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Abstract

Let p be a positive prime integer. We construct p-adic families of de Rham cohomology

classes and therefore p-adic families of nearly overconvergent elliptic modular forms. As

an application we define triple product p-adic L-functions attached to three finite slope

families of modular forms satisfying certain assumptions.
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1 Introduction

The main theme of this article is that of p-adic variation of arithmetic objects. More precisely
we will point out a very general geometric construction, called vector bundles with marked
sections, which we claim, when applied to (certain) families of p-divisible groups produces p-adic
variations of certain modular sheaves naturally existing there. In fact this construction produces
all the known p-adic families and some which are new. So far this method has been tested on
modular curves and the results are recorded in this article but we think that the method, suitably
adapted, works universally.

The motivation for this study is twofold: on the one hand it comes from the desire and
need to find a general construction of p-adic L-functions attached to a triple of p-adic finite
slope families of modular forms. It has been known for a while, by work of H. Hida ([Hi88]),
M. Harris and J. Tilouine ([HaTi]), how to attach such a p-adic L-function to a triple of Hida
families (or ordinary p-adic families) and its special values have been investigated in work of
M. Harris and S. Kudla ([HaKu]) and more recently of A. Ichino ([I]) and T.C. Watson ([W]).
There have been essays in the literature to extend this construction to finite slope families but
so far they were not successful. For example in [Ur14] a construction of a Rankin-Selberg p-adic
L-function (which is a particular case of the Garret-Rankin triple product p-adic L-function
constructed in this article) in the finite slope case is claimed, but the article had a fatal gap.
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The gap is explained and fixed using the constructions and results of this article in section
§7 by E. Urban. We refer to [GS] and the refinements in [Hs] for a construction of triple
product p-adic L-functions which interpolate special values in the balanced region, as opposite
to the unbalanced regions considered in this paper and in the references mentioned so far. See
also [Lo] for an approach using the Euler system of Beilinson-Flach elements, that provides a
construction of two dimensional “slices” of the sought for three variable p-adic L-function. The
second motivation for the study of p-adic variation of modular sheaves is connected to our long
term effort to provide crystalline Eichler-Shimura isomorphisms associated to overconvergent
eigenforms of finite slopes. This line of inquiry is not followed-up in this article but we hope to
report on such results soon.

Let us now be more precise and start by briefly reviewing the triple product p-adic L-functions
in the ordinary case following the exposition of H. Darmon and V. Rotger in [DR1]. We will
content ourselves to explain a particular case in the introduction in order to simplify notations
but see the articles quoted or Section §5.1 and Remark 5.14 of this article for the general case.

Let N ≥ 5 be a square free integer and f , g, h classical, normalized, primitive cuspidal
eigenforms for Γ1(N) of weights k, ℓ, m respectively (and trivial characters) which are supposed
to be unbalanced, i.e., there is an integer t ≥ 0 such that k = ℓ + m + 2t. Let p ≥ 5 be a
prime integer such that (p,N) = 1 and we assume that f, g, h are all ordinary at p. Let f , g, h
be Hida families of modular forms for Γ1(N) interpolating in weights k, ℓ, m the forms f , g, h
respectively. Here f , g, h are seen as q-expansions with coefficients in the finite flat extensions
of Λ := Zp[[Z

∗
p]] denoted Λf , Λg, Λh respectively.

Before we start defining the p-adic L function attached to f , g, h let us make a short
revisit of q-expansions and their properties. If R is a finite flat extension of Λ we denote by
U , V : R[[q]] −→ R[[q]] the following R-linear operators: let α(q) =

∑∞
n=0 anq

n ∈ R[[q]], then
U(α)(q) =

∑∞
n=0 anpq

n and V (α)(q) =
∑∞

n=0 anq
pn. We immediately remark that U ◦V = IdR[[q]]

and define, for α ∈ R[[q]] as above

α[p](q) :=
(
Id− V ◦ U)

)
(α)(q) =

∞∑

n≥1,(p,n)=1

anq
n.

One sees that α[p](q) ∈ R[[q]]U=0 and moreover that if β(q) ∈ R[[q]]U=0 then β [p](q) = β(q), i.e.

R[[q]]U=0 =
(
R[[q]]

)[p]
. The operators U, V defined above on q-expansions preserve the subspaces

of p-adic modular forms for various weights.

We define the differential operator d : R[[q]] −→ R[[q]] to be the R-derivation d := q
d

dq
. Let us

remark that if s : Z∗
p −→ R∗ is a continuous homomorphism (it is called “an R-valued weight”)

it makes sense to define the operator ds : R[[q]]U=0 −→ R[[q]]U=0 by

ds(

∞∑

n=1,(n,p)=1

anq
n) =

∞∑

n=1,(n,p)=1

ans(n)q
n.

In particular for the universal weight Z∗
p −→ Λ∗ =

(
Zp[[Z

∗
p]]
)∗
−→ R∗ sending t ∈ Z∗

p to the
image in R∗ of the grouplike element [t] ∈ Z∗

p ⊂ Λ∗, we denote (following [DR1]), by d• the
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corresponding differential operator on q-expansions, i.e., the operator defined by

d•(
∞∑

n=1,(n,p)=1

anq
n) :=

∞∑

n=1,(p,n)=1

an[n]q
n.

Let us now go back to our three Hida families f∈ Λf [[q]], g∈ Λg[[q]],h∈ Λh[[q]]. Following [DR1,
Def. 4.4] we define

Lfp(f , g,h) :=
〈f , eord

(
d•(g[p])× h

)
〉

〈f , f〉
∈ Λ′

f ⊗ Λg ⊗ Λh,

where Λ′
f denotes the total ring of fractions of Λf , e

ord := limr→∞U
r! is Hida’s “ordinary projec-

tor” from p-adic families of nearly overconvergent forms as in [DR1], to ordinary modular forms
and the inner product 〈 , 〉 in the above formula is the Peterson inner product for ordinary
families of weight the weight of f . We refer to [DR1, §2.6] for details. Then the specialization of
this three variable p-adic L-function at a triple of unbalanced classical weights (x, y, z) (where
d• is specialized at dt, with x = y + z + 2t, t ∈ Z≥0) can be expressed as a square root of the
algebraic part of the classical central value of the triple product of fx, gy,hz.

Suppose now that f , g, h are classical normalized, primitive cuspidal eigenforms as above which
have finite slope instead of being ordinary at p. Then let us remark that the formula above
defining Lfp(f , g,h) makes no sense as there is no finite slope idempotent analogous to eord apart
from the ordinary one. The reason is that the operator U is not compact on q-expansions or
on p-adic modular forms. One has to work with finite slope families of modular forms seen as
overconvergent sections of the modular sheaves wkf , wkg , wkh, where kf , kg, kh are the weights
of the families interpolating f , g, h respectively. Most importantly, instead of the operator d on
q-expansions we have to work with a connection ∇kg on a certain de Rham sheaf of weight kg.
This makes the whole construction geometric and before proceeding to the construction of the
p-adic L-function one has to define the new de Rham sheaves and study their properties.

More precisely, let X denote the adic analytic space associated to the modular curve X1(N)Qp

and for every integer r ≥ 0 and interval I = [0, b], b ∈ Z let Xr,I denote the strict neighbourhood
of the ordinary locus in X ×WI where the generalized elliptic curve has a canonical subgroup of
order 1 ≤ n ≤ r+b+1. HereW is the weight space, i.e., the adic analytic space of analytic points
attached to the formal scheme Spf(Λ) and WI is a certain open subspace of weights containing
k, ℓ, m (for details see Section §3.1).

Let now Xr,I −→ X andWI be precisely defined formal models ofXr,I −→ X , and respectively
of WI , for example X is the formal completion along its special fiber of the modular curve
X1(N)Zp . Let π : E −→ Xr,I be the inverse image of the universal generalized elliptic curve on

X and define ωE := π∗

(
Ω1
E/Xr,I

(
log(π−1(cusps)

))
and HE := R1π∗

(
Ω•
E/Xr,I

(
log(π−1(cusps)

))
.

Then ωE is a locally free modular sheaf of rank one and HE is a locally free modular sheaf of
rank two, related by the Hodge filtration exact sequence on Xr,I :

0 −→ ωE −→ HE −→ ω∗
E −→ 0.

Moreover the Gauss-Manin connection defines a logarithmic connection

∇ : HE −→ HE ⊗OXr,I
Ω1

Xr,I/WI

(
log(cusps)

)
.
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On Xr,I we have a family of line bundles
(
ω⊗m
E

)
m∈N

and a family of locally free OXr,I
-modules

with connections and Hodge filtrations
(
Symm(HE),Film,•,∇m

)
m∈N

and the main tasks before
us is to p-adically interpolate these two families by using weights in WI .

Let us recall that the first family has already been interpolated in various degrees of generality
in [AIPHS], [AIS2] and [AIPS].

More precisely if α ∈ WI is any weight there is a sheaf wα on Xr,I such that if α ∈ Z then
wα and ωαE coincide on the analytic space Xr,I and such that the elements of H0(Xr,I ,w

α) are
(integral models of) the overconvergent modular forms or families of weight α and tame level N .

In particular, returning for a moment to our construction of the p-adic L-function, given
f , g, h we have modular sheaves wkf , wkg , wkh and (integral) families ωf ∈ H0(Xr,I ,w

kf ),
ωg ∈ H0(Xr,I ,w

kg), ωh ∈ H0(Xr,I ,w
kh) interpolating f , g, h respectively in weights k, ℓ, m.

The integral p-adic interpolation of the families
(
Symm(HE),Film,•,∇m

)
m∈N

in this article
is new and it follows from using the formal vector bundle with marked sections attached to a
sheaf like HE and a section of it coming from a generator of the Cartier dual of the canonical
subgroup of E via the map dlog. Our first result is the following, where we summarize Theorem
3.11, Theorem 3.18, Section 3.6 and Theorem 4.3:

Theorem 1.1. For every weight α ∈ WI there exists a formal sheaf Wα on Xr,I with mero-
morphic connection ∇α and filtration Fil•(Wα) which define on the adic analytic fiber Xr,I a
sheaf of Banach modules Wan

α with a connection ∇α and filtration Fil•(W
an
α ) satisfying Griffith’s

transversality.
Moreover if α ∈ Z≥0 then

(
Symα(HE),Filα,•,∇α

)
is canonically a submodule (with connection

and filtration) of the sheaf defined by
(
Wan

α ,Fil•(W
an
α ),∇α

)
on Xr,I and their global sections of

slopes ≤ β, for β < α− 1 are equal.
Finally we show that there is b ≥ r such that for every w ∈ H0(Xr,I ,Wan

k )U=0 and for
every weight γ ∈ WI satisfying the conditions of Assumption (4.1), there is a section ∇γ

α(w) ∈
H0(Xb,I ,Wan

α+2γ) whose q-expansion is dγ(w(q)).

The Assumption (4.1) on α and γ for the existence of ∇γ
α(w) amounts to demand that α

and γ are p-adically close to classical weights. In view of Remark 3.39 it seems difficult to
weaken these assumptions, namely one does not have a formula for ∇γ

α(w) valid for α and γ
varying over the whole weight space. As these are the technical tools needed to construct the
p-adic L-function in the finite slope case in Definition 5.5 we get an interpolation property over
this type of regions of weight space. As in loc. cit., though, one needs to take overconvergent
projections of forms of the type ∇γ

α(w) times an overconvergent form, it might still be possible
that an interpolation for the triple product L-function exists more generally as hinted in [Lo]
and in §7.5.

We’d like to point out that Zheng Liu has defined a sheaf similar to the adic analytic sheaf
Wan

α and a connection ∇α on it in [L] but this is not sufficient to define the triple product p-
adic L-functions in the finite slope case. The q-expansions of sections of the sheaves Wα of the
Theorem are called nearly overconvergent modular forms; see Definition 3.22 and the Remark
3.23 for connections with previous work of Harron-Xiao [HX], Darmon-Rotger [DR1] and Urban
[Ur14].

We now describe the structure of the article. In Chapter §2 we introduce one of the main players
of this article, the formal vector bundles with marked sections, and study their main proper-
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ties. In other words we present a geometric construction associating to every formal scheme S
(which has an invertible ideal of definition I) and data (E , s1, . . . , sd) consisting of a locally free
OS-module of rank n ≥ 1 and “marked global sections” s1, . . . , sd of E/IE (satisfying certain
properties) a formal scheme π : V0(E , s1, . . . , sd) −→ S whose sheaf of functions is “interpolable”.

We show that if (E , s1, . . . , sd) has extra structure e.g. a connection, a filtration, a group
action then the sheaf π∗

(
OV0(E,s1,...,sd)

)
has an induced extra structure of a similar nature.

In Chapter §3 we apply the above construction to modular curves and locally free sheaves
which are modifications of ωE and respectively HE . The marked section will be the image of a
generator of the Cartier dual of the canonical subgroup via the map dlog, and therefore we have
to place ourselves on a partial formal blow-up of a formal modular curve where such a canonical
subgroup exists. The sheaves ωE and respectively HE have to be modified in order for the section
coming from the dual canonical subgroup to satisfy the required property of a “marked section”.

This way we associate to every weight α ∈ WI a sheaf wα and a triple
(
Wα,∇α,Fil•(Wα)

)
,

consisting of a sheaf Wα, a meromorphic connection ∇α on Wα and an increasing filtration
of Wα such that Fil0(Wα) = wα. Furthermore we prove in Theorem 3.11 that, forgetting the

connection, the sheaves
(
Wα,Fil•(Wα)

)
can be extended to the whole interval I = [0,∞] and

we provide in Theorem 3.17 an explicit description of these sheaves at the points at infinity.
On the global sections of wα and of Wα as well as on the de Rham cohomology groups

with coefficients in (Wα,∇α) we have natural, linear actions of Hecke operators such that U is
compact.

In Chapter §4, which is the main technical chapter of the article, we show that if α, γ
are weights satisfying certain conditions (see (4.7) and w is a global section of W0

α such that
U(w) = 0, then there is a canonical section denoted ∇γ

α(w) of the sheaf W0
α+2γ over a “smaller

strict neighbourhood of the ordinary locus” whose q-expansion is dγ(w(q)).
Having thus defined all the technical tools needed, in Chapter §5 we review the construction

of the triple product p-adic L-function in the ordinary case in all its generality and construct
the triple product p-adic L-functions attached to finite slope p-adic families of modular forms.

In Appendix I we show how given a general p-divisible group G, over a formal scheme, “which
is not too supersingular”, one can attach to its sheaves ωG and HG (in fact to modifications of
them) and a basis of the points of the Cartier dual of its canonical subgroup, canonical formal
vector bundles with marked sections. We think that if this construction is applied to certain
Shimura varieties of PEL type (for example to Hilbert modular varieties) it would be possible
to define triple product p-adic L-functions in that setting. It should be clear though that we do
not perform that construction here.

Finally Appendix II, written by E. Urban contains a corrigendum to the article [Ur14]: the
author (of [Ur14] and this appendix) explains and fixes the gap in the cited article using the
results of the previous sections of this paper.
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thank: Zheng Liu for suggesting an improvement of a proof in chapter §4, Eric Urban for
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2 Formal vector bundles with marked sections.

In this chapter we present a general construction which associates to every formal scheme S with
ideal of definition I which is supposed to be invertible and data (E , s1, s2, . . . , sm) consisting of
a locally free sheaf E of OS-modules of rank n ≥ m on S and global sections s1, s2, . . . , sm
of E := E/IE which generate a locally free direct summand of rank m of E , a formal scheme
π : V0(E , s1, s2, . . . , sm) −→ S called vector bundle with marked sections, with the property
that H0

(
V0(E , s1, s2, . . . , sm),OV0(E,s1,s2,...,sm)

)
can be seen as the ring of R := H0(S,OS)-valued

analytic functions on the set

E0 := {v : H
0(S, E) −→ R | v is R linear and v(mod I)(si) = 1, i = 1, 2, . . . , m}.

The construction is functorial in (E , s1, s2, . . . , sm) and if E has additional structure compat-
ible with (s1, s2, . . . , sm), such as a filtration, a connection, a group action, then the sheaf
π∗
(
OV0(E,s1,s2,...,sm)

)
has an induced extra structure of a similar nature.

2.1 Formal vector bundles.

Consider as above a formal scheme S with invertible ideal of definition I ⊂ OS. Denote by S
the scheme with structure sheaf defined by OS/I.

In this section all formal schemes considered will be formal schemes f : T → S over S, with
ideal of definition f ∗(I) ⊂ OT which is an invertible ideal, i.e., locally on T it is generated by
an element that is not a zero divisor.

Definition 2.1. A formal vector bundle of rank n over S is a formal vector group scheme
f : X −→ S over S, locally on S isomorphic to the n-fold product of the additive group Gn

a,S .
Equivalently it is a formal scheme f : X −→ S such that there exist an affine open covering
{Ui}i∈I of S and for every i ∈ I an isomorphism ψi : X|Ui

:= f−1(Ui) ∼= An
Ui
, where An

Ui
is

the formal n-dimensional affine space over Ui, such that for every i, j ∈ I and every affine
open formal subscheme U ⊂ Ui ∩ Uj, the automorphism induced by ψj ◦ ψ

−1
i on An

U is a linear
automorphism.

If f : X → S and f ′ : Y → S are two vector bundles over S of rank n and n′ respectively,
a morphism (resp. isomorphism) g : X −→ Y of formal vector bundles over S is a morphism
(resp. an isomorphism) as formal vector group schemes.

If we have charts
(
{Ui}i∈I , {ψi}i∈I

)
and

(
{U ′

j}j∈J , {ψ
′
j}j∈J

)
of X and Y respectively, a mor-

phism (resp. isomorphism) g : X −→ Y of formal vector bundles over S is a morphism (resp. an
isomorphism) of formal schemes over S such that for every i ∈ I, every j ∈ J and every affine
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open formal subscheme U ⊂ Ui ∩ U ′
j the induced map

An
U

ψ−1
i−→ X|U

g|U
−→ Y |U

ψ′
j
−→ An′

U

is a linear map.

