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Abstract: In the quest for unification of the Standard Model with gravity, classical scale
invariance can be utilized to dynamically generate the Planck mass MPl. However, the
relation of Planck scale physics to the scale of electroweak symmetry breaking µH requires
further explanation. In this paper, we propose a model that uses the spontaneous breaking
of scale invariance in the scalar sector as a unified origin for dynamical generation of both
scales. Using the Gildener-Weinberg approximation, only one scalar acquires a vacuum
expectation value of vS ∼ (1016−17) GeV, thus radiatively generating MPl ≈ β

1/2
S vS and

µH via the neutrino option with right handed neutrino masses mN = yMvS ∼ 107 GeV.
Consequently, active SM neutrinos are given a mass with the inclusion of a type-I seesaw
mechanism. Furthermore, we adopt an unbroken Z2 symmetry and a Z2-odd set of right-
handed Majorana neutrinos χ that do not take part in the neutrino option and are able
to produce the correct dark matter relic abundance (dominantly) via inflaton decay. The
model also describes cosmic inflation and the inflationary CMB observables are predicted
to interpolate between those of R2 and linear chaotic inflationary model and are thus well
within the strongest experimental constraints.
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1 Introduction

The quest to dynamically generate the Planck mass mPl (or the reduced Planck mass
MPl = mPl/

√
8π) has existed for quite some time. Scale invariance, whether it be global [1–

4] (and recently in Refs. [5–14]) or local [15–28] (recently in Refs. [29–32]), scale symmetry
has played a central role based on the fact that it forbids the presence of an Einstein-
Hilbert term in the action. Similarly to Einstein’s theory of gravity, which contains a
single dimensionful parameter mPl (apart from the cosmological constant), the Higgs mass
term parameter µH is the only dimensionful parameter in the Standard Model (SM) of
particle physics. The scale invariant limit of the SM i.e. in the limit µH goes to zero, was
investigated by Coleman andWeinberg [33], who found that radiative corrections can change
the tree level form of the Higgs potential and thus break the electroweak gauge symmetry
spontaneously. Recent experimental observations in astrophysics and particle physics indeed
hint that Einstein’s theory and the SM should both be extended in a (classically) scale
invariant fashion.

With respect to gravity, the Planck measurements of the CMB [34, 35] show that, not
only is the idea of new inflation [36–38] consistent with their data, but also that the scalar
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spectral index ns of the gravitational fluctuations is close to one, and in particular that the
ratio r of tensor to scalar power spectra of fluctuations can be nearly zero. Accordingly,
R2 inflation [39–41] and also Higgs inflation [42] seem to be the most promising candidate
models [35]. The main reason for the success is a (super) flat inflationary scalar potential
expressed in the Einstein frame after a local Weyl scaling from the Jordan frame [42,
43] where r is proportional to the gradient of the scalar potential. The super flatness in
the scalar potential in both models is caused by the relative suppression of the non scale
invariant Einstein-Hilbert term R compared respectively to the scale invariant terms of R2

inflation (γ R2, with γ ∼ O(109))[43, 44] and Higgs inflation (β|H|2R with β ∼ O(104))[42],
where R is the Ricci curvature scalar and H is the SM Higgs doublet. In this sense, CMB
data suggests a scale invariant extension of Einstein’s theory of gravity not only because
of the close-to scale invariant spectral tilt ns, but also because of the suppression of r.
Furthermore, it can be argued that gravity equipped with local scale symmetry can be
rendered renormalizable [28, 29, 45] due to higher derivative terms in the action [46].1

The SM, on the other hand, describes our microscopic world with remarkable success
despite its various shortcomings. Remarkably, the Higgs mass mh has turned out to be [54,
55] such that the SM remains perturbative i.e. it contains no Landau poles, below the
Planck scale [56–59]. That is, the mass parameter µH can logarithmically run all the way
to the Planck scale so that, according to Bardeen [60], the SM does not, by itself, have a
fine-tuning problem. We regard this as a strong evidence [61] for extending the SM in a
scale invariant way [62, 63], because the logarithmic running of µH up to the Planck scale
means that scale invariance is broken only by the scale anomaly [64, 65], except of course,
by the soft breaking due to µH .

In this paper we thus pursue the idea that the Planck mass mPl and the Higgs mass
parameter µH have a unified origin, namely, the spontaneous breaking of scale invari-
ance. Consequently, a real SM singlet scalar field S acquires a finite vacuum expectation
value (VEV) 〈S〉. However, since MPl is of order 1018 GeV and µH is of order 102 GeV,
we must also address the question of how it may be possible to generate MPl and µH and,
in particular, their hierarchy from a common source. In fact, this is the central question of
our scenario, and even though it may be still far from ultimate and satisfactory, our answer
demonstrates how to soften this huge hierarchy.

The solution is based on the observation that heavy right-handed neutrinos N con-
tribute an important correction to µ2

H ; the finite term ∆µ2
H is proportional to y2

νm
2
N/4π

2

[66–69], where yν stands for the Dirac-Yukawa coupling and mN is the representative mass
of N . The large contribution can be used to radiatively generate an appropriately sized
∆µ2

H i.e. ∆µ2
H ' µ2

H , including its sign. This is the idea of the “neutrino option" [70], and
when the seesaw mechanism [71–74] is implemented to obtain light active neutrino masses,

1The inclusion of the Weyl tensor squared term is well-known to lead to a violation of unitarity. This is
intimately related to the presence of a spin-2 ghost which is addressed in e.g. Refs. [47–49] and it is beyond
the scope of the present work. Other possible solutions to the ghost problem are based on the presence of
higher-curvature terms [50–53] which would be dangerous for our model as they would modify the scalar
potential and spoil global scale invariance. Assuming the absence of such terms, hence, is crucial for our
discussion but introduces additional model dependence.
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one finds that mN ∼ 107 GeV and yν ∼ 10−4. The neutrino option thus establishes a link
between the heavy right-handed neutrinos and the electroweak scale [70]. This scenario can
be neatly extended in a scale invariant manner [75], where the mass of N is generated from
the Majorana-Yukawa coupling yMSN

TCN , where C is the charge conjugation matrix,
hence, mN = yM 〈S〉.

We adopt this mechanism here to soften the huge hierarchy between MPl and µH by
many orders of magnitudes. The dimensionless parameter βS of the non-minimal coupling
βSS

2R gives MPl '
√
βS 〈S〉. Since βS ∼ O(102−3) for realistic inflation, we have that

〈S〉 ∼ O(1016−17) GeV so that mN of the order 107 GeV can be obtained if yM is of the
order 10−(9−10). The smallness of yM is technically natural in the sense of ’t Hooft [76], since
an anomaly-free global U(1)B−L is restored in the limit yM → 0 (together with another
Yukawa coupling to be discussed below). However, the scenario is not without problems:
The Higgs portal coupling λHS S2 |H|2, which would give a large contribution to µ2

H for
large 〈S〉, can not be forbidden by any symmetry. Nonetheless, we can set up the model
(at least on a flat background spacetime) such that the radiative correction to λHS remains
sufficiently small such that they do not spoil our scenario of a unified origin of energy scales.
This is possible because the radiative corrections, in the absence of yM , are proportional to
λHS itself.

