√
2) < 0, 89.

On the other hand, the section

s = X34
1 (2X1−X0)

6(5X2
1 −4X1X0+X

2
0 )

3(29X4
1 −44X3

1X0+27X2
1X

2
0 −8X1X

3
0 +X

4
0 ),
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of O(50), labeled as s50 in the introductory paragraph of Section 6, satisfies

1

n
λ(s) > 0, 82.

By taking logarithms, we obtain that for large n the smallest supremum norm on

the disc of radius 1
4 and center 1

4 , of a nonzero polynomial of degree n with integer

coefficients is a quantity between 0, 42n and 0, 44n. The change of variable (X ′
0,X

′
1) =

(X2
0 ,X1(X0 − X1)) yields that the corresponding quantity for a disc of radius 1

2 and

center 1
2 is between 0, 64n and 0, 67n.

5.4. The L2 method in use : the Chebychev local transform of the Fubini-

Study-metric. Let us consider the complex projective space (X(Cv), L) = (Pd(Cv),O(1)),

with the Fubini-Study metric

|s([x0 : x1])|L,v =
|s(x0, x1)|v√
|x0|2v + . . . |xd|2v

,

at an archimedean place v. We pick a point x = [x0 : · · · : xd] of Pd(Cv). We have a

natural identification

TxP
d(Cv) = {T ∈ Cv[X0, . . . ,Xd]1 | T (x0, . . . , xd) = 0}.

Let Y1, . . . , Yd+1 be a linear basis of Cv[X0, . . . ,Xd]1, such that Y1, . . . , Yd span TxP
d(Cv)

under the identification above. The functions tj =
Yj
Yd+1

, for j = 1, . . . , d, then form a

system of local parameters at x, while σ = Yd+1 is a local trivialization of L around x.

We proceed as in section 5.3, using the Fubini-Study volume form dV =
ωd
FS
d! , where

ωFS = i∂∂ log(|X0|2 + · · ·+ |Xd|2).
Let U1, . . . , Ud+1 be the output of the Gram-Schmidt orthonormalization process ap-

plied to the basis Y1, . . . , Yd+1. In particular, U1, . . . , Ud+1 form an orthonormal basis

of Cv[X0, . . . ,Xd]1, and each coefficient

γj = 〈Yj |Uj〉−1

is strictly positive. Again, the functions uj =
Uj

Ud+1
, for j = 1, . . . , d, form a system of

local parameters at x, and τ = Ud+1 is a local trivialization of L around x. One can

check the formulae

ordx,t(s) = ordx,u(s)

leadx,σ⊗n,t(s) = γαγ
αd+1

d+1 leadx,τ⊗n,u(s) if α = ordx,t(s) ∈ Nd,

with αd+1 = 1−∑d
j=1 αj . In particular, we have,

F x,σ
⊗n,t

L⊗n,v,herm
(α) = γαγ

αd+1

d+1 F
x,τ⊗n,u
L⊗n,v,herm

(α).

Since the sections Uα1
1 . . . Uαd

d Un−α1−···−αd
d+1 = uατn, for α1 + . . . αd ≤ n, form an or-

thogonal basis of the hermitian space

Cv[X0, . . . ,Xd]n = H0(X,L⊗n),



34 CHINBURG, GUIGNARD, AND SOULÉ

we have by an elementary computation

F x,τ
⊗n,u

L⊗n,v,herm
(α) = ||Uα1

1 . . . Uαd
d Un−α1−···−αd

d+1 ||−1
L⊗n,v,herm

= V − 1
2

(
n+ d

d, α1, . . . , αd

) 1
2

,

where V = πd

d! is the volume of Pd(Cv) with respect to dV . Using Stirling’s formula,

we get the following result :

Proposition 5.4.1. With x, σ, t, β, γ as above, the Chebychev local transform of the

Fubini-Study metric on the d-dimensional projective space is given by the formula

cx,σ,tL,v (α) =

d+1∑

j=1

αi log(γj) +
1

2
hd(α)

on the Okounkov body

∆x,t(L) = {α ∈ Rd+ | α1 + . . . αd ≤ 1},

where hd is the entropy functional, defined by

hd : α ∈ ∆x,t(L) 7−→
d+1∑

j=1

αj log

(
1

αj

)
where αd+1 = 1−

d∑

j=1

αj .

6. Measures associated to zeros of sections

6.1. An Example. Recall from §2.1 that H0(X,L⊗n)≥λ denotes the set of of sections

of L⊗n of slope at least λ. In §6 and §7 we will study the zeros of the non-zero elements

of ∪∞
n=1H

0(X,L⊗n)≥λ. To motivate this we first discuss an example.

