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We show that several orbital equations and orbital clusters of the quadratic (logistic)
map coincide surprisingly with cyclotomic period equations, polynomials whose roots are
Gaussian periods. An analytical expression for the field discriminant of period equations
is obtained and applied to discover and to fill gaps in number field databases constructed
by numerical search processes. Such expression allows easy assess to inessential divisors of
conventional discriminants and sheds light into why numerical construction of databases
is a hard problem. It also provides significant information about the organization of
periodic orbits of the quadratic map.
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1. Introduction

It was recently discovered that, in the partition generating limit of the celebrated

quadratic (logistic) map xt+1 = 2 − x2t , the familiar pair of period-3 equations of

motion for trajectories in phase space can be extracted in a surprisingly double

manner from either one of the following orbital carriers1:

ϕ1(x) = ϕ1(x;σ) = x3 − σ x2 − (σ2 − 2σ + 3)x+ σ3 − 2σ2 + 3σ − 1,

ϕ2(x) = ϕ2(x;σ) = x3 − (1− σ)x2 − (σ2 + 2)x− σ3 + σ2 − 2σ + 1.

From them, choosing either σ = 0 or σ = 1, one obtains the period-3 orbits:

Φ(x) = ϕ1(x; 0) = ϕ2(x; 1) = x3 − 3x− 1, ∆Φ(x) = 92, (1)

Φ(x) = ϕ1(x; 1) = ϕ2(x; 0) = x3 − x2 − 2x+ 1, ∆Φ(x) = 72. (2)

Clearly, such observable macroscopic orbits of the quadratic map are obtained as

independent “projections” from degenerate non-observable microscopic carriers, ei-

ther ϕ1(x) or ϕ2(x). Thus, rather than independent orbits, Φ(x) and Φ(x) are seen

1
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to emerge as a dual pair of conjugated orbits. So, in classical dynamics, multiple mi-

croscopic carriers define a structural framework, or skeleton, for the orbits observed

macroscopically in phase space, a mind-boggling fact. For details, see Ref. 1.

While working to determine orbital carriers for period-5 motions, we realized

that the orbit Φ(x) in Eq. (2) is one of the so-called period equations (defined in the

next Section), which are the key players introduced in 1801 by Gauss to solve alge-

braically (i.e. by finite chains of radicals) the cyclotomic equations2,3,4,5. The orbit

Φ(x) has the lowest possible discriminant for cyclic cubics, namely ∆Φ(x) = 72. Its

dual orbit, Φ(x), has the second smallest discriminant, viz. ∆Φ(x) = 92. These re-

markable facts sparked our interest in period equations. After computing many such

equations, we found that they indeed coincide with several orbital equations and

clusters of periodic trajectories of the quadratic map. This unexpected coincidence

makes period equations an object of interest in the investigation of the dynamics of

classical systems.

The purpose of this paper is to present a number of properties discovered for

families of period equations. A key finding explored here in several applications

boils down to Eq. (9) below, an exact expression for the field discriminant of period

equations. Such expression reflects the fact, observed in our extensive computations,

that field discriminants of period equations were found to be invariably given by

powers of single prime numbers, associated in a simple manner with the equations.

Our motivation is related to applications in physics and, accordingly, we study

equations with transitive cyclic groups, generically labeled as mT1, m > 1. Details

concerning such applications may be found, e.g., in Refs. 1,6 and references therein.

An additional long-term and more ambitious goal is to search for a systematic way

to interconnect arithmetically families of equations of motion involved in period-

doubling cascades of the map, forming towers of equations-within-equations of ever

growing degrees.

In the remainder, we start by presenting briefly the context and a few concepts

needed to understand and to define Eq. (9). Then, we show Eq. (9) to be an expedi-

tious tool for the computation of the so-called inessential discriminant divisors7,8,

factors of the conventional discriminant of equations of motion. Finally, we present

tables and several explicit expressions for period equations and periodic orbits for

relatively high periods of the quadratic map. Our tables provide a good feeling for

the distribution and growth of the corresponding field discriminants. To start, one

first needs to come to grips with period equations.

2. What are period equations?

Period equations are auxiliary polynomials with integer coefficients introduced by

Gauss in his book Disquisitiones Arithmeticæ2, in the quest to solve cyclotomic

equations with (finite chains of) radicals, i.e. to solve equations for the division of

the perimeter of a circle into a given number of equal parts3,4,5. Since the method-

ology to obtain period equations is well described by Gauss, it has been thought
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unnecessary to give the arithmetical details in full but just a brief summary. A de-

tailed textbook exposition is given in a classic book by Bachmann3. An enthusiastic

opinion and summary of Bachmann’s book is given by Dedekind9.

Consider the set Ω of the p− 1 complex roots of the equation xp − 1 = 0 where,

here and throughout the paper, p is a prime number. To obtain Gauss’ period

equations one starts by first distributing the p − 1 roots in Ω, into certain sums

called “periods”, as demonstrated in the Disquisitiones Arithmeticæ2, in article

343: Omnes radices Ω in certas classes (periodos) distribuuntur. For two numbers e

and f such that p − 1 = ef , Gauss partitions all roots in Ω into e disjoint classes,

thereby forming e periods ηi, each one consisting of a sum of f roots.

Let r be any complex root in Ω, for example r = e2πi/p, and g a primitive root

modulo p. Then, the “periods” (not the period equations) are given by the sums:

ηi =

f−1
∑

k=0

rg
ke+i

, i = 0, 1, · · · , e− 1, (3)

or, more explicitly, e sums of f distinct complex roots suitably selected from Ω

η0 = r+ rg
e

+ rg
2e

+ · · · + rg
(f−1)e

,

η1 = rg+ rg
e+1

+ rg
2e+1

+ · · · + rg
(f−1)e+1

,

...

ηe−1 = rg
e−1

+ rg
2me1

+ rg
3e−1

+ · · · + rg
fe−1

.

The period equation ψe(x) of degree e associated with p = ef + 1 is defined as2,3

ψe(x) =

e−1
∏

k=0

(x − ηk) = xe + xe−1 + α2x
e−2 + · · ·+ αe, (4)

where all coefficients αℓ turn out to be integers (from Z). Clearly, by construction

the roots of period equations are simply the “periods” ηi of Gauss.

To get a feeling for the characteristic distribution of p − 1 into products ef ,

Table 1 illustrates the abundance and fast growth of the number of roots in ηi.

For instance, the periods corresponding to the 50th prime of the form p − 1 =

2f contain (233 − 1)/2 = 116 roots in the summation, the 500th prime contains

(3581− 1)/2 = 1790 roots, and the 10000th prime contains (104743− 1)/2 = 52371

roots. In contrast, for e = 23 the corresponding number of roots are, respectively,

380, 5096 and 132020, an increase by factors of the order of 2.5.