Lemma 2.2. Let E be a locally free OS-module of rank n over S. Then there exists a unique
formal vector bundle V(E) of rank n over S representing the functor that associates to any formal
scheme t : T → S the H0(T,OT )-module HomOT

(
t∗(E),OT

)
of homomorphisms t∗(E) → OT as

OT -modules.
This contravariant functor V defines an equivalence of categories between the category of

locally free OS-modules of constant rank and the category of formal vector bundle of finite rank
over S and this equivalence preserves the notion of rank.

Proof. Let E be a locally free OS-module of rank n over S. Define f : V(E) → S to be the

formal scheme over S defined by the I-adic completion ŜymS(E) of the OS-symmetric algebra
SymS(E) = ⊕i∈NSym

i
OS

(E) associated to E . Consider any affine covering {Ui}i∈I of S such that
E|Ui

is a free OUi
-module of rank n. If e1,i, e2,i, . . . , en,i is a basis of E|Ui

as OUi
-module, then

we have natural isomorphisms of OUi
-algebras ψi : SymS(E)|Ui

∼= OUi
〈X1, X2, . . . , Xn〉 sending

ej,i 7→ Xj. One readily checks that
(
V(E), f, {Ui}i∈I , {ψi}i∈I

)
is a vector bundle of rank n over

S. For any formal scheme t : T → S the T -valued points of V(E) (over t), correspond bijectively
and functorially in T and in t with the OT -linear homomorphisms t∗

(
Sym1

OS
(E)
)
= t∗(E)→ OT .

This provides the claimed representability.
We exhibit an inverse to this functor. Let f : X → S be a formal vector bundle of rank n over

S. Define E to be the presheaf of sets that associates to any open formal subscheme U ⊂ S the
set of sections of X over U . We leave it to the reader to show that E(U) has a natural structure
of H0(U,OU)-module that makes E a locally free OS-module of rank n. We then associate to X
the OS-module E∨. This is the sought for inverse.

2.2 Formal vector bundles with marked sections.

For a locally free OS-module E of rank n we denote by E the associated OS-module. Let
s1, . . . , sm, with m ≤ n, be sections in H0(S, E) such that the induced map ⊕mi=1OS 7→ E ,
sending

∑
i ai →

∑
i aisi, identifies O

m
S

with a locally direct summand of E .

Definition 2.3. Define V0(E , s1, s2, . . . , sm) as the sub-functor of V(E) that associates to any
formal scheme t : T → S the subset of sections ρ ∈ V(E)(T ) = H0

(
T, t∗(E)∨

)
whose reduction

ρ := ρ modulo I satisfies ρ
(
t∗(si)

)
) = 1 for every i = 1, . . . , m.

Notice that this construction is functorial with respect to the tuples (E , s1, . . . , sm). Namely
given a homomorphism g : E ′ → E of locally free OS-modules of finite rank and sections
s′1, . . . , s

′
m ∈ E

′
and s1, . . . , sm ∈ E , satisfying the requirements above and such that g(s′i) = si

for every i = 1, . . . , m, we obtain a commutative diagram

V0(E , s1, . . . , sm) −→ V(E)
↓ ↓

V0(E ′, s′1, . . . , s
′
m) −→ V(E ′).
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Lemma 2.4. The morphism V0(E , s1, . . . , sm) → V(E) is represented by an open formal sub-
scheme of a formal I-admissible blow up of V(E).

Proof. The sections s1, . . . , sm define a subsheaf of OS-modules Om
S
⊂ E with quotient Q which

is a locally free sheaf of OS-modules of rank n − m. There is a a quotient map Sym•(E) :=
⊕i∈NSym

i
OS

(E) → ⊕i∈NSym
i
OS

(Q) whose kernel is the ideal (s1 − 1, . . . , sm − 1). Taking the

induced map of spectra, relative to S, such quotient map defines a closed subscheme C in
V(E) := Spec

(
Sym•(E)

)
. Let J := (s1 − 1, . . . , sm − 1) be the corresponding ideal sheaf and

let J ⊂ ŜymS(E) be its inverse image. Consider the I-adic completion B of the open formal
subscheme of the blow up of V(E) with respect to the ideal J , open defined by the requirement
that the ideal generated by the inverse image of J coincides with the ideal generated by the
inverse image of I.

In local coordinates if U = Spf(R) ⊂ S is an open formal subscheme such that I is generated
by α ∈ R, E|Ui

is free of rank m with basis e1, . . . , en such that ei ≡ si modulo α for i =
1, . . . , m and em+1, . . . , en modulo α define a basis of Q, then V(E)|U is the formal scheme
associated to R〈X1, . . . , Xn〉 and J |U is the ideal

(
α,X1 − 1, . . . , Xm − 1

)
. In particular B|U =

R〈Z1, . . . , Zm, Xm+1, . . . , Xn〉 with morphism B|U → V(E)|U defined by sending Xi → Xi for
i = m+ 1, . . . , n and Xi → 1 + αZi for i = 1, . . . , m.

For every formal scheme T over U a section ρ ∈ V(E)(T ) is defined by the images a1, . . . , an
of X1, . . . , Xn that we can identify via the identification V(E)(T ) = HomOT

(
t∗(E),OT

)
with the

images of t∗(e1), . . . , t
∗(en) via ρ. Then ρ lies in V0(E , s1, . . . , sm)(T ) if and only if ρ

(
t∗(ei)

)
=

ai ≡ 1 modulo α for i = 1, . . . , m. Hence ρ uniquely lifts to a T -valued point of B|U given by
sending Xi → ai for i = m+ 1, . . . , n and Zi 7→

ai−1
α

for i = 1, . . . , m (which is well defined as α
is not a zero divisor in OT ). Viceversa any T -valued point of B|U defines a section ρ ∈ V(E)(T ),
by the formula above, that in fact lies in V0(E , s1, . . . , sm)(T ) by construction.

One verifies that the isomorphisms B|Ui
∼= V0(E , s1, . . . , sm)|Ui

one obtains in this way varying
Ui glue and provide the sought for isomorphism B ∼= V0(E , s1, . . . , sm) as formal schemes over
V(E).

The functoriality is immediately checked.

2.3 Filtrations on the sheaf of functions of a formal vector bundle
with marked sections

Let E be a locally free OS-module of rank n and assume that there exists an OS-submodule
F ⊂ E , locally free asOS-module of rankm, which is a locally direct summand in E . Equivalently
E/F is also locally free as OS-module of rank n − m. Assume also that the global sections
s1, . . . , sm of E as in §2.2 define an OS-basis of F . By the functoriality property in Definition
2.3 we obtain a commutative diagram

V0(E , s1, . . . , sm) −→ V(E)
↓ ↓

V0(F , s1, . . . , sm) −→ V(F).

Denote by f : V(E) → S and f0 : V0(E , s1, . . . , sm) → S the structural morphisms. Notice
that the morphism V(E) → V(F) is a principal homogeneous space under the action of the
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formal vector group scheme V(E/F) (the action is provided by the inclusion of formal vector
group schemes V(E/F) ⊂ V(E) and the group scheme structure on V(E); the fact that it is a
principal homogeneous space follows as locally on S one can choose a splitting of the projection
E → E/F which identifies V(E) with the product V(F)×S V(E/F)).

Lemma 2.5. The diagram above is cartesian. In particular, the vertical morphisms are principal
homogenous spaces under the formal vector group scheme V(E/F).

Proof. Let U = Spf(R) be an affine formal subscheme of S such that I|U is generated by
α ∈ R and F , E over U are free with basis e1, . . . , em, resp. e1, . . . , em, f1, . . . , fn−m and ei ≡ si
modulo α for i = 1, . . . , m and f1, . . . , fn−m define the complementary direct summand of
F in E. Then V(F)|U = Spf

(
R〈X1, . . . , Xm〉

)
, V(E)|U = Spf

(
R〈X1, . . . , Xm, Y1, . . . , Yn−m〉

)
,

V0(F , s1, . . . , sm)|U = Spf
(
R〈Z1, . . . , Zm〉

)
, V0(E , s1, . . . , sm)|U = Spf

(
R〈Z1, . . . , Zm, Y1, . . . , Yn−m〉

)

where Xi = 1 + αZi for i = 1, . . . , m. The statement follows.

Corollary 2.6. With the notations above, f0,∗OV0(E,s1,...,sm) is endowed with an increasing filtra-
tion Fil•f0,∗OV0(E,s1,...,sm) with graded pieces

Grhf0,∗OV0(E,s1,...,sm)
∼= f0,∗OV0(F ,s1,...,sm) ⊗OS

Symh(E/F).

The filtration is characterized by the following local description. If U = Spf(R) ⊂ S is an
open formal affine subscheme such that F , E over U are free with basis e1, . . . , em, respectively
e1, . . . , em, f1, . . . , fn−m so that

V0(F , s1, . . . , sm)|U = Spf
(
R〈Z1, . . . , Zm〉

)
,V0(E , s1, . . . , sm)|U = Spf

(
R〈Z1, . . . , Zm, Y1, . . . , Yn−m〉

)
,

then Filhf0,∗OV0(E,s1,...,sm)(U) consists of the polynomials of degree ≤ h in the variables Y1, . . . , Yn−m
with coefficients in R〈Z1, . . . , Zm〉.

Proof. We use the fact that V0(E , s1, . . . , sm) → V0(F , s1, . . . , sm) is a principal homogenous
spaces under V(E/F) to prove that the local definition of Filhf0,∗OV0(E,s1,...,sm) is well defined
and glues for varying U ’s.

If U = Spf(R) ⊂ S is an open formal affine, any other choice of bases defines new coordinates
X ′

1, . . . , X
′
m, Y

′
1 , . . . , Y

′
n−m that are related to X1, . . . , Xm, Y1, . . . , Yn−m by an R-linear transfor-

mation. In particular the induced mapR〈X1, . . . , Xm, Y1, . . . , Yn−m〉 ∼= R〈X ′
1, . . . , X

′
m, Y

′
1 , . . . , Y

′
n−m〉

sends each Yi to an R-linear combination of the X ′
1, . . . , X

′
m, Y

′
1 , . . . , Y

′
n−m and is then an affine

transformation relative to R〈X ′
1, . . . , X

′
m〉 = R〈X1, . . . , Xm〉. The second claim follows as well.

The construction of the filtration is clearly functorial. Namely given a homomorphism
g : E ′ → E of locally free OS-modules of finite rank, F ′ ⊂ E ′ and F ⊂ E , locally free as OS-
modules of rank d and locally direct summands such that g(F ′) ⊂ F , and sections s′1, . . . , s

′
m ∈ E

′

and s1, . . . , sm ∈ E , satisfying the requirements above and such that g(s′i) = si for every
i = 1, . . . , m, we obtain

Corollary 2.7. Let f0 : V0(E , s1, . . . , sm) → S and f ′
0 : V0(E ′, s′1, . . . , s

′
m) → S be the structural

morphism. The morphism g : f ′
0,∗OV0(E ′,s′1,...,s

′
m) → f0,∗OV0(E,s1,...,sm) defined by g (see Definition

2.3) sends Filhf
′
0,∗OV0(E ′,s′1,...,s

′
m) to Filhf0,∗OV0(E,s1,...,sm).
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2.4 Connections on the sheaf of functions of a formal vector bundle
with marked sections

Suppose that we have fixed a Zp-algebra A0 and an element τ ∈ A0 such that A0 is τ -adically
complete and separated. Let S be a formal scheme locally of finite type over Spf(A0) such that
the topology of S is the τ -adic topology, i.e. I = τOS . We let Ω1

S/A0
be the OS-module of

continuous Khäler differentials.
Consider a locally free OS-module E endowed with an integrable connection ∇ : E → E ⊗OS

Ω1
S/A0

. Assume that we have fixed sections s1, . . . , sm ∈ E as in §2.2 which are horizontal for

the reduction of ∇ modulo I. Let f0 : V0(E , s1, . . . , sm) → S be the structural morphism. We
explain how ∇ defines an integrable connection

∇0 : f0,∗OV0(E,s1,...,sm) → f0,∗OV0(E,s1,...,sm)⊗̂Ω
1
S/A0

.

Grothendieck’s description of integrable connections: First of all recall Grothendieck’s ap-
proach to connections (see for example [BO] section §2). Let PS/A0

:= S×A0S and let ∆: S → PS
be the diagonal embedding. It is a locally closed immersion and we let P(1)

S/A0
be the first in-

finitesimal neighborhood of ∆: if locally on S ×A0 S the morphism ∆ is the closed immersion

defined by an ideal J , then P(1)
S/A0

⊂ S ×A0 S is defined by J 2. We have the two projections

j1, j2 : P
(1)
S/A0
→ S. Then, to give an integrable connection ∇ : M −→M ⊗OS

Ω1
S/A0

on a locally
free OS-module M of finite rank, is equivalent to giving an isomorphism of O

P
(1)
S/A0

-modules

ǫ : j∗2(M) := O
P

(1)
S/A0

⊗OS
M ∼= j∗1(M) :=M⊗OS

O
P

(1)
S/A0

such that ∆∗(ǫ) = Id onM and ǫ satisfies

a suitable cocycle condition with respect to the three possible pull-backs of ǫ to S ×A0 S ×A0 S.
In fact the relationship between ǫ and ∇ is given by the following formula, for every x ∈M

ǫ(1 ⊗ x) = x⊗ 1 +∇(x), where ∇(x) ∈M ⊗OS

(
J /J 2

)
∼= M ⊗OS

Ω1
S/A0

.

Remark 2.8. Let us remark that with notations as above, even if M is an arbitrary quasi-
coherent OS-module (i.e. not necessarily locally free of finite rank) and ǫ : j∗2(M) ∼= j∗1(M) is
an O

P
(1)
S/A0

-linear isomorphism such that ∆∗(ǫ) = IdM , then ǫ defines a connection ∇ : M −→

M⊗̂OS
Ω1
S/A0

by the formula: ∇(x) = ǫ(1⊗ x)− x⊗ 1.

Consider now the given locally free OS-module E with integrable connection ∇ : E → E ⊗OS

Ω1
S/A0

and with sections s1, . . . , sm ∈ E horizontal for the reduction of ∇ modulo I. This

means that the associated isomorphism ǫ : j∗2(E) −→ j∗1(E) has the property that its reduction ǫ
modulo I satisfies ǫ

(
j∗2(si)

)
= j∗1(si) for every i = 1, . . . , m. We deduce from the functoriality of

Definition 2.3 that ǫ defines compatible isomorphisms of formal schemes over S:

P(1)
S/A0
×S V0(E , s1, . . . , sm)

ǫ0−→ V0(E , s1, . . . , sm)×S P
(1)
S/A0

↓ ↓

P(1)
S/A0
×S V(E)

ǫ′
−→ V(E)×S P

(1)
S/A0

such that ∆∗(ǫ0) = Id and ∆∗(ǫ) = Id. Passing to functions we obtain compatible isomorphisms
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j∗2
(
f∗OV(E)

) ǫ
′,∗

−→ j∗1
(
f∗OV(E)

)

↓ ↓

j∗2
(
f0,∗OV0(E,s1,...,sm)

) ǫ∗0−→ j∗1
(
f0,∗OV0(E,s1,...,sm)

)

such that ∆∗(ǫ∗0) = Id and ∆∗(ǫ
′,∗) = Id. By construction ǫ

′,∗ coincides with the isomorphism
ǫ, once restricted to the OS-submodule E ⊂ f∗OV(E), and is uniquely characterized by this
property as f∗OV(E) is the I-adic completion of the symmetric algebra defined by E . Since
the vertical maps are obtained via a blowup by Lemma 2.4 the commutativity of the diagram
above uniquely characterizes ǫ∗0. In particular it satisfies the cocyle condition as ǫ

′,∗ does since
ǫ does. Via Grothendieck’s correspondence this defines the sought for, compatible, integrable
connections:

E
∇
−→ E ⊗OS

Ω1
S/A0

↓ ↓

f∗OV(E)
∇′

−→ f∗OV(E)⊗̂OS
Ω1
S/A0

↓ ↓

f0,∗OV0(E,s1,...,sm)
∇0−→ f0,∗OV0(E,s1,...,sm)⊗̂OS

Ω1
S/A0

.

As remarked above both ∇′ and ∇0 are the unique connections that make the diagram above
commutative, i.e., compatible with ∇.

Assume that we are in the hypothesis of §2.3 with locally freeOS-module and direct summand
F ⊂ E . Consider the filtrations Fil•f∗OV(E) and Fil•f0,∗OV0(E,s1,...,sm) of Corollary 2.6.

Lemma 2.9. The connection ∇0 satisfies Griffith’s transversality property with respect to the
filtration Fil•f0,∗OV0(E,s1,...,sm), namely for every integer h we have

∇
(
Filhf0,∗OV0(E,s1,...,sm)

)
⊂ Filh+1f0,∗OV0(E,s1,...,sm)⊗̂OS

Ω1
S/A0

.

Furthermore the induced map

grh(∇0) : Grhf0,∗OV0(E,s1,...,sm) −→ Grh+1f0,∗OV0(E,s1,...,sm)⊗̂OS
Ω1
S/A0

is an OS-linear map and, via the identification Gr•f∗OV0(E,s1,...,sm)
∼= f0,∗OV0(F ,s1,...,sm) ⊗OS

Sym•(E/F) of Corollary 2.6, the morphism gr•(∇0) is Sym
•(E/F)-linear.