In the next section we begin by writing down the Lagrangian of the model. The
spontaneous scale symmetry breaking is achieved by the Gildener-Weinberg mechanism [77],
for which we introduce an additional real scalar field σ. We also impose a discrete symmetry
Z2, which not only simplifies the form of the scalar potential, but also stabilizes the Z2-
odd particles if it is not spontaneously broken. Accordingly, Z2-odd Majorana particles
χ are introduced as dark mater candidates. In section III spontaneous scale symmetry
breaking is discussed, and MPl is identified in such a way that mPl can be related to
the renormalization scale. In section IV we derive the effective action for inflation in the
Jordan frame and subsequently perform a Weyl transformation to the Einstein frame where
we calculate inflationary parameters. We explain under which conditions the scalaron-S
system can be approximated as a single inflaton system. We perform benchmark point
studies as well as a parameter scan to work out the predictions of the model. Dark matter
is treated in section V. There are two kinds of Z2-odd particles in the model, σ (boson)
and χ (fermion), and the flat direction approximation of the Gildener-Weinberg mechanism
works in such a way that the Z2 symmetry remains unbroken. Because it is necessary for
successful inflation, σ becomes heavier than S. Hence, S can decay into two χ, while a decay
into two σ is not possible [78, 79]. This process is nothing more than a freeze-in mechanism
[80] for the dark matter χ so that it may reach the observed value of relic abundance. In
section VI we briefly review the neutrino option [70], and refer to the literature cited there
for details. The last section is devoted to our conclusions.

2 The model

Our total Lagrangian LT consists of four parts: (i) LCW is, after including quantum cor-
rections, responsible for the spontaneous breaking of global conformal symmetry and the
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generation of a unified scale. (ii) LGR is responsible for the identification of the Planck scale,
thereby generating the Einstein-Hilbert action. (iii) LSM describes the SM interactions, and
(iv) LNχ is responsible for generating light neutrino masses via a type-I see-saw mechanism
which at the same time radiatively induces the Higgs mass term and accommodates for
dark matter. Altogether,

LT = LCW + LGR + LSM + LNχ , (2.1)

where
LCW√
−g

=
1

2
gµν∂µS∂νS +

1

2
gµν∂µσ∂νσ −

1

4
λSS

4 − 1

4
λσσ

4 − 1

4
λsσS

2σ2 , (2.2)

LGR√
−g

= −1

2
(βSS

2 + βσσ
2 + βHH

†H)R+ γ R2 + κWµναβW
µναβ , (2.3)

LSM√
−g

= LSM|µH=0 −
1

4
(λHSS

2 + λHσσ
2)H†H , (2.4)

LNχ√
−g

=
i

2
N̄ /∂N − 1

2
yMSN

TCN +
i

2
χ̄/∂χ− 1

2
yχSχ

TCχ

−
(
yNχσN

TCχ + yνL̄H̃
1
2(1 + γ5)N + h.c.

)
. (2.5)

Here, R denotes the Ricci curvature scalar, Wµναβ is the Weyl tensor, N and χ denote the
(three+three) right-handed Majorana neutrinos, while H (H̃ = iσ2H

∗) and L are the SM
Higgs and lepton doublets. LSM|µH=0 is the SM Lagrangian without the quadratic Higgs
term, and we suppress flavor indices throughout, though strictly speaking, the Yukawa cou-
plings yM , yχ, yNχ and yν should all be matrices in generation space. However, we will not
consider details of the flavor structure here, and therefore, we treat them as representative
real numbers. The total Lagrangian LT presents the most general function that respects
the SM gauge symmetries, general diffeomorphism invariance,2 global conformal invariance
at the classical level, and a discrete Z2 symmetry with σ and χ being the only Z2-odd fields.
We suppress a possible Gauß-Bonnet surface term in Eq. (2.3).

We note that the set of real scalars S and σ is the most economic way to successfully
realize the spontaneous breaking of scale invariance à la Coleman-Weinberg [33, 77]. We will
see that the real scalar S has a triple role: (i) It is the only scalar that forms a condensate
and thereby breaks global conformal invariance spontaneously, (ii) it is the mediator that
transmits the energy scale inherent in the condensate to the gravity (LGR) and neutrino
(LNχ) sectors, and subsequently to the SM sector, and (iii) it serves as the inflaton.

3 Spontaneous conformal breaking and the Planck mass

In order to simultaneously avoid the domain wall problem [81] and stabilize the DM candi-
date χ, we choose a flat direction of the scalar potential such that the Z2 symmetry remains
unbroken. The desired (approximate) flat direction, S 6= 0 and σ = 0, can be realized if [77]

λS � λSσ and λS � λσ . (3.1)
2Due to the presence of minimal fermion-gravitational couplings, the use of the vierbein formalism is

quietly understood with respect to these terms, even though it does not play a role in our analysis.
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As we see from Eq. (2.3), a non-zero VEV of S denoted by vS will generate the Einstein
term −(1/2)M2

PlR with the (reduced) Planck mass MPl '
√
βSvS . At the same time, the

Majorana neutrinos N and χ become massive due to the Yukawa interactions in Eq. (2.5);
mN = yM vS ' yM MPl/

√
βS and mχ = yχ vS ' yχMPl/

√
βS . Furthermore, in order

to utilize the neutrino option we must assume that the Higgs portal couplings λHS and
λHσ are extremely suppressed and that mN is of order 107 GeV, implying that yM ∼√
βS(mN/MPl) ∼ O(10−10) for βS ' 103. It is important to note that the set of couplings

λHS , λHσ, yM , yχ, and yNχ remain zero at higher order in perturbation theory if they
are set equal to zero at tree-level. Therefore, the smallness of these couplings is in some
sense natural even though no enhancement of symmetry is associated (see, however, [82]).
Similarly, we assume an approximately vanishing coupling βH ≈ 0 so that the Higgs-Ricci
scalar term in Eq. (2.3) can be neglected.3 Neglecting the aforementioned couplings we
integrate out the quantum fluctuations δS and δσ at one-loop in the background with
S 6= 0 and σ = 0 to obtain the effective potential

Ueff(S,R, σ) =
1

4
λSS

4 +
1

4
λσσ

4 +
1

4
λsσS

2σ2 +
1

64π2

(
m̃4
s ln[m̃2

s/µ
2] + m̃4

σ ln[m̃2
σ/µ

2]
)
,

(3.2)

where

m̃2
s = 3λSS

2 + βSR and m̃2
σ =

1

2
λSσS

2 + βσR . (3.3)

Here we have used the MS scheme and the constant −3/2 is absorbed into the renormal-
ization scale µ.4

Because of 〈σ〉 = 0, the field σ does not play any role for inflation and so we suppress it
throughout the following discussions. To compute vS = 〈S〉, we assume that βSR < 3λSS

2

and βσR < (1/2)λSσS
2 (during inflation), such that the effective potential Ueff in Eq. (3.2)

can be expanded in powers of βSR and βσR,

Ueff(S,R, σ = 0) = U0 + UCW(S) + U(1)(S)R+ U(2)(S)R2 +O(R3) , (3.4)

where

UCW(S) =
1

4
λSS

4 +
S4

64π2

{
9λ2

S ln[3λSS
2/µ2] + (1/4)λ2

Sσ ln[(1/2)λSσS
2/µ2]

}
− U0 ,

(3.5)

3Specifically, we assume that βHR� λHSS
2 during inflation so that the resulting correction to Eq. (3.2)

can be neglected. Since λHS , λHσ, and βH are all very small by assumption, the Higgs plays no role in this
scenario of inflation.