3. The dynamics behind period equations

With hindsight, it is not difficult to recognize now that wide classes of polyno-

mial equations of motion generated by a discrete-time physical model coincide with

equations considered by Gauss and by Abel in the early nineteenth century
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Table 1. Primes p = ef+1 as a function of e, defining the degree of the period equations.
Primes are far more distant from each other for prime e because they have just a single
signature (see text).

e 50th 200th 500th 1000th 2000th 3000th 5000th 10000th

2 233 1229 3581 7927 17393 48619 48619 104743
3 577 2803 8089 17539 38011 104953 104953 225217
4 577 2797 8009 17657 38153 105269 105269 225217
5 1231 6151 17551 38231 82421 225781 225781 479821
6 577 2803 8089 17539 38011 104953 104953 225217
7 2143 9829 28057 59627 127709 351121 351121 748987
8 1321 6521 17761 38609 82793 226241 226241 482441
9 2089 9829 27361 59833 128467 351361 351361 747991

10 1231 6151 17551 38231 82421 225781 225781 479821
11 3433 17491 49369 105733 225611 610721 610721 1301851
12 1321 6529 17989 38569 83101 226453 226453 481909
13 4759 21191 59359 128519 275549 746227 746227 1592683
14 2143 9829 28057 59627 127709 351121 351121 748987
15 2971 14221 38671 83311 177601 481651 481651 1020961
16 3041 14081 38321 82913 177409 481697 481697 1024337
17 6257 28867 80173 177379 376687 1024523 1024523 2157709
18 2089 9829 27361 59833 128467 351361 351361 747991
19 7867 34961 95153 203339 434303 1164511 1164511 2460881
20 3041 14081 39041 83621 176461 481181 481181 1025161

21 4789 22051 60271 128941 277747 751549 751549 1588819
22 3433 17491 49369 105733 225611 610721 610721 1301851
23 8741 45403 117209 249229 533831 1443389 1443389 3036461

Gauss introduced the systematic procedure reproduced in Section (2) and used

it to investigate the subgroups of the group, subsequently named Galois group,

of the cyclotomic equations. He found an explicit algorithm to solve a family of

polynomials. However, although interesting for many reasons, cyclotomic equations

form a relatively restricted class of polynomials.

Abel discovered that cyclotomic equations are nothing else than just a particular

case of a much wider class of equations10. If the roots of an equation of arbitrary

degree are connected in such a way that all roots may be rationally expressed as a

function of one of them, say x and, designating by θ(x) and θ1(x) any two other

roots, where θ(x) and θ1(x) are suitable rational functions, one finds that they obey

(the commutative composition law)

θ(θ1(x)) = θ1(θ(x)), (5)

then the equation in question will be always algebraically solvable by finite chains

of radicals. Such general equations, called Abelian equations after Kronecker, are

equations with n roots x1, x2, · · · , xn which satisfy the relations

x2 = θ(x1), x3 = θ(x2), · · · , xn = θ(xn−1), x1 = θ(xn), (6)

where θ(x) is a rational function of x. As observed by Kronecker11, these general

Abelian equations are essentially cyclotomic equations, closing the cycle.
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Anyone familiar with equations of motions of discrete-time dynamical systems

will immediately recognize that Eq. (6) corresponds to the discrete-time system

xt+1 = θ(xt). (7)

For algebraic functions θ(x), iterating this equation generates sequences of polyno-

mials whose roots are orbital points of the physical system described by θ(x). In

general, orbital points are obtained numerically, i.e. only in an approximate way.

However, by studying equations of motion exactly the emphasis is shifted from ap-

proximate orbital points in phase space, to the study of exact analytical properties

and interrelations between equations of motion1. Clearly, chaotic dynamics cannot

be described by Abelian equations. In the simple example chosen here, the partition

generating limit, all orbits are unstable. However, carriers are valid generically, for

arbitrary values of a. See Eq. (11) in Ref. 1.

For applications in physics, it is of interest to mention that in algebraic num-

ber theory it can be shown that every cyclotomic field is an Abelian extension of

the rational numbers Q. In this context, an important discovery is the so-called

Kronecker-Weber theorem, stating that every finite Abelian extension of Q can be

generated by roots of unity, i.e. Abelian extensions are contained within some cyclo-

tomic field. Equivalently, every algebraic integer whose Galois group is Abelian can

be expressed as a sum of roots of unity with rational coefficients. For details see,

e.g., Edwards12. The key difficulty for application of the theorem above is buried

in the word “some”: to find explicit algorithms providing effective bridges to imple-

ment the postulated interconnections between Abelian extensions and cyclotomic

fields. After proving that wealth exists, it seems important to find ways to get to it.

4. Results

4.1. Expression for the field discriminant of period equations

Two known invariants of any polynomial are its conventional discriminant D and

the discriminant ∆ of the number field K underlying the polynomial7,8,13. More

technically, let p(x) be a monic irreducible polynomial in Z(x) (i.e. an irreducible

polynomial over the integers with nonzero coefficient of highest degree equal to 1),

and r a root of p(x) ∈ C. In addition, let K be the number field Q(r) and O the

ring of (algebraic) integers in K. Then, the invariants D and ∆ are interconnected

by the simple-looking relation7,8,13

D = k2∆ (8)

for some k ∈ Z, where D is the discriminant of r and ∆ is the discriminant of O.

Again, the trouble lies in the word “some”.

As pointed out by Vaughan14, “while D can be found by straightforward (if

tedious) computation, the value of k is quite another story. According to Cohn13,

page 77, for example, to determine k, one would have to test a finite number (which

may be very large) of elements of K to see if they are integral.”
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Surprisingly, period equations form a wide class of equations for which the com-

putation of ∆ and k presents no difficulties and can be done using the following

wide-ranging result.

For any prime p = ef+1, the field discriminant ∆e of the period equation ψe(x)

in Eq. (4) is given by

∆e =

{

−pe−1, if (e − 1) mod 4 = 1 and f mod 2 = 1,

pe−1, if otherwise.
(9)

Equivalently, Eq. (9) may be also written as

∆e =

{

(−1)nP pe−1, if (e− 1) mod 4 = 1,

pe−1, if otherwise,
(10)

where nP is the number of pairs of complex roots of ψe(x).

The signature8 of a polynomial is (nR, nP ), sometimes written more economi-

cally as nR, where nR is the number of real roots of ψe(x). In the literature, number

field tables are normally ordered using the magnitude |∆e| instead of ∆e. Surpris-

ingly, in Eq. (10) the sign of ∆e is found to depend explicitly on the the nature,

odd or even, of the total number of pairs of complex roots of ψe(x). Therefore, we

expect the determination of this sign to be a non-trivial theoretical problem.