Proof. The statement can be checked locally. Assume that U = Spf(R) ⊂ S is an open formal
affine subscheme such that I|U is generated by α ∈ R, the sheaves F , E over U are free with
basis e1, . . . , em, resp. e1, . . . , em, f1, . . . , fn−m, so that

V(F)|U = Spf
(
R〈X1, . . . , Xm〉

)
, V(E)|U = Spf

(
R〈X1, . . . , Xm, Y1, . . . , Yn−m〉

)

and

V0(F , s1, . . . , sm)|U = Spf
(
R〈Z1, . . . , Zm〉

)
, V0(E , s1, . . . , sm)|U = Spf

(
R〈Z1, . . . , Zm, Y1, . . . , Yn−m〉

)
.
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By construction ∇′(Xs) =
∑m

i=1 αXi ⊗ ωs,i +
∑n−m

j=1 αYj ⊗ βs,j where the elements ωs,i and βs,j
are uniquely characterized by the fact that ∇(es) =

∑m
i=1 αei ⊗ ωs,i +

∑n−m
j=1 αfj ⊗ βs,j (recall

that ∇(es) ≡ 0 modulo α for s = 1, . . . , m). Similarly ∇′(Yt) =
∑m

i=1Xi ⊗ γt,i +
∑n−m

j=1 Yj ⊗ δs,j
where ∇(ft) =

∑m
i=1 ei ⊗ γs,i +

∑n−m
j=1 fj ⊗ δs,j.

Since Xi = 1 + αZi then ∇0(αZi) = ∇′(Xi) and we deduce that ∇0(Zs) =
∑m

i=1Xi ⊗
ωs,i +

∑n−m
j=1 Yj ⊗ βs,j − Zi ⊗ dα. Recall from Corollary 2.6 that Filhf0,∗OV0(E)(U) consists of

the polynomials of degree ≤ h in the variables Y1, . . . , Yn−m with coefficients in R〈Z1, . . . , Zm〉.
The fact that Griffith’s transversality holds for Filhf0,∗OV0(E,s1,...,sm)(U) follows from the explicit
expression of ∇ and Leibniz’ rule.

3 Applications to modular curves.

In this chapter we present applications of the main constructions in Section 2, that is to say
given a weight k we present a new construction of the modular sheaves wk already defined
and studied in [AIPHS] and the construction of a modular sheaf Wk interpolating the integral
symmetric powers of the sheaf of relative de Rham cohomology of the universal elliptic curve
over the appropriate modification of a modular curve.

The sheaf Wk has a natural filtration whose graded quotients are well understood, an in-
tegrable connection ∇k which satisfies the Griffith transversality property with respect to the
filtration and a natural action of the Hecke algebra on its global sections such that the operator
U is compact. Moreover, the global sections of Wk have natural q-expansions which allows one,
as in the case of p-adic modualr forms, to define nearly overconvergent p-adic modular
forms as formal q-expansions arising from sections of Wk.

3.1 The sheaves wI.

Convention. In what follows we will denote by X, Y, Z, . . . (algebraic) schemes, by X,Y,Z, . . .
formal schemes and by X ,Y ,Z, . . . analytic, adic spaces.

In this section we follow the constructions of [AIPHS]. Let N ≥ 4 be an integer and p a
prime which does not divide N . Let Y := X1(N) be the smooth, proper modular curve over
Zp which classifies generalized elliptic curves with Γ1(N)-level structure and let Y denote the
formal completion of Y along its special fiber. We write E → Y for the universal semiabelian
scheme and ωE for its invariant differentials; away from the cusps E is the universal elliptic
curve. We denote by HdgY the ideal of OY defined locally by: if U = Spf(R) is an open affine of
Y such that ωE|U is a free R-module of rank 1, then Hdg|U is generated by p and by the value

H̃a(E/R, ω) of a lift H̃a of the Hasse invariant modulo p, where ω is any R-generator of ωE|U .

Note that for p ≥ 5 one can take H̃a = Ep−1, the Eisenstein series of weight p− 1.

The weight space: Set Λ to be the Iwasawa algebra Zp[[Z
∗
p]]
∼= Zp

[
(Z/qZ)∗

]
[[T ]], where q = p

if p ≥ 3 and q = 4 if p = 2 and the isomorphism is defined by sending exp(q) :=
∞∑

n=0

qn

n!
∈ 1+qZp
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to 1 + T . Consider the complete local ring Λ0 = Zp[[T ]] ⊂ Λ.
Let W := Spf(Λ), respectively W0 := Spf(Λ0), where the ideal of definition of these formal

schemes is m := (p, T ) and let us denote by W :=
(
Spa(Λ,Λ)

)an
(and similarly for W0) the

associated analytic adic weight space. Here the superscript “an” stands for analytic, i.e., W is
the adic subspace consisting of the analytic points of the adic space associated to the formal
scheme W. For every closed interval I := [pa, pb] ⊂ [0,∞], with a ∈ N∪{−∞} and b ∈ N∪{∞},
we denote by

WI = {x ∈ W | |p|x ≤ |T
pa|x 6= 0 and |T p

b

|x ≤ |p|x 6= 0}.

These are rational open subsets and we have two notable cases:

(1) WI = {x ∈ W | |T p
b
|x ≤ |p|x 6= 0} with I = [0, pb] and b 6=∞;

(2) WI = {x ∈ W | |p|x ≤ |T p
a
|x 6= 0 and |T p

b
|x ≤ |p|x 6= 0} if a 6= −∞ and a ≤ b.

In the first case

WI = Spa
(
Λ〈
T p

b

p
〉
[1
p

]
,Λ〈

T p
b

p
〉
)

and in the second

WI = Spa
(
Λ〈

p

T pa
,
T p

b

p
〉
[ 1
T

]
,Λ〈

p

T pa
,
T p

b

p
〉
)
.

Let us remark that for every I ⊂ [0,∞) as above WI is an open adic subspace of W[0,∞) =Wrig

For each I = [pa, pb] as above we let kI : Z
∗
p −→

(
O+

WI

)∗
denote the universal character

associated to WI . Let now X := Y×Spf(Zp) W
0. We define XI = Y×Spf(Zp) Spf(O

+
W0

I
).

We consider pairs (ΛI , α) where ΛI := Λ〈
T

p
〉 and α := p ∈ ΛI if I is in case (1) and

ΛI := Λ〈
p

T pa
,
T p

b

p
〉 and α := T ∈ ΛI if I is in case (2).

Formal admissible partial blow-ups of modular curves: We continue using the notations above
and for every integer r ≥ 1 we define Xr,I to be the formal scheme over XI which represents the
functor associating to every Λ0

I-algebra α-adically complete R the set of equivalence classes of
pairs (f, η), where f : Spf(R) −→ XI and η ∈ H0

(
Spf(R), f ∗(ω(1−p)pr+1

)
)
such that

η · H̃a
pr+1

= α( mod p2).

Here H̃a denotes any lift of the Hasse invariant. One sees that the definition is well posed, i.e., it
does not depend on the choice of the lift. Moreover the ideal of R denoted HdgR at the beginning
of this section becomes invertible. See section §3.1 of [AIPHS] for the proof of this fact and for
the definition of the equivalence relation. By abuse of notation we often write HdgR for a (local)
generator of this ideal as well.

Let us remark that if I is in the case (1), i.e. I = [0, pb] then
p

Hdgp
r+1 ∈ OXr,I

and if I is

in case (2), i.e., I = [pa, pb] with 0 ≤ a < b ≤ ∞ then
p

Hdgp
a+r+1 =

p

T pa
·

T p
a

Hdgp
a+r+1 ∈ OXr,I

.

Therefore if we denote by n any integer with 1 ≤ n ≤ r if I is in the case (1) and 1 ≤ n ≤ a+ r
if I is in the case (2), then the semiabelian scheme E −→ Xr,I has a canonical subgroup Hn
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of order pn. This is a subgroup scheme of order pn lifting the kernel of the n-th power of the
Frobenius isogeny modulo p

Hdgp
pn−1
p−1

(see [AIPHS, Cor. A.1 & A.2] for the construction). Over

the ordinary locus Hn is the connected part of the pn-th torsion of E.

Partial Igusa tower: For every r, I, n as above we denote by Xr,I the adic generic fiber of
the formal scheme Xr,I and let IGn,r,I −→ Xr,I denote the adic space of trivializations of the
group scheme H∨

n −→ Xr,I , the Cartier dual of Hn. Then IGn,r,I −→ Xr,I is a finite étale and
Galois morphism of adic spaces with Galois group (Z/pnZ)∗. We define by IGn,r,I −→ Xr,I the
normalization of Xr,I in IGn,r,I , which is well defined. Moreover the morphism IGn,r,I −→ Xr,I

is finite and is endowed with an action of (Z/pnZ)∗.

The construction of the torsor Fn,r,I: In [AIPHS, §5.2] we define the formal scheme fn : Fn,r,I →
IGn,r,I . It represents the functor from the category of affine formal schemes Spf(R) → IGn,r,I ,
with R an α-adically complete and separated Zp-algebra without α-torsion, to the category of
sets

Fn,r,I(R) = {(ω, P ) ∈ ωE(R)×
(
H∨
n (R)−H

∨
n [p

n−1](R)
)
| ω = dlog(P ) in ωE/p

nHdg−
pn−1
p−1 }.

We also denote by hn : Fn,r,I −→ Xr,I the composition gn ◦ fn. We have a natural action

of Z∗
p

(
1 + pnHdg−

pn−1
p−1 Ga

)
on Fn,r,I given by: if λ ∈ Z∗

p and x ∈
(
1 + pnHdg−

pn−1
p−1 Ga

)
, then

(λx)(ω, P ) =
(
(λx)ω, λP ). This action is well defined and the action of Z∗

p lifts the Galois action

of (Z/pnZ)∗ on IGn,r,I. In fact Fn,r,I admits an action of Z∗
p

(
1 + pnHdg−

pn−1
p−1 Ga

)
(in the étale

topology) over Xr,I with quotient Xr,I . Furthermore if n ≥ b+ 2 for p 6= 2 or n ≥ b+ 4 if p = 2

then kI extends to a character Z∗
p

(
1 + pnHdg−

pn−1
p−1 Ga

)
→ Gm.

In conclusion, given r, I, n as above we have (see [AIPHS]) a sequence of formal schemes
and morphisms

Fn,r,I
fn
−→ IGn,r,I

gn
−→ Xr,I ,

which leads to the following definition. We summarize the various assumptions on I, n and r in
the following two cases:

(1) I = [0, 1], r ≥ 2 if p 6= 2 or r ≥ 4 if p = 2 and n is an integer n satisfying 1 ≤ n ≤ r.

(2) I = [pa, pb] with a, b ∈ N, r ≥ 1 and r + a ≥ b+ 2 if p 6= 2 or r ≥ 2 and r + a ≥ b + 4 if
p = 2 and n is an integer such that 1 ≤ n ≤ a+ r.

Definition 3.1. Let kI,f be the character given by the restriction of the character k to (Z/qZ)∗ ⊂
Z∗
p. Define wkI,f to be the coherent OXr,I

-module
(
gi,∗
(
OIGi,r,I

)
⊗Λ0 Λ

)[
k−1
I,f

]
(see [AIPHS, §6.8]).

Here i = 1 for p odd and i = 2 for p = 2.
Let k0I := kIk

−1
I,f : Z

∗
p → (Λ0

I)
∗. Set wkI ,0

n,r,I :=
(
(gn ◦fn)∗

(
OFn,r,I

))
[(k0I )

−1], i.e., the sheaf on Xr,I

of sections of OFn,r,I
which transform under the action of Z∗

p

(
1+ pnHdg−

pn−1
p−1 Ga

)
via the inverse

of the universal character k0I . Define wkI
n,r,I := w

k0I
n,r,I ⊗OXr,I

wkf .

Overconvergent modular forms: It is proved in section [AIPHS, §5.3.2] that, under the
assumptions in Definition 3.1, wkI ,0

n,r,I is an invertible sheaf on Xr,I with the following property:
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for every interval I as above, there exist rI , nI such that for all r ≥ rI , n ≥ nI (satisfying
the relations at the beginning of this section) ϕ∗

r,rI

(
wkI ,0
nI ,rI ,I

)
∼= wkI ,0

n,r,I as OXr,I
-modules, where

ϕr,rI : Xr,I −→ XrI ,I is the natural projection.

Therefore we denote wkI ,0
nI ,rI ,I

and w
krI
nI ,rI ,I

by wkI ,0
I and wkI

I respectively and call them modular

sheaves. Note that wkI
I defines an invertible sheaf, denoted ωkI in [AIPHS], on the adic space

XrI ,I , whose global sections are the overconvergent p-adic families of modular forms over WI .

3.1.1 Some properties of IGn,r,I.

Consider the natural morphisms of formal schemes

η : IGn,r,I
γn
−→ IG1,r,I −→ Xr,I −→ XI −→ X.

Denote by j : Xord
I →֒ Xr,I the α-adic open formal sub-scheme of Xr,I defined by the ordinary

locus. Let ι : IGord
n,r,I ⊂ IGn,r,I be the inverse image of Xord

I . We recall the following:

Remark 3.2. Fix a local lift H̃a of the Hasse invariant over an open formal subscheme U =
Spf(R) of IG1,r,I . For p ≥ 5 one can take a global lift, namely Ep−1. There exists a unique
section of ωE over R denoted ∆ such that its q-expansion has constant coefficient 1 modulo p
and ∆p−1 = H̃a; see [AIPHS, Prop. A.3]. We define the ideal δ of OIG1,r,I

to be the ideal sheaf
which is generated locally by the functions δR := ∆(E/R, ω)’s, where ω is an R-basis of ωE/R.

It coincides with the ideal Hdg
1

p−1 , where Hdg is the ideal of §6.1.

We have the following result:

Lemma 3.3. The induced map η∗
(
Ω1

X/Zp

)
−→ Ω1

IGn,r,I/Λ
0
I
has kernel and cokernel annihilated by

a power of δ and in particular by a power of α, depending on n.

Proof. The morphism Xr,I −→ XI is an isomorphism over the ordinary locus. The morphism
IGord

n,r,I → Xord
I is the Igusa tower classifying trivializations of the étale group scheme H∨

n . In
particular, it is étale and Galois with group (Z/pnZ)∗. Thus the induced map on differentials
is an isomorphism. The ordinary locus is defined, modulo α, by inverting δ. This implies the
lemma for the differentials modulo α. As Ω1

X/Zp
and Ω1

IGn,r,I/Λ
0
I
are coherent OIGn,r,I/Λ

0
I
-modules

and α ∈ δ, the claim follows.

We next prove the following:

Lemma 3.4. For every h ∈ N the kernel of the map OXr,I
/αhOXr,I

→ j∗
(
OXord/αhOXord

)
is

annihilated by Hdghp
r+1

. Similarly, the kernel of OIGn,r,I
/αhOIGn,r,I

→ ι∗
(
OIGord

n,r,I
/αhOIGord

n,r,I

)
is

annihilated by δhp
r+1(p−1)+pn−p.

Proof. We prove the first statement. We’ll work locally so let U = Spf(R′) ⊂ X := X1(N)
be an affine open such that ωE|U is free of rank one and we choose a basis ω of ωE|U . If we

denote x := H̃a(E/R′, ω) ∈ R′, then Zp〈x〉 ⊂ R′ is an étale extension after possibly shrinking
U , i.e., in a small enough neighborhood of the supersingular points, as Igusa proved that x has
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simple zeroes on R′/pR′ exactly at the supersingular points in U . Now let UI = Spf(R) with
R = R′⊗̂ZpΛ

0
I the inverse image of U in XI and let V = Spf(A) be the inverse image of U via

the morphsim Xr,I −→ X. As Xr,I is the open of the blow-up of XI along the ideal
(
p, xp

r+1)

where this ideal is generated by xp
r+1

, we have A = R〈y〉/
(
xp

r+1
y − α

)
.

We have that Uord
I = Spf(Rord) and V ord = Spf(Aord) where Rord = R〈1/x〉 and Aord =

A⊗̂RR〈1/x〉. For every h the morphism R/αhR → Rord/αhRord is injective since the special
fiber of X1(N) at p is irreducible.

We claim that the kernel of A/αhA→ Aord/αhAord is annihilated by xhp
r+1

. This is equivalent
to proving the first statement of the Lemma. Notice that, as Zp〈x〉 ⊂ R′ is étale, then A0 :=
Λ0
I〈X, Y 〉/

(
Xpr+1

Y − α
)
→ A sending X 7→ x ad Y 7→ y is étale. In particular it is flat and,

hence, it suffices to prove the statement replacing A with A0 and Aord with Λ0
I〈X,X

−1〉. The
kernel Ih of the map

A0/α
hA0 = Λ0

I/α
hΛ0

I [X, Y ]/
(
Xpr+1

Y − α
)
−→ Λ0

I/α
hΛ0

I [X,X
−1]

is Ih =
(
Y h, αY h−1, . . . , αh−1Y

)
which is principal and generated by Y h since α = Y Xpr+1

so

that αjY h−j = Y hXjpr+1
for every 1 ≤ j ≤ h. Since Xhpr+1

Y h = αh, the claim follows.
We consider now the morphism IG1,r,I → Xr,I and let Spf(C) be the inverse image of V . Since

x admits a p− 1-th root in C (see Remark 3.2) then C is the normalization of A[z]/(zp−1 − x).
Since x has simple poles modulo p then R′′ = R[z]/(zp−1 − x) is normal and A[z]/(zp−1 − x) =
R′′〈y〉/

(
zp

r+1
y − α

)
is already normal (cf. [AIPHS, Lemme 3.4]) and, hence, equal to C. We

conclude that C is flat over A and the second statement of the Lemma for n = 1 follows.
From the proof of Proposition 3.5 of [AIPHS] it follows that there is a natural morphism

IGn,r,I → H∨
n and that IGn,r,I is the normalization of IG′

n,r,I := H∨
n ×H∨

1
IG1,r,I . Note that

IG′
n,r,I → IG1,r,I is flat so that the kernel of OIG′

n,r,I
/αhOIG′

n,r,I
→ ι∗

(
OIGord

n,r,I
/αhOIGord

n,r,I

)
is anni-

hilated by δhp
r+1(p−1). Again from [AIPHS, Prop. 3.5] we know that the different ideal D(H∨

n /H
∨
1 )

of H∨
n over H∨

1 is such that δp
n−p ⊂ D(H∨

n /H
∨
1 ). We conclude that the same must be true for

the different ideal D(IG′
n,r,I/IG

′
r,1,I) of IG′

n,r,I over IG′
r,1,I , i.e., δp

n−p ⊂ D(IG′
n,r,I/IG

′
1,r,I).