4The integration does not only give the desired Coleman-Weinberg potential, but also divergences that
can be absorbed into λS , γ, and βS . This agrees with the earlier computation of e.g. Ref. [83] (see also [84]
and references cited therein). Strictly speaking, also note that βS and βσ in Eq. (3.3) should read βS − 1/6

and βσ − 1/6, respectively, if one properly takes into account the non-flatness of space-time background
and the integration of the quantum fluctuations [85]. However, since βS will turn out be large (i.e.>∼ 102)
for realistic cosmic inflation and the inflationary parameters will depend barely on βσ, we will be ignoring
the constants 1/6 throughout the paper.
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U(1)(S) =
1

128π2

{
6βSλSS

2
(
1 + 2 ln[3λSS

2/µ2]
)

+ βσλSσS
2
(
1 + 2 ln[(1/2)λSσS

2/µ2]
) }

, (3.6)

U(2)(S) =
1

128π2

{
β2
S

(
3 + 2 ln[3λSS

2/µ2]
)

+ β2
σ

(
3 + 2 ln[(1/2)λSσS

2/µ2]
) }

. (3.7)

Since we are assuming a negligibly small (but, of course, nonzero during inflation) value of
the curvature scalar R, we obtain the R-independent leading-order vS from the potential
UCW(S). The zero-point energy density U0 is chosen such that UCW(S = vS) = 0 is
satisfied, which is consistent with 〈R〉 = 0 at the leading order. That is, our effective
potential now reads

Ũeff(S,R) = Ueff(S,R, 0)− U0 = UCW(S) + U(1)(S)R+ U(2)(S)R2 +O(R3) , (3.8)

and we find that U0 can be written as

U0 = −µ4 βλS
16

exp [−1− 16C/βλS ] , (3.9)

where

βλS =
1

16π2

(
18λ2

S +
1

2
λ2
Sσ

)
, and C =

1

4
λS +

1

64π2

(
9λ2

S ln(3λS) +
1

4
λ2
Sσ ln(λSσ/2)

)
.

(3.10)

Note that βλS is the one-loop β-function for λS in the absence of yM and yχ. The nega-
tive zero-point energy density U0 is a consequence of the spontaneous breaking of global
conformal symmetry. This zero-point energy density, which is the cosmological constant, is
finite in dimensional regularization because of the scale invariance of the total Lagrangian
in Eq. (2.1). Our choice to subtract the zero-point energy density corresponds to an ex-
plicit super-soft breaking of scale invariance at tree level, which is the cost of remedying
the cosmological constant problem in this model. Nonetheless, we note that the zero-point
energy cannot be uniquely determined within the framework of quantum field theory in flat
spacetime. To properly address the cosmological constant problem one should also take
into account gravitational quantum fluctuations, including contributions arising from the
(possibly) unitarity-violating Weyl tensor term in the action. We set this issue aside for
the purpose of this work and continue with our discussion.

The identification of MPl follows from the first term in Eq. (2.3) along with Eq. (3.4):

MPl =
(
βS + 2U(1)(vS)/v2

S

)1/2
vS , (3.11)

where 2U(1)(vS) can be written in an analytic form as

2U(1)(vS) =−
λSv

2
S

36λ2
S + λ2

Sσ

(
12βSλS + 2βσλSσ −

3λSσ
16π2

[−6βσλS + βSλSσ] ln(6λS/λSσ)

)
.

(3.12)

Since vS = µfS(λS , λSσ) (as can be seen in Eq. (3.5)), Eq. (3.11) relates MPl with µ:
MPl = µfP (βS , βσ, λS , λSσ), where fS and fP are dimensionless functions.
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4 Inflation

4.1 Effective action for inflation

To overcome the problems of old inflation [86], at least one bosonic degree of freedom, the
inflaton field, must be present [36–38]. Despite the fact that the scalaron exists as a bosonic
degree of freedom in the R2 model inflation [39–41], it can not generate the spontaneous
breaking of scale invariance. Similarly, in Higgs inflation [42], even though the Higgs field
is bosonic, the Coleman-Weinberg mechanism does not work successfully. It is for this
reason that we have introduced a set of two real scalars, S and σ, from the start. The first
consequence of spontaneous breakdown of scale invariance is that the non-minimal coupling
to R in LGR produces the Einstein-Hilbert term along with −(1/2)βS(2vS S

′+S′2)R where
S′ = S − vS , which suggests that S can play the role of an inflaton as in the case of Higgs
inflation [42]. In this section we will pursue this scenario.

Before doing so, we comment on previous literature regarding inflation realized in scale
invariant models. While in some Refs. [13, 32, 87–92] inflation is not based (explicitly)
on a Coleman-Weinberg type potential, other Refs. [6, 14, 93–98] employ the Coleman-
Weinberg mechanism to generate the inflaton potential. Most similar to our approach are
Refs. [95, 96], even though their inflaton potentials are derived differently. Their first step
is to go from the Jordan to the Einstein frame, already implicitly assuming that scale
invariance is broken, since otherwise the Weyl rescaling is not possible. The resulting
Einstein-frame potential consists of two types of scalar fields: Scalar fields stemming from
the matter Lagrangian and the scalaron, which describes the degree of freedom related to
the R2 term i.e. it originates from the gravitational degrees of freedom. The Gildener-
Weinberg approach is then applied to these scalars and quantum corrections are computed
in the Einstein frame to trigger the breaking of scale invariance. By contrast, our effective
Lagrangian (4.1), which includes all 1-loop corrections, is written in the Jordan frame. Since
the slow-roll parameters are frame independent [99, 100], it must, in principle, be possible
to compute them in the Jordan frame. Nevertheless, we perform the transformation to the
Einstein frame to compute the slow-roll parameters and investigate the slow-roll dynamics
explicitly. Finally, it should be noted that a transformation between the Jordan and Einstein
frames should be taken with care, since as demonstrated in [101, 102], the quantum theories
based on the respective classical Lagrangians are not necessarily equivalent. However, this
inequivalence only occurs in theories where quantum fluctuations of the metric are included
in the 1-loop potential. Since the present model treats gravity in a purely classical fashion,
the metric does not enter the path integral measure and the possible inequivalence is of no
concern here.

We now proceed with our case. As previously noted, we assume that the higher or-
der terms in Eq. (3.4) can be neglected for inflation. We will, however, check throughout
whether the aforementioned inequalities βSR < 3λSS

2 and βσR < (1/2)λSσS
2 are satis-

fied.5 Furthermore, we shall assume that κ, the coefficient the Weyl tensor squared term

5To perform this check, we will use the fact that the Ricci scalar R during inflation can be approximated
by 12H2, where H is the Hubble parameter.
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in Eq. (2.3), is small enough that it can be neglected for our discussion. The equation of
motion of S does not depend on this term in any case. With these remarks in mind, we
write down (the relevant part for inflation of) the effective Lagrangian in the Jordan frame,6

Leff√
−gJ

= −1

2
M2

PlB(S)RJ +G(S)R2
J +

1

2
gµνJ ∂µS∂νS − UCW(S) , (4.1)

where gµνJ (gJ = det gJµν) and RJ denote the inverse of the metric gJµν and the Ricci scalar
of Jordan-frame spacetime, respectively, and

B(S) =
1

M2
Pl

(
βSS

2 + 2U(1)(S)
)

and G(S) = γ − U(2)(S) . (4.2)

U(1)(S) and U(2)(S) have been given in Eqs. (3.6) and (3.7), respectively, andMPl is defined
in Eq. (3.11).