Let X = P1
Q and L = O(1). As in Example 5.3.2, we endow L with the non

archimedean metrics coming from the integral model (P1
Z,O(1)), and the archimedean

metric given in affine coordinates by

|s(z)|L,∞ =
|s(z)|

max(1, |4z − 1|) .

This is the capacity metric associated to the disc of center 1
4 and radius 1

4 . For the sake

of the computation, we rather use the L2 metric on the boundary of this disc, rather

than the supremum norm : this does not affect the asymptotic slopes.

Let sn denote a degree n nonzero integer polynomial of smallest norm. A computa-

tion performed with Magma yields a small list of explicit irreducible integer polynomials

f1, f2, f3, . . . , starting with

f1 = z,

f2 = 2z − 1,

f3 = 5z2 − 4z + 1,

f4 = 29z4 − 44z3 + 27z2 − 8z + 1,
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such that

s50 = ±f341 f62 f
3
3f4,

s100 = ±f631 f112 f43 f4f5f6,

s200 = ±f1271 f232 f83 f
3
4 f5f6f7,

s300 = ±f1901 f342 f123 f44 f
2
5 f

2
6f7.

The polynomials f5, f6, f7, f8 have degree 6, 8, 8 and 2 respectively. Numerically, the

quantity 1
nordf1(sn) seems to converge to a limit (close to 0, 63) as n grows. Similarly,

limn→∞
1
nordfj(sn) appears to exist for higher j. This suggests the existence of a limit

distribution of zeros associated to sections of maximal norm which is discrete.

However, replacing the disc of center 1
4 and radius 1

4 by a the disc of center 0 and

radius 1, the corresponding lattices become asymptotically semistable, and one doesn’t

expect such a discreteness result, but rather a uniform distribution of the zeros of small

sections along the boundary of the unit disk.

In §6.2 below we recall some work of Serre in [25] which is useful for quantifying the

intuition that the general case must interpolate between these two situations.

6.2. Measures. Let Z be a compact metrizable topological space. Define C(Z) to be

the set of continuous real valued functions f on Z. A positive Radon measure on Z is an

R-linear R-valued function µ on C(Z) such that µ(f) ≥ 0 if f(x) ≥ 0 for all x ∈ Z. We

will sometimes write
∫
Z f(x)µ(x) or

∫
Z fµ for µ(f). The weak topology on the space of

positive Radon measures is defined by saying limn→∞ µn = µ if limn→∞ µn(f) = µ(f)

for all f ∈ C(Z). The mass of a measure µ is the value µ(1). The space M(Z) of

positive Radon measures of mass 1 is compact for the weak topology (c.f. [25, §1.1]).
Suppose now that X is a smooth projective curve over a global field K. For each

place v of K of X we let Cv be the completion of an algebraic closure Kv of Kv.

If v is archimedean, we let the topological space Z = Zv in the above discussion be

X(Cv) = X(C) with the archimedean topology. If v is non-archimedean, we let Z = Zv
be the Berkovich space XBerk,Cv described in [3], which is compact and metrizable by

[8, §1]. There is a canonical inclusion of sets X(Cv) ⊂ XBerk,Cv . For all v we define

Mv =M(Zv).

Let v be an arbitrary place of K and suppose x ∈ X(Cv). If v is archimedean, let

δx ∈Mv be the Dirac measure associated to x. If v is non-archimedean, we view x as a

point of XBerk,Cv and we again let δx ∈Mv be the associated Dirac measure. Suppose

D =
∑

x∈X(Cv)
mxx is a non-zero effective divisor of X(Cv) that is stable under the

action of Aut(Cv/K), so that mx = 0 for almost all x. We define the Dirac measure of

D to be

µ(D) =
1

deg(D)

∑

x∈X(Cv)

mxδx.

Let T be a non-empty collection of such D which is closed under taking sums. Note

that T is countable. We define Mv(T ) to be the closure of {µ(D) : D ∈ T} in Mv with

respect to the weak topology. The argument of [25, Prop. 1.2.2] shows that Mv(T ) is
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convex and compact. Let IT be the set of irreducible K-divisors which are components

of some element of T . Suppose S is a finite subset of IT . If S 6= IT , define Mv(T, S)

be the closed convex envelope in Mv of the measures {µ(D) : D ∈ IT − S}. If S = IT
define Mv(T, IT ) to be the one element set consisting of the zero measure µ0 on Zv.

