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Gravitational perturbations of rotating black holes in Lorenz gauge
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Perturbations of Kerr spacetime are typically studied with the Teukolsky formalism, in which
a pair of invariant components of the perturbed Weyl tensor are expressed in terms of separable
modes that satisfy ordinary differential equations. However, for certain applications it is desirable
to construct the full metric perturbation in the Lorenz gauge, in which the linearized Einstein field
equations take a manifestly hyperbolic form. Here we obtain a set of Lorenz-gauge solutions to the
vacuum field equations in terms of homogeneous solutions to the spin-2, spin-1 and spin-0 Teukolsky
equations; and completion pieces that represent perturbations to the mass and angular momentum of
the spacetime. The solutions are valid in vacuum Petrov type-D spacetimes that admit a conformal

Killing-Yano tensor.

The Kerr spacetime ﬂil] is a fundamental vacuum solu-
tion of Einstein’s field equations which provides a math-
ematical description of the vast number of rotating black
holes in our universe. Key questions on black hole sta-
bility, cosmic censorship, and gravitational-wave genera-
tion are addressed via black hole perturbation theory ﬂﬂ],
in which Kerr’s solution sets the stage for the dynamics
of scalar, spinor, electromagnetic and gravitational field
perturbations playing out on a curved background.

The spacetime possesses obvious time-translation and
axial symmetries, but also a ‘hidden’ symmetry encoded
in a conformal Killing-Yano tensor E,] This symme-
try, alongside a doubled pair of principal null direc-
tions (i.e. Petrov type D), underpins some remarkable re-
sults including (i) Liouville-integrability for the geodesic
equations []; (ii) decoupling and separability of certain
Bianchi identities, allowing the perturbed Weyl scalars
Uy and ¥y to be expressed as a sum of modes governed
by second-order ordinary differential equations ﬂa, ];
and (iii) a complete separation of variables for massive
scalar ﬁ], spinor [§] and vector fields [d]. Exploitation of
the hidden symmetry in (n + 1)-dimensional Kerr-NUT-
(A)dS contexts is ongoing m—lﬁ]

A key result from 1975 is that a metric perturbation
huw can be constructed from a spin-2 scalar Hertz po-
tential ¥ in such a way as to satisfy the linearized Ein-
stein equations on the Kerr spacetime . The met-
ric perturbation so obtained is in a radiation gauge (or
light-cone gauge [1§]), such that hut” = 0, where ¢
is a principal null direction. In the presence of sources,
the construction generically leads to non-isotropic par-
ticle singularities and extended gauge discontinuities in
the metric perturbation M] This is an impediment
to extending perturbation theory to second order, be-
cause the source terms at second order are derived from
the metric perturbation at first order ﬂﬁ] By contrast,
in the Lorenz gauge h,, is expected to be free from ex-
tended gauge discontinuities.

A metric perturbation h,, satisfying
YV, =0, (1)

is said to be in Lorenz gauge, also known as harmonic
or de Donder gauge. Here h,, = hu, — %guuh is the
trace-reversed metric perturbation, h = h*, is its trace,
and V, denotes the covariant derivative on the back-
ground metric g,,,. Imposing the Lorenz-gauge condition
on the linearized Einstein equations leads to a manifestly-
hyperbolic system of equations,

Ohyw + 2R, M oy = —1677 0, (2)

where T}, is the stress-energy tensor of matter sources,
and R,,,, is the Riemann tensor of the background
spacetime which we take to be Ricci-flat (R, = 0).

The gravitational self-force (GSF) programme ad-
dresses the challenge of modelling Extreme Mass-Ratio
Inspirals for gravitational wave detectors. GSF calcula-
tions are naturally formulated and conducted in Lorenz
gauge ﬂﬂm On Schwarzschild spacetime, a Lorenz-
gauge formulation at first order @] is an essential ingre-
dient in the recent calculation of the gravitational-wave
flux at second order in the mass ratio ﬂ3__1|] Lacking a
separable solution of the Lorenz-gauge equations on Kerr
spacetime in the literature (sce Ref. [32] for discussion),
recent focus has shifted to constructing second-order per-
turbations in sufficiently-regular gauges ﬂﬁ, M]