Since IGn,r,I → IG′
n,r,I is defined by taking the normalization, it is finite and we conclude that

δp
n−pOIGn,r,I

⊂ OIG′
n,r,I

and the second statement of the Lemma for n ≥ 2 follows.

3.2 A new definition of wk,0.

We’d now like to use the theory of Section 2, i.e., the vector bundles with marked sections in
order to give a new definition of the sheaves wk defined in [AIPHS] and recalled in Section 3.1
of this article.

We choose I, r, n satisfying the assumptions of Definition 3.1 and k = kI : Z
∗
p −→ Λ∗

I the

universal character and k0I = kIk
−1
I,f : Z

∗
p → (Λ0

I)
∗ its “restriction” to Λ0

I . There exists a unique

element u = uk ∈ p1−nΛ0
I such that tk := k(t) = exp

(
u log(t)

)
for all t ∈ 1 + pnZ∗

p. Let
E −→ IGn,r,I be the semiabelian scheme over the level n-th Igusa curve.

It would be natural to use as a pair (E , s) consisting of a locally free sheaf E of rank one and
marked section s, the OIGn,r,I

-module ωE and s = dlog(Pn) seen as a section of ωE/βnωE via
the following diagram (see the Section 6.1).
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ωE
↓

H∨
n

d log
−→ ωHn

↓
ωE/βnωE

(1)

Here, β
n
= pnHdg(E)−

(pn−1)
p−1 and Pn is the universal generator of H∨

n over IGn,r,I . Un-
fortunately the pair (ωE, dlog(Pn)) does not satisfy the conditions of Section 2.2 because the
cokernel of the inclusion dlog(Pn)

(
OIGn,r,I

/β
n

)
→֒ ωE/βnωE is precisely annihilated by the ideal

δ. Therefore one of ωE or dlog(Pn) must be modified.

Definition 3.5. We denote by ΩE the OIGn,r,I
-submodule of ωE generated by all the lifts of

dlog(Pn).

Recall the following properties (see Section 6.1):

a) ΩE is a locally free OIGn,r,I
-module of rank 1.

b) The map dlog defines an isomorphism:

H∨
n

(
IGn,r,I

)
⊗Z OIGn,r,I

/β
n
∼= ΩE/βnΩE .

In particular it follows that the pair (ΩE , s) = dlog(Pn)) is a locally free sheaf with a marked
section. Concerning (a) we have ΩE = δωE (with the notation of Remark 3.2). In particular for
p ≥ 5 the sheaf ΩE is a free OIGn,r,I

-module of rank one (instead of only a locally free one). We
now apply the theory of Section 2.2 to the pair (ΩE , s) and we have the morphisms of formal
schemes

V0(ΩE , s)
π
−→ IGn,r,I

hn−→ Xr,I ,

and we denote by f0 := hn ◦ π : V0(ΩE , s) −→ Xr,I .

Denote by T ⊂ Text the formal groups over Xr,I defined on points by: if ρ : S −→ Xr,I is a
morphism of formal schemes, we let T(S) := 1 + ρ∗(β)nOS ⊂ Text(S) := Z∗

p

(
1 + ρ∗(β

n
)OS

)
⊂

Gm,S. We only need to remark that β
n
= pnHdg

pn−1
p−1 , which was so far used as an ideal of OIGn,r,I

is in fact an ideal of OXr,I
.

We have natural actions of T and respectively Text on V0(ΩE , s) over IGn,r,I and respectively
Xr,I , defined on points as follows:

(1) Let ρ : S −→ IGn,r,I be a morphism of formal schemes and let t be an element of T(S)
and v a point in V0(ΩE , s)(S). Let us recall that v : ρ∗(ΩE) −→ OS is an OS-linear map
such that if denote by v := v

(
mod ρ∗(β

n
ΩE)

)
, then v(s) = 1. We define the action of T(S) on

V0(ΩE , s)(S) by t∗v := tv. This is functorial and so it defines an action of T on on the morphism
V0(ΩE , s) −→ IGn,r,I .

(2) Let now u : S −→ Xr,I be a formal scheme. Then a point of V0(ΩE , s)(S) is a pair (ρ, v)
consisting of a lift ρ : S −→ IGn,r,I of u : S −→ Xr,I and an OS-linear map v : ρ∗(ΩE) −→ OS
such that v

(
ρ∗(s)

)
= 1.
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Take λ ∈ Z∗
p and let λ be its image in (Z/pnZ)∗, seen as the Galois group of the adic generic

fiber IGn,r,I of IGn,r,I and let us denote by λ : IGn,r,I
∼= IGn,r,I the automorphism over Xr,I

that it defines. Associated to λ there is a natural isomorphism γλ : ΩE ∼= λ
∗
(ΩE) characterized

by the relation: γλ
(
dlog(Pn)

)
= λ

∗(
dlog(Pn)

)
= (λ)−1 · dlog(Pn). Now if (ρ, v) is a point of

V0(ΩE , s)(S) and λ ∈ Z∗
p we define λ ∗ (ρ, v) :=

(
λ ◦ ρ, v ◦ γ−1

λ

)
. One easily shows that with this

definition t ∗ (ρ, v) ∈ V0(ΩE, s)(S).

Definition 3.6. We define the sheaf wnew,k,0 := f0,∗
(
OV0(ΩE ,s)

)[
k0I
]
, i.e., wnew,k,0 is the sheaf on

Xr,I on whose sections x, the sections t of Text act by t ∗ x = k0I (t) · x.

We first have

Lemma 3.7. We have a natural isomorphism of formal schemes a : Fn,r,I −→ V0(ΩE , s) over
Xr,I, wich behaves as follows with respect to the Text-action: if σ, x are section of Text and
respectively of Fn,r,I, then a(σ ∗ x) = σ−1 ∗ a(x).

Proof. We will define the morphism a on S-points, where s : S −→ Xr,I is a morphism of
formal schemes. A point of Fn,r,I(S) is a pair (ρ, ω) where ρ = ρP is a lift of s to a morphism
ρ : S −→ IGn,r,I , P = ρ(Pn) is a generator of H∨

n (S) and ω ∈ H0(S, ρ∗(ΩE)) is such that
ω = dlog(P ). We define aS(ρ, ω) := (ρ, ω∨), i.e. if ω = dlog(P ) and P is a generator of H∨

n (S),
then ω is an OS(S)-basis of H0(S, ρ∗(ΩE)) and we denote by ω∨ the unique OS-linear map
ω∨ : ρ∗(ΩE) −→ OS such that ω∨(ω) = 1.

It is obvious that (ρ, ω∨) ∈ V0(ΩE , s)(S) and we leave it to the reader to check that all the
properties claimed in the lemma follow easily.

Lemma 3.7 implies the following

Corollary 3.8. We have an isomorphism of OXr,I
-modules wnew,k,0 ∼= wk,0 on Xr,I.

3.2.1 Local description of wnew,k,0.

Let ρ : S = Spf(R) −→ IGn,r,I be a morphism of formal schemes, where S does not have
α-torsion and such that ρ∗(ωE) is a free R-module. We choose an R-basis ω of ρ∗(ωE) and

denote βn := pn/(H̃a(E/R, ω))
pn−1
p−1 , δ := ∆(E/R, P1, ω) generators of ρ∗(β

n
) and respectively

ρ∗(δ). Let e denote an R-basis of ρ∗(ΩE) such that e(mod βnR) = ρ∗(dlog(Pn)). Then we
have: V0(ΩE , s)(S) = {v : ρ∗(ΩE) −→ R,R − linear, such that v(s) = 1} = (1 + βnR)e

∨, where
e∨ is the dual basis to e. As described in Section 2.2, ρ∗

(
OV0(ΩE ,s)

)
= R〈Z〉, where the point

v = (1 + βnr)e
∨ ∈ V0(ΩE , s)(S) corresponds to the R-algebra homomorphism R〈Z〉 −→ R

sending Z → r = (1+βnr)−1
βn

. We define the action of T(S) on R〈Z〉 by:

t ∗ Z is the element of R〈Z〉 such that (t ∗ v)(Z) = v(t ∗ Z) for all v ∈ V0(ΩE , s)(S), t ∈ T(S).

More precisely, suppose that t = 1 + βnb ∈ T(S) and v = (1 + βna)e
∨. Let us denote

t ∗ Z =
∑∞

n=0 anZ
n with an ∈ R and an → 0 as n → ∞. Then we have: v(t ∗ Z) =

∑∞
n=0 ana

n

and (t ∗ v)(Z) = a + b+ βnab. Therefore we obtain: b+ (1 + βnb)a =
∑∞

n=0 ana
n for all a ∈ R.

It follows that for t ∈ T(S), the action of t on R〈Z〉 id given by:

t ∗ Z :=
t− 1

βn
+ tZ.
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Let us denote by w
′,k := π∗

(
OV0(ΩE ,s)

)
[kI ], where the action is the action of T. Here w

′,k is a
sheaf on IGn,r,I which can be described locally by the following lemma.

Lemma 3.9. a) ρ∗
(
w

′,k
)
= R〈Z〉[k] = R · (1 + βnZ)

k = R · k(1 + βnZ).

b) w
′,k is a locally free OIGn,r,I

-module of rank one.

Proof. b) is a consequence of a) so let us prove a).
Let us first see that because of the analyticity properties of k, we have (1 + βnZ)

k :=
k(1 + βnZ) ∈ R〈Z〉∗. Moreover if t ∈ T(S) we have:

t ∗ (1 + βnZ) = t · (1 + βnZ) which implies t ∗ (1 + βnZ)
k = k(t)(1 + βnZ)

k,

i.e., R(1 + βnZ)
k ⊂ R〈Z〉[k]. To show the inverse inclusion it would be enough to see that

R〈Z〉T(S) = R. Let g(Z) =
∑∞

n=0 anZ
n ∈ R〈Z〉T(S). Then if t ∈ T(S) we have

g(Z) = t ∗ g(Z) =
∞∑

n=0

an

(t− 1

βn
+ tZ

)n
,

for Z = 0 the above relation implies: for all u ∈ R,
∑∞

n=1 anu
n = 0 which implies that an = 0

for all n ≥ 1. Therefore g(Z) ∈ R.

If we wish to describe wnew,k we need to consider the residual Z∗
p-action on w

′,k and descend
from IGn,r,I to Xr,I .

Suppose first n = 1. In that case ΩE = ∆OIG1,r,I
and if ρ : S = Spf(R) −→ IG1,r,I is a

morphism of formal schemes lifting s : S −→ Xr,I , and ω, β1, δ are as above, we can choose
a basis e of ρ∗(ΩE) to be: e = δω = ∆. We then know that e(mod β1R) = dlog(P1) and
e∨ := δ−1ω∨. If λ ∈ Z∗

p and denote by λ its image in (Z/pZ)∗, then we have λ ∗ e∨ = w(−λ)e∨,
where w : (Z/pZ)∗ −→ µp−1 is the Teichmüller map.

Therefore if we denote by Z the function on V0(ΩE , s)S corresponding to this choice of basis
we have: if λ ∈ Z∗

p then

λ ∗ Z =
λ− w(λ)

p
+ λZ,

and so λ ∗ (1 + pZ)k = k(λ)(1 + pZ)k = k(λ)(1 + pZ)k. Therefore s∗(w
′,k) = R〈Z〉[k] for the

action of the big torus Text(S), i.e., s∗(w
′,k) = R · (1+ pZ)k. In particular wnew,k is a locally free

OXr,I
-module of rank 1.

If n ≥ 2 then such explicit actions of Z∗
p on w

′,k cannot be found and so in order to descend to
Xr,I one has to use traces as in [AIPHS].

3.3 The sheaf Wk.

We fix a closed interval I ⊂ [0,∞) as in Section §3.1 and denote by n, r integers compatible
with this choice of interval as in Definition 3.1. Let us also denote by (Λ0

I , α) a pair as in Section
§3.1 and denote by ΩE the subsheaf of ωE given in Definition 3.5.
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Let HE denote the contravariant Dieudonné-module attached to the p-divisible group of the
universal elliptic curve of the complement of the cusps inX = X1(N). It is a locally free coherent
sheaf on this complement with an integrable connection ∇ and a Hodge filtration. The sheaf
HE extends naturally to a locally free OX -module over the whole X , denoted also HE with:

a) a logarithmic connection ∇ : HE −→ HE ⊗OX
Ω1
X/Zp

(log(C)), where C is the divisor of the
cusps.

b) a Hodge filtration
0 −→ ωE −→ HE −→ ω−1

E −→ 0.

Having fixed I, r, n we have natural formal schemes with morphisms IGn,r,I −→ Xr,I −→ Y

(the formal scheme associated to X1(N)) and we can base-change the triple (HE ,∇,Fil
•) over

IGn,r,I where we denote it by the same symbols: (HE ,∇,Fil
•).

The data I, r, n also fixes a universal weight k : Z∗
p −→ Λ∗

I . Let us denote by (see Section

6.1) H#
E := ΩE + δpHE . As δ is a locally free OIGn,r,I

-module of rank 1, then H♯
E is a locally free

OIGn,r,I
-module of rank 2, with Hodge filtration given by the exact sequence

0 −→ ΩE −→ H♯
E −→ δpω−1

E −→ 0.

Therefore if we consider the ideal β
n
= pn/Hdg

pn−1
p−1 of OXr,I

and we denote by s := dlog(Pn) ∈

ΩE/βnΩE →֒ H♯
E/βnH

♯
E, then the pair (H♯

E, s) is a pair consisting of a locally free sheaf and a
marked section. We therefore have the sequence of formal schemes and morphisms of formal

schemes V0(H
♯
E, s)

π
−→ IGn,r,I

hn−→ Xr,I .

We denote by HE,♯ the dual of H♯
E and by f0 : V0(H

♯
E , s) −→ Xr,I the structure morphism,

i.e. f0 := hn ◦ π.

3.3.1 Actions of formal tori on V0(H
♯
E , s).

Let us recall that we have denoted by T ⊂ Text the formal groups over Xr,I defined by: if
ρ : S −→ Xr,I is a morphism of formal schemes, then T(S) := 1 + ρ∗(β

n
)OS ⊂ Text(S) :=

Z∗
p

(
1 + ρ∗(β

n
)OS

)
⊂ Gm,S .

As in Section 3.2, we have natural actions of T and respectively Text on V0(H
♯
E , s) over IGn,r,I

and respectively Xr,I . Let us quickly recall how this action is defined on points:

(1) Let ρ : S −→ IGn,r,I be a morphism of formal schemes and let t be an element of T(S)

and v a point in V0(H
♯
E , s)(S). We define the action of T(S) on V0(H

♯
E , s)(S) by t∗ v := tv. This

is functorial and so it defines an action of T on V0(H
♯
E , s) over IGn,r,I .

(2) Let now u : S −→ Xr,I be a formal scheme. Then a point of V0(H
♯
E , s)(S) is a pair (ρ, v)

consisting of a lift ρ : S −→ IGn,r,I of u : S −→ Xr,I and an OS-linear map v : ρ∗(H♯
E) −→ OS

such that v
(
ρ∗(s)

)
= 1.

Let now λ ∈ Z∗
p and let λ be its image in (Z/pnZ)∗, seen as the Galois group of the adic

generic fiber IGn,r,I of IGn,r,I and let us denote by λ : IGn,r,I
∼= IGn,r,I the automorphism over

Xr,I that it defines.

Associated to λ there is a natural isomorphism γλ : H
♯
E
∼= λ

∗
(H♯

E) characterized by: γλ
(
dlog(Pn)

)
=

λ
∗(
dlog(Pn)

)
= (λ)−1 · dlog(Pn).
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Therefore if (ρ, v) is a point of V0(H
♯
E , s)(S) and λ ∈ Z∗

p we define λ∗ (ρ, v) :=
(
λ◦ρ, v ◦γ−1

λ

)
.

As in Section 3.2 one can show that with this definition t ∗ (ρ, v) ∈ V0(H
♯
E , s)(S).

Let us recall that we have a universal weight associated to our choices of r, I, n and that the
analyticity properties of this weight imply that if t ∈ Text(S) for some formal scheme S −→ Xr,I

then we can evaluate k(t) and we get a section of O∗
S.

Definition 3.10. Fix r, n and a closed interval I := [pa, pb] ⊂ [0,∞) as in Definition 3.1. We
define the sheaf W0

k,I := f0,∗
(
O

V0(H
♯
E ,s)

)
[k], i.e. W0

k,I is the sheaf on Xr,I on whose sections x, the

sections t of Text act by t ∗ x = k(t) · x.
For r ≥ 3 if p ≥ 3 and r ≥ 5 for p = 2 and I = [p,∞] we define W0

k,I = limn≥1W
0
k,[pn,pn+1].

We let Wk,I := W0
k,I ⊗OXr,I

wkf .

Let us point out that the inclusion ΩE ⊂ H♯
E gives a filtration of locally free sheaves with

marked sections (ΩE , s) →֒ (H♯
E, s), therefore the sheaf f0,∗

(
O

V0(H
♯
E ,s)

)
has a canonical filtration

Fil•

(
f0,∗
(
O

V0(H
♯
E ,s)

))
:= f0,∗

(
Fil•OV0(H

♯
E ,s)

)
.