We proceed by introducing an auxiliary field ψ with mass dimension two to remove the
R2
J term from Eq. (4.1):

G(S)R2
J → 2G(S)RJψ −G(S)ψ2 . (4.3)

We then perform a Weyl rescaling of the metric, gµν = Ω2 gJµν with

Ω2(S, ψ) = B(S)− 4G(S)ψ

M2
Pl

, (4.4)

to go to the Einstein frame and arrive at

LEeff√
−g

= −1

2
M2

Pl

(
R− 3

2
gµν ∂µ ln Ω2(S, ψ) ∂ν ln Ω2(S, ψ)

)
+

gµν

2 Ω2(S, ψ)
∂µS ∂νS − V (S, ψ) ,

(4.5)

where V denotes the scalar potential in the Einstein frame,

V (S, ψ) =
UCW(S) +G(S)ψ2[
B(S)M2

Pl − 4G(S)ψ
]2 M4

Pl . (4.6)

Due to the second term of Eq. (4.5), ψ is promoted to a propagating scalar field in the
Einstein frame. Its canonically normalized expression, the scalaron field φ [110, 111], is
defined as

φ =

√
3

2
MPl ln

∣∣Ω2
∣∣ . (4.7)

The Einstein-frame Lagrangian for the coupled S-scalaron system then becomes

LEeff√
−g

= −1

2
M2

PlR+
1

2
gµν ∂µφ∂νφ+

1

2
e−Φ(φ) gµν ∂µS ∂νS − V (S, φ) , (4.8)

6A similar Lagrangian with a priori arbitrary functions B, G, and U has been studied in [103–107] for
purely phenomenological reasons. Here we follow Ref. [91], in which the effective Lagrangian is obtained
after scale invariance is spontaneously broken by strong dynamics as proposed in Refs. [108, 109].
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where Φ (φ) =
√

2φ/
√

3MPl, and the potential V given in Eq. (4.6) as a function of S and
φ now reads

V (S, φ) = e−2 Φ(φ)

[
UCW(S) +

M4
Pl

16G(S)

(
B(S)− eΦ(φ)

)2
]
. (4.9)

4.2 Valley approximation

With the scalar potential in Eq. (4.9) at hand, we could proceed by studying the real-
ization of inflation using multifield techniques (see e.g. Ref. [112]). We refrain from this
complicated approach and instead base our analysis on an effective one-field model to de-
rive predictions for CMB observables. This simplification is based on the observation that
the scalar potential exhibits a clear valley form along which the potential is relatively flat
and thus suitable for slow-roll evolution. Hereafter we will assume that the inflationary
trajectory is confined to this valley and that the slow-roll evolution along this contour is
parameterized by a single field. This behavior was confirmed in Ref. [6] for a similar model
in which the classical trajectories with different initial conditions converge to an inflationary
attractor line, i.e. the valley contour. The existence of a valley form in the scalar potential
is guaranteed as long as a large hierarchy between the two mass eigenvalues of the scalar
mass matrix exists. This behavior reflects itself as a gradient along the valley which is
hierarchically smaller than the gradient perpendicular to it. To determine the contour of
the valley we use two different approaches and compare them in appendix A, where we also
show that the viability of each approach depends on the region of parameters.

The first approach is based on the observation (see e.g. Fig. 9) that there is precisely
one local extremum in the scalaron direction for each S > vs which can be obtained by

∂V (S, φ)

∂φ

∣∣∣∣
φ=φ̃(S)

= 0 ⇒ φ̃(S) =

√
3

2
MPl ln

(
B(S) +

16G(S)UCW(S)

B(S)M4
Pl

)
, (4.10)

defining the valley contour in the two-dimensional field space as

C = {S, φ̃(S)} where
∂V (S, φ)

∂φ

∣∣∣∣
φ=φ̃(S)

= 0 . (4.11)

Due to the valley structure of the potential V (S, φ), we may assume Eq. (4.10) is approxi-
mately satisfied during inflation. The viability of this approximation can be quantified by
the requirement

m2
φ

H2
inf

� 1 , (4.12)

where mφ is the scalaron mass along the contour C and Hinf is the Hubble parameter during
inflation. If this relation is satisfied, the heavy scalaron mass is able to stabilize the contour
C during the slow-roll phase and the motion in the scalaron direction away from C can be
neglected. Inserting φ̃(S) into V (S, φ̃(S)) of Eq. (4.9) we obtain the inflaton potential along
this contour,

Vinf(S) = V (S, φ̃(S)) =
UCW(S)

B(S)2 + 16G(S)UCW(S)/M4
Pl

. (4.13)
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Consequently, the kinetic term for S is modified as

e−Φ(φ̃(S)) gµν∂µ S∂ν S + gµν∂µ φ̃(S)∂ν φ̃(S)⇒ F (S)2gµν∂µ S∂ν S , (4.14)

where

F (S) =
1

[1 + 4A(S)]B(S)

{
[1 + 4A(S)]B(S) +

3

2
M2

Pl

(
[1 + 4A(S)]B′(S)

+4A′(S)B(S)
)2}1/2

with A(S) =
4G(S)UCW(S)

B(S)2M2
Pl

. (4.15)

Finally, we arrive at the effective Lagrangian,

LEeff√
−g

= −1

2
M2

PlR+
1

2
F (S)2 gµν ∂µS ∂νS − Vinf(S) , (4.16)

where the canonically normalized inflaton field Ŝ can be obtained from

Ŝ(S) =

∫ S

vS

dxF (x) . (4.17)

The second approach applies if Eq. (4.12) is violated. An alternative to obtain the
contour then is by looking for local minima in the direction of the field S, yielding the
contour and inflationary potential,

C′ = {S̃(φ), φ} , where
∂V (S, φ)

∂S

∣∣∣∣
S=S̃(φ)

= 0 , Vinf(φ) = V (S̃(φ), φ) . (4.18)

Completely analogous to the treatment in the first case, the field normalization (replacing
Eq. (4.15)) is

F 2(φ) =

1 + e−Φ(φ)

(
∂S̃(φ)

∂φ

)2
 . (4.19)

4.3 One-field description of the slow-roll dynamics

As shown in the previous section, the two-field system can be approximately treated as a
single field system, either using the contour C or C′ and the corresponding one-dimensional
inflationary potentials (see Eqs. (4.13), (4.11) and (4.18)). When using the contour C, the
canonically normalized effective inflaton field Ŝ is defined in Eq. (4.17). To compute the
slow roll parameters it is not necessary to use Ŝ however; instead we employ the following
formulae:

ε(S) =
M2

Pl

2F 2(S)

(
V ′inf(S)

Vinf(S)

)2

, (4.20)

η(S) =
M2

Pl

F 2(S)

(
V ′′inf(S)

Vinf(S)
− F ′(S)

F (S)

V ′inf(S)

Vinf(S)

)
. (4.21)
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The number of e-folds Ne can be computed as

Ne =

∫ Send

S∗

F 2(S)

M2
Pl

Vinf(S)

V ′inf(S)
, (4.22)

where S∗ is the value of S at the time of CMB horizon exit and Send is that of S at the end
of inflation, i.e. max{ε(S = Send), |η(S = Send)|} = 1. The CMB observables, namely the
scalar power spectrum amplitude As, the scalar spectral index ns and the tensor-to-scalar
ratio r, can be calculated from

As =
Vinf ∗

24π2 ε∗M4
Pl

, ns = 1 + 2 η∗ − 6 ε∗ , r = 16 ε∗ , (4.23)

where the quantities with an asterisk are evaluated at S = S∗. The parameters of our
model that are relevant for inflation are: λS , λSσ, βS , βσ and γ, where the renormalization
scale µ in the effective potential (3.2) is fixed through the identification of MPl given in
(3.11). We emphasize that all these parameters (except µ) are dimensionless. Because of
the flat direction condition (3.1), λS and βσ are less relevant and they do not enterMPl, see
Eq. (3.11), to leading order. Therefore, we consider the model prediction at a fixed value
of λS and βσ. The observables (4.23) are measured or constrained by the latest data from
the Planck satellite mission [34, 35].