In the context of electromagnetism, a vector poten-
tial A* is said to be in Lorenz gauge if it satisfies
V,A* = 0. Imposing the Lorenz gauge condition ren-
ders the Maxwell field equation into a wave equation,
OA# = j*. Recent work [10-13, 37139] has identified
a separable method for obtaining solutions to Maxwell’s
equations in Lorenz gauge on spacetimes that include
Kerr. In this work, we show that a similar approach may
also be applied in the context of Lorenz-gauge gravita-
tional perturbations, by obtaining a set of solutions for
the Lorenz-gauge equations (2 on Kerr spacetime in the
absence of sources (7),, = 0).
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Preliminaries.— The Kerr metric can be written in
terms of a null tetrad,

g = —2 1(p?) 49 m(umV), (3)

where [ and n” are aligned with the principal null direc-
tions, m* is a complex null vector and m" is its complex
conjugate. In Boyer-Lindquist coordinates, the Kinner-

sley null tetrad is I* = li, nt = —%l’j, mb = f%{mi
Mt = (M) = —Lm# . wi
and mt = (mh)* = ﬂcmf,wrch
I = [£(r* +a®)/A,1,0,+a/A], (4a)
ml = [+iasin®,0,1,+4 /sinf], (4b)

where A =12 —2Mr +a?, ¥ = (( =12 + a?cos? § and
¢ =r —iacos. (5)

The parameters M and a represent the mass and specific
angular momentum of the black hole.

In the absence of sources, the spin-2 perturbed Weyl
scalars satisfy the homogeneous Teukolsky equations
[5,ld, [40] (see [2] for a review with conventions consistent
with those used here), O¥y = 0 = O'Vy = (O,
The Teukolsky equations admit a separation of variables:
working with the Kinnersley tetrad and inserting the
ansatz YWy = R_o(r)S_o(0)e”“ITm? yields

OV = (" ADL D+ L1 £ — 6iwC| (¢H0y) =0,

(6)
where the directional derivatives are D = 140, Dt =
1"o,, L= mhd,, L = m"d, with D, = D +nA’/A
and £, = L+ ncot . The functions R_o(r) and S_5(0)
therefore satisfy a set of decoupled ordinary differential
equations. A similar result also holds for .

There is substantial gauge freedom in perturbation the-
ory, linked to the freedom to make an infinitesimal coor-
dinate transformation z# — x# + ¢ &#, where € = 1 is an
order-counting parameter. Under such a transformation,
a tensor field T = T+ € 0T changes at perturbative order
as T — T +¢€ (0T — £¢T) + O(€?), where £¢ denotes the
Lie derivative along the gauge vector £#. Applying this
rule to the perturbed metric g,, = g + € hy, yields a
transformation law for the metric perturbation h,, under
a change of gauge, namely, h,, — huw — 28(,,0)-

On a vacuum black hole background (R, = 0), the
perturbed Ricci tensor 0, is gauge-invariant at linear
order (as £¢R,, = 0). Consequently, any pure-gauge
metric perturbation h,, = —2§(,,,) satisfies the vacuum
field equations; furthermore if the vector satisfies LIEH =
0 then h,, is in Lorenz gauge and the metric perturbation
satisfies Eq. @) with 7, = 0.

In principle, given a vacuum metric perturbation h,,,
one may apply a gauge transformation to transform it to
Lorenz gauge, such that

hﬁu = hyuw — 25(#:!/) (7)

satisfies Eq. (). It follows that the gauge vector £&# must
satisfy a sourced wave equation,

D&t =V, hH. (8)

Reconstruction of Lorenz gauge solutions from scalar
potentials.— Our main result is that one can construct
solutions to the Lorenz gauge equations from separable
solutions of the Teukolsky equation. These solutions are
divided into scalar (spin-0), vector (spin-1), and tensor
(spin-2) type, alongside “completion” pieces |41, 42] as-
sociated with infinitesimal changes in the mass and an-
gular momentum of the black hole. In the absence of
sources, the spin-0 and spin-1 perturbations are pure-
gauge modes. In the presence of sources, we anticipate
that solutions of all types will be required to construct a
physical solution that is free from gauge discontinuities.

Spin-2 solutions.— To obtain Lorenz gauge solutions
derived from spin-2 scalars, we start with the ingo-
ing radiation-gauge solution of Chrzanowski (Ref. |14],
Table T) and seek a transformation to Lorenz gauge.
Chrzanowski’s solution can be expressed in covariant
form as [43)]

hy = V5 [g‘*va (<*4H(H“Vﬁ)} Yee (9

where
H,uauﬁ _ 741/) l[,ltWL‘)‘]l[l’?nﬁ]7 (10)

and where ¢ is the spin-weight —2 ingoing radiation-
gauge Hertz potential that satisfies the s = —2 Teukol-
sky equation, Oy = 0. For now, we omit the complex-
conjugate piece of Eq. ([@) and will restore it later.