Equations (9) and (10) are empirical expressions distilled by consolidating nu-

merical evidence gathered by tabulating thousands of field discriminants for period

equations for primes p = ef + 1, for f varying up to a few thousands when e ≤ 10,

and for f varying up to a few hundreds when 11 ≤ e ≤ 60. Beyond e = 60 computa-

tions become too sluggish and were not further pursued. Despite the vast literature

on cyclotomic equations, we have not been able to locate Eqs. (9) and (10). They

correctly reproduce all numerically computed discriminants for the total mass of

data investigated.

For every prime p = 6f+1, D.H. Lehmer and E. Lehmer 15 reported coefficients

for ψe(x) in terms of L and M in the quadratic partition 4p = L2 + 27M2. They

also reported an explicit formula for the conventional discriminant D of ψe(x). Four

explicit examples of ψe(x) and discriminants were given. However, while their ψe(x)

and the magnitudes of the conventional discriminants are correct, we find the sign of

all their discriminants to be incorrect. In any case, nowadays it seems considerably

safer and much easier to generate ψe(x) numerically than to use the quite long and

intricate expressions provided for the coefficients of ψe(x).

For primes p = 8f + 1, E. Lehmer16 investigated the use of difference sets

and a class of octic residues of p to obtain conditions for octic period equations

which, according to her, “are rather rare; there are only three such primes less

than ten thousand, namely p = 73, 6361, and 9001”. No explicit period equations

were reported for these primes, only the conventional discriminant D for p = 73,



December 17, 2019 1:48 WSPC/INSTRUCTION FILE
period˙equations˙arxiv

Field discriminants for cyclotomic period equations 7

viz. D = 254 · 34 · 737. For these rare octics, we find:

ψ
(73)
8 (x) = x8 + x7 + 5 x6 − 17 x5 − 46 x4 − 136 x3 + 320 x2 + 512 x+ 4096,

k2 = 254 · 34, ∆ = 737,

ψ
(6361)
8 (x) = x8 + x7 + 398 x6 + 41446 x5 − 250747 x4 + 16689725 x3

+486181868 x2 − 5601819268 x+ 224934834784,

k2 = 290 · 312 · 514 · 1112, ∆ = 63617,

ψ
(9001)
8 (x) = x8 + x7 + 563 x6 − 42614 x5 − 556282 x4,−28875030 x3

+863797853 x2 + 13357557897 x+ 926791611419,

k2 = 232 · 34 · 514 · 114 · 2312 · 4312, ∆ = 90017.

They are the 3rd, 196th, and 271th octics for primes of the form p = 8f + 1,

respectively. The discriminants for p = 73 agree. Although the reference table for

totally complex octics lists polynomials containing field discriminants up to 122

digits, ψ
(6361)
8 (x) and ψ

(9001)
8 (x), with discriminants of 27 and 28 digits, respectively,

are not listed.

Equation (9) gives a handy criterion to sort out equations with either k2 = 1

or k2 6= 1. Thus, knowledge of field discriminants allows one to extract inessential

discriminant divisors through a simple division of two (possibly very large) integers.

By avoiding the need for factorizing very large numbers, Eq. (9) allows a very

significant reduction of the computations required to assess the arithmetical scaf-

folding underlying period equations.

4.2. A general expression for α2

For primes p = 3f + 1, a general period equation ψ3(x) solving the cyclotomic

trisection problem was given in 1872 by Bachmann, on pages 210-213 and 224-230

of his classic bookDie Lehre von der Kreisteilung3, used properties of the elementary

symmetric functions ηℓ, to derive a one-parameter cubic that we write as:

ψ3(x) = x3 + x2 − 1
3 (p− 1)x+A, (11)

An equivalent form having the same discriminants is −ψ3(−x). Subsequently, in

1879, Cayley17 reported

ψ3(x) = x3 + x2 − 1
3 (p− 1)x+ fg − h2, (12)

tabulating f , g and h for the 11 primes p = 3f +1 below 100, namely 7, 13, 19, 31,

37, 43, 61, 67, 73, 79 and 97. In 1901, Burnside showed18 that Eq. (12) “may be

completely solved, without the use of tables of any kind, by a number of trials which

is small in comparison with the prime considered.” As an example, for p = 1213,

with 5 trials he finds the correct solution x3 + x2 − 404x+ 669 = 0.

For p = 5f + 1, the period equation is a three-parameter quintic19

ψ5(x) = x5 + x4 − 2
5 (p− 1)x3 + Cx2 +Bx +A. (13)
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In general, for e odd we find the coefficient α2 of the third largest power of x in

ψe(x), Eq. (4), to be an integer given by

α2 = −
e− 1

2e
(p− 1) = − 1

2 (e − 1)f. (14)

We also find this same coefficient to be valid for e even and signature (e, 0). For

e = 2, the third largest power of x in ψe(x) is in fact the constant term of a

quadratic. We have not been able to locate this general coefficient in the literature.

It would be interesting to explore the possibility of, say, following Bachmann, to

use the elementary symmetric functions to obtain expressions for additional coeffi-

cients.

4.3. Tables of period equations

All results reported here were obtained with a special purpose MAPLE routine

written to generate systematically large sequences of period equations ψe(x) for

primes p = ef + 1, with e arbitrary but fixed. In this endeavor, period equations

tabulated in 1875 by Reuschle4 were helpful to validate our routine. Reuschle would

be certainly amazed, perhaps shocked, to see that every period equation recorded

in his invaluable and influential work of 13 years20, could be now reproduced in

fractions of a second or just a few seconds. For instance, the first 20 period equations

for p = 20f + 1 were generated in 3.7s, for p = 30f + 1 in 8.1s, for p = 40f + 1

in 17.2s, for p = 50f + 1 in 29.3s, and for p = 60f + 1 in 83.9s, running MAPLE

2014 on a modest and aging DELL XPS 13 Ubuntu notebook. These simple tests

generated much more period equations than reported in Reuschle’s book.

In the continuation, we compare our results with the ones in the detailed num-

ber field database of Klüners and Malle21,22,23, taken to be our reference tables.

Malle24 presents an impressive table listing the first 15 million cyclic cubic fields,

complete up to field discriminant 106. These works contain links to a number of ad-

ditional papers and online tables. For applications in physics, we mention the tables

of totally real number fields up to degree 10 computed and maintained by Voight25.

Most tables are concerned with number fields of relatively low-degree. The database

of Klüner and Malle has minimal polynomials for fields up to degree 19, degrees not

available in tables known to us. Of course, online number field tables are not at all

concerned with period equations and, accordingly, the majority of their polynomi-

als are not period equations. In fact, a byproduct of our work is precisely to have

identified an infinite family of polynomials responsible for producing discriminants

with the simplest possible structure, namely powers of single prime numbers.

