
Supplementary Information for

Multidimensional four-wave mixing signals detected by quantum squeezed-light

Konstantin Dorfmana,1,2, Shengshuai Liua,1, Yanbo Loua,1, Tianxiang Weia, Jietai Jinga,b,c,d,2, Frank Schlawine, and Shaul
Mukamelf

2 Konstantin Dorfman E-mail: dorfmank@lps.ecnu.edu.cn;
2Jietai Jing E-mail: jtjing@phy.ecnu.edu.cn

This PDF file includes:

Supplementary text
Figs. S1 to S4

Konstantin Dorfmana,1,2, Shengshuai Liua,1, Yanbo Loua,1, Tianxiang Weia, Jietai Jinga,b,c,d,2, Frank Schlawine, and Shaul
Mukamelf

1 of 6



Fig. S1. Diagrams representing the third order susceptibility for the level scheme in Fig. 1b.

Supporting Information Text

S1. Perturbative treatment of weak fields

The field/matter interaction Hamiltonian is

HFWM =
∫
drµeg(Ec(t, r) + Epu(t, r)) + µesEpr(t, r), [S1]

where the classical pump field Epu(t, r) = Epue−iωput+ikpu·r and the probe and conjugate are quantum fields given by

Ej(t, r) =
√

2π~ωj
V

(âje−iωjt+ikj ·r + â†je
iωjt−ikj ·r), j = pr, c [S2]

We use classical fields to calculate susceptibility components in Eqs. (S11)- (S12), while the quantum nature of the fields is
utilized for input-output relations in Eqs. (S13) - (S14) which lead to Eqs. (1) – (2) of the main text. The applicability of
classical fields to calculate susceptibility components is a standard procedure. Some discrepancies in susceptibilities at single
photon level may be observed, which is not the case for many-photon squeezed light. Lowering and raising operators commonly
used with dipole interaction Hamiltonian and two- and three-level quantum system also apply in this case. We thus replace the

operators of the probe and conjugate fields by their respective expectation values: Epr =
√

2π~ωpr

V
〈âpr〉 and Ec =

√
2π~ωc
V
〈âc〉.

The third-order perturbative approach is visualized by the loop diagrams shown in Fig. S1. In diagrams ia and ib the initial
state is the ground state g, whereas in diagrams iia and iib s is the initial state. At high temperatures both g and s state are
almost equally populated. The Schrodinger equation for the state amplitudes

|ψ(t)〉 = [cg(t)|g〉+ cs(t)|s〉]ei(ωpu−ωe)t + ce(t)e−iωet|e〉 [S3]

is given by

ċg = −iδegcg − iΩ∗egce − iΩ∗cei(ωc−ωpu)tce,

ċs = −iδescs − iΩ∗esce − iΩ∗prei(ωpr−ωpu)tce,

ċe = −iΩegcg − iΩescs − iΩce−i(ωc−ωpu)tcg − iΩpre−i(ωpr−ωpu)tcs, [S4]

where δem = ωpu − ωem, m = g, s, Ωc = µegEc, Ωpr = µesEpr, and for brevity we omitted the subscript of the e state in
detunings δem and Rabi frequencies Ωem treating e1 and e2 in a similar fashion. Initial conditions fo Eq. (S4) are cg(t0) = 1,
ce(t0) = cs(t0) = 0 for ia, ib diagrams and cs(t0) = 1, cg(t0) = ce(t0) = 0 for iia, iib diagrams. Instead of simply reading the
signal form the diagrams in Fig. S1 we deliberately indicate some important steps which will be further used in the strong
pump case. We focus on diagram ia. Other diagrams can be treated similarly. To derive third order susceptibility we define a
signal first, which according to the diagram ia is given as a transmission of the conjugate beam:

Sia(t) = Im[E∗c (t)P (3)
ia (t)], [S5]

where third order polarization is given by

P
(3)
ia (t) = µegc

(3)
e (t)c(0)∗

g (t). [S6]
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Fig. S2. Calculated perturbative 2D spectra of the probe Eq. (1) with gain governed by perturbative susceptibilities given by Eqs. (S11) - (S12) displayed vs one - δ1 and
two-photon δ2 detunings - (a), conjugate - (b) and squeezing - (c).