Define

(6.1) Mv(T,∞) = ∩S Mv(T, S).

where the intersection is over all finite subsets S of IT . Then Mv(T,∞) is a compact,

convex subset of Mv if IT is infinite, and Mv(T,∞) = {µ0} if IT is finite.

The following Theorem can be proved the same way as [25, Thm. 1.2.11].

Theorem 6.2.1. Suppose µ ∈ Mv(T ). There is a unique set of non-negative real

numbers {c0} ∪ {cD : D ∈ IT } such that c0 +
∑

D∈IT cD = 1 and

(6.2) µ =
∑

D∈IT
cD µ(D) + ν with ν ∈ c0 Mv(T,∞)

where c0 = 0 if IT is finite

In [25], the sum
∑

D∈IT cD µ(D) is called the atomic part µat of µ, and ν is called

the diffuse part of µ.

We can apply these notions to the zeros of sections of a metrized line bundle L on

X in the following way.

Definition 6.2.2. Suppose λ ∈ R ∪ {−∞}. Let T (L, λ) be the set of divisors zer(f)

of zeros associated to non-constant elements f of ∪n≥1H
0(X,L⊗n)≥λ.

Fix a place v of K. It is a natural question whether all the elements of T (L, λ)

must contain particular irreducible divisors with at least a certain multiplicity. We can

approach this question by considering the setMv(T (L, λ)) of measures which are limits

of Dirac measures associated to zer(f) as above.

Serre’s Theorem 6.2.1 shows that such limits will have atomic parts and diffuse parts.

The example discussed in §6.1 suggests the following question.

Question 6.2.3. Fix a place v of K. Suppose that for each n ≥ 1, H0(X,L⊗n)≥λ has

non-constant elements, and fn ∈ H0(X,L⊗n)≥λ has maximal slope among all such ele-

ments. Since Mv(T (L, λ)) is compact, there is an infinite subsequence of the measures

{µ(zer(fn))}n≥1 which has a limit µ ∈ Mv(T (L, λ)). For all such limits µ, does the

atomic part µat of µ depend only on L? Which measures arise as the diffuse parts of

such µ?

In Theorems 7.1.3 and 7.1.4 we will show that some particular diffuse measures arise

as limit measures µ of the sort in this question.

7. Adelic sets of capacity one

7.1. Statement of results. In this section we assume X is a smooth projective geo-

metrically irreducible curve over a number field K. Let K be an algebraic closure of K,
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and let X be a finite Gal(K/K)-stable subset of X(K). By an adelic subset of X we

will mean a product E =
∏
v Ev over all the places v of K of subsets Ev of X(Kv)−X

when Kv is an algebraic closure of Kv. As noted in at the beginning of [22, §4.1],
subsets of X(Kv) are better suited for global capacity theory than those of X(Cv).

We will assume that the Ev satisfy the standard hypotheses described in [22, Def.

5.1.3] relative to X . In particular, each Ev is algebraically capacitifiable with respect

to X . We will assume each Ev has positive inner capacity γζ(Ev) with respect to every

point ζ ∈ X(Kv)− Ev in the sense of [22, p. 134-135, 196].

In [22, Def. 5.1.5], Rumely defined a capacity γ(E ,X ) of such an E relative to X .

For each ample effective divisor D =
∑

ζ∈X aζ ζ supported on X one has the sectional

capacity Sγ(E ,D) of E relative to D ([10], [19]). We will show in Lemma 7.3.1 below

that Rumely’s results in [24] imply that γ(E ,X ) is the infimum of Sγ(E ,D)1/deg(D)2 as

D ranges over all ample effective divisors supported on X provided γ(E ,X ) ≥ 1.

We will recall in the next section Rumely’s definition in [22] of the Green’s function

G(z, ζ;Ev) ∈ R∪{∞} of pairs z, ζ ∈ X(Kv). DefineG(z,D;Ev) =
∑

ζ∈X aζ G(z, ζ;Ev).
We will regard meromorphic sections of powers of L = OX(D) as elements of the

function field K(X). Then 1 is an element of H0(X,L) with divisor D. Define a v-adic

metric on L via

(7.1) |1|v(z) = exp(−G(z,D;Ev)) for z ∈ X(Kv)

We will call these the Green’s metrics on L associated to E .
We will show the following result.

Theorem 7.1.1. Suppose that D is an ample effective divisor with support X such

that

(7.2) γ(E ,X ) = Sγ(E ,D)1/deg(D)2 = 1

Give L = OX(D) the Green’s metrics associated to E, and suppose Ev is compact if v

is archimedean. Let {λn,i}rni=1 be the set of successive maxima of H0(X,L⊗n). Let ν be

the limiting distribution associated to the sets {λn,i/n}rni=1 as n → ∞. Then ν is the

Dirac measure supported on 0.