For larger values of e, Table 5 below presents information that goes well beyond

what is presently available for equations with cyclic group.
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Table 2. Solution set for cubics with transitive group 3T1, ordered by the value of p,
for the first 105 primes p = 3f + 1. Their field discriminant is ∆ = p2 and the minimal
polynomial is f(x) = x3+x2−

p−1

3
x+A. The inessential discriminant divisors are defined

by k2. Solutions for highlighted primes are not in the reference tables.

# p A k # p A k # p A k

1 7 −1 1 36 379 365 5 71 853 1011 32

2 13 1 1 37 397 −544 22 72 859 −509 11
3 19 −7 1 38 409 −515 5 73 877 1819 1
4 31 −8 2 39 421 −343 7 74 883 1439 7

5 37 11 1 40 433 −16 23 75 907 −739 11
6 43, 8 2 41 439 −504 2 · 3 76 919 −1872 2 · 3
7 61 −9 3 42 457 −220 23 77 937 −2221 1
8 67 5 3 43 463 343 7 78 967 1361 32

9 73 −27 3 44 487 −505 7 79 991 −2349 3
10 79 41 1 45 499 536 2 · 3 80 997 −480 22 · 3
11 97 −79 1 46 523 −891 3 81 1009 −1719 32

12 103 −61 3 47 541 521 7 82 1021 416 22 · 3
13 109 −4 22 48 547 −81 32 83 1033 1913 7
14 127 80 2 49 571 −719 7 84 1039 2155 5
15 139 103 1 50 577 171 32 85 1051 −2608 2
16 151 −123 3 51 601 512 23 86 1063 2441 1
17 157 64 22 52 607 −1169 1 87 1069 2336 22

18 163 −169 1 53 613 999 3 88 1087 −2335 7
19 181 −67 5 54 619 321 32 89 1093 −1012 22 · 3
20 193 143 3 55 631 −1075 5 90 1117 2565 3
21 199 59 5 56 643 −1024 2 · 3 91 1123 1331 11
22 211 −125 5 57 661 −1273 3 92 1129 −2927 1
23 223 −256 2 58 673 −997 7 93 1153 −427 13
24 229 −212 22 59 691 128 2 · 5 94 1171 347 13
25 241 125 5 60 709 1313 1 95 1201 2491 7
26 271 261 3 61 727 1104 2 · 3 96 1213 629 13
27 277 236 22 62 733 1276 22 97 1231 −1003 13
28 283 304 2 63 739 −520 2 · 5 98 1237 1741 11
29 307 −216 2 · 3 64 751 1057 7 99 1249 2313 32

30 313 371 1 65 757 729 32 100 1279 −2179 11
31 331 −49 7 66 769 −1481 5 101 1291 −3347 5
32 337 25 7 67 787 −991 32 102 1297 −1345 13
33 349 −517 1 68 811 1592 2 103 1303 −2799 32

34 367 435 3 69 823 61 11 104 1321 3327 3
35 373 −221 7 70 829 −307 11 105 1327 −344 2 · 7

4.3.1. Period equations for primes of the form p = 3f + 1

The conventional polynomial discriminant of the cubic ψ3(x), Eq. (11), is

Dc = −27A2 − (6p− 2)A+ 1
27 (4p− 1)(p− 1)2.

For k = 1, Eq. (9) implies Dc = p2, a quadratic in A which has a rational and an

integer value of A as solutions. For k 6= 1, both solutions are quadratic numbers.

Therefore, the constraint Dc = p2 provides a simple an efficient algorithm to sort

out period equations with and without inessential discriminant divisors. For a fixed

value of e, by increasing f successively it is possible to extract in a systematic
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Table 3. Solution set for biquadratics with field discriminant ∆ = p3 for primes p = 4f +1, and minimal
polynomial x4 + x3 + Cx2 + Bx + A, highlighted by signature. The inessential discriminant divisors are
defined by k2. “Seq” and “Sig” refer to the sequential enumeration of primes and signature. Among the
first 80 primes there are 37 of signature 4 and 43 of signature 0. Note that C = − 3

8
(p− 1) for totally real

quartics.

Seq p C,B,A Sig k Seq p C,B,A Sig k

1,1 5 1,1,1 0 1 41,18 433 -162,839,-1003 4 2 · 33

2,2 13 2,-4,3 0 3 42,19 449 -168,-477,335 4 2 · 53

3,1 17 -6,-1,1 4 2 43,20 457 -171,1114,-2044 4 2
4,3 29 4,20,23 0 7 44,24 461 58,-1066,4601 0 5 · 109
5,4 37 5,7,49 0 3 · 7 45,25 509 64,350,8993 0 11 · 97
6,2 41 -15,18,-4 4 2 46,21 521 -195,-814,-116 4 2 · 53

7,5 53 7,-43,47 0 13 47,26 541 68,1454,6921 0 3 · 5 · 43
8,6 61 8,42,117 0 3 · 13 48,27 557 70,-1288,7439 0 7 · 127
9,3 73 -27,-41,2 4 24 49,22 569 -213,818,-20 4 2 · 53

10,4 89 -33,39,8 4 24 50,23 577 -216,-36,1296 4 24 · 33

11,5 97 -36,91,-61 4 2 51,24 593 -222,-1816,-3968 4 24

12,7 101 13,19,361 0 5 · 19 52,25 601 -225,263,1256 4 24 · 33

13,8 109 14,-34,393 0 3 · 5 · 7 53,28 613 77,1341,10773 0 32 · 7 · 19
14,6 113 -42,-120,-64 4 24 54,26 617 -231,-1581,-2374 4 27

15,7 137 -51,-214,-236 4 2 55,27 641 -240,1883,-4169 4 2
16,9 149 19,-121,635 0 5 · 31 56,29 653 82,1102,13537 0 7 · 11 · 19
17,10 157 20,-206,517 0 3 · 37 57,30 661 83,2107,9427 0 3 · 163
18,11 173 22,292,667 0 43 58,28 673 -252,-2061,-4293 4 2 · 33

19,12 181 23,215,975 0 3 · 5 · 13 59,31 677 85,127,16129 0 13 · 127
20,8 193 -72,-205,-49 4 2 · 33 60,32 701 88,482,17117 0 7 · 13 · 19
21,13 197 25,37,1369 0 7 · 37 61,33 709 89,-1285,14853 0 3 · 72 · 11
22,14 229 29,-415,933 0 3 · 19 62,34 733 92,-2428,9927 0 3 · 61
23,9 233 -87,335,-314 4 24 63,35 757 95,899,19407 0 3 · 72 · 13
24,10 241 -90,-497,-739 4 2 64,29 761 -285,-1950,-2500 4 2 · 53