Theorem 3.11. The action Text on f0,∗
(
O

V0(H
♯
E ,s)

)
preserves the filtration f0,∗

(
Fil•OV0(H

♯
E ,s)

)

defined in Corollary 2.6. For every h define FilhW
0
k,I := f0,∗

(
FilhOV0(H

♯
E ,s)

)
[k]. for r, n and

I ⊂ [0,∞) as in Definition 3.1 and, for r ≥ 3 if p ≥ 3 and r ≥ 5 for p = 2, as FilhW
0
k,I :=

limn≥1 FilhW
0
k,[pn,pn+1] for I = [p,∞]. Then,

i. FilhW
0
k,I is a locally free OXr,I

-module for the Zariski topology on X;

ii. W0
k,I is the α-adic completions of limh FilhW

0
k,I.

iii. Fil0W
0
k,I
∼= wk,0

I and GrhW
0
k,I
∼= wk,0

I ⊗OXr,I
Hdghω−2h

E .

Define FilhWk,I := FilhW
0
k,I⊗OXr

wkf . It defines an increasing filtration {FilhWk,I}h by direct

summands such that the analogous Claims (ii) and (iii) hold (replacing wk,0
I with wk

I ).

The sheaves W0
k,I, Wk,I and their filtrations glue to sheaves W0

k, Wk, {FilhW0
k}h, {FilhWk}h

over Xr,[0,∞) (resp. Xr,[0,∞]) if r ≥ 1 (resp. r ≥ 3) if p ≥ 3 and r ≥ 3 (resp. r ≥ 5) for p = 2.

Finally if k ∈ N is a classical weight then we have a canonical identification

Symk
(
HE

)
[1/α] = Filk(Wk)[1/α]

as sheaves on Xr,I, compatibly with the filtrations considering on Symk
(
HE

)
the natural Hodge

filtration.

Proof. The proof of Claims (i), (ii) and (iii) of the theorem for r, n and a closed interval
I ⊂ [0,∞) as in Definition 3.1 for W0

k will be given in Section 3.3.3. As FilhW
0
k ⊂ W0

k is
locally a direct summand by (i) and (ii), then the analogous statements for Wk follow. Since
the construction of V0(H

♯
E , s) does not depend on I and is functorial in n and since wk,0 arises

from an invertible sheaf on the whole Xr,[0,∞) by [AIPHS, Thm. 5.1], then Claims (ii) and (iii)
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imply that W0
k,I , Wk,I and their filtrations do not depend on n and glue for varying intervals I

to sheaves W0
k, Wk on Xr,[0,∞).

We deduce from this the theorem for I = [p,∞] assuming that r ≥ 3 if p ≥ 3 and r ≥ 5
for p = 2. Claim (i) holds for Fil0W

0
k,I
∼= wk,0

I : it is free Xr,I-module over every affine formal

subscheme of X on which ωE is free and it coincides with the limit limn≥1w
k,0
k,[pn,pn+1] due to

[AIPHS, Rmk. 6.2]. Then the same statements hold true for the sheaves FilhW
0
k,I thanks

to claims (i) and (iii) for FilhW
0
k,[pn,pn+1] and their functoriality in the interval [pn, pn+1]. As

wk,0
I = limn≥1w

k,0
[pn,pn+1] by [AIPHS, Thm. 6.4] and OXr,I

= limm≥nOXr,[pn,pn+1]
by [AIPHS,

Lemme 6.5] claims (ii) and (iii) hold also for I = [p,∞].
For the last part of the Theorem for integral weights k, recall that we have an inclusion

H♯
E ⊂ HE of sheaves over IGn,r,I , compatible with the filtrations, which is an isomorphism after

inverting α. By Definition 2.3 and Lemma 2.2 this provides natural morphisms V0(H
♯
E , s) →

V(H♯
E)← V(HE)|IGn,r,I

of formal vector bundles (with section) over IGn,r,I . Notice that structure

sheaf of V(H♯
E), resp. V(HE) is identified with the α-adic completion of the symmetric algebra

of H♯
E , resp. HE (see the proof of Lemma 2.2). It follows from the local description of FilkW

0
k

in Lemma 3.13 that these morphisms map Symk
(
H♯
E

)
→ FilkW

0
k and clearly Symk

(
H♯
E

)
→

Symk
(
HE

)
and that these are isomorphisms of sheaves over IGn,r,I after inverting α. This

provides the claimed identification over IGn,r,I . It follows directly from the definition of the
filtration in §2.3 that this isomorphism is compatible with the filtrations.

3.3.2 Local description of V0

(
H♯
E , s
)

Let ρ : S = Spf(R) −→ IGn,r,I be a morphism of formal schemes over Λ0
I (without α-torsion)

such that ρ∗(ωE) is a free R-module of rank one. Let as usual ω, βn, δ denote an R-basis of
ρ∗(ωE), the appropriate generator of ρ∗(β

n
) and an appropriate generator of ρ∗(δ). We fix an

R-basis (f, e) of ρ∗(H♯
E) such that f(mod βnR) = ρ∗(dlog(Pn)), where, let us recall, Pn is the

universal generator of H∨
n over IGn,r,I. We denote by (f∨, e∨) the dual R-basis of HE,♯. Since

f∨(f) = 1 = f∨
(
ρ∗(dlog(Pn)

)
and e∨(f) = 0 = e∨

(
dlog(Pn))

)
modulo βnR, it follows from

Definition 2.3 that

V0

(
H♯
E , s
)
(S) = {af∨ + be∨ | a ∈ 1 + βnR and γ ∈ R}

and thanks to Lemma 2.4 we have that V0

(
H♯
E

)
×IGn,r,I

S = Spf
(
R〈Z, Y 〉

)
. A point x =

af∨ + be∨ ∈ V0(H
♯
E)(S) corresponds to the R-algebra homomorphism R〈Z, Y 〉 −→ R sending

Z 7→ a−1
βn

and Y 7→ b.

Remark 3.12. We have an interesting interpretation of the sections of the sheaf ρ∗
(
O

V0(H
♯
E ,s)

)
.

Let us first remark that V0(H
♯
E)(S) can be naturally identified with

HE,0(S) = {u ∈ ρ
∗
(
HE,♯

)
| u(mod βnR)ρ

∗
(
dlog(Pn)

)
= 1}.

Recall that HE,♯ is the dual of H♯
E and the expression u(mod βnR)ρ

∗
(
dlog(Pn)

)
stands for

the pairing of u, modulo βn, and dlog(Pn). Therefore the sections of ρ∗
(
O

V0(H
♯
E ,s)

)
can be
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seen as functions γ : HE,0(S) −→ R which are analytic in the sense that there is g(Z, Y ) ∈
ρ∗
(
O

V0(H
♯
E ,s)

)
= R〈Z, Y 〉 such that for all z, y ∈ R we have γ

(
(1 + βnz)f

∨ + ye∨
)
= g(z, y). We

recall that (f∨, e∨) is the basis of ρ∗(HE,♯) which is R-dual to (f, e).

Let v ∈ V0(H
♯
E)(S), then v : ρ∗(H♯

E) → OS is OS-linear and v(s) = 1, i.e. v ∈ HE,0(S). Take
t ∈ T(S) ⊂ Text(S) and γ : HE,0(S) −→ R an analytic function, we have (t−1 ∗ γ)

(
v) = γ(tv). If

v = af∨+be∨ ∈ HE,0(S) then (t−1 ∗γ)(af∨+be∨) = γ
(
taf∨+ tbe∨

)
= g
(
ta, tb

)
, where g(Z, Y ) ∈

R〈Z, Y 〉 = ρ∗
(
O

V0(H
♯
E)

)
is the section associated to γ. Then (t−1 ∗ g)(Z, Y ) = g

(
t−1
βn

+ tZ, tY
)
,

i.e., then t ∗ (1 + βnZ) = t−1(1 + βnZ) and t ∗ Y = t−1Y .

Let us recall that we denoted π : V0(H
♯
E , s) −→ IGn,r,I the structure morphism and that we

have an action of T on this morphism.

Lemma 3.13.

ρ∗
(
π∗
(
O

V0(H
♯
E ,s

)
[k]
)
= R〈Z, Y 〉[k] =

{ ∞∑

m=0

am(1 + βnZ)
k Y m

(1 + βnZ)m

}
,

where am ∈ R for all m ≥ 0 such that am → 0 as m → ∞. Similarly π∗
(
FilhW

0
k

)
[k] =

{ h∑

m=0

am(1 + βnZ)
k Y m

(1 + βnZ)m
, where am ∈ R for all m = 0, ..., h

}
.

Proof. Clearly (1 + βnZ)
k−mY m ∈ ρ∗(O

V0(H
♯
E ,s)

) = R〈Z, Y 〉 and if a ∈ T(S), then a ∗ (1 +

βnZ)
k−mY m = k(a)

(
(1 + βnZ)

k−mY m
)
for every m ≥ 0.

In order to prove the converse let us first prove:
(
R〈Z, Y 〉

)T(S)
= R〈V 〉, where we denoted

by V :=
Y

1 + βnZ
∈ R〈Z, Y 〉. It is obvious that R〈V 〉 ⊂

(
R〈Z, Y 〉

)T(S)
.

Let us notice that every element f(Z, Y ) =
∑∞

i,m=0 ai,mZ
iY m ∈ R〈Z, Y 〉 can be written

uniquely as f(Z, Y ) = g(Z, V ) :=
∑∞

u,v=0 bu,vZ
uV v by writing Y m = V m(1 + βnZ)

m, where
bu,v → 0 as u+ v →∞. Then if a ∈ 1 + βnR = T(S), we have that a ∗ g(Z, V ) = g(Z, V ) if and
only if:

∞∑

u,v=0

bu,v
(a− 1

βn
+ aZ

)u
V v =

∞∑

u,v=0

bu,vZ
uV v.

Regarding the above equality as an equality in R〈Z〉[[V ]] for every v ≥ 0 we must have:∑∞
u=0 bu,v

(
a−1
βn

+ aZ
)u

=
∑∞

u=0 bu,vZ
u. For Z = 0 this gives

∑∞
u=1 bu,v

(
a−1
βn

)u
= 0, for every

a ∈ 1 + βnR. The Weierstrass preparation theorem implies that for every v ≥ 0, bu,v = 0 for
u ≥ 1, i.e. g(Z, V ) =

∑∞
v=0 b0,vV

v ∈ R〈V 〉, which proves the claim.
Now obviously R〈Z, Y 〉[k] is naturally an R〈V 〉-module and if f(Z, Y ) ∈ R〈Z, Y 〉[k] then

f(Z, Y )

(1 + βnZ)k
∈
(
R〈Z, Y 〉

)T(S)
= R〈V 〉,

therefore f(T, Y ) = (1 + βnZ)
kR〈V 〉 which proves the lemma.
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3.3.3 The proof of theorem 3.11.

Let us recall the sequence of formal schemes and morphisms:

V0(H
♯
E, s)

π
−→ IGn,r,I

hn−→ Xr,I we denoted by f0 := hn ◦ π.

We have denoted by W0
k := f0,∗

(
O

V0(H
♯
E ,s)

)
[k], where the action is that of Text and by W̃0

k :=

π∗
(
O

V0(H
♯
E ,s)

)
[k], for the action of T. Then we obviously have W0

k = hn,∗
(
W̃0

k

)
[k], for the action

of Z∗
p.

Let us remark that lemma 3.13 implies that the filtration of W̃0
k defined as Filh(W̃0

k) :=

π∗
(
Filh(OV0(H

♯
E ,s)

)
[k] is a locally free OIGn,r,I

-module of rank h + 1 and W̃0
k is the α-adic com-

pletion of limh Filh(W̃
0
k). Moreover we have GriW̃0

k
∼= (w′)k ⊗

(
HdgiEω

−2i
E

)
, where let us recall

that (w′)k = π∗
(
OV0(ΩE ,s)

)
[k] for the action of T.

Let U = Spf(R) be an open affine subscheme of Xr,I such that ωE|U is free and let ω be an
R-basis of ωE(U). Let us denote by V = Spf(Rn) := h−1

n (U) ⊂ IGn,r,I .
It is shown in Lemma 5.3 of [AIPHS] that the map V0(ΩE , s) → IGn,r,I induces an T-

equivariant isomorphism Rn/qRn
∼= (w′)k(V )/q(w′)k(V ) (using Definition 3.6 and Corollary 3.8

to identify (w′)k as a subsheaf of the structure sheaf of V0(ΩE , s)). For every i ≥ 0 choose an
element

si ∈
(
(w′)k(V )⊗ HdgiEω

−2i
E (V )/(q)

)
(V ) ∼= (Rn/qRn)⊗

(
HdgiEω

−2i
E (V )/(q)

)
(V ),

mapping to the class of HdgiEω
−2i. In particular si is anRn/pRn-generator of

(
GriW̃0

k/qGriW̃0
k

)
(V )

such that for every t ∈ Text(V ) we have t ∗ si = si as HdgiEω
−2i is invariant for the T-action.

Let si ∈ Fili(W̃
0
k)(V ) be such that si

(
mod pFili(W̃

0
k)
)
= si for every i ≥ 0. We denote by

h := H̃dg(E/R, ω). By Corollary 3.1 of [AIPHS], there is an element cn ∈ h
− pn−p

p−1 Rn such that
we have Tr(cn) = 1, where Tr denotes the trace of Rn over R.

Let us denote for every i ≥ 0, by

s̃i := ecn(si) :=
∑

σ∈(Z/pnZ)∗

k(σ̃)
(
σ(cnsi)

)
∈ H0

(
U, hn,∗

(
W̃0

k

))
.

Here σ̃ ∈ Z∗
p is a lift of σ. We have

Lemma 3.14. s̃i ∈ H0
(
U, hn,∗

(
Fili(W

0
k)
))

and s̃iR ∼= Gri(W0
k)(U) = wk,0(U)⊗R ω

−2i
E (U)

Proof. Let us first remark that the elements s̃i belong to H0(U,W0
k). We write si = hiω−2i+ pfi

where fi ∈ H0(V, W̃0
k). Therefore

s̃i =
( ∑

σ∈(Z/pnZ)∗

k(σ̃)σ(cn)
)
hiω−2i + p

∑

σ∈(Z/pnZ)∗

k(σ̃)σ(cnfi).

Let us observe that if we denote by Roo the ideal of R of its topologically nilpotent elements,

then following the arguments of Lemma 5.4 of [AIPHS] we have:
(∑

σ∈(Z/pnZ)∗ k(σ̃)σ(cn)
)
∈

1 + RooRn and p
∑

σ∈(Z/pnZ)∗ k(σ̃)σ(cnfi) ∈ R
ooO

V0(H
♯
E ,s)

(f−1
0 (U)). Again the arguments in the

proof of Lemma 5.4 of [AIPHS] imply that s̃i ∈ Fili(W
0
k)(U) and its image in Gri(W0

k)(U) =
wk,0(U)⊗R (hiω−2i

E (U)) generates this R-module.
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Lemma 3.14 proves the part related to the filtration in the statement of Theorem 3.11.
To prove the rest of Theorem 3.11 let us also remark that we have (using the arguments in

the proof of Lemma 5.4 of [AIPHS] and the notation of Lemma 3.14) that:

s̃i − si =
∑

σ∈(Z/pnZ)∗

k(σ̃)
(
σ(cnsi)− si

)
=

∑

σ∈(Z/pnZ)∗

k(σ̃)
(
σ(cnsi)− σ(cn)si

)
=

=
∑

σ∈(Z/pnZ)∗

(
σ(cn)(σ(si)− si

)
∈ RooFilh(W̃

0
k).

It follows that (s̃i)
h
i=0 is an Rn-basis of Filh(W̃

0
k) and also an R-basis of Filh(W

0
k). Therefore

W0
k(U) is the α-adic completion of the R-module limhFilh(W

0
k).

For future applications it is also useful to denote by W0 := f0,∗
(
O

V0(H
#
E ,s)

)
. It is a sheaf of

OXr,I
-algebras on Xr,I containing all W0

k for various weights k. We have

Lemma 3.15. Suppose that α = p and let i > 0. Then W0/piW0 is a locally free OXr,I
/piOXr,I

-
module.

Proof. Let us remark that if we denote by W̃0 := π∗
(
O

V0(H
#
E ,s)

)
, then the local description of

this sheaf in Section 3.3.2 implies immediately that W̃0/piW̃0 is a locally free OIGn,r,I
/piOIGn,r,I

.
Now if α = p then XI ,Xr,I, IGn,r,I are all base changes to Spf(Λ0

I) of p-adic formal schemes X,
Xr, IGn,r which have absolute dimension 2 and such that Xr is regular and IGn,r −→ Xr is finite
and normal, therefore this morphism is finite and flat. As a consequence OIGn,r,I

/piOIGn,r,I
is a

locally free OXr,I
/piOXn,r,I

module, which proves the lemma.

3.3.4 An alternative construction of Wk,∞.

In this section we provide a purely characteristic p construction of W0
k,∞ and Wk,∞. We work

with the pair (A0, α) with A0 := Λ0/pΛ0 ∼= Fp[[T ]] and α = T .
Fix an integer r ≥ 2 if p is odd and r ≥ 3 if p = 2. As in Section 3.1 let X∞ be the T -adic

formal scheme X∞ := YFp ⊗A0 and let Xr,∞ be the T -adic formal scheme over X∞ representing
the functor associating to every A0-algebra T -adically complete R the set of equivalence classes
of pairs (f, η), where f : Spf(R) −→ X∞ and η ∈ H0

(
Spf(R), f ∗(ω(1−p)pr+1

)
)
such that

η · Hdgp
r+1

= α.

Thanks to [AIPHS, §4.3] for every n we have a natural formal scheme IGn,r,∞ −→ Xr,∞ given
as the normalization of the Igusa tower of level n over the adic fiber of Xr,∞. By loc. cit. we
have a canonical subgroup Hn over IGn,r,∞ and a section ψn : Z/p

nZ→ H∨
n of its Cartier dual,

which is an isomorphism over the ordinary locus of Xr,∞.
Let IG∞,r,∞ be the projective limit limn IGn,r,∞ in the category of T -adic formal schemes.