Thus lattices associated to metrized line bundles associated to adelic sets of capacity

one are asymptotically semi-stable, in the sense that all of their successive maxima are

approximately equal.

Corollary 7.1.2. Suppose there is a non-constant morphism h : X → P1 over K all

of whose poles are at one point ζ ∈ X(K). Write P1 = A1∪{∞} and N = deg(h), and

let D = Nζ = h∗(∞). Suppose Ev = {z ∈ X(Kv) : |h(z)|v ≤ 1} for all v. Then the

hypotheses of Theorem 7.1.1 hold, so that ν is the Dirac measure supported at 0.

Proof. The equality (7.2) in this case is a consequence of Rumely’s pullback formula

[22, Thm. 5.1.14] together with the computation of capacities of adelic disks in P1

given in [22, §5.2]. �
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We will discuss zeros of successive maxima in the case described in Corollary 7.1.2.

Identify the morphism h : X → P1 of this Corollary with an element of the function

field K(X). Let z be the affine coordinate for P1 which has image h under the induced

map K(P1) = K(z) → K(X) of function fields.

Theorem 7.1.3. Let v be an archimedean place of K. Let µ0 be the uniform measure on

the boundary of the unit disk Bv = {z ∈ P1(Kv) = P1(C) : |z|v = 1}. Then 1
N h

−1(µ0)

is the equilibrium measure µ(Ev,D) of Ev = Ev = h−1(Bv) in the sense of [22, p.

214-215] with respect to the polar divisor D = Nζ of h. The measure µ(Ev ,D) is an

element of ∩λ<0Mv(T (L, λ),∞) where Mv(T (L, λ),∞) is the set of diffuse probability

measures associated by (6.1) and Theorem 6.2.1 to the set T (L, λ) of divisors of zeros

of non-constant sections of ∪n≥1H
0(X,L⊗n)≥λ.

We now state a version of this result for a non-archimedean place v of K. Define Ev
to be the closure of Ev = {z ∈ X(Kv) : |h(z)|v ≤ 1} in XBerk,Cv . Let h : X → P1

OK

be the minimal regular model of the morphism h : X → P1
K (see [12]). Let ∞ be the

section of P1
OK

→ Spec(OK) defined by the point at infinity. Then h∗(∞) = Nζ+J for

some vertical divisor J when ζ is the closure in X of the point ζ ∈ X(K). Let {Yi}ℓi=1

be the set of reduced irreducible components of the special fiber Xv of X , and let mi

be the multiplicity of Yi in Xv. There is a unique point ξi ∈ XBerk,Cv whose reduction

is the generic point of Yi. Let δi be the delta measure supported on ξi on XBerk,Cv ,

and let (h∗(∞), Yi) be the intersection number of h∗(∞) and Yi. Writing D = Nζ, we

have a measure

(7.3) µ(Ev,D) =
1

N

ℓ∑

i=1

mi(h
∗(∞), Yi)δi

on XBerk,Cv .

Theorem 7.1.4. Suppose v is a non-archimedean place of K. The measure µ(Ev,D)

in (7.3) is a probability measure lying in ∩λ<0Mv(T (L, λ),∞) where Mv(T (L, λ),∞)

is the set of diffuse probability measures associated by (6.1) and Theorem 6.2.1 to the

set T (L, λ) of divisors of zeros of non-constant sections of ∪n≥1H
0(X,L⊗n)≥λ.

Thus under the hypotheses of Theorems 7.1.3 and 7.1.4, to achieve sections that

demonstrate semi-stability, one can use sections whose zeros approach the measures

µ(Ev,D) while avoiding any prescribed finite set of points. The measure in Theorem

7.1.4 was defined by Chambert-Loir in [8], and we will use his results in the proof.

7.2. Green’s functions in Rumely’s capacity theory. Following [22], let qv be the

order of the residue field of a finite place v of K. If v is a real place, let qv = e, while

if v is complex let qv = e2. Define a v-adic log by lnv(r) = ln(r)/ ln(qv) for 0 < r ∈ R.
We let || ||v be the standard absolute value | |v if v is finite, and we let || ||v be the

Euclidean absolute value if v is archimedean. The product formula then becomes
∑

v

lnv ||α||v · ln(qv) = 0
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for α ∈ K − {0}.
Suppose now that ζ ∈ X(Kv) − Ev . In [22, §3 - §4] Rumely defines a real valued

canonical distance function [z, w]ζ of pairs of points z, w ∈ X(Kv) − {ζ}. He then

defines a Green’s function G(z, ζ;Ev) in the following way.