For our purpose we assume Ne ' 50 · · · 60 e-folds from CMB horizon exit until the end
of inflation and constrain the parameter space spanned by λSσ, βS and γ, such that the
following relation is satisfied [34, 35]

ln(1010As) = 3.044± 0.014 . (4.24)

4.4 Numerical analysis of inflation

To discuss the dependence of predictions for CMB observables connected to inflation on the
free parameters of the model, we perform a parameter scan using the methods outlined in
the previous section. As it turns out, using either the method corresponding to contour C or
C′ has little influence on the prediction for CMB observables. Thus, we mainly use contour
C, since it allows for an analytic expression of the inflation potential. A numeric comparison
of the two valley approximations and detailed discussions can be found in appendix A.

For all following results, we have fixed λS = 0.005 and βσ = 1 as these parameters
have little influence on the inflation potential. The free parameters left are the portal
coupling λSσ, the R2 coupling γ and the non-minimal coupling βS . Furthermore, the tight
observational constraint on the scalar power spectrum amplitude As in Eq. (4.24) can be
used to effectively remove one free parameter of the model. We use this to obtain a relation
between βS and γ which is illustrated in Fig. 1. Once N and λSσ are fixed, we can express
the βS dependence of CMB observables in terms of γ only. One can also see that there are
maximally allowed values (βS,max ∼ 103 and γmax ∼ 109) due to this constraint. The exact
values of βS,max and γmax depend on Ne and λSσ. We utilize this constraint and illustrate
the parameter dependence in the ns − r plane in Fig. 2. All predictions shown there are
for points in the parameter space that satisfy Eq. (4.24) (or equivalently, points which are
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shown in Fig. 1). Hence, there is no βS dependence displayed as it is fixed due to the method
outlined above. As we see from Fig. 2, the lower end of the prediction corresponds to that
of R2 inflation [39–41], while the upper end is reminiscent of linear chaotic inflation [113]7

Thus, we see that our predictions interpolate between these two theories.

Contour C Contour C′

# βS γ ns r As send/µ s∗/µ ns r As φend/µ φ∗/µ
1 1.01× 102 5.24× 108 0.967 0.004 3.032 0.09 0.11 0.965 0.004 3.088 0.83 4.75
2 5.69× 102 1.68× 108 0.972 0.010 3.041 0.11 0.45 0.972 0.010 3.075 2.02 13.46
3 8.67× 102 2.80× 107 0.973 0.034 3.038 0.13 2.56 0.973 0.034 3.040 2.74 23.46

Table 1. Parameters of the benchmark points marked in Fig. 1. For all points we have fixed λSσ = 0.77,
λS = 0.005 and βσ = 1 i.e. the VEV in each case is vS = 0.088µ. The last six columns show predictions
of CMB observables and related field values by either using the inflaton potential along contour C or C′ for
Ne = 55 e-folds. See appendix A for more details of the valley approximation.

Figure 1. The lines indicate the parameter combinations of γ and βS for which the scalar power spectrum
amplitude As prediction is fixed to the Planck constraint, Eq. (4.24), for a varying number of e-folds Ne
(left) or varying λSσ (right). For all points we have fixed βσ = 1 and λS = 0.005. The three benchmark
points defined in table 1 are marked.

5 Reheating

During and after the end of inflation the energy density stored in the inflation is converted to
radiation - this process is known as reheating (see, for instance, Refs. [116, 117]). Instead
of considering a specific model for reheating, we follow [118, 119] according to whom it
is possible to take into account the effect of the reheating phase to some extent without
specifying the reheating mechanism. The basic unknown quantities in this approximation
are the expansion rate aend/aRH of the universe during the reheating phase and the energy
density ρRH at the end of reheating, where a is the scale factor. These uncertainties can be
expressed in a single parameter [119]

Rrad =
aend

aRH

(
ρend

ρRH

)1/4

, (5.1)

7The results of linear inflation were also reproduced in another context in [114, 115].
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Figure 2. Predictions for the scalar spectral index ns and the tensor-to-scalar ratio r with varying number
of e-folds Ne (top) and varying λSσ (bottom). For all points we have fixed βσ = 1 and λS = 0.005. Only
points which satisfy the scalar power spectrum As constraint (4.24) are displayed i.e. the βS dependence
is fixed in light of Fig. 1. In the top panel we included the Planck TT,TE,EE+lowE+lensing+BK15 68%

and 95% CL regions taken from Ref. [35].

where ρend = ρS(Send) is the energy density of the inflaton field at the end of inflation, and
ρRH is the energy density of radiation at the end of the reheating phase. The reheating
temperature is defined through

ρRH =
π2

30
gRH T

4
RH , (5.2)

where gRH corresponds to the relativistic degrees of freedom at the end of reheating. In the
following discussion we assume that Rrad can be written as [119]

lnRrad =
1− 3w̄

12(1 + w̄)
ln

(
ρRH

ρend

)
, (5.3)

where w̄ is the average equation of state parameter in the reheating phase.
Next, we constrain the number of e-folds Ne = ln (aend/a∗). Here a∗ is the scale factor

at the time of CMB horizon exit and is defined as k∗ = a∗H∗, where k∗ is the pivot scale
set by the Planck mission [34, 35], and H∗ is the Hubble parameter at a = a∗. One
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finds [119, 120]8

Ne = ln

(
aend

a∗

)
= ln

(
aRH ρ

1/4
RH√

3a0H0

)
− ln

(
k∗
a0H0

)
+

1

4
ln

(
V 2

inf ∗
M4

Pl ρend

)
+ ln (Rrad) , (5.4)

where a0 = 1 and H0 = h 2.13 × 10−42 GeV are the present values of the scale factor and
the Hubble parameter, respectively, k∗ = 0.002Mpc−1 [34], and gRH = 106.75 + (7/8)12 =

117.25. The first term of Eq. (5.4) can be computed by using Eq. (5.2) and the conservation
of entropy a3

RH sRH = a3
0 s0, giving aRH/a0 = (q0/qRH)1/3 T0/TRH, where q0 = 43/11, and

qRH = gRH are the degrees of freedom that enter via entropy at the present day and at the
end of the reheating phase, respectively. Then, using T0 = 2.725K one finds [35, 121]

ln

(
aRH ρ

1/4
RH√

3a0H0

)
= 66.89− 1

12
ln gRH . (5.5)

The energy density at the end of inflation ρend can be expressed in terms of the slow-roll
parameter as

ρend =
Vend(3− ε∗)
(3− εend)

, (5.6)

where Vend = V (Send, φ(Send)), εend = ε(Send), and ε∗ = ε(S∗). The average equation
of state parameter w̄ in Eq. (5.3) can be found from the behavior of the scalar potential
V (S, φ) near the potential minimum. Noticing from Eq. (4.2) together with Eqs. (3.6) and
(3.7) that B(S) ' 1 +O(S− vS) , G(S) ' γ+ . . . and also that φ(S) ' O(S− vS), we have
exp [ Φ(φ(S)) ] ' 1 +O(S − vS) near S = vS , and so we find

V (S, φ(S)) ' UCW(S) = (3λSv
2
S + . . . )Ŝ2 +O(Ŝ3) (5.7)

where Ŝ ' S−vS (because F (S) ' 1+O(S−vS) which can be understood from Eq. (4.14)
near S = vS). Here, “. . . ” stands for the higher order contribution in the effective potential
Eq. (3.5). The constant term V (vS , φ(vS)) is absent because we have subtracted the zero-
point energy U0. The term linear to Ŝ is also absent because Ŝ = 0 is the position of the
minimum of UCW. Therefore, we deduce from Eq. (5.7) that p = 2 and w̄ = (p−2)/(p+2) =

0 [122].9 Therefore, once the slow roll parameters and the pivot scale k∗ are fixed, the only
quantity on rhs of Eq. (5.4) that is not free is the reheating temperature TRH. That is,
Eq. (5.4) can be understood as a constraint on Ne, assuming that (1TeV)4 <∼ ρRH <∼ ρend is
satisfied [35]. On the other hand, since 49 < Ne < 59 must also be satisfied [35], Eq. (5.4)
gives a constraint on TRH if ρRH ∈ [1 (TeV)4, ρend] is simultaneously satisfied. As we see
later when discussing dark matter (and also briefly leptogenesis), the reheating temperature
TRH plays an important role.