Thanks to [AIPHS, Prop. 4.2] we have a canonical section ψ : Qp/Zp → colimH∨
n . Proceeding

as in Section 3.2 we have a sheaf H♯
E and an exact sequence

0 −→ ΩE −→ H
♯

E −→ δpω−1
E −→ 0.

with ΩE an invertible sheaf over IG∞,n,∞, endowed with a canonical generator γ of ΩE defined as
the image of 1 via the map Zp → limnH

∨
n provided by ψ, the limit of the maps dlog : H∨

n → ωHn

and the isomorphism ωE → limn ωHn defined by the inclusions Hn ⊂ E using (1)..

26



Definition 3.16. We define the formal scheme

π : V0(H
♯

E, γ) −→ V0(ΩE , s) −→ IG∞,r,∞ −→ Xr,∞,

requiring that for every formal scheme ρ : S → IG∞,r,∞ the S-valued points of V0(H
♯

E , γ)

(resp. V0(ΩE , γ)) over ρ are the OS-linear homomorphisms v : ρ∗
(
H
♯

E

)
→ OS (resp. v : ρ∗

(
ΩE
)
→

OS) such that v(γ) = 1.

Notice that in this case the map V0(ΩE , γ) −→ IG∞,r,∞ is an isomorphism as γ is a generator
of ΩE . Denote by f the morphism from these formal schemes to Xr,∞. As in Definition 3.6 we
set

wk,0
∞ := f∗

(
OV0(ΩE ,s)

)[
k0
]
,

where k is the universal weight and k0 := kk−1
f . As V0(ΩE , γ) ∼= IG∞,r,∞ this coincides with the

sheaf defined in [AIPHS, Thm. 4.1] in terms of the structure sheaf of IG∞,r,∞. Twisting by the

sheaf w
kf
∞ as in Definition 3.1, which is invertible by [AIPHS, §4.4.2], we get an invertible sheaf

wk
∞ over Xr,∞.

Proceeding as in Section 3.3 we have an action of Z∗
p on V0(H

♯

E, γ) and one defines sheaves
W0

k,∞ and Wk,∞ as in Definition 3.10 with filtrations Fil•W
0
k,∞ and Fil•Wk,∞. We will see in

§3.5 that if we invert T , or equivalently if we restrict to the ordinary locus, the filtration is
canonically split.

Theorem 3.17. The following hold

i. FilhW
0
k,∞ and FilhWk,∞ are locally free OXr,∞-modules;

ii. W0
k and Wk are the α-adic completions of limh FilhW

0
k,∞, respectively limh FilhWk,∞.

iii. Fil0W
0
k,∞
∼= wk,0

∞ and GrhW
0
k
∼= wk,0

∞ ⊗OXr,I
HdghEω

−2h
E .

iv. Fil0Wk,∞
∼= wk

∞ and GrhWk,∞
∼= wk

∞ ⊗OXr,I
HdghEω

−2h
E .

v. The sheaves W0
k,∞ and FilhW

0
k,∞ are the base changes to Xr,∞ of the sheaves W0

k,[p,∞] and

FilhW
0
k,[p,∞] over Xr,[p,∞] of Theorem 3.11, respectively.

Proof. Let ρ : S = Spf(R) −→ Xr,∞ be an affine open formal subscheme such that ρ∗(ωE) is a
free R-module with R-basis element ω. Let S∞ := Spf(R∞) the corresponding open of IG∞,r,∞

over S. Write ρ∗
(
H
♯

E

)
= R∞s⊕R∞e (here s is the canonical section of ΩE over S defined above

and e is a generator of δω−1
E over Spf(R∞)). In this case ρ∗

(
π∗
(
O

V0(H
♯
E ,γ)

))
= R∞〈Y 〉, with Y

is the dual of the generator e of δpω−1
E |S. In particular if we let S1 := Spf(R1) be the inverse

image of S in IG1,r,∞ and we choose e the generator δpω−1 of δpω−1
E over S1, then we have the

following analogue of Lemma 3.13:

W0
k,∞(S) = ρ∗

(
π∗
(
O

V0(H
♯
E ,γ)

)
[k0]
)
= sk|SR〈Y

′〉
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where sk is the generator of wk,0
∞ |S defined by s via [AIPHS, Thm. 4.1] and Y ′ = Y

u
with u ∈ R1

such that λ∗u = λ∗δ
δ
u for every λ ∈ (Z/pZ)∗. The filtration Fil•W

0
k,∞(S) is the Y ′-adic filtration.

Using this local description Claims (i)–(iv) of the Theorem follow.
We next sketch the proof of Claim (v). Write I := [p,∞]. One introduces auxiliary objects;

consider the anticanonical tower hr : X∞,I → Xr,I and the Igusa tower IG∞,∞,[p,∞] → X∞,I as
T -adic formal schemes. Over IG∞,∞,[p,∞] the pull–back of ΩE admits a canonical generator

HTun, see [AIPHS, §6.5]. This allows to define V∞
0 (H♯

E ,HT
un) over IG∞,∞,[p,∞] as in Definition

3.16 and hence sheaves W
perf,0
k,[p,∞] over X∞,I . Arguing as in [AIPHS, Prop. 6.4] one gets that

W
perf,0
k,[p,∞] is endowed with a filtration Fil•W

perf,0
k,[p,∞] by locally free sheaves such that GrhW

perf,0
k,[p,∞]

∼=

wperf
I ⊗OX∞,I

HdghEω
−2h
E . Here wperf,0

I = f∗
(
OV∞

0 (ΩE ,HTun)

)
[(k0)−1] can be identified with h∗r(wk)

by [AIPHS, Prop. 6.6].
Note that for every closed interval J ⊂ [p,∞) and every integer n adapted to J we have a

natural commutative diagram

V∞
0 (H♯

E,HT
un) −→ V0(H

♯
E , s)y y

IG∞,∞,J −→ IGn,r,Jy y
X∞,J

hr−→ Xr,I

where V0(H
♯
E, s) is as in Section 3.3. This defines a morphism h∗r

(
W0

k,J

)
−→W

perf,0
k,J that respects

filtrations and induces the isomorphism

h∗r(w
k,0)⊗OX∞,I

HdghEω
−2h
E
∼= wperf,0

J ⊗OX∞,I
HdghEω

−2h
E

on graded pieces and, hence, it is an isomorphism, also on the filtrations. Arguing as in the end
of the proof of [AIPHS, Thm. 6.4] one concludes that the sheaf Wperf,0

k,[p,∞] descends to the sheaf

W0
k,[p,∞] over Xr,[p,∞] defined in Definition 3.10 (for r ≥ 3 if p is odd and r ≥ 5 if p = 2).
By construction we also have a commutative diagram

V∞
0 (H♯

E ,HT
un)∞ −→ V0(H

♯

E, γ)y y
IG∞,∞,∞ −→ IG∞,r,∞y y
X∞,∞

h
−→ Xr,∞

where V∞
0 (H♯

E ,HT
un)∞ is the restriction of V∞

0 (H♯
E,HT

un) to IG∞,∞,∞ and V0(H
♯

E , γ) is as

defined in 3.16. Note that h∗
(
w
k,0
I

)
∼= w

perf,0
I by [AIPHS, Prop. 6.8].

This commutative diagram provides a morphism from h∗
(
W0

k,∞

)
to the restriction Wperf,0

∞

of Wperf,0
k,[p,∞] to X∞,∞, that respects the filtrations and induces an isomorphism on graded pieces

thanks to the cited result of [AIPHS]. Hence it is an isomorphism. On the other hand we know
that Wperf,0

∞ descends to the restriction of W0
k,[p,∞] to Xr,∞. By the uniqueness of the descent –

in this case defined by taking Z∗
p-invariant – the claim follows.
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3.4 The Gauss-Manin connection on Wk.

Let r, n, I, (Λ0
I , α) be as in the previous sections (see Definition 3.1) with the property that

n ≥ 2 and I ⊂ [0,∞). The restriction of k to 1 + pnZp is analytic so there is uI ∈ p1−nΛ0
I such

that tk := k(t) = exp
(
uI log(t)

)
for all t ∈ 1 + pnZp.

Consider the morphism of adic spaces IG ′n,r,I −→ IGn,r,I defined by the trivializations
E[pn]∨ ∼= (Z/pnZ)2 compatible with the trivializations H∨

n
∼= Z/pnZ. Let IG′

n,r,I −→ IGn,r,I be
the normalization as in §3.1 and let hn : IGn,r,I → Xr,I be the natural morphism. It then follows
from Proposition 6.3 and from Lemma 2.9 that over IG′

n,r,I the sheaf W0
k admits an integrable

connection relatively to Λ0
I for which Fil•W

0
k satisfies Griffiths’ tranversality.

Theorem 3.18. The connection on the pull-back of W0
k over IG′

n,r,I descends to an integrable
connection

∇k : h
∗
n

(
W0

k

)
→ h∗n

(
W0

k

)
⊗̂OIGn,r,I

Ω1
IGn,r,I/Λ

0
I
[1/α]

over IGn,r,I for which h∗n
(
Fil•W

0
k

)
satisfies Griffiths’ tranversality. In particular it induces a

connection
∇k : W

0
k →W0

k⊗̂OXr,I
Ω1

Xr,I/Λ
0
I
[1/α]

such that the induced OXr,I
-linear map on th h graded piece

Grh(∇k) : Grh(W
0
k)[1/α] −→ Grh+1(W

0
k)⊗ Ω1

Xr,I/Λ
0
I
[1/α]

is an isomorphism times uI − h and, in particular, it is an isomorphism if and only if uI − h is
invertible in Λ0

I [1/α].
It also induces a connection ∇k : Wk[1/α] → Wk⊗̂OXr,I

Ω1
Xr,I/Λ0

I
[1/α] that satisfies Griffiths’

tranversality and such that the induced map on the h graded piece is an isomorphism times uI−h.
If k ∈ N is an integral weight, the identification Symk

(
HE

)
[1/α]|Xr,I

= Filk(Wk)[1/α] of

Theorem 3.11 is compatible with the connections, considering on Symk
(
HE

)
the Gauss-Manin

connection.

Proof. The proof of the first part is local on Xr,I and will follow from the computations of
§3.4.1. The statement for the descent to Xr,I after inverting α follows from Lemma 3.3 taking
(Z/pnZ)∗-invariants.

For the second part of the Theorem recall from Definition 3.10 that Wk = W0
k⊗OXr,I

wkf and

wkf =
(
gi,∗
(
OIGi,r,I

)
⊗Λ0 Λ

) [
k−1
I,f

]
by Definition 3.1. As Ω1

IGi,r,I/Xr,I
is annihilated by a power of

α, the universal derivation gi,∗
(
OIGi,r,I

⊗Λ0 Λ
)
→ gi,∗

(
Ω1

IGi,r,I/Λ
0
I
⊗Λ0 Λ

)
defines a connection on

wkf [1/α]. This connection and the connection on W0
k induce a connection on the tensor product

Wk[1/α].
For the third part the local expression of the connections is described in §3.4.1 and directly

implies that the given identification is compatible with the connections.

The multiplication structure on π∗
(
O

V0(H
♯
E)

)
induces a multiplication W0

k⊗OXr,I
W0

2 →W0
k+2.

Since Fil0W
0
2 = Ω⊗2

E we have a morphism W0
k ⊗OXr,I

Ω⊗2
E → W0

k+2 which is easily checked,

using Lemma 3.13, to be an isomorphism, preserving the filtrations. We have an identification
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Ω1
X/Λ0

I

∼= ω⊗2
E via Kodaira-Spencer. Thanks to Lemma 3.3 we also have a positive integer cn,

depending on n, such that Hdgcn annihilates Ω1
IGn,r,I/X

, i.e., HdgcnΩ1
IGn,r,I/Λ

0
I
is contained in the

pull-back of Ω1
X/Λ0

I
to IGrn,r,I . In conclusion replacing cn with cn + 3 + ci, with i = 1 for p odd

and i = 2 for p = 2 and using the explict formula for the connection over IGn,r,I provided in
(2), we can write the Gauss-Manin connections as morphisms:

W0
k −→

( 1

pn−1Hdgcn

)
·W0

k+2

and

Wk −→
( 1

pn−1Hdgcn

)
·Wk+2,

here the factor p1−n comes from the fact that u ∈ p1−nΛ0
I .

Remark 3.19. One could refine Theorem 3.18 in order to control the denominators cn of Hdg,
and hence of α, appearing in the connection of W0

k over Xr,I in terms of the integer n, adapted
to I. Unfortunately due to Lemma 3.3 and the more detailed analysis of the inverse different
of IGn,r,I → Xr,I in Lemma 3.4 such powers grow as pn. In particular if we take the limit over
intervals [p, ph] for h→∞ we find a connection with unbounded denominators in α = T .

The conclusion is that the connection ∇ can not be iterated over the whole weight space,
including ∞, using the methods of Section 4.

3.4.1 Explicit, local calculation of the connection ∇k.

Let ρ : S = Spf(R) −→ IG′
n,r,I be a morphism of formal schemes over Spf(Λ0

I). Assume that
the composite of ρ with the projection to the modular curve X factors through some open affine
neighborhood of X over which HE is free with bases {ω, η} where ω spans ωE. Let δ be the
generator ∆(E/R, ω) of ρ∗(δ) of Remark 3.2. By definition of H♯

E, the R-modules ρ∗
(
HE

)
and

ρ∗
(
H♯
E

)
are free of rank 2 with bases {ρ∗(ω), ρ∗(η)} and {f, e|f := δω, e := δpη} respectively. We

also deduce that ρ∗(β
n
) is a principal ideal of R with generator βn and that the given R-basis

{f, e} of ρ∗
(
H♯
E

)
satisfies f(mod βnR) = ρ∗

(
dlog(Pn)

)
.

Let P(1)

R/Λ0
I
⊂ Spf(R⊗̂Λ0

I
R) be the closed immersion defined by the square of the ideal I(∆)

associated to the diagonal embedding ∆: S →֒ S×Λ0
I
S. Thanks to Proposition 6.3 the R-module

ρ∗
(
H♯
E

)
admits an integrable connection ∇♯ that can be expressed via Grothendieck’s formalism

(see in §2.4) as an isomorphism ǫ♯ : j∗2
(
ρ∗(H♯

E)
)
∼= j∗1

(
ρ∗(H♯

E)
)
. Let

A :=

(
a b
c d

)
∈ GL2

(
P(1)

R/Λ0
I

)

be the inverse of the matrix of ǫ♯ with respect to the basis {f ⊗ 1, e ⊗ 1} of j∗2
(
ρ∗(H♯

E)
)
and

{1⊗ f, 1⊗ e} of j∗1
(
ρ∗(H♯

E)
)
.

Lemma 3.20. We have

a) a = 1 + a0, d = 1 + d0 with a0, b, c, d0 ∈ I(∆) and so a20 = b2 = c2 = d20 = 0 in P(1)

R/Λ0
I
.
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b) interpreting a0, b, c, d0 ∈ I(∆)/I(∆)2 ∼= Ω1
R/Λ0

I
we have that a0, b, c, d0 ∈

1
Hdg
· ρ∗
(
Ω1

X/Zp

)

and −Hdg ·c is the Kodaira-Spencer differential KS(ω, η) associated to the local basis {ω, η}
of HE.

Proof. For a) as A
(
mod I(∆)

)
= Id we have that a0 = a− 1, b, c, d0 = d− 1 ∈ I(∆). Moreover

I(∆)2 = 0 in P(1)

R/Λ0
I
.

For b) recall that the connection ∇♯ is uniquely determined by the Gauss-Manin connection
∇ on ρ∗

(
HE

)
via the inclusions H♯

E ⊂ HE . Also f = δρ∗(ω) and e = δpρ∗(η) with ω a generator
of ωE over some open affine subscheme U ⊂ X and η a generator of the quotient HE/ωE = ω∗

E

over U . In particular δp−1 = H̃a(E/R, ω) = ρ∗(u) for a section u ∈ H0
(
U,OU

)
so that

dρ∗(u) = dδp−1 = (p− 1)δp−2dδ = (p− 1)δp−1dlog(δ) = (p− 1)ρ∗(u)dlog(δ).

Hence, dlog(δ) = (p− 1)−1dlog
(
ρ∗(u)

)
∈ 1

Hdg
· ρ∗
(
Ω1

X/Zp

)
. The Kodaira-Spencer isomorphism

KS: ωE → ω∗
E ⊗OX

Ω1
X/Zp

obtained by restricting ∇ to ωE ⊂ HE and then taking the projection onto
(
HE/ωE

)
⊗OX

Ω1
X/Zp

provides a basis element Θ := KS(ω, η) of Ω1
X/Zp

over U characterized by the property that

KS(ω) = η ⊗KS(ω, η). Write the connection

∇(ω) = mω ⊗Θ + η ⊗Θ
∇(η) = q ω ⊗Θ + r η ⊗Θ

with m, q, r ∈ H0
(
U,OX

)
. Therefore we have, omitting ρ∗ for simplicity:

∇♯(f) = ∇(δω) = δ∇(ω) + δω ⊗ d log(δ) =
(
m+ du

(p−1)u

)
f ⊗Θ + 1

δp−1 e⊗Θ

∇♯(e) = ∇(δpη) = δp∇(η) + pδpη ⊗ d log(δ) = δp−1qf ⊗Θ +
(
r + p du

(p−1)u

)
e⊗Θ.

This proves the first statement and shows that −δp−1c = Θ = KS(ω, η), implying also the second
statement.

Proof of Theorem 3.18. Let now k : Z∗
p −→ Λ∗

I ,W
0
k,∇k be as in the previous section.

Recall from Lemma 3.13 that

(gn ◦ ρ)
∗(W0

k) =
{ ∞∑

n=0

anV
n(1 + βnZ)

k | an ∈ R with an → 0 and V =
Y

1 + βnZ

}
.

Moreover

j∗i
(
ρ∗(W0

k)
)
=
{ ∞∑

m=0

amV
m(1 + βnZ)

k | am ∈ j
∗
i (R) = P

(1)

R/Λ0
I
for each m ≥ 0, with am → 0

}

for i = 1, 2. Therefore ǫk is given by the action of the matrix A =

(
a b
c d

)
on V m(1 + βnZ)

k,

for m ≥ 0. More precisely

ǫk
(
V m(1 + βnZ)

k)
)
= A ·

(
V m(1 + βnZ)

k
)
= (a+ cV )k

(b+ dV

a+ cV

)m
(1 + βnZ)

k =
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= (a+ cV )k−m(b+ dV )m(1 + βnZ)
k.