Suppose first that Ev is compact. Rumely shows that there is a unique positive Borel

measure µv = µv(Ev, ζ) supported on Ev that minimizes the energy integral

(7.4) Vζ(Ev) = −
∫

Ev×Ev

lnv[x,w]ζ µv(x)µv(w)

One then has a conductor potential

(7.5) uE(z, ζ) = −
∫

Ev

lnv[x,w]ζ µv(w).

This function vanishes at almost all z ∈ Ev. One lets

(7.6) G(z, ζ;Ev) =





Vζ(Ev)− uE(z, ζ) if z 6∈ Ev ∪ {ζ}

∞ if z = ζ

0 if z ∈ Ev





Suppose now that v is a finite place. A PLζ domain (see [22, Def. 4.2.6]) is a subset

of the form

(7.7) Uv = {z ∈ X(Kv) : |f(z)|v ≤ 1}

for a non-constant function f(z) ∈ Kv(X) having poles only at ζ. Define

(7.8) G(z, ζ;Uv) =





1
deg(f(z)) lnv |f(z)|v if z 6∈ Uv ∪ {ζ}

∞ if z = ζ

0 if z ∈ Uv





Suppose now that v is finite and that Ev is an arbitrary algebraically capacitifiable

subset of X(Kv)−{ζ} in the sense of [22]. In [22, §3 - §4], Rumely shows that there is

there exist an infinite increasing sequence {E′
v,i}∞i=1 of compact subsets of Ev and an

infinite decreasing sequence {Uv,j}∞j=1 of PLζ domains containing Ev with the property

that

(7.9) lim
i→∞

γζ(E
′
v,i) = γζ(Ev) = lim

j→∞
γζ(Uv,j)

when γζ(Ev) is the local capacity of Ev with respect to ζ. It is shown in [22, Thm.

4.4.4] that the fact that Ev is algebraically capacitable implies

(7.10) lim
i→∞

G(z, ζ;E′
v,i) = lim

j→∞
G(z, ζ;Uv,j)

except for a set ∆ of z of inner capacity zero contained in Ev, and the left hand limit

in (7.10) is 0 for all z ∈ Ev. By [22, Prop. 4.4.1], G(z, ζ;E′
v,i) is non-increasing with i,
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G(z, ζ;Uv,j) is non-decreasing with j, G(z, ζ;E′
v,i) ≥ G(z, ζ;Uv,j) for all i and j. The

convergence in (7.10) is uniform over z in compact subsets of X(Kv)− {ζ} −∆.

We now define

(7.11) G(z, ζ;Ev) =





limi→∞G(z, ζ;E′
v,i) if z 6= ζ

∞ if z = ζ





Suppose now that D =
∑

ζ nζζ an effective divisor of degree deg(D) =
∑

ζ nζ > 0.

Let

(7.12) G(z,D;Ev) =
∑

ζ

nζ G(z, ζ;Ev)

and

(7.13) µv(E
′
v,i,D) =

1

deg(D)

∑

ζ

nζ µv(E
′
v,i, ζ)

7.3. Successive maxima for adelic sets of capacity one. The object of this section

is to prove Theorem 7.1.1. We must first make a slight extension of Lemma 4.9 of [11].

Lemma 7.3.1. Suppose γ(E ,X ) ≥ 1. Then γ(E ,X ) is the infimum of Sγ(E ,D′)1/deg(D
′)2

as D′ ranges over all ample effective divisors supported on X .

Proof. This result is shown in [11, Lemma 4.9] if γ(E ,X ) > 1. We now suppose

γ(E ,X ) = 1, so the Green’s matrix Γ(E ,X ) has val(Γ(E ,X )) = 0. By [22, Prop. 5.1.8,