We have used the relation between Ne and TRH in Eq. (5.4) to demonstrate how varying
Ne effects the inflation parameters (r, ns) via the corresponding reheating temperatures in

8Eq. (5.4) can be derived from aend/a∗ = Rrad

(
aRHρ

1/4
RH/
√
3a0H0

)(√
3H∗/ρ

1/4
end

)
(a0H0/k∗), where Rrad

is defined in Eq. (5.1).
9p is defined from the behavior of the potential near the minimum: V ∼ Ŝp.
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Figure 3. Predictions for the scalar spectral index ns and the tensor-to-scalar ratio r with varying number
of e-folds Ne ∈ [50, 60] and (slightly) varying βS to account for the constraint on As from Eq. (4.24). TRH

is shown using its dependency on the number of e-folds Ne, from Eq. (4.22). For all points we have fixed
λS = 0.005, λSσ = 0.77, βσ = 1 and γ for each line respectively as seen in the figure. We also show the
Planck TT,TE,EE+lowE+lensing+BK15 68% and 95% CL regions taken from Ref. [35].
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Figure 4. Feynman diagramms for the scattering process χχ ↔ NN (left) and two-loop contribution to
the Higgs mass term (right).

Fig. 3. Here all couplings are fixed to benchmark point 1, 2 or 3 (see table 1), but we vary
the assumed Ne ∈ [50, 60] and adjust βS (slightly) such that the constraint on As is fulfilled.
Because of the lower bound on βS , we only display Ne ∈ [53.5, 60] in the line corresponding
to benchmark point 1. The reheating temperature TRH is then shown via color-scaling
on the usual ns − r plot (see Fig. 1). Note that any resulting constraints on TRH can be
converted into constraints on Ne, and vice versa, using the aforementioned relation from
Eq. (5.4).

6 Dark matter

Since the discrete Z2 symmetry is not spontaneously broken, the Z2-odd particles σ and χ
are stable and, therefore, good dark matter candidates. Dark mater can be produced during
or after the reheating phase, see e.g. [78, 79, 123]. Because of the inequality Eq. (3.1), which
is needed to realize the desired flat direction, σ is always heavier than S. This implies that
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the inflaton S cannot decay into σ, and σ is not produced during the reheating stage [79].
In contrast to σ, χ can be produced; either through the inflaton decay S → χχ or by the
scattering process N N → χχ. The corresponding diagram is shown in the left panel of
Fig. 4,10 where a thermal abundance of right-handed neutrinos N is assumed to exist since
N has contact with the SM sector through the Dirac-Yukawa coupling yν . However, the
cross section σNχ ∼ (y4

Nχ/π) max{m2
N ,m

2
χ}/m4

σ, which corresponds to the the scattering
process in Fig. 4, is extremely suppressed simply due to the fact that σ is very heavy i.e.
mσ ∼ 10−2MPl, while mχ = vS yχ and vS = mN/yM . This leads to

σNχ ∼


108

(
y4Nχ y

2
χ

π y2M

)(
m2
N

M4
Pl

)
∼
(
y4Nχ y

2
χ

π

) [
1016GeV

]−2
, for mN < mχ ,

108

(
y4Nχ
π

)(
m2
N

M4
Pl

)
∼
(
y4Nχ
π

) [
1025GeV

]−2
, for mN > mχ ,

(6.1)

where we have used mN = 107 GeV, MPl = 2.43 × 1018 GeV and yM = mN/vS ' 10−10.
Furthermore, yNχ can be constrained due to the two-loop diagram (shown in the right panel
of Fig. 4) that contributes to the Higgs mass term ∆µH , which should be much smaller
than O(102) GeV in order to realize the neutrino option. A rough estimate of the two-loop
diagram gives δµH ∼ yν yNχmσ/16π2, from which we find yNχ � O(10−8). Inserting this
into (6.1), we immediately find that σNχ is too small to be relevant for the production of
χ before, as well as after the end of reheating [78]. Therefore, we ignore this process in
the following discussion and concentrate on the decay of S into two χ. The corresponding
decay width is given by

γχ =
3 y2

χmS

16π
(1− 4m2

χ/m
2
S)1/2 . (6.2)

Note that χ has contact with the SM particles only through N . Therefore, because of the
constraint yNχ � O(10−8), its contact with the SM is extremely suppressed.

With the assumptions above we finally arrive at a system11 containing only the inflaton
S and the dark matter field χ. We can now consider the coupled Boltzmann equations [78]

dnS
dt

= −3HnS − ΓS nS , (6.3)

dnχ
dt

= −3Hnχ +BχΓS nS , (6.4)

where nχ stands for the number density of χ, the energy density of S is denoted by ρS =

mS nS , Bχ = γχ/ΓS , and ΓS is the total decay width of S. Eq. (6.3) is not coupled and
can be solved [116] to find

nS(a) =
ρend

mS

[aend

a

]3
e−ΓS (t−tend) , (6.5)

10There is also an s-channel diagram for the process N N → χχ, but this process is absent if the scalar
field S is treated as a classical field. Even if the process exists, the decay S → χχ is dominant due to the
fact that the former process is proportional to y2χy2M while the later one to ∝ y2χ.

11Here we assume that S is the dominant part of the inflaton field, which is a mixture of S and φ in
general. If the mixing is large, one can incorporate it into the decay width (6.2).

– 16 –



where a is the scale factor at t > tend, aend is a at the end of inflation tend and ρend =

ρS(aend). To solve Eq. (6.4) we insert the solution (6.5) and find

nχ(a) = Bχ
ρend

mS

[aend

a

]3 (
1− e−ΓS (t−tend)

)
. (6.6)

The freeze-in value of nχ is the value at t = ∞, which implies that the relic abundance
Ωχh

2 is given by

Ωχh
2 = mχBχ

ρend

mS

[
aend

a0

]3 M2
Pl

3(H0/h)2
, (6.7)

where a0 = 1 and H0 = h 2.1332 × 10−42 GeV with h ' 0.674 [34] stand for the present
value of the scale factor and the Hubble parameter, respectively. Note that aend/a0 can be
computed similarly to the derivation of Eq. (5.4),

aend

a0
=

(
aend

aRH

) (
ρ

1/4
end

ρ
1/4
RH

) (
aRH ρ

1/4
RH√

3a0H0

)(√
3H0

ρ
1/4
end

)
. (6.8)

As we see from Eq. (6.8), the product of the first two expressions is Rrad defined in Eq. (5.1)
and the quantity in the third parenthesis is exactly exp(66.89− ln gRH/12). Note that the
ρend dependence in Ωχh

2 cancels because the average equation of state w̄ is zero in our case
(see the discussion below Eq. (5.7)), and also gRH cancels if Eq. (5.2) is used for ρRH. We
then find