25,11 257 -96,-16,256 4 27 65,30 769 -288,2259,-4617 4 2 · 33

26,15 269 34,454,1945 0 5 · 61 66,36 773 97,1691,17933 0 11 · 163
27,16 277 35,329,2427 0 3 · 7 · 19 67,37 797 100,-1046,20557 0 13 · 157
28,12 281 -105,123,236 4 27 68,31 809 -303,354,2348 4 2 · 73

29,17 293 37,641,1853 0 73 69,38 821 103,2617,16327 0 7 · 193
30,13 313 -117,450,-324 4 2 · 33 70,39 829 104,-2746,14025 0 3 · 5 · 67

31,18 317 40,-416,2827 0 7 · 67 71,40 853 107,-2399,17923 0 32 · 193
32,14 337 -126,316,104 4 27 72,32 857 -321,2946,-7636 4 2
33,19 349 44,240,4203 0 32 · 67 73,41 877 110,3234,16317 0 3 · 7 · 31
34,15 353 -132,684,-928 4 24 74,33 881 -330,2588,-4904 4 27

35,20 373 47,-303,4527 0 32 · 73 75,34 929 -348,-2845,-4997 4 2 · 53

36,21 389 49,851,3773 0 5 · 7 · 13 76,35 937 -351,-2401,-2434 4 24 · 33

37,22 397 50,-918,3069 0 3 · 97 77,42 941 118,3470,19625 0 5 · 229
38,16 401 -150,-25,625 4 2 · 53 78,36 953 -357,1370,1396 4 2 · 73

39,17 409 -153,-230,548 4 2 · 53 79,37 977 -366,-3969,-11911 4 2
40,23 421 53,-763,4557 0 3 · 7 · 31 80,43 997 125,-3801,19017 0 3 · 13 · 19

way, without omissions, a list of all primes p = ef + 1. For example, the 1187th

cubic is x3 + x2 − 22569406 x+ 41261890201, for p = 67708219. The 1631st cubic

is x3 + x2 − 47112146 x+ 124449351881, for p = 141336439. The 2405th cubic is

x3 + x2 − 111367856 x+ 452326735601, for p = 334103569. The (weak) growth of
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the number of cubics with k = 1 obeys a power law.

For cyclic fields, the reference table displays discriminants for 211 cubics, the

last one being 2989441 = 72 · 132 · 192. Among them, there are 66 discriminants

of the form p2, the four ones larger than 1000 being 1021, 1153, 1213 and 1327,

respectively the 82th, 93th, 96th, and 105th primes p = 3f +1. These 66 cases lead

us to suspect that the corresponding cubics could be period equations, or isomorphic

forms of period equations. Indeed, they are.

Table 2 records A and k for the first 105 primes p = 3f+1, characterized by field

discriminants p2. The sign and magnitude of A varies sensibly with p. Highlighted

primes are not listed in the reference table. The magnitude of A for all primes in

the reference table is smaller than 1000. With two exceptions, all missing primes

highlighted in Table 2 have |A| > 1000. It is important to stress that the reference

tables are not concerned with period equations. They contain many discriminants

which factor into products of powers of several primes and have minimal polynomials

with coefficients that exceed 1000 considerably.

4.3.2. Period equations for primes p = 4f + 1

For cyclotomic primes p = 4f + 1 there are two classes of 4T1 cyclic polynomials,

characterized by signatures 4 or 0. Table 3 contains the first 80 period equations,

independently of signature. Highlighting is used to discriminate signatures.

For p = 4f+1, the reference tables21 list 238 polynomials of signature 4 and 198

of signature 0. The largest cyclotomic prime listed is p = 769 for signature 4, and

p = 269 for signature 0. Minimal polynomials for the totally real signature agree

with ours, modulo the trivial substitution x 7→ −x or isomorphisms. In contrast,

for signature (0, 2), the reference table misses primes 109, 149, 157, 173, 181, 229.

For p = 37 and signature 0, the minimal polynomial in the reference table is

f(x) = x4 + 2x3 + 20x2 + 19x+ 7, k2 = 34, ∆e = 373,

while our Table 3 has

g(x) = x4 + x3 + 5x2 + 7x+ 49, k2 = 32 · 72, ∆e = 373.

Using either polynomial interpolation26 or systematic computer search27, the
number fields underlying these polynomials may be shown to be isomorphic, with
two sets of four transformations interconnecting the polynomials. The passage from
f(x) 7→ g(x) is accomplished by any of the following direct transformations

D1 = 1
3 (−x

3
− 2x2 − 18x− 14),

D2 = 1
3 (−x

3
− x

2
− 20x − 6),

D3 = 1
3 (x

3 + x
2 + 17x+ 3),

D4 = 1
3 (x

3 + 2x2 + 21x+ 14),
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Table 4. Relative abundance of period equations as a function of the degree of their minimal poly-
nomials and signature. N refers to the number of fields listed in the reference tables. Highlighted blue
boldface numbers are missing in the reference tables. See text for description of remaining data.

Deg Sig N Discriminant bases #dig Seq

10 10 181 41, 61, 101, 181, 241,281,401,421,461,521,541,601 48 [2 · 105]
0 79 −11,−31,−71,−131,−151,−191,−211,−251,−271 22 13

11 11 40 23, 67, 89, 199,331,353,397,419,463,617, · · ·, 920371 357 [1036]
12 12 102 73, 97,193,241,313,337,409,433,457,577,601,673 35 47

0 91 13, 37, 61, 109,157,181,229,277,349,373,397,421 70 [2 · 106]

13 13 3 53, 79, 131,157,313,443,521,547,599,677,859,911 27 4
14 14 75 29, 113,197,281,337,421,449,617,673,701,757,953 83 [6 · 106]

0 56 −43,−71,−127,−211,−239,−379,−463,−491,−547 59 517
15 15 70 31, 61, 151,181,211,241,271,331,421,541,571,601 83 7216
16 16 30 97,195,257,353,449,577,641,673,769,929,1153 47 77

0 29 17, 113,241,337,401,433,593,881,977,1009,1201 38 7
17 17 4 103, 137, 239, 307,409,443,613,647,919,953,1021 40 4
18 18 95 37, 73, 109,181,397,433,541,577,613,757,829,937 91 [6 · 104]

0 61 −19,−127,−163,−199,−271,−307,−379,−489 114 [106]
19 19 6 191, 229, 419, 457, 571, 647,761,1103,1217,1483,1559 50 5

21 21 43,127,211,337,379,421,463,547,631,673,757

23 23 47,139,277,461,599,691,829,967,1013,1151,1289

25 25 101,151,251,401,601,701,751,1051,1151,1201

27 27 109,163,271,379,433,487,541,757,811,919,1297

29 29 59,233,349,523,929,1103,1277,1451,1567,1741

33 33 67,199,331,397,463,661,727,859,991,1123,1321

43 43 173,431,947,1033,1291,1549,1721,1979,2237

while the inverses, from g(x) 7→ f(x), are

I1 = 1
21 (−2x3 + 5x2 − 17x− 7),

I2 = 1
21 (−x

3
− 8x2 − 19x − 35),

I3 = 1
21 (x

3 + 8x2 + 19x+ 14),

I4 = 1
21 (2x

3
− 5x2 + 17x− 14).