The metric perturbation in Eq. ([@) is manifestly trace-
free (h = 0). We now seek to transform h, to Lorenz
gauge by solving Eq. (8), while preserving the trace-free
condition. That is, we seek a gauge vector {# satisfying

Oer = —j# =V, hHY, V' =0. (11)
This we recognise as a well-formed electromagnetic field
equation in (vector) Lorenz gauge. The effective four-
current j* is divergence-free (V,j* = 0) by virtue of the
fact that h*” in Eq. @) satisfies V,V,h*” = 0. The
above becomes clearer when written in terms of forms:
0d€ = j, 0& =0, 05 =0. (12)
Here d is the exterior derivative, § = *d* is the coderiva-
tive, * is the Hodge dual operation, [J¢ = ddé& — dd€ on a
Ricci-flat spacetime, and a key identity is dd = 0 = §4.
By Poincaré’s lemma, a divergence-free vector is locally
the coderivative of a (non-unique) two-form. A short
calculation establishes that j = 0J, that is, j* = V,J*
with the two-form

2v/2
_ 2V alp,,vl
y Lm (

Jh £} — iasin 9@) v, (13)



Equation (I2) can be written as §(d{—J+*ds) = 0, where
¢ is an arbitrary vector field (i.e. a gauge vector of the
third kind [44]). The recent work of Green et al. ﬂﬁ, @]
suggests the ansatz

§=(%0H —dy, (14)

where H is a two-form and y is a scalar; and we choose
the gauge vector of the third kind to be ¢ = —i(?6H so
that the field equation becomes [47]

§ ((1—14%)d¢*6H — J) = 0. (15)

The operator d(?§ generates decoupled equations for the
three anti-self-dual degrees of freedom in the two-form H
[45]; and the operator (1 — i*) annihilates the self-dual
components of the equation ,@] The ansatz

HHW = 22/51[#

then leads to a single decoupled second-order equation
for a,

(16)

(ADTCQD n Lg%c{) a=—¢ (,c; —ia sm(m) b, (17)

Assuming harmonic time dependence e~ ™ for 1, and
by application of the vacuum Teukolsky equation (@), we
find that Eq. (I7) has an elementary solution,

DL (18)

o= —

GwJC

To obtain the gauge vector in Eq. (I4]) we must also solve

§dy = Oy = (V,C2)V, H#, that is,
2
Ox = z (LJ{ — tasin GD) a. (19)

This also has an elementary solution,

X = 20 (20)

24w
In summary, the gauge vector that transforms the
radiation-gauge solution of Eq. (@) to Lorenz gauge via

Eq. [@) is

&=V, HY — g"'V X, (21)
where the key ingredients are in Eqgs. (I6), (I8) and (20).

Reformulation in terms of GHP calculus.— We now
rewrite the previous results using the Geroch-Held-
Penrose (GHP) formalism [49] (see Sec. 4.1.1 of Ref. [J]
for a review). This allows us to: reformulate the results
in a covariant and tetrad-independent way; eliminate the
need for a mode ansatz; relate components of the Lorenz
gauge metric perturbation to the Weyl scalars in a com-
pact and unified form; and extend the results to the full

Kerr-NUT class of Petrov type-D spacetimes. It also al-
lows us to obtain a similar result for the gauge transfor-
mation from the outgoing radiation gauge by applying
the GHP prime operator along with the identifications
U = Vg and 9" = Yora-

Translating the key ingredients in the gauge transfor-
mation to GHP expressions we get

L= %f;?&ﬁ@pw, (22a)
1 - _
H,, = l[#m,j]g—@leéCPw, (22b)

where £ is the Lie derivative along the time-translation
Killing vector T# and £7" indicates an n-th time inte-
gral. It is straightforward to check by direct substitution
that the metric perturbation obtained from these ingredi-
ents satisfies the Lorenz-gauge field equations and gauge
condition provided the Hertz potential satisfies Oy = 0.

Using the “inversion” relations that relate the radia-
tion gauge Hertz potential to the spin-2 Weyl scalars,
14—
0= Zp4wa (238‘)
1u— 3. 4
Uy = " - TMC ey, (23b)

the components of the Lorenz-gauge metric perturba-
tion can be written concisely in terms of the components
of the perturbed Weyl tensor. Restoring the complex-
conjugate terms and commuting derivative operators, we
find that four of the components of the metric perturba-
tion can be written compactly as

hy = _%,,552 [(20°(C"Wo) + ¢ 20%(¢M )], (24a)
han = —5 £72[(203(E ) + P (CHW)], (24D)
o = — 5 £72[CPPAC0) + PR, (240)
o = 3 L7707 PR () + PP (24)

A fifth component is obtained from the fact that this
metric perturbation is traceless,

h = 2(hmm — hin) = 0. (25)

The remaining 5 components can similarly be written

in terms of perturbed Weyl scalars, but the expressions

involve the gauge-dependent scalars Wy, Uy and Ws.
Spin-1 solutions.— A set of spin-1 solutions satisfying