Ωχh
2 =
√

3 exp(3× 66.89)
BχH0

M2
Pl

(
π2

30

)1/4 (
mχ

mS

)
TRH (6.9)

' 2.04× 108Bχ

(
mχ

mS

)
TRH

1GeV
, (6.10)

which is in accordance with the results of Ref. [79]. The branching ratio Bχ = γχ/ΓS can
be obtained by using Eq. (6.2) for γχ and by assuming that 1/ΓS can be identified with
the time scale at the end of the reheating phase [78, 116] i.e. 1/H(aRH) =

(
3M2

Pl/ρRH

)1/2.
For the benchmark point 2 in table 1 (mS ' 4.4 × 1015 GeV , vS ' 1.0 × 1017 GeV , TRH '
1.9× 1010 GeV , k∗ = 0.002Mpc−1) we obtain

Ωχh
2 ' 4.4× 1031 y3

χ ' 0.12 , for yχ ' 1.4× 10−11 , (6.11)

from which we also find that mχ = yχ vS ' 4.3 × 106 GeV. In Fig. 5 we plot mχ against
TRH, where we have varied βS from the benchmark point value 5.69 × 102 (with all the
other input parameters fixed to the benchmark point values). The interval of βS is chosen
such that Ne varies between 50 and 60, where TRH = 6.8 × 103 GeV at Ne = 50 and
TRH = 4.1 × 1016 GeV at Ne = 60. The reheating temperature TRH changes considerably
as Ne changes. This can be understood using the fact that Ne = (1/3) lnTRH + . . . , as one
can see from Eq. (5.4) together with Eqs. (5.2) and (5.3). Accordingly, mχ (and also yχ)
varies quite a lot. The black dotted line is the lower bound on TRH for a viable thermal
leptogenesis with mN >∼ 107 GeV [124].

– 17 –



Figure 5. Dark matter mass mχ against reheating temperature TRH. We have varied βS around the
value 5.69 × 102 of benchmark point 2 (see table 1), while all the other input parameters are fixed to the
benchmark point values. The result is found to be quite insensitive against the change of these parameters.
The black dotted line shows the lower bound on TRH for a viable thermal leptogenesis with mN & 2× 107

GeV [124].
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Figure 6. Neutrino contributions to the Higgs mass term (left) and Higgs portal coupling (right).

7 Neutrino option

Heavy right-handed neutrinos introduce important corrections to the Higgs mass term,
−µ2

HH
†H, due to the diagram shown in Fig. 6 (left). The finite term of this contribution,
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which, in general, depends on the renormalization scale, is given by [66–69]

|∆µ2
H | ∼

y2
νm

2
N

4π2
. (7.1)

The neutrino option, as presented in [70], assumes that (7.1) is the dominant contribution
for the Higgs mass term, i.e. ∆µ2

H ∼ µ2
H ' 2(125GeV)2. Requiring at the same time that

the light SM neutrino masses are generated via a type-I seesaw mechanism [71–74], i.e.
mν ' y2

νv
2
h/mN ∼ 0.1 eV with vh = 246GeV, we find that mN is of order 107 GeV and yν

is of order 10−4 [70](see also Refs. [125, 126]). In Refs. [75, 127, 128] the original model of
Ref. [70] has been embedded into a classically scale invariant theory. In the scale invariant
extension, ∆µ2

H = 0 before spontaneous scale symmetry breaking while radiative correction
to the dimensionless coupling λHS exist, mainly due to the diagram shown in Fig. 6 (right).
Consequently, for the neutrino option to work, we must assume that the one-loop correction
proportional to y2

νy
2
M/16π2 is the main origin of λHS . After the spontaneous breaking of

scale symmetry we then obtain ∆µ2
H ∼ y2

νy
2
Mv

2
S/4π

2. In the present model of a unified
origin of energy scales, the origin of mN is the therefore the same as for MPl:

mN = yMvS = yMMPl

(
βS + 2U(1)(vS)/v2

S

)−1/2
, (7.2)

where the analytic expression for 2U(1)(vS) is given in Eq. (3.11). Since βS � 2U(1)(vS)/v2
S

is satisfied in the parameter space we consider, we find

yM '
mNβ

1/2
S

MPl
' 10−10 ×

(
βS
103

)1/2

. (7.3)

As already mentioned in the introduction, the smallness of yM is technically natural in the
sense of ’t Hooft [76], because U(1)B−L is restored as yM and yNχ go to zero (recall that
in the previous section when discussing dark matter, we argued that yNχ � 10−8).

At last we would like to emphasize that leptogenesis [129, 130], i.e. the generation
of the baryon asymmetry of the Universe works successfully within the frame work of the
neutrino option [131, 132]. If we assume that the right-handed neutrinos N can be reheated
only through the contact with the SM particles,12 the bound TRH >∼ 2× 109 GeV must be
satisfied in order to realize thermal leptogenesis with mN >∼ 2× 107 GeV [124]. This lower
bound on TRH is shown in Fig. 5 (black dotted line). For the three benchmark points in
table 1, we find that thermal leptogenesis works under our assumptions only if Ne >∼ 54.

8 Conclusions

We have investigated a framework for unifying the origin of the fundamental energy scales
in Nature, namely the Planck and electroweak scales, utilizing a classically scale invariant
model. The energy scales span several orders of magnitude and relate physical scales which
are typically treated independent of each other. The pivotal guiding principle of this work
is classical scale invariance for which there are manifold motivations.

12The direct reheating is very small because the coupling yM of N to S is very small as seen from Eq. (7.3).
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The starting point is the formulation of our model in the Jordan frame, consistent
with gauge symmetries, global scale invariance, and general diffeomorphism invariance. To
achieve the Coleman-Weinberg-type breaking of scale invariance, the SM is extended by
two additional scalars with negligible couplings to the Higgs boson (and thus also to the
SM). The study of the radiatively generated minimum is carried out by resorting to the
Gildener-Weinberg approach which is based on the existence of a flat direction along which
1-loop quantum fluctuations induce a finite VEV vS for the scalar S while the second scalar
σ can subsequently be integrated out due to its high mass. The VEV vS breaks scale
invariance spontaneously which gives rise to both the Planck scale MPl ≈ β

1/2
S vs, as well as

to right-handed neutrino masses mN = yMvS . The latter radiatively generates the Higgs
mass term, which in turn, triggers electroweak symmetry breaking while simultaneously
generating the light neutrino masses via the type-I seesaw mechanism; a scenario dubbed
the “neutrino option”. For this process to work, we require right-handed neutrino masses of
order mN ∼ 107 GeV, which can be obtained if the Yukawa coupling to the scalar S is of
the order yM ∼ 10−(9−10) – a “smallness” that is technically natural. In addition, the Higgs
portal λHS must be tuned to a small value in order to avoid generating a large Higgs mass
term directly from vS . This fine-tuning is not technically natural but we have argued that
it is not spoiled by quantum corrections if yM is small enough.

Once a finite scale has been generated, one can perform a Weyl rescaling of the metric
to transform to the Einstein frame. In this frame, the gravity sector is described by the
sum of the Einstein-Hilbert action and non-minimal coupling interactions which are trans-
mitted to an involved scalar potential that we use to realize cosmic inflation consistent with
observational data. Including the globally scale invariant R2-term effectively yields a new
scalar degree of freedom, the scalaron, yielding a two-field scalar potential in the Einstein
frame. A general feature of this potential, related to the absence of an explicit mass scale,
is the existence of a flat valley structure in field space along which the slow-roll conditions
of inflation are satisfied. Assuming that the inflationary slow-roll trajectory is confined to
this valley (which is justified by a detailed analysis presented in appendix A), we have used
an effective one-field inflaton potential to simplify the study of inflation and predict CMB
observables. We have performed a parameter scan resulting in values of the scalar spectral
index in the range 0.964 . ns . 0.975 and tensor-to-scalar ratio r . 0.08, see Fig. 2. The
inflaton potential considered here is, therefore, consistent with the tightest observational
constraints of the Planck collaboration.