4.4. How rare are period equations?

Table 4 provides a measure of the relative abundance and distribution of period

equations. The upper part of the table puts into perspective data from the refer-

ence database21, while the lower part presents some analogous results for period

equations of larger degrees. The first column gives polynomial degrees, the second

records signatures, the third gives the number N of polynomials listed in the ref-

erence tables, not necessarily period equations. In the fourth column, numbers in

black inform the basis of field discriminants of period equations contained in the

reference tables. For instance, among 181 polynomials of degree 10 and signature

10 in the reference table, one finds four period equations whose discriminants are
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Table 5. The first two period equations for primes p = ef + 1 with e = 21, 23, 25, 27, 29, 33, 39, and field
discriminants ∆e = pe−1. Highlighted are (ℓP , ℓk), the number of digits in D and ∆e. The identity D = ∆K

means k2 = 1 (See Eq. (8)). Large values of D −∆e imply large inessential discriminant divisors.

∆e Coefficients

4320 1,1,-20,-19,171,153,-816,-680,2380,1820,-4368,-3003,
(33,33) 5005,3003,-3432,-1716,1287,495,-220,-55,11,1
12720 1,1,-60,-133,1305,4493,-10801,-62425,-2588,380273,489841,-832624,-2307149,

(104,43) -540263,3165855,3188668,-157753,-1481414,-380716,205872,50035,-14459

4722 1,1,-22,-21,210,190,-1140,-969,3876,3060,-8568,-6188,12376,
(37,37) 8008,-11440,-6435,6435,3003,-2002,-715,286,66,-12,-1
13922 1,1,-66,-147,1630,5648,-16457,-92686,18441,709360,832638,-2239299,-5679764,

(126,48) 156443,12673530,11318727,-6468097,-14166332,-3186420,5386949,2918745,
-436718,-516219,-63941

10124 1,1,-48,-43,946,752,-9993,-6962,62052,37341,-234195,-119366,538390,226505,
(134,49) -737819,-249907,571793,151052,-224456,-42136,35494,2561,-1633,-57,19,1
15124 1,1,-72,-161,1991,6935,-23789,-131523,59219,1219472,1274267,-5134575,-12138942,

(150,53) 4263646,39567816,30337248,-42180110,-75903945,-9872226,55689151,
38006340,-5737119,-14814116,-5029783,-190198,111103

10926 1,1,-52,-47,1128,914,-13369,-9612,95357,60102,-425693,-231576,1201391,553157,-2121177,
(159,53) -810403,2271851,706862,-1399735,-342875,461618,78149,-74294,-4948,4861,-271,-34,1
16326 1,1,-78,-175,2388,8354,-33013,-180016,127774,1968453,1782518,-10489594,-23282154,

(174,58) 17166283,103371060,63556949,-176991137,-284942103,20494295,355135692,239709074,
-92044084,-184127684,-70412054,8685910,12922671,3203525,255583

5928 1,1,-28,-27,351,325,-2600,-2300,12650,10626,-42504,-33649,100947,74613,-170544,-116280,
(50,50) 203490,125970,-167960,-92378,92378,43758,-31824,-12376,6188,1820,-560,-105,15,1
23328 1,1,-112,-91,5198,3644,-132219,-83238,2053518,1187959,-20553532,-11071128,

(297,67) 136460842,69042962,-609473492,-292259011,1836592125,845018358,-3706016039,
-1661552324,4906886664,2177019390,-4095369839,-1819962089,1998032360,
895362174,-490947342,-221892059,42927079,19524467

6732 1,1,-32,-31,465,435,-4060,-3654,23751,20475,-98280,-80730,296010,230230,-657800,
(59,59) -480700,1081575,735471,-1307504,-817190,1144066,646646,-705432,-352716,293930,

125970,-77520,-27132,11628,3060,-816,-136,17,1
19932 1,1,-96,-217,3795,13403,-74197,-394231,599821,6350170,2832807,-56803105,-104532088,

(250,74) 244229488,932758015,-5618002,-3890173018,-4529747891,6495127532,18110944809,
4574986912,-26694143816,-29645825157,6037403432,30417132332,15468969217,-6737165737,
-8515927088,-1017730658,1409177433,395068072,-75602260,-21210003,2947097

7938 1,1,-38,-37,666,630,-7140,-6545,52360,46376,-278256,-237336,1107568,906192,-3365856,
(73,73) -2629575,7888725,5852925,-14307150,-10015005,20030010,13123110,-21474180,-13037895,

17383860,9657700,-10400600,-5200300,4457400,1961256,-1307504,-490314,
245157,74613,-26334,-5985,1330,190,-20,-1

15738 1,1,-76,-71,2556,2222,-50313,-40520,646279,479776,-5720417,-3892342,35931891,22265255,
(310,84) -162617513,-91086546,533275855,267613697,-1265136580,-562372122,2154121978,835520674,

-2594978102,-861831376,2164301236,603623323,-1211061590,-280758113,434291871,
84841877,-93357668, -15992102,10935603,1639529,-599706,-67036,11826,272,-49,1

419, 619, 1019, 1819. Complementing the table, in boldface blue we show bases for

the next few period equations in each sequence.

The fifth column lists the number of digits for the field discriminant of the last

polynomial listed in the reference database. Thus, for degree 10, the discriminant of
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the 181th polynomial with signature 10 (i.e. with ten real roots) is a number with

48 digits, while for signature 0, the discriminant of the 79th polynomial contains 22

digits. As indicated in the rightmost column, such polynomial is the 13th in the list

of signature 0. For signature 10, the corresponding number in the rightmost column

is [2 · 105]. Such number is used to indicate that it would take too much time and

resources to establish the sequential order of the 181th polynomial. In such cases,

numbers in brackets give an estimate of the size of a prime whose number of digits

would be about 48. For instance, the number of digits of (2× 105)9 is 48.