Let us recall that given k there is a positive integer n and an element u ∈ p1−nΛ0
I such that

tk := k(t) = exp
(
u log(t)

)
for all t ∈ 1 + pnZ∗

p. Using Lemma 3.20 we can write: (a+ cV )k−m =

exp
(
(u−m) log

(
1+ (a0 + cV )

))
= (u−m)(a0 + cV ). On the other hand we have

(
b+ dV

)m
=

(
V + (b+ d0)V

)m
= V m +mV m−1(b+ d0V ), and therefore

ǫk
(
V m(1 + βnZ)

k
)
=
((

1 +md0 + (u−m)a0
)
V m +mbV m−1 + (u−m)cV m+1

)
(1 + βnZ)

k.

Thus we have

∇k

(
V m(1 + βnZ)

k
)
= ǫk

(
V m(1 + βnZ)

k
)
− V m(1 + βnZ)

k =

=
(
mV m ⊗ d0 + (u−m)V m ⊗ a0 +mV m−1 ⊗ b+ (u−m)V m+1 ⊗ c

)(
(1 + βnZ)⊗ 1

)k
∈

∈ p1−n(1 + βnZ)
kR〈V 〉 ⊗R Ω1

R/Λ0
I
= p1−nρ∗(W0

k)⊗R Ω1
R/Λ0

I
.

(2)
Here the factor p1−n comes from the fact that u ∈ p1−nΛ0

I . In particular ∇k

(
V m(1+βnZ)

k
)
=

(u−m)V m+1(1 + βnZ)
k ⊗ c modulo Y m. Since the map ρ∗

(
Ω1

X/Zp

)
→ Ω1

R/Λ0
I
is an isomorphism

after inverting α due to by Lemma 3.3, the second claim of Theorem 3.18 is proven as Hdgc is
a generator of ρ∗

(
Ω1

X/Zp

)
due to Lemma 3.20.

3.5 q-Expansions of sections of Wk and nearly overconvergent mod-
ular forms.

Given a formal scheme S → X we will denote Sord ⊂ S to be the open formal subscheme
defined by the inverse image of the ordinary locus of X. In particular IGord

n,r,I is the n-th layer of

the Igusa tower of Xord. Over IGord
n,I we have H

♯
E = HE = ωE ⊕ω

−1
E as the Hodge filtration splits

canonically, via the so called unit root decomposition: one has a lift of Frobenius on Xord and
the universal semiabelian scheme E defined by taking the quotient by the canonical subgroup
H1 and ω−1

E is identified with the submodule of HE on which such isogeny is an isomorphism.
In particular we have a morphism V0(H

♯
E , s)

ord −→ V(ω∗
E)

ord by §2.3 and the induced morphism

V0(H
♯
E , s)

ord −→ V0

(
ωE, s

)
×IGord

n,I
V
(
ω−1
E

)

is an isomorphism of formal schemes. Recall that we have divided the universal weight k : Z∗
p →

Λ∗ into the product k0 · kf where kf is the finite part and k0 : Z∗
p → (Λ0)∗.

Note that over IGord
n,r,I the image fo the universal section of H∨

n defines via the map d log a
basis element s of ωE/p

nωE . In particular, as we are assuming that k restricted to 1 + pnZp

is analytic, and if π : V
(
ωE, s

)ord
→ Xord is the canonical projection, then the global sections

of ωk
0

E,Xord := π∗
(
O

V

(
ωE ,s
)ord
)
[k0] over Xord coincide with Katz’s p-adic modular forms of weight

k0. The space of Katz’s p-adic modular forms of weight k is then obtained by taking the
global sections of the tensor product ωk

E,Xord := ωk
0

E,Xord ⊗O
Xord

wkI,f |Xord (see Definition 3.1 for

wkI,f ). Denote by W
ord,0
k , resp. Word

k the space W0
k|Xord, resp. Wk|Xord. We obtain a canonical

decomposition
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W0
k|Xord

∼= ωk
0

E,Xord⊗̂O
Xord

Sym
(
ω−2
E

)
, Wk|Xord

∼= ωkE,Xord⊗̂O
Xord

Sym
(
ω−2
E

)
, (3)

where Sym
(
ω−2
E

)
is the symmetric algebra and ⊗̂ is the α-adic completed tensor product. In

particular we get morphisms

W0
k

ρ
−→W

ord,0
k

Φ
−→ ωk

0

E,Xord,

and upon twisting with wkI,f

Wk −→Word
k −→ ωkE,Xord

which provide a splitting of the first step of the filtration Fil0W
0
k, resp. Fil0W

k and that, upon
taking global sections, defines a projection from the global sections of Wk to the weight k p-adic
modular forms of Katz.

Definition 3.21. Using the q-expansion map for Katz p-adic modular forms at a given unrami-
fied cusp we obtain the “q-expansion map” which is the composition of the following morphisms:

H0
(
Xr,I ,Wk

)
−→H0

(
Xord,Word

k

)
−→ H0

(
Xord, ωkE,Xord

)
−→ ΛI((q)).

We can now give the definition of nearly overconvergent modular forms of weight k.

Definition 3.22. Let g be a Katz p-adic modular form of weight k. We say that g is nearly
overconvergent if there exists an r compatible with the interval I determined by k such that
g is in the image of H0

(
Xr,I ,Wk

)
or equivalently if its q-expansion in ΛI [[q]] is the q-expansion

of an element of H0
(
Xr,I ,Wk

)
.

Remark 3.23. Several authors have already introduced the notion of nearly overconvergent
modular forms of finite degree, notably [HX], [DR1] and especially [Ur14] and [L]. Their defi-
nitions provide alternative sheaf theoretic constructions of the sheaves Fil•Wk over Xr,[0,∞) but
neither did they work with the whole of Wk formally (i.e. integrally) nor did they define the con-
nection on it. As it will become clear later, cf. Theorem 4.3 and Proposition 4.13, the definition
of the whole Wk is necessary if one wants to p-adically interpolate powers of the Gauss-Manin
connection. This is necessary in order to define triple product L-functions.

We make the q-expansion map more explicit by working with the Tate curve. Consider the
Tate curve E = Tate(qN) over Spf(R) with R = Λ0

I((q)) and fix basis
(
ωcan, ηcan := ∇(∂)(ωcan)

)

of HE , where ∂ is the derivation dual to KS(ω2
can) =

dq

q
, i.e., ∂ := q

d

dq
. Let us remark that the

canonical subgroup HE,n of order p of E is isomorphic to µpn and therefore its dual is isomorphic
to Z/pnZ, i.e., IGn,r,I over Spf(R) is isomorphic to Spf(R). Hence if we denote by W0

k(q) the
module W0

k for the Tate curve, we have a description of this R-module using the given basis as
described in Section §3.4.1: W0

k(q) = R〈V 〉(1+pZ)k and, if we set Vk,n(q) := Y n(1+pZ)k−n, then

FilhW
0
k(q) =

∑h
i=0RVk,i(q). The q-expansion map corresponds to the projection W0

k(q) → R
sending

∑
i aiVk,i(q) 7→ a0 and similarly twisting with wkI,f .
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3.6 The U-operator

Considering the morphisms p1, p2 : Xr+1,I → Xr,I defined on the universal elliptic curve by
E 7→ E and E 7→ E ′ := E/H1. Over IG1,r+1,I we have the isogeny λ : E ′ → E, dual to the
projection E → E ′.

Proposition 3.24. The isogeny λ defines morphisms of OXr,I
-modules

U : p2,∗p
∗
1

(
W0

k

)
→ p2,∗p

∗
2

(
W0

k

)

and
U : p2,∗p

∗
1

(
Wk

)
→ p2,∗p

∗
2

(
Wk

)

which commute with the Gauss-Manin connections ∇k of Theorem 3.18 and preserve the fil-
trations defined in Theorem 3.11. Futhermore the induced map on the m-graded pieces of the
filtration is 0 modulo α[m/p] with α = p if I ⊂ [0, 1] and α = T if I ⊂ [1,∞] and where [m/p]
the integral part of m/p.

Proof. Assume first that I ⊂ [0,∞). Consider the morphisms p1, p2 : IGn+1,r+1,I → IGn,r,I

defined as above on the universal elliptic curve by E 7→ E and E 7→ E ′ := E/H1 respectively.
Over IGn+1,r+1,I the isogeny λ : E

′ → E induces a morphism of the canonical subgroups of level
n of E ′ and E, which is an isomorphism on analytic fibers. It follows from Lemma 6.4 that the
map induced by λ on de Rham cohomology induces a morphism λ♯ : H♯

E −→ H♯
E′ which provides

an isomorphism f ∗ : ΩE ∼= ΩE′ and identifies marked sections. Thanks to Proposition 6.5, we
get a morphism

U : p2,∗p
∗
1

(
W0

k

)
→ p2,∗p

∗
2

(
W0

k

)

over IGn+1,r+1,I , preserving the filtration and commuting with Gauss-Manin connections.

Let τ := p/Hdgp+1
E = p/δp

2−1
E . It follows from Lemma 6.4 that the map λ♯ : H♯

E −→ H♯
E′

gives an isomorphism λ∗ : ΩE ∼= ΩE′ and identifies H♯
E/ΩE = Hdg(E)

p
p−1ω∨

E with τ · H♯
E′/ΩE′ =

τ · Hdg(E ′)
p

p−1ω∨
E′. Using the description of the map on graded pieces provided in Proposition

6.5 we conclude that U on the m-graded piece of Fil•W
0
k defines a map GrmU which is zero

modulo τm. By construction α/Hdgp
r+2

E is a well defined section of Xr+1,I and p/α ∈ ΛI . Since

r ≥ 1 by assumption, then τ pm ⊂ (α/Hdgp
2

E )pm ⊂ αm(α/Hdgp
3

E )m we conclude that τ pm is in the
ideal generated by αm.

The descent Theorem 3.11 provides the descent of U for W0
k to IG1,r,I with the claimed

properties. By twisting W0
k and its filtration with the sheaf wkI,f as in Definition 3.10 we get

Wk and its filtration and the claim for Wk follows as well, considering the U corespondence for
wkI,f . The construction of U extends also to the case that ∞ ∈ I by passing to limits as in
Theorem 3.11 and we get a morphism preserving the filtration, which is zero on the m-graded
piece modulo α[m/p].

As the morphism p2 : Xr+1,I → Xr,I is finite and flat of degree p by [AIPHS, Prop. 3.3] there
is a well defined trace map with respect to OXr,I

→ p2,∗
(
OXr+1,I

)
and we get the definition of the

operator U on global sections of Wk.

U : H0
(
Xr,I ,Wk

) U◦p∗1−→ H0
(
Xr,I , p2,∗p

∗
2

(
Wk

)) 1
p
Trp2
−→ H0

(
Xr,I ,Wk

)
[p−1].
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Proposition 3.25. Assume that I ⊂ [0, 1] and α = p or that I ⊂ [1,∞] and α = T . Then
U
(
H0(Xr,I ,Wk

)
⊂ 1

α
H0
(
Xr,I ,Wk

)
and U induces a map on H0

(
Xr,I ,Wk/Film(Wk)

)
which is 0

modulo α[m/p]−1 for m ≥ p.
Moreover if k ∈ N is an integral weight, the identification Symk

(
HE

)
[p−1]|Xr,I

= Filk(Wk)[p
−1]

of Theorem 3.11 is compatible with the U operators defined on the global sections H0(Xr,I , − )
of the two sheaves.

Proof. The first part follows directly from Proposition 3.24 for I ⊂ [0, 1] and α = p. In the
case that I ⊂ [1,∞] and α = T it follows from loc. cit. and the result 1

p
Trp2

(
p2,∗
(
OXr+1,I

))
⊂

1
T
OXr,I

proven in [AIPHS, lemme 6.1 & Cor. 6.2]. The last claim of the proposition is clear as

the U -operator on H0
(
Xr,I , Sym

k
(
HE

))
is defined in the same way using the universal isogeny

λ : E ′ → E.

Using the proposition we get the following result on slope decompositions with respect to
the U -operator (in the sense of [AS, §4]) and passing to the analytic adic space Xr,I of Xr,I we
have:

Corollary 3.26. The operator U on H0
(
Xr,I ,Wk

)
admits a Fredholm determinant PI(k,X) ∈

ΛI [[X ]] and for every non-negative rational h the group H0
(
Xr,I ,Wk

)
admits a slope h-decomposition.

For every n ∈ N also the groups H0
(
Xr,I ,FilnWk

)
admits a Fredholm determinant P n

I (k,X) ∈

ΛI [[X ]] and a slope h-decomposition. The series P n
I (k,X) is the product

P n
I (k,X) :=

n∏

i=0

PI(k − 2i, piX),

where PI(k−2i, X) is the Fredholm determinant of U on H0
(
Xr,I ,wk−2i

)
. Finally, the inclusion

H0
(
Xr,I ,FilnWk

)≤h
⊂ H0

(
Xr,I ,Wk

)≤h
is an equality for n large enough.

Proof. Since Filn(Wk) is coherent and U is compact, the usual discussion on slope decompositions
applies to the groups H0

(
Xr,I ,Filn(Wk)

)
, i.e., given a finite slope h ≥ 0 we have, locally on the

weight space, a slope h decomposition

H0
(
Xr,I ,Filn(Wk)

)
= H0

(
Xr,I ,Filn(Wk)

)≤h
⊕H0

(
Xr,I ,Filn(Wk)

)>h
.

Thanks to Proposition 3.25 the U operator on the quotient H0
(
Xr,I ,Wk/Filn(Wk)

)
is di-

visible by ph+1 for n large enough. It follows that H0
(
Xr,I ,Wk/Filn(Wk)

)
also admits a slope

h-decomposition and in fact H0
(
Xr,I ,Wk/Filn(Wk)

)≤h
= 0. Finally notice that GriWk

∼= wk−2i

thanks to Theorem 3.11. The claimed factorization P n
I (k,X) :=

∏n
i=0PI(k− 2i, piX) follows as

in [Ur14, §3.4.2].
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3.7 The V operator and p-depletion on overconvergent modular forms

In section §2 of [Col1] R. Coleman defines the V operator on overconvergent modular forms of
integer weight and the goal of this paragraph is to recall his definition in our setting and so make
it work on integral, overconvergent modular forms of arbitrary weight.

Let, in the notations of the beginning of this section, E be an elliptic curve defining a point of
Xr+1,I . In particular, E has a canonical subgroup Hn+1 of order p

n+1 and we let π : E −→ E ′ :=
E/H1 denote the natural isogeny. We remark that E ′ defines a point on Xr,I and has a canonical
subgroub H ′

n = Hn+1/H1. This morphism Φ: Xr+1,I → Xr,I naturally lifts to a morphism
Φ: IGn+1,r+1,I → IGn,r,I as a generic trivialization of Hn+1 provides a generic trivialization of
H ′
n. Let π∨ : E ′ −→ E be the dual isogeny; then π∨ defines a morphism HE′,n −→ HE,n which

is an isomorphism if we invert α. We are in the setting of §6.2 and therefore (π∨)∗ induces a
morphism H♯

E → H♯
E′ = Φ∗

(
H♯
E

)
which defines an isomorphism (π∨)∗ : ΩE −→ ΩE′ = Φ∗

(
ΩE
)

over IGn+1,r+1,I . By Corollary 6.5 this gives a morphism Wk −→ Φ∗
(
Wk

)
over Xr+1,I that

provides an isomorphism (π∨)∗ : wk −→ Φ∗
(
wk
)
. Define the operator

V : H0(Xr,I ,w
k) −→ H0(Xr+1,I ,w

k), V (γ) := ((π∨)∗)
−1 (

Φ∗(γ)
)
.

Its expression on q-expansions is:

V (

∞∑

n=0

anq
n) =

∞∑

n−0

anq
pn.

It follows that U ◦ V = IdH0(Xr,I ,wk), as this is so on q-expansions.

Definition 3.27. Let f ∈ H0(Xr+1,I ,w
k). We denote by f [p] := f − V (U(f)) ∈ H0(Xr+1,I ,w

k)
and call f [p] the p-depletion of f .

Remark 3.28. 1) If f ∈ H0(Xr+1,I ,w
k), then U(f [p]) = 0.

2) If the q-expansion of f is f(q) =
∞∑

n=0

anq
n then the q-expansion of its p-depletion is

f [p](q) =
∑

n∈N,(n,p)=1

anq
n.