Prop. 5.1.9], Γ(E ,X ) is a symmetric real matrix with non-negative off diagonal entries

that has all non-positive eigenvalues and at least one eigenvalue equal to 0. Let I be the

identity matrix of the same size as Γ(E ,X ). For all ǫ > 0, the matrix Γǫ = Γ(E ,X )− ǫI
is negative definite, symmetric and has non-negative off diagonal entries. We now apply

the arguments of [11, Lemma 4.9] to Γǫ and let ǫ → 0. Since the space of probability

vectors of a prescribed size is compact, this implies Lemma 7.3.1. �

Lemma 7.3.2. Let | |v be the Green’s metric (7.1) on Lv, and let | |⊗nv be the resulting

metric on L⊗n
v . For fv ∈ H0(X,L⊗n) and z ∈ X(Kv) let |fv|⊗nv (z) be the norm with

respect to | |⊗nv of the image of fv in the fiber of L⊗n
v at z. Regarding fv as an element

of the function field Kv(X), let fv(z) ∈ Kv ∪ {∞} be the value of fv at z. Then

(7.14) ||fv||L⊗n,v = supz∈X(Kv)
|fv|⊗n(z) equals sup(fv, Ev) = supz∈Ev

|fv(z)|v .

Proof. In view of (7.1 ), the Green’s metric on fv ∈ H0(X,L⊗n) is specified by

(7.15) ln |fv|⊗nv (z) = ln(|fv(z)|v) + ln(|1|⊗nv (z)) = ln |fv(z)|v − nG(z,D;Ev).

Suppose first that v is archimedean. We have supposed in this case that Ev is compact.

Then ln |fv(z)|v − nG(z,D;Ev) is a well defined harmonic function on the open set

X(Kv)−Ev = X(C)−Ev, so it achieves its maximum on the boundary of X(Kv)−Ev.
This boundary lies in Ev and G(z,D;Ev) = 0 for z ∈ Ev by [22, Def. 3.2.1], so

(7.14) holds. Suppose now that v is non-archimedean. By [22, p. 282, Def. 4.4.12],

G(z,D;Ev) is the supremum of G(z,D;Uv) over RL domains Uv ⊃ Ev defined by
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functions having poles in X . The fact that (7.14) holds is now a consequence of the

formula for G(z,D;Uv) when Uv is RL-domain in ([22, p. 277, eq. (2)]) together with

the maximum modulus principle of [22, Thm. 1.4.2]. �

Lemma 7.3.3. There is no section f ∈ H0(X,L⊗n) that has height λ(f) > 0.

Proof. Suppose f ∈ H0(X,L⊗n) is a section with λ(f) = −
∑

v kv log ||f ||L⊗n,v > 0.

Then f defines a morphism X → P1 such that f−1(∞) = D′ is supported on X , since

f is a section of L⊗n = OX(nD) and D is supported on X . Write rv = sup(f,Ev).

We let E ′ =
∏
v E

′
v be the adelic polydisc of the projective line P1 such that each

E′
v ⊂ A1(Kv) = P 1(K) − {∞} is the disc around the origin with radius rv > 0 with

respect to | |v. By the definition of the rv, we have E ⊂ f−1(E ′). This and Rumely’s

pullback formula [24, Prop. 4.1] give

(7.16) Sγ(E ,D′) ≤ Sγ(f
−1(E ′),D′) = Sγ(E ′,∞)deg(D

′).

By Lemma 7.3.2, λ(f) = −∑
v kv log ||f ||L⊗n,v = −∑

v[Kv : Qp] ln(rv) and this is

− ln(Sγ(E ′,∞)) by [24, Prop. 3.1] and [22, p. 339]. Because λ(f) > 0 we conclude

from (7.16) that Sγ(E ,D′) < 1. Hence Sγ(E ,D′)1/deg(D
′)2 < 1. This contradicts the

hypothesis in (7.2) because of Lemma 7.3.1. �

Lemma 7.3.4. Suppose ǫ > 0. There is a finite place v0 of K and a subset E′
v0 of Ev0

with the following properties:

1. E′
v0 is capacitifiable with respect to D, and |G(z,D;E′

v0)−G(z,D;Ev0 )| < ǫ for

all z ∈ X(Cv).
2. The set E ′ = E′

v0 × (
∏
v 6=v0 Ev) has capacity Sγ(E ′,D) < Sγ(E ,D) = 1.

3. Let λ(s) = −∑
v kv log ||s||L⊗n,v be the height of a section s ∈ H0(X,L⊗n)

associated to the Green’s metrics for E, and let λ′(s) is the corresponding height

for E ′. Then |λ(s)− λ′(s)|/n < kv0ǫ.

4. There is a rational function f ∈ K(X) whose divisor of poles is a positive

integral multiple of D with the following properties: we have sup(f,Ev) ≤ 1 for

all finite v 6= v0, sup(f,E
′
v0) ≤ 1 and sup(f,Ev) < 1 for all archimedean v.