From the rightmost column of Table 4 one sees clearly that there is no short

supply of period equations. In particular, it is totally unreasonable to expect any

table to contain them all. From the number of digits listed in the fifth column it

becomes clear that an attempt to include, say, all discriminants for degree 15 would

demand a list with no less than 7216 entries. At the same time, Table 4 draws

attention to how incomplete existing tables still are, particularly for polynomials

of larger degrees. For instance, for degree 17, to include all polynomials having

discriminants with up to 40 digits, would require adding just one more polynomial,

the one corresponding to base 307. For degree 19, the reference table is already

complete for discriminants with up to 50 digits. The last five lines in Table 4 record

some data for polynomials that we have not found in online tables of number fields.

4.5. Beyond tabulated polynomials

Table 5 lists representative pairs of period equations characterized by totally real

fields for primes p = ef + 1 where e = 21, 23, 25, 27, 29, 33, and 39. Coefficients

are ordered according to Eq. (4), namely for e = 21 the coefficients are α22 = 1,

α21 = 11, α20 = −55, etc.

The degrees of the period equations in Table 5 go well beyond what is presently

available in the literature for totally real cyclic fields and emphasize the easiness

of generating such families systematically. We computed sequences with varying

numbers of period equations, up to e = 100. Obviously, such sequences are simply

too big to record here, although they provide significant insight concerning their

organization, growth, as well as minimum discriminants of ψe(x).

Note that for the larger degrees, discriminants contain increasingly larger num-

ber of digits, and become harder and harder to factor without better and dedicated

resources.

4.6. Orbits and orbital clusters of Pincherle’s map xt+1 = 2 − x
2
t

All period equation considered so far had discriminants given by powers of single

primes. It is important to mention that n-periodic orbits of the quadratic map

do not necessarily have equations of motion defined by n degree polynomials with

integer coefficients as is the case for Eqs. (1) and (2). Most of the times, orbits

appear as orbital clusters entangling arithmetically together several distinct orbits

with the same period.
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For instance, for period-4, in the partition generating limit, the limit studied as

early as 1920 by Pincherle6,28, the 3 individual period-4 orbits emerge as one single

orbit and a cluster formed by two orbits:

o4,1(x) = x4 + x3 − 4 x2 − 4 x+ 1, ∆ = 32 · 53,

c4,1(x) = x8 − x7 − 7 x6 + 6 x5 + 15 x4 − 10 x3 − 10 x2 + 4 x+ 1, ∆ = 177.

The pair of orbits of the cluster decompose as c4,1(x) = o4,2(x) · o4,3(x), where

o4,2(x) = x
4
−

1
2 (1 +

√
17)x3 −

1
2 (3−

√
17)x2 − (2−

√
17)x− 1, ∆ = 172 − 68

√
17,

o4,3(x) = x
4
−

1
2 (1−

√
17)x3 −

1
2 (3 +

√
17)x2 − (2 +

√
17)x− 1, ∆ = 172 + 68

√
17.

Remarkably, the single orbit o4,1(x) is not a period equation, while the cluster
c4,1(x) is. For period-5 we obtain

o5,1(x) = x
5
− x

4
− 4x3 + 3 x2 + 3x− 1, ∆ = 114,

c5,1(x) = x
10 + x

9
− 10x8 − 10x7 + 34 x6 + 34 x5 − 43x4 − 43x3

+12 x2 + 12 x+ 1, ∆ = 35 · 119,

c5,2(x) = x
15

− x
14

− 14x13 + 13 x12 + 78 x11 − 66x10 − 220 x9 + 165 x8

+330 x7 − 210 x6 − 252 x5 + 126 x4 + 84 x3 − 28x2 − 8x+ 1. ∆ = 314.

As before for period-4, c5,1(x) = o5,2(x) · o5,3(x) where

o5,2(x) = x
5 + 1

2 (1 +
√
33)x4 − x

3
−

1
2 (9 + 3

√
33)x2 − (6 +

√
33)x− 1, ∆ = 112,

o5,3(x) = x
5 + 1

2 (1−
√
33)x4 − x

3
−

1
2 (9− 3

√
33)x2 − (6−

√
33)x− 1, ∆ = 112.

While o5,1(x), the celebrated quintic of Vandermonde27, defines a single orbit,

c5,1(x) and c5,2(x) are entanglements of 2 and 3 period-5 orbits, respectively. More-

over, o5,1(x), c5,1(x), and c5,2(x) have k2 = 1, and o5,1(x) and c5,2(x) are period

equations. As for period-4, individual orbits composing clusters have coefficients

given by complicated algebraic numbers, not integers. Therefore, orbital clusters

may also contain discriminants involving products of powers of multiple primes. It

is quite challenging to decompose orbital clusters combining more than two orbits,

particularly when they combine an odd number of orbits. However, the coefficients

of such decompositions hide the secretest truth and most interesting relations among

numbers which fix orbital individuality.
Analogously, we find the 18 orbits of period-7 to emerge in three clusters, with

3, 6, and 9 orbits:

c7,1(x) = x
21

− x
20

− 20x19 + 19 x18 + 171 x17 − 153 x16 − 816 x15 + 680 x14

+2380 x13 − 1820 x12 − 4368 x11 + 3003 x10 + 5005 x9 − 3003 x8

−3432 x7 + 1716 x6 + 1287 x5 − 495 x4 − 220 x3 + 55 x2 + 11 x− 1,

c7,2(x) = x
42 + x

41
− 42x40 − 42 x39 + · · · − 3267 x4 − 3267 x3 + 44 x2 + 44 x+ 1,

c7,3(x) = x
63

− x
62

− 62x61 + 61 x60 + · · ·+ 40920 x4 + 5456 x3 − 496 x2 − 32 x+ 1.

All three have k2 = 1 and discriminants 4320, 321 · 4341 and 12762, respectively.

Manifestly, only clusters c7,1(x) and c7,3(x) are period equations.
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There is only a quite small number of non-arithmetically entangled orbits, mean-
ing simply that, most of the times, the coefficients of periodic orbits will be given
by more complicated algebraic numbers, not integers. For periods 9, 10, 11 and 12,
the only periodic orbits with integer coefficients are

o9,1(x) = x
9
− x

8
− 8x7 + 7x6 + 21 x5 − 15x4 − 20x3 + 10 x2 + 5x− 1, ∆ = 198,

o9,2(x) = x
9
− 9x7 + 27x5 − 30 x3 + 9 x− 1, ∆ = 322,

o10,1(x) = x
10

− 10 x8 + 35 x6 − x
5
− 50 x4 + 5 x3 + 25 x2 − 5x− 1, ∆ = 517,

o11,1(x) = x
11

− x
10

− 10x9 + 9x8 + 36 x7 − 28 x6 − 56 x5 + 35x4

+35x3 − 15 x2 − 6x+ 1, ∆ = 2310,

o12,1(x) = x
12 + x

11
− 12x10 − 11 x9 + 54 x8 + 43x7 − 113 x6

−71x5 + 110 x4 + 46x3 − 40x2 − 8x+ 1, ∆ = 59 · 710,

o12,2(x) = x
12

− 12 x10 + x
9 + 54 x8 − 9 x7 − 112 x6

+27x5 + 105 x4 − 31x3 − 36x2 + 12 x+ 1, ∆ = 318 · 59,

o12,2(x) = x
12 + x

11
− 12x10 − 12 x9 + 53 x8 + 53x7

−103 x6 − 103 x5 + 79 x4 + 79 x3 − 12 x2 − 12x+ 1, ∆ = 36 · 1311.