D{” = 0 and Véﬂ 0 were obtained in Ref. [38, [39)]
(see also Ref. ﬂﬂ ). They take the form

&=, (gH(S . ) tee, (26)
where

HY =245 [d)gﬁl[“nl’]—qﬁgl[“myq. (27)



Here, ¢g and ¢o are Maxwell scalars that satisfy the
Teukolsky equations for s = +1 and s = —1, respec-
tively (i.e. Opg =0 = O’ ¢3), and which are linked by the
spin-1 Teukolsky-Starobinsky identities. A traceless spin-
1 Lorenz-gauge metric perturbation can be constructed
from fé _,) in the now-familiar way, h,(ffl) = 725((2;:1/1)).

Spin-0 solutions.— So far, we have only considered
trace-free solutions, h = 0. The trace of the metric per-
turbation must satisfy

Oh =0 (28)

in the homogeneous case by virtue of the contraction of
Eq. @). Tt is natural to ask: what (non-unique) ho-
mogeneous Lorenz-gauge metric perturbation generates
a trace h? A suitable metric perturbation is pure-gauge,
ie.,

(s=0) _ (s=0)
hag ™ = =28(aip) > (29)
and is generated by a gauge vector that satisfies
[e3 1 (03
Vaf(szo) - 75}7,, Dg(s:O) - 0 (30)
A vector with precisely these properties is
1 .
§imo) = 5 L7 [ hip + 267, (31)
where
fap = (C+ Onjalg) — (€ = Ompame), (32)

is the conformal Killing-Yano tensor (we follow here the
definition of [50], which differs from that of Ref. [3] by
an overall sign), and where & is a scalar field satisfying

1
Ok = 5h. (33)

It is straightforward to show that the requirements (B0)
are satisfied by using the properties of the conformal
Killing-Yano tensor, namely

fatgm) = 987Ta = 9a(sTy), fap = flapy, T = 517 5.
(34)

In the Schwarzschild case, the two spin-0 degrees of
freedom, h and k, map on to those identified by Berndt-
son [26].

Completion pieces.— In addition to spin-s contribu-
tions, the Lorenz gauge metric may also contain “com-
pletion” pieces ﬂ_4__1|, @] associated in the Kerr case with
infinitesimal changes in the mass and angular momen-
tum of the black hole. One such piece is the conformal
mode hftgl,) = guv which is in Lorenz gauge and satis-
fies the homogeneous field equations. A second, linearly-
independent completion piece is

m
M) __ oM SM 0 v
hiw)*h,(w )72Y( ) hEW ):M—a

, (35)

4

where h,(fVM) is traceless, and Y}, is a (non-Lorenz) gauge

vector such that OY), = V”hgg,M) = 5;2M/A. Since the
right-hand side is a gradient, the gauge vector is also a
gradient, Y,, = V,y, and using O(V,y) = V,(OQy), the
potential y must satisfy

2M 2M —
Dy:/—dT: ( )1n<r T+)+const.
A Ty — T r—r_
(36)
This equation can be solved by separation of variables.

The mass and angular momentum content of the hﬁtgl,)

and hﬁfy) modes can be assessed by evaluating the con-
served charges associated with the background Killing
vectors (see Sec. IIE in Ref. [28], and Ref. [51]). The
conformal mode has Q) = M/2 and Q4 = —aM and
the completion piece has Q) = M and Q) = —alM.

Discussion.— We have obtained a set of Lorenz-gauge
metric perturbations which satisfy the vacuum field equa-
tions [Eq. @) with T, = 0]. In the frequency domain,
the spin-0, spin-1 and spin-2 metric perturbations can
be expressed in terms of separable modes, that is, radial
and angular functions s Reme (1) and 5Semw(6) satisfying
the vacuum Teukolsky equations for s = 0, s = £1 and
s = +2. It is notable that, although the construction of
the spin-2 modes starts with the radiation-gauge poten-
tials ¢, the Lorenz-gauge metric components in Eq. (24)
can be written in terms of Weyl scalars only, without ref-
erence to ¢». We also note however that it is likely that
the zero frequency modes of the spin-2 case will need to
be treated separately, as has been done for the spin-1

(3.

Several extensions of this work suggest themselves.
First, extending the Lorenz-gauge formalism to include
source terms (T}, # 0). Second, constructing solutions
for GSF particle-inspiral scenarios by demanding global
regularity (in vacuum regions) on a metric perturbation
constructed from a sum over a complete set of vacuum
modes. Third, the application of these Lorenz-gauge so-
lutions in second-order GSF applications ﬂﬂ, @, @],
ultimately leading to the production of waveforms for
extreme mass ratio systems with a spinning primary

(larger) black hole.
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