Proof. Choose a place v0 where Ev0 is X -trivial in the sense of [22, Def. 5.1.1] By

[22, Prop. 4.4.13], the Green’s function G(z, ζ;Ev0) for any z ∈ X(Kv0) and any

ζ ∈ X(Kv0) − Ev0 is the infimum of G(z, ζ;E′
v0) over compact subsets E′

v0 of Ev0 .

Furthermore, we have G(z, ζ;Ev0) < G(z, ζ;E′
v0) for z ∈ X(Kv0)− Ev0 by the compu-

tations in [22, §5.2.B] since we took Ev0 to be X -trivial. So we can take E′
v0 to be a

compact subset of Ev0 such that the global Green’s matrix Γ(X , E) defined in [22, The-

orem 5.1.4] differs from Γ(X , E ′) by a matrix with positive entries that are arbitrarily

close to 0. Then E′
v0 is capacitifiable by [22, Theorem 4.3.4], so (1) holds. The value

of the game defined by Γ(X , E ′) is larger than that defined by Γ(X , E), so we get (2);

see [22, p. 327-328]. The log of the Green’s metric on L at v0 associated with E′
v0 and

with Ev0 differs by a constant we can make arbitrarily close to 0, so we get (3) from

(7.1). To prove (4), we first note that hypothesis (7.2) in Theorem 7.1.1 implies the

following. When we write D =
∑

x∈X nxx, then nx > 0 for all x and the probability
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vector P = (nx/deg(D))x∈X must define an optimum strategy for the game associated

to Γ(X , E). Furthermore Sγ(E ,D) = 0 says that this optimum strategy achieves value

0. Since Γ(X , E ′)− Γ(X , E) has all positive entries, playing P in the game defined by

Γ(X , E ′) leads to a positive value. This means that the construction of Rumely in [22,

§6, Corollary 6.2.7] produces a function with the properties in (4). �

Lemma 7.3.5. Let E ′ be as in Lemma 7.3.4. There is a constant c independent of n

such H0(X,L⊗n) has a basis of sections s for which λ′(s) ≥ c.

Proof. Let f in part (4) of Lemma 7.3.4 have divisormD for somem > 0. By Riemann-

Roch, we can find a finite subset {hj}j∈J of elements of the function field K(X) with

the following properties. The poles of the hj are supported on X = supp(D), and the

height λ(hj) of hj with respect to the Green’s metrics associated to E ′ is finite. Further,
for all n, the collection of functions {hjf i}j∈J,0≤i contains a basis for H0(X,L⊗n) =

H0(X,OX (nD)). Now Lemma 7.3.2 gives

λ′(hjf
i) = −

∑

v

kv ln(sup(hjf
i, E′

v)) ≥ −
∑

v

kv ln(sup(hj , E
′
v)) = λ′(hj)

because sup(f i, E′
v) ≤ 1 for all i by Lemma 7.3.4. Since there are finitely many hj, this

proves the Lemma. �

Remark 7.3.6. Lemma 7.3.5 could be deduced from a result of Zhang in [31, Thm. 4.2]

about arithmetic ampleness by verifying that the capacity theoretic metrics involved

satisfy the hypotheses of this result.

Proof of Theorem 7.1.1

Let c be as in Lemma 7.3.5. In view of Lemmas 7.3.5 and 7.3.4, for each ǫ > 0,

there is a basis of sections s of H0(X,L⊗n) such that when λ(s) is the height function

associated to the Green’s metrics coming from E , we have λ(s)/n ≥ c/n − ǫ. Letting

n → ∞ shows that the limiting measure ν associated to the ratios λi/n as λi ranges

over the successive maxima of H0(X,L⊗n) can have no support on the negative real

axis. On the other hand, Lemma 7.3.3 shows the support is also trivial on the positive

real axis. So ν must be the Dirac measure supported at 0.

7.4. Measures associated to zeros of small sections. The object of this subsection

is to prove Theorems 7.1.3 and 7.1.4. Accordingly we suppose there is a morphism

h : X → P1 such that D = h∗(∞) = Nζ for some point ζ ∈ X(K), where N = deg(h).

We also suppose

Ev = {z ∈ X(Kv) : |h(z)|v ≤ 1} = h−1(Bv)

for all v when

Bv = {z ∈ Kv : |z|v ≤ 1} ⊂ P1(Kv)− {∞}.
Here h∗OP1(∞) = OX(D) and for all n > 0 we have a global section Φn(z) in

H0(P1,OP1(n∞)) for any integer a when Φn(z) is the n
th cyclotomic polynomial. The

set zer(Φn(z)) of zeros of Φn(z) is just the set of all primitive nth roots of unity.
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We now fix a place v of K. Define Bv = Bv and Ev = Ev if v is archimedean. If v is

non-archimedean, we let Bv be the closure of Bv in P1
Berk and we let Ev be the closure

of Ev in XBerk,Cv .