They all have k2 = 1 and only o9,1(x) and o11,1(x) are period equations. The dis-

criminants of o9,1(x) and o9,2(x) are the first and second smallest for cyclic equations

of degree nine, while o10,1(x) has the third smallest and o11,1(x) the smallest possi-

ble discriminant for cyclic polynomials of degrees 10 and 11, respectively21. Of the

335 period-12 orbits, only the three above have integer coefficients. They are not

period equations, but are the triplet of cyclic polynomials with minimum discrimi-

nants. The 630 period-13 orbits emerge as three rather big polynomials, of degrees

1365, 2730, and 4095, conglomerating 105, 210, and 315 orbits, respectively. The

coefficients of the individual orbits must involve algebraic numbers with exquisite

symmetry properties that would be interesting to study, despite the challenge of the

task. For polynomial maps, an exact equation giving the total number of periodic

orbits as a function of the period is given in Ref. 29.

Among orbits and orbital clusters of the quadratic map one finds the startling

phenomenon of period inheritance31. A detailed discussion of orbits and clusters for

the quadratic map will be presented elsewhere.

5. Conclusions and outlook

Motivated by the remarkable fact that several periodic orbits and orbital clusters

of the quadratic map coincide with period equations, this paper reported a number

of properties of period equations uncovered by computing large sets of them, and

consolidating trends observed.

It was found that period equations may be systematically generated and enu-

merated, with no omissions, for primes of the form p = ef + 1. This fact allows

one to recognize and to fix some gaps in tables of number fields currently available

in the literature. It also makes clear that, due to the abundance of period equa-

tions, there is no hope of ever producing “complete” tables. Fortunately, however,
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period equations are not difficult to generate when needed, using currently avail-

able computer algebra systems. Maybe future version of such type of software will

incorporate intrinsic functions for this purpose.

The design of an efficient routine for the systematic determination of classes of

solutions ended up disclosing exact theoretical expressions, conjectures, which seem

hard to come by theoretically and which are now ready to be challenged by tra-

ditional demonstrations. For instance, we found a simple and general closed-form

expression, Eq. (9), for the field discriminant of cyclotomic period equations. As

shown, such expression grants direct access to the so-called inessential discriminant

divisors8 buried in conventional polynomial discriminants and normally quite dif-

ficult to determine. Equation (9) provides an easy criterion to sort out equations

with either k2 = 1 or k2 6= 1, sets that we find to contain an unbounded quan-

tity of equations and emerging intertwined with a quite irregular distribution of

magnitudes and signs. Additional analytical results are reported in Section 4.2, in

particular by Eq. (14), and in Sections 4.3 and 4.3.1.

As is the case for ϕ1(x) and ϕ2(x), note that the branch ambiguity of the square

root signs in o4,2(x) and o4,3(x), as well as in o5,2(x) and o5,3(x), make such orbits to

be only formally well defined. In fact, to represent unambiguous orbits, such forms

still depend on fixing the branch for the square root that they contain. By suit-

able branch choice, the formally ambiguous expression o4,2(x) may be “projected”

into anyone of the two branch-fixed orbits. The same is valid for the ambiguous

o4,3(x) that may be also selected to represent anyone of the two branch-fixed or-

bits. The existence of root-ambiguity before fixing branches is a simple arithmetical

consequence of the multivaluedness of numbers in the roots.

The systematic generation of period equations allows one to enumerate unam-

biguously classes of number fields. In some sense, such enumeration resembles some-

what the arithmetic order discovered to exist among unordered binary labels asso-

ciated with the symbolic dynamics of the quadratic map30. The identification of

period equations as periodic orbits and clusters of the quadratic map lends hope

that, eventually, it may be possible to disclose analytically the regular processes un-

derlying the organization of bifurcation cascades observed so frequently in physical

models. A promising application is to detect and classify orbital interdependencies

in classical dynamics31. An open question is to understand why some orbital equa-

tions are not period equations, while some clusters are. A further enticing open

question is to determine if, as for period equations, other discriminant regularities

abundantly present in number field databases are associated with additional families

of polynomials yet to be discovered.

Note added (October 31, 2019): While searching for references to Eqs. (9)

and (14), with the help of the internet and kind leads and feedback provided

by Profs. G.E. Andrews, B.C. Berndt, R.J. Evans, K. Győry, F. Lemmermeyer,

W. Narkiewicz, A. Schinzel, A. Ware, H.C. Williams, and K.S. Williams, it was

possible to uncover the following facts.



December 17, 2019 1:48 WSPC/INSTRUCTION FILE
period˙equations˙arxiv

18 Jason A.C. Gallas

Prof. Evans pointed out that, up to sign, Eq. (9) was given by Neto et al. 32.

By Galois theory, there is only one possible subfield K and, accordingly, we identify

[K : Q] = e. The field K is generated over Q by the e roots of the period equation

ψe(x) in Eq. (4). Our Eqs. (9) and (10) agree with the magnitude of ∆e reported

by Neto et al., and, in addition, they provide the proper signs for all cases.

Prof. Narkiewicz pointed out that our Eq. (9) is correct and follows from the

conductor-discriminant formula, see, e.g., Theorem 3.11 in the book Introduction

to Cyclotomic Fields34. He also mentions that Gurak 33 presented a procedure

to compute the beginning coefficients of the minimal polynomials of the period

equations. It was not verified if Gurak’s results lead or not to our Eq. (14).
It was not yet possible to locate exact reference to Eq. (14) in the literature.

However, using cyclotomic numbers and other results from the book Gauss and

Jacobi Sums35, Prof. K.S. Williams kindly sent us a general proof that Eq. (14) is
indeed correct, as well as an expression for the missing case of totally complex fields
with signature (0, e/2), namely

α2 =
e+ p− 1

2e
= 1

2 (f + 1). (15)

This coefficient matches exactly all our computational data. The author expresses

his gratitude to all persons involved for their generous contributions.
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