For the weak pump field perturbative orders are taken for all three fields: pump, probe and conjugate. Zeroth order
term c

(0)
g (t) = e−iδeg(t−t0). Third order amplitude c(3)

e can be calculated in a sequence of 3 steps according to field-matter
interactions in diagram ia:

c(3)
e (t) = −iδes

∫ t

t0

dt′c(2)
s (t′), [S7]

where

c(2)
s (t′) = −iΩ∗pr

∫ t′

t0

dt′′ei(ωpr−ωpu)t′′c(1)
e (t′′), [S8]

where

c(1)
e (t′′) = −iΩeg

∫ t′′

t0

dt′′′c(0)
g (t′′′). [S9]

Solving Eqs. (S7) - (S9) and taking the limit t0 → −∞ we obtain

P
(3)
ia (t) = χ

(3)
ia (−ωpr,−ωc; 2ωpu)E2

puE∗pre−i(2ωpu−ωpr)t [S10]

where

χ
(3)
ia (−ωpr,−ωc; 2ωpu) =

∑
e

|µeg|2|µes|2

(2ωpu − ωpr − ωeg + iγe)(ωpu − ωpr − ωs + iγsg)(ωpu − ωeg + iγe)
. [S11]

Similarly we obtain for other diagrams:

χ
(3)
ib (−ωpr,−ωc; 2ωpu) =

∑
e

|µeg|2|µes|2

(ωc − ωeg − iγe)(ωc − ωpu − ωsg − iγs)(ωpu − ωeg + iγe)
,

χ
(3)
iia(−ωpr,−ωc; 2ωpu) =

∑
e

|µeg|2|µes|2

(2ωpu − ωc − ωes + iγe)(ωpu − ωc − ωgs + iγs)(ωpu − ωes + iγe)
,

χ
(3)
iib (−ωpr,−ωc; 2ωpu) =

∑
e

|µeg|2|µes|2

(ωpr − ωes − iγe)(ωpr − ωpu − ωgs − iγs)(ωpu − ωes + iγe)
, [S12]

where dephasing rates have been added phenomonologically. The total susceptibility thus is given by χ(3) =
∑

k
Akχ̃

(3)
k , where

Ak are normalization functions that depend on the propagation length inside the sample and other experimental parameters,
k runs over the diagrams k = ia, ib, iia, iib. Note, that we included normalization constant into the susceptibility itself, for
brevity. The quantum state of light generated via FWM is given by |ψFWM 〉 = U |ψ〉0 where |ψ〉0 is the incoming state of light
before the FWM. The unitary evolution operator U = exp

(
χ(3)â†prâ

†
c/2− h.c.

)
, where we utilized the quantum nature of the

probe and conjugate fields by bringinig back their original operator form.
The corresponding input-output relation is given by

âpr = U†âpr0U = cosh(s)âpr0 + eiθ sinh(s)â†c0, [S13]

â†c = U†â†c0U = e−iθ sinh(s)âpr0 + cosh(s)â†c0, [S14]
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where s = |χ(3)|. The corresponding photon number of the probe, conjugate, and noise figure are given by Eqs. (1) - (2) of the
main text and depicted in Fig. S2a, b, and c, respectively. The 2D spectrograms indicate four peaks equivalent to δ1 = 0,
δ1 = −ωs, and δ2 = 0. There are no Stark shifts associated with the strong field observed in experiment. We notice, that the
probe gain is of the order of 1 which results in the absence of amplification and low (10−2) level of the conjugate gain. The
corresponding squeezing is also small and positive (classical). It is therefore clear, that stronger pump is required to observe
high gain and low noise figure.