Suppose first that v is archimedean. In Theorem 7.1.3 we let µ0 be the uniform

measure on the boundary of the unit disk Bv = {z ∈ P1(Kv) = P1(C) : |z|v = 1}, and
we defined µ(Ev,D) to be 1

N h
−1(µ0), where D = Nζ is the polar divisor of h. By [22,

Prop. 4.1.25], µ(Ev,D) is the equilibrium measure of Ev with respect to D.

Suppose now that v is non-archimedean. The probability measure µ(Ev,D) on

XBerk,Cv described in Theorem 7.1.4 is well defined by [8, §2.3] and the paragraph

following [8, Theorem 3.1].

We claim that for all v,

(7.17) µ(Ev,D) = lim
m→∞

δzer(h∗(Φ2m (z))

where h∗(Φ2m(z)) is a section ofH0(X,h∗OP1(2m ∞)) = H0(X,OX (nD)) and δzer(h∗(Φ2m (z))

is the Dirac measure associated to the zeros of this section.

Suppose first that v is archimedean and that h : X → P1 is the identity map. The

zeros of h∗(Φ2m(z)) are simply all the odd powers of a primitive root of unity of order

2m. Then (7.17) is clear from the fact that in this case, Ev = Bv is the unit disc about

the origin, so µ(Ev,D) is the uniform measure on the boundary of the unit disc. For

archimedean v, the case of all h : X → P1 satisfying our hypotheses follows from this

and the the fact that µ(Ev,D) = 1
N h

−1(µ0).

Suppose now that v is non-archimedean. As in Theorem 7.1.4 let h : X → P1
OK

be

the minimal regular model of the finite morphism h : X → P1
K . We give the line bundle

OP1
OK

(∞) = L on P1
OK

the adelic metric associated to the Weil height. Then P1
OK

and

the divisors defined by the zeros of Φ2m(z) have height equal to 0. We give h∗L the

pull back of the adelic metric of L. For any cycle Z on X we have from [5, Prop. 3.2.1]

that

(7.18) Hh∗L(Z) = HL(h∗Z)

where HL here is the height before normalization that is defined in [5, §3.1.1]. If Z

is the cycle X = h∗P1 we have h∗h∗P1 = N · P1 by the projection formula so we

conclude Hh∗L(X) = 0 Suppose now that Z is a cycle contained in the divisor of

zeros of h∗(Φ2m(z)). Then h∗Z is contained in the divisor of zeros of Φ2m(z), and so

HL(h∗Z)) = 0. Thus Hh∗L(Z) = 0 by (7.18). By [5, §3.1.4], the same is now true

if we replace Z by by any cycle contained in the base change of Z by a morphism

Spec(OK ′) → Spec(OK) associated to a finite extension K ′ of K. We conclude that

the Galois conjugates of any zero of h∗(Φ2m(z)) have adelic height 0 with respect to

the above adelic metric on h∗(L), and this is also the height of X with respect to this

metric. So these zeros as m → ∞ form a generic sequence of points of X(Kv) in the

sense of [8, Thm. 3.1]. Now [8, Thm. 3.1] shows that the limit on the right hand side

of (7.17) equals the Berkovich measure described in just before [8, Example 3.2], and
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this equals the measure µ(Ev,D) defined in Theorem 7.1.4. We have now shown (7.17)

in all cases.

Consider the normalized height λ(h∗(Φ2m(z))) of h∗(Φ2m(z)) with respect to the

Green’s metrics on OX(2
mD) = h∗OP1(2m∞) associated to E =

∏
v Ev. We have

λ(h∗(Φ2m(z))) → 0 as m→ ∞ because Φ2m(z) = (z2
m −1)/(z2

m−1 −1) has normalized

height tending toward 0 with respect to the Green’s metrics on OP 1(∞) which are

associated to B =
∏
wBw. Since the zero sets of the Φ2m(z) are disjoint for different

m, for sufficiently largem the zeros of h∗(Φ2m(z)) will avoid any prescribed finite subset

of X(Kv). Hence the limit measure µ(Ev,D) in (7.17) has mass 0 at every point of

X(Kv), so Theorem 6.2.1 shows µ(Ev,D) lies in ∩λ<0Mv(T (L, λ),∞). This completes

the proof of Theorems 7.1.3 and 7.1.4.
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