Devoid of an explicit reheating mechanism, we can, given the curvature of the potential
around the minimum and assuming the number of e-folds between horizon crossing of the
pivot scale to the end of inflation to be in the range 50 < Ne < 60, estimate a bound
on the reheating temperature. Given these bounds, we also estimate the production of
particle dark matter during reheating. To this end, we include an additional set of right-
handed Z2-odd Majorana neutrinos χ that do not participate in the neutrino option. The
dominant production process is identified as the direct decay of the inflaton S → χχ, and
the correct relic abundance is obtained for a dark matter mass ranging from 104−108 GeV,
which is in turn directly related to the reheating temperature TRH, which varies between
103 − 1017 GeV, see Fig. 5.
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Our discussion may be extended in the following directions: (i) The scale anomaly,
which is responsible for the spontaneous symmetry breaking of scale invariance, also gen-
erates a finite zero-point energy that is much larger than the observed cosmological con-
stant. We set aside this problem in this work, arguing that the cosmological constant
might be matched by other sectors. Eventually, a model should be formulated in which the
scale anomalies from different sectors are matched explicitly. (ii) To derive the Coleman-
Weinberg potential, we only considered 1-loop fluctuations due to the matter sector. A next
step would be to also include gravitational 1-loop corrections to the scalar potential (see, e.g.
Ref. [14]), and account for any changes brought on by the inclusion of a non-zero frame dis-
criminant after transforming to the Einstein frame [102]. (iii) As our construction is based
on scale invariance, the Weyl tensor squared term should not be omitted in a complete
model. We have assumed this term to be negligible to study inflation, while it is generally
known that this term is problematic because it gives rise to a spin-2 ghost. This issue might
be remedied, for instance, by using the recently introduced fakeon-prescription [49], where
the effect on inflation is investigated in Ref. [133]. See also [50–53] and the discussion in
footnote 1. (iv) Furthermore, we have assumed throughout that the breaking of the global
scale symmetry and the global dark-matter-stabilizing Z2 symmetry by non-perturbative
effects in quantum gravity [134, 135] (see also [136] for an investigation based on AdS/CFT
correspondence) is negligibly small. Indeed, a non-negligible breaking of scale invariance,
for example a mass term Λ2S2 in the effective potential (3.4), would considerably change
our predictions of inflationary parameters. It will be a challenging future task to estimate
such quantum effects in a classically scale invariant model like ours.13 Ultimately, hence,
one would like to extend our framework and promote scale invariance to a local symmetry
which would not be susceptible to breaking by quantum gravity effects and explore the
alterations of predictions as compared to the present study. (v) Finally, this work could be
extended by a full two-field study of inflation and its effect on primordial non-Gaussianities
(see, e.g. Ref. [112]). These additional topics aside, we hope that the work presented here
may propagate new ideas for dynamical generation of all scales in Nature and, in particular,
for the interplay of scale generation and cosmic inflation.

A Discussion on the valley approximation

In this appendix we return to the task of determining the valley contour of the effective po-
tential in the two-dimensional field space. In particular, we compare two different methods
for obtaining the valley contour numerically for different parameters of the model. This
corroborates the discussion in section 4.2 and justifies the method used in section 4.4. The
method used so far is based on searching for minima in the φ-direction, yielding the con-
tour C (4.11). Alternatively, one can compute the minima along the S direction to define
the contour C′ (4.18). In the latter case we have to solve for S̃(φ) numerically by finding

13However, note that neglecting effects of a potential breaking of the global scale symmetry seem well-
justified given the presence of the conformal anomaly, which gives small contributions to the gravitational
field equations that lead to the absence of the problematic wormhole solutions to the gravitational equations
of motion as demonstrated in [135].
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the minimum for each value of φ in the S-direction. To this end we fit to a seventh or-
der polynomial and yielding the one-dimensional inflationary potential parameterized by
the scalaron φ. Thus, the inflaton field is identified with φ and the slow-roll parameters
and number of e-folds are defined accordingly (cf. Eqs. (4.20) - (4.22)). To exemplify
the two mentioned methods above, we show contour plots of the two-dimensional potential
including the contours specifying the two valley approximations in Fig. 7 - 9 for the three
benchmark points defined in table 1 (see also Fig. 10).

Figure 7. Scalar potential for benchmark point 1 defined in table 1. The two contours defined in
Eqs. (4.11) and (4.18) are shown on top of the contour plot of V (S, φ) (4.9) (right) and the corresponding
1d inflaton potentials (left).

On the left hand side of these figures we show the one-dimensional inflationary poten-
tials which correspond to the contours C and C′. In the case of C, the free variable of the
potential is S, while in the case of C′ the variable is φ. Alternatively, we could, for example,
invert S̃(φ) = S to make both one-dimensional potentials dependent on S and then directly
compare them. However, as the inflation predictions are computed with Vinf(S)(Vinf(φ))

for contour C(C′) we have chosen to plot parameterizations as given. Comparing the three
contour plots shows that for lower value of γ the valley extends more in the S-direction,
indicating that contour C is the better choice. However, both methods give very similar
results (see e.g. Fig. 9) and approximate the valley contour well. For even lower values for γ
than in benchmark point 3, we run into numerical problems using the contour C′, indicating
that the lowest value where we can test both contours is γ ∼ 107. The two contours deviate
more from each other as the parameter γ grows large. For large γ the inflation field becomes
better identified with the scalaron φ and the valley points more in that direction. Here the
two contours start to deviate and contour C′ is expected to be the better approximation.
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Figure 8. Scalar potential for benchmark point 2 defined in table 1. The two contours defined in
Eqs. (4.11) and (4.18) are shown on top of the contour plot of V (S, φ) (4.9) (right) and the corresponding
1d inflaton potentials (left).

Figure 9. Scalar potential for benchmark point 3 defined in table 1. The two contours defined in
Eqs. (4.11) and (4.18) are shown on top of the contour plot of V (S, φ) (4.9) (right) and the corresponding
1d inflaton potentials (left).
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A more quantitative comparison indeed shows that the difference of the two contours
at large γ leads to different predictions for the CMB observables. Fig. 10 shows how the
experimental constraint on As is satisfied for different pairs of γ and βS when comparing
both methods. Note that this results in different relations between γ and βS for both
methods which are used in the following. We use the relations in Fig. 11 to show the
effect on predictions for ns and r separately, and with varying γ. The figures show that
it is mostly the ns predictions at large γ which vary with the contour. The deviation is
relatively small, which justifies the use of contour C for the larger parameter scan in section
4.4.

Figure 10. The lines indicate the parameter combinations of γ and βS for which the scalar power spectrum
amplitude As prediction is fixed to the Planck constraint (4.24) for the two inflationary contours defined in
Eqs. (4.11) and (4.18). For all points we have fixed βσ = 1 and λS = 0.005. The three benchmark points
defined in table 1 and displayed in Fig. 7 - 9 are marked.

Figure 11. Inflation parameters computed along the two contours C and C′: Tensor-to-scalar ratio r (left)
and scalar spectral index ns (right). Note that the relation between γ and βS is different for contours C
and C′, which can be understood from Fig. 10.
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