S2. Strong pump

When the pump is strong, perturbation theory can be only applied to the probe and conjugate fields. In this case, nonlinear
polarization is given by

P
(3)
ia (t) = µegc

(1)
e (t)c(0)∗

g (t), [S15]

where zeroth order amplitude c(0)
g satisfy the following system of equations:

ċ(0)
g = −iδegc(0)

g − iΩ∗egc(0)
e ,

ċ(0)
e = −iΩegc(0)

g [S16]

Here we make one important ansatz. Since the AC Stark shift due to the strong pulse affects mostly two peaks 2 and 3 (see Fig.
2), we treat pump-driven transitions g − e and s− e separately. This allows to consider closed two sets of equations involving a
pair of amplitudes only. As our results indicate, this ansatz allows to obtain reasonable agreement between peak positions. In
this case, solution of Eq. (S16) reads

c(0)
g (t) = e−

1
2 δeg(t−t0)

[
cos Ω′eg(t− t0)− i δeg2Ω′eg

sin Ω′eg(t− t0)
]
, [S17]

where Ω′eg =
√
δ2
eg/4 + Ω2

eg and we assume real Rabi frequency Ω∗eg = Ωeg. Note, that the standard Rabi oscillations given by
Eq. (S17) occur with both Stark shifted energies ω(±)

eg = δeg/2± Ω′eg. The corresponding c(0)
e amplitude is given by

c(0)
e = Ωeg

2Ω′eg

(
e−iω

(+)
eg (t−t0) − e−iω

(−)
eg (t−t0)

)
. [S18]

The solution for the first order amplitude c(1)
e satisfies the following

ċ(1)
s = −iδesc(1)

s − iΩ∗esc(1)
e − iΩ∗prei(ωpr−ωpu)tc(0)

e ,

ċ(1)
e = −iΩesc(1)

s . [S19]

Eq. (S19) can be solved exactly analytically. After a bit of algebra one can collect all the necessary terms and obtain an
expression for the susceptibility ia and similarly for ib given by Eq. (3).

S3. Optical losses

Similar to the weak pump case, one can account for the optical losses associated with the elastic scattering of the pump into
the photon with probe and conjugate frequencies. We define the optical loss coefficient in terms of the linear susceptibility:

ηr = cos(|χ̃(1)
r |)2, r = pr, c, [S20]

where χ̃(1)
r originate from the linear polarization:

P (1)
c (t) = µegc

(0)
e (t)c0∗

g (t) [S21]

Using Eq. (S17) and Eq. (S18) one obtains expression for χ̃(1)
c (−ωc;ωpu) given by Eq. (5). Similarly one can obtain

χ̃
(1)
pr (−ωpr;ωpu). The importance of the optical losses in experiment can be visualized if one would take a straightforward

approach and plot the noise spectra in the absence of the optical losses in Eq. (2) using the data of Fig. 2d. The result shown
in Fig. S3 indicates that there is no new information about the system. Rather noise spectra shown in Fig. S3 repeats Fig. 2d
with a slightly different scaling. In contrast, real experimental data of the noise figure in Fig. 2f indicates new information
accessible only in the presence of the optical losses.

S4. Coefficient of determination

We have calculated the coefficient of determination (R2) defined as

R2 = 1−
∑

i
(yi − fi)2∑
i
(yi − ȳ)2 , [S22]

where yi is the experimental value (black dots in Fig. 3), i=1,. . . ,N . N is the number of the experimental values. ȳ is the
mean value of experimental values. fi is the corresponding theory value of yi (red line in Fig. 3). Based on Eq. (S22), the
values of the coefficient of determination (R2) in Fig. 3b, c, d, f, g, h are 0.41, 0.92, 0.72, 0.85, 0.58, 0.51, respectively. We
added the corresponding values in the caption of Fig. 3.
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Fig. S3. Noise figure Eq. (2) in the absence of the optical losses for the gain G taken from Fig. 2d.
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Fig. S4. 2D Spectra Eq. (S20) of the optical losses for the probe ηpr and conjugate ηc beams with susceptibilities given by Eq. (5).
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