3.8 Twists by finite characters

Let n be a positive integer and fix a primitive n-th root of unity ζ ∈ Qp. Let χ : (Z/pnZ)∗ →(
ΛI [ζ ]

)∗
be a character. The aim of this section is to prove the following:

Proposition 3.29. There exists a unique morphism, called the twist by χ and denoted θχ or
∇χ:

θχ : H0
(
Xr,I ,Wk

)
−→ H0

(
Xr+n,I ,Wk+2χ

)
,

that preserves the filtration Fil•Wk and the Gauss-Manin connection and such that the induced
map on q-expansions Wk(q), using the notation of Section 3.5, is

θχ
( ∞∑

i=0

ai(q)Vk,i(q)
)
=

∞∑

i=0

χ
(
ai(q)

)
Vk+2χ,i, θχ

(∑

n

cnq
n
)
=
∑

n

χ(n)cnq
n.
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The requirement on q-expansions provides the uniqueness. We need to prove that such an
operator exists. We first construct it on IG2n,r+n,I . Consider the morphism

t : IG2n,r,I −→ IGn,r,I ,

defined as follows (remark that we first work on the adic spaces, i.e. α is inverted). We send
the universal generalized elliptic curve E to E ′ := E/Hn, where Hn ⊂ E is the canonical
subgroup of level n. Notice that, denoting H2n ⊂ E[p2n] the canonical subgroup of level 2n,
then H ′

n := H2n/Hn ⊂ E ′ is the canonical subgroup of level n of E ′. Furthermore if γ is the
universal section of H∨

2n then γ′ := pnγ defines a section of H
′,∨
n = H∨

2n[p
n] ⊂ H∨

2n that generates
H

′,∨
n . The morphism t sends (E, γ) 7→ (E ′, γ′) with the Γ1(N)-level structure on E ′ defined via

the projection π : E → E ′.
Let λ : E ′ → E be the dual isogeny. Then λ defines an isomorphism of canoical subgroups

H ′
n
∼= Hn. If we set H ′′

n := Ker(λ), the pn-torsion of E ′ decomposes as

E ′[pn] = H ′
n ×H

′′
n,

as group schemes over IG2n,r,I , and the Weil pairing induces an isomorphism H ′
n :=

(
H ′′
n

)∨
. The

universal section γ′ defines isomorphisms of group schemes

s : Z/pnZ→ H ′′
n, s∨ : H ′

n → µpn

over IG2n,r,I (the second morphism is obtained by duality). Assume that K contains a primitive
pn-th root of unity ζ . The choice of ζ identifies Hom

(
Z/pnZ, µpn

)
∼= Z/pnZ: an element j ∈

Z/pnZ corresponds to the homomorphism Z/pnZ→ µpn sending 1 7→ ζj. We then get a bijection

η : Hom
(
H ′′
n, H

′
n

)
→ Hom

(
Z/pnZ, µpn

)
∼= Z/pnZ, g 7→ s∨ ◦ g ◦ s

Lemma 3.30. Given α ∈ (Z/pnZ)∗, if we let [α]s be the multiplication of s by α, the induced
map [α]η : Hom

(
H ′′
n, H

′
n

)
→ Z/pnZ is α2η.

Proof. For every g ∈ Hom
(
H ′′
n, H

′
n

)
, we have ([α]s)∨ ◦ g ◦ ([α]s) = α2s∨ ◦ g ◦ s.

Thanks to the Lemma 3.30 for every j ∈ Z/pnZ we get a map ρj : H
′′
n → H ′

n, inducing the
morphism Z/pnZ→ µpn given by sending 1 7→ ζj (identifying Z/pnZ ∼= H ′′

n via s and H ′
n
∼= µpn

via s∨). We then let
Hρj :=

(
ρj × Id

)
(H ′′

n) ⊂ H ′
n ×H

′′
n = E ′[pn]

be the closed subgroup scheme given by the image of ρj × Id. Define

tj : IG2n,r+n,I −→ IGn,r,I ,

the map given as follows. Notice that the image of H ′
n via the projection map λj : E

′ →
E ′
j := E ′/Hρj defines the canonical subgroup H ′

n,j ⊂ E ′
j [p

n] of order n so that the trivialization
γ′ : Z/pnZ→ (H ′

n)
∨ defines a trivialization γ′j : Z/p

nZ→ (H ′
n,j)

∨. Then tj(E, γ) = (E ′
j , γ

′
j) with

Γ1(N)-level structure on E ′
j induced by the one on E ′. We let

t : IG2n,r+n,I → IGn,r,I tj : IG2n,r+n,I → IGn,r,I
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to be the morphisms defined by t and tj, upon taking normalizations. Over IG2n,r+n,I we have
the isogenies

E
λ
←− E ′ λj

−→ E ′
j ,

where E is the universal ellitpic curve over IG2n,r+n,I. Moroever by construction λ and λj map
the canonical subgroup of E ′ to the canonical subgroups of E and E ′

j respectively, compatibly
with the universal sections γ′, γ and γj. It follows from Lemma 6.4 that λ and λj induce
morphisms

H♯
E

λ♯
−→ H♯

E′

λ♯j
←− H♯

E′
j

with the same image. In particular, we get isomorphsms fj : H
♯
E′

j
−→ H♯

E as submodules of H♯
E′ .

Using Proposition 6.5 we finally get morphisms

f ∗
j : t

∗
j

(
Wk

)
−→Wk

over IG2n,r+n,I that preserves the filtration Fil•Wk defined in Theorem 3.11 and the Gauss-Manin
connection ∇k of Theorem 3.18.

Lemma 3.31. Let gχ :=
∑

j∈(Z/pnZ)∗ χ(j)ζ
j be the Gauss sum associated to χ. The map

θχ :=
gχ
pn
·
( ∑

j∈(Z/pnZ)∗

χ(j)−1f ∗
j ◦ t

∗
j

)
: H0

(
Xr,I ,Wk

)
−→ H0

(
Xr+n,I ,Wk+2χ

)

has the properties claimed in Proposition 3.29.

Proof. We first check the assertion on the weights, i.e., that θχ goes from Wk to Wk+2χ. Take
α ∈ Z∗

p. Given s ∈ H0
(
Xr,I ,Wk

)
we have [α]t∗j(s) = k(α)t∗j(s) by definition. Thanks to Lemma

3.30 we also have [α]fj = fα2j. Then

[α]
( ∑

j∈(Z/pnZ)∗

χ(j)−1f ∗
j (t

∗
j(s)

)
=

∑

j∈(Z/pnZ)∗

χ(j)−1
(
[α](f ∗

j t
∗
j )(s)

)
=

=
∑

j∈(Z/pnZ)∗

χ(j)−1k(α)f ∗
α2j

(
t∗α2j(s)

)
=

=
∑

j∈(Z/pnZ)∗

χ(α2j)−1χ(α)2k(α)f ∗
α2j

(
t∗α2j(s)

)
=

= (k + 2χ)(α)
( ∑

j∈(Z/pnZ)∗

χ(α2j)−1f ∗
α2j(t

∗
α2j(s))

)
=

= (k + 2χ)(α)
( ∑

j∈(Z/pnZ)∗

χ(j)−1f ∗
j (t

∗
j (s))

)
.

The compatibility with filtrations and Gauss-Manin connection is clear. The assertion on q-
expansions of modular forms follows from the proof of [Ko, Prop. III.3.17(b)]. See also [Lo,
Lemma 3.3].
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3.9 De Rham cohomology with coefficients in Wk and the overcon-
vergent projection.

Let r, I ⊂ [0,∞) and the universal weight be as in the previous sections. As we will use the
universal weight and classical weights as well, at least for this section we write k for the universal

weight to avoid confusion. Let us regard W•
k : Wk

∇k−→ Wk+2 as a de Rham complex of sheaves
on the adic space Xr,I and denote by Hi

dR

(
Xr,I ,W•

k

)
the i-th hypercohomology group of the de

Rham complex W•
k. We observe that because p is a unit in OXr,I

, the connection ∇k does not

have poles so that W•
k and Hi

dR

(
Xr,I ,W•

k

)
are well defined.

Let us recall that the sheaf Wk has a natural filtration preserved by ∇k therefore we have
the following commutative diagram of sheaves on Xr,I with exact rows:

0 −→ Filn(Wk) −→ Wk −→ Wk/Filn(Wk) −→ 0
↓ ∇k ↓ ∇k ↓ ∇k

0 −→ Filn+1(Wk+2) −→ Wk+2 −→ Wk+2/Filn+1(Wk+2) −→ 0

We denote by Fil•n(Wk) and respectively by
(
Wk/Fil(Wk)

)•
the first, respectively the last,

column of the above diagram.
With these notations we have an exact sequence of de Rham complexes on Xr,I :

0 −→ Fil•n(Wk) −→W•
k −→

(
Wk/Fil(Wk)

)•
−→ 0, (4)

which gives a long exact sequence of hypercohomology groups

0 −→ H0
dR

(
Xr,I ,Fil

•
n(Wk)

)
−→ H0

dR

(
Xr,I ,W

•
k

)
−→ H0

dR

(
Xr,I ,

(
Wk/Filn(Wk)

)•)
−→ (5)

−→ H1
dR

(
Xr,I ,Fil

•
n(Wk)

)
−→ H1

dR

(
Xr,I ,W

•
k

)
−→ H1

dR

(
Xr,I ,

(
Wk/Filn(Wk)

)•)
−→ . . .

Moreover, let us recall that the sheaves Film(Wk) for m = n, n+ 1 are coherent and as Xr,I
is a Stein adic space (an affinoid in this case) the hypercohomology of the complex Fil•n(Wk) is
simply calculated as the cohomology of the complex of global sections, i.e. for all i ≥ 0 we have

Hi
dR

(
Xr,I ,Fil

•
n(Wk)

)
= Hi

(
H0
(
Xr,I ,Filn(Wk)

) ∇k−→ H0
(
Xr,I ,Filn+1(Wk+2)

))
. (6)

Lemma 3.32. We have an exact sequence, with morphisms equivariant for the action of U ,

0 −→ H0
(
Xr,I ,w

k+2
)
−→ H1

dR

(
Xr,I ,Fil

•
n(Wk)

)
−→ ⊕ni=0H

0
(
Xr,I , ji,∗

(
ωE
)−i)

−→ 0,

where wk+2 is the universal sheaf of Definition 3.1, the first arrow is induced by the inclusion
wk+2 = Fil0(Wk+2) ⊂ Wk+2, ji is the closed immersion Xr,I ×WI

Qp ⊂ Xr,I defined by the
Qp-valued point k = i of WI , ωE is the sheaf of invariant differentials of the universal elliptic

curve over Xr,I ×WI
Qp and the action of U on H0

(
Xr,I , ji,∗

(
ωE
)−i)

is divided by pi+1. Moreover,

the ΛI-torsion of H1
dR

(
Xr,I ,Fil

•
n(Wk)

)
is identified with H0

(
Xr,I , ji,∗

(
ω
)0)

and if we denote by
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H1
dR

(
Xr,I ,Fil

•
n(Wk)

)tf
the torsion free part, we have an exact sequence, with morphisms equiv-

ariant for the action of U ,

0 −→ H0
(
Xr,I ,w

k+2
)
−→ H1

dR

(
Xr,I ,Fil

•
n(Wk)

)tf
−→ ⊕ni=0θ

i+1
(
H0
(
Xr,I , ji,∗

(
ωE
)−i))

−→ 0,

where θi+1 : H0
(
Xr,I , ji,∗

(
ωE
)−i)

→ H0
(
Xr,I , ji,∗

(
ωE
)i+2)

is the theta operator defined in [Col1,

Prop. 4.3] and we consider on H0
(
Xr,I , ji,∗

(
ωE
)−i)

the action of U divided by pi+1.

Proof. Theorem 3.18 and the identification Gri+1Wk
∼= wk−2i−2 of Theorem 3.11 imply that

∇k : Filn(Wk)→ Filn+1(Wk+2) induces an isomorphism times the multiplication by k− n map

wk−2n ∼= Grn(Wk)→ Grn+1(Wk+2) ∼= wk−2n.

This map is injective and the cokernel is identified with wk−2n/(k − n)wk−2n ∼= ω−n
E . The

first claim then follows proceeding by induction on n, using for n = 0 the identification wk =
Fil0(Wk).

Since H0
(
Xr,I ,wk+2

)
is torsion free and H0

(
Xr,I , ji,∗

(
ωE
)−i)

is annihilated by multiplication
by k− i, it follows from the first part of the lemma that the torsion part of H1

dR

(
Xr,I ,Fil

•
n(Wk)

)

is the sum of the kernels of multiplication by k− i for i = 0, . . . , n. Fix such an i. Consider the
following diagram with exact rows:

0 −→ H0
(
Xr,I ,Filn(Wk)

) ∇k−→ H0
(
Xr,I ,Filn+1(Wk+2)

)
−→ H1

dR

(
Xr,I ,Fil

•
n(Wk)

)
−→ 0

↓ ·(k− i) ↓ ·(k− i) ↓ ·(k− i)

0 −→ H0
(
Xr,I ,Filn(Wk)

) ∇k−→ H0
(
Xr,I ,Filn+1(Wk+2)

)
−→ H1

dR

(
Xr,I ,Fil

•
n(Wk)

)
−→ 0

The rows are exact as H1
(
Xr,I ,Filn(Wk)

)
= 0: indeed Xr,I is affinoid and Filn(Wk) is a

coherent OXr,I
-module. Since multiplication by k− i is injective on Fil•n(Wk) and Fil•n+1(Wk+2)

and hence on their global sections, using the snake lemma we see that the kernel of multiplication
by k − i on H1

dR

(
Xr,I ,Fil

•
n(Wk)

)
is identified with the kernel of the complex

∇ : H0
(
Xr,I ,Filn(Wk)/(k− i)

)
−→ H0

(
Xr,I ,Filn+1(Wk+2)/(k− i)

)
.

Using that ∇ induces an isomorphism on graded pieces except for Fili(Wk)/(k− i), this complex
is quasi-isomorphic (i.e., the homology groups of the two complexes are isomorphic) to the sub-
complex

∇ : H0
(
Xr,I ,Fili(Wk)/(k− i)

)
−→ H0

(
Xr,I ,Fili+1(Wk+2)/(k− i)

)

and, similarly, it is quasi-isomorphic to the quotient complex

∇ : H0
(
Xr,I ,Gri(Wk)/(k−i)

)
−→ H0

(
Xr,I ,Fili+1(Wk+2)/(k−i)

)
/∇H0

(
Xr,I ,Fili−1(Wk)/(k−i)

)
.

As∇ induces an isomorphism∇ : H0
(
Xr,I ,Fili−1(Wk)/(k−i)

)
∼= H0

(
Xr,I ,

(
Fili(Wk+2)/Fil0(Wk+2

)
)/(k−

i)
)
and the image of H0

(
Xr,I ,Fili(Wk)/(k − i)

)
lies in H0

(
Xr,I ,Fili(Wk+2)/(k − i)

)
, using the

identification ji,∗
(
ωE
)−i ∼= Gri(Wk)/(k − i) and ji,∗

(
ωE
)i+2 ∼= Fil0(Wk+2)/(k − i), we may

identify the kernel of such quotient complex with the kernel of the induced map

H0
(
Xr,I , ji,∗

(
ωE
)−i)

−→ H0
(
Xr,I , ji,∗

(
ωE
)i+2)

.
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This is identified with θi+1, by the results of Coleman and it is injective, as it is injective

on q-expansions, except for i = 0 in which case the kernel coincides with H0
(
Xr,I , ji,∗

(
ωE
)0)

.
See [Col1, Prop. 4.3]. The twisted action of U in the statement comes from the equality
U ◦ θi+1 = pi+1θi+1 ◦ θ proven in loc. cit. The claim follows.

If C• denotes any one of the complexes in the exact sequence (4), the discussion in Section
3.6 implies that we have compact U -operators on each one of the groups Hi

dR

(
Xr,I , C•

)
, for i ≥ 0.

Lemma 3.33. For h ≥ 0 and n ∈ N the groups Hi
dR

(
Xr,I ,Filn(Wk)

•
)
and Hi

dR

(
Xr,I ,W•

k

)
have

slope h-decompositions for every i (in the sense of [AS, §4]). Moreover, for n large enough, the
exact sequence (4) induces an isomorphism

Hi
dR

(
Xr,I ,Fil

•
n(Wk)

)≤h ∼= Hi
dR

(
Xr,I ,W

•
k

)≤h
,

for all i ≥ 0.

Proof. Corollary 3.26 implies that the groups Hi
dR

(
Xr,I ,Fil

•
n(Wk)

)
have slope decompositions,

i.e., given a finite slope h ≥ 0, locally on the weight space (i.e., we might have to change the
interval I but our notations will not mark this change) we have the slope decomposition:

Hi
dR

(
Xr,I ,Fil

•
n(Wk)

)
= Hi

dR

(
Xr,I ,Fil

•
n(Wk)

)≤h
⊕Hi

dR

(
Xr,I ,Fil

•
n(Wk)

)>h
.

Arguing as in Corollary 3.26 again we also have that the groups Hi
dR

(
Xr,I ,

(
Wk/Filn(Wk)

)•)

have slope h-decompositions for all i ≥ 0 and in fact

Hi
dR

(
Xr,I ,

(
Wk/Filn(Wk)

)•)≤h
= 0.

Therefore the long exact sequence (5) and the considerations above imply the claim.

We summarize the results of Lemma 3.32 and of Lemma 3.33 in the following

Theorem 3.34. Given a finite slope h ≥ 0, locally on the weight space, the groups Hi
dR

(
Xr,I ,W•

k

)

have slope h-decompositions. Moreover for n large enough we get exact sequences:

0 −→ H0
(
Xr,I ,w

k+2
)≤h
−→ H1

dR

(
Xr,I ,W

•
k

)≤h
−→ ⊕ni=0H

0
(
Xr,I , ji,∗

(
ω
)−i)≤ h

pi+1 −→ 0

and

0 −→ H0
(
Xr,I ,w

k+2
)≤h
−→ H1

dR

(
Xr,I ,W

•
k

)≤h,tf
−→ ⊕ni=0θ

i+1
(
H0
(
Xr,I , ji,∗

(
ω
)−i))≤h

−→ 0.

In particular, take a rank 1 point ρ : Spa(K,OK) → WI and denote by Xr,K , wk
K , the base

change of Xr,I , wk respectively. We immediately get:
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Corollary 3.35. If ρ corresponds to a weight different from the classical weights 0, . . . , n we
have that

ρ∗
(
H1

dR

(
Xr,I ,W

•
k

)≤h) ∼= H0
(
Xr,K ,w

k+2
K

)≤h
.

If ρ corresponds to the weight k = i for some 0 ≤ i ≤ n then we have an exact sequence

0 −→

(
H0
(
Xr,K , ω

i+2
E

)≤h
(
θi+1H0

(
Xr,K , ωE−i

))≤h −→ ρ∗
(
H1

dR

(
Xr,I ,W

•
i

)≤h,tf)
−→

(
θi+1H0

(
Xr,K , ωE

−i
))≤h

−→ 0.

Proof. Base change Xr,I , w
k, W•

k to K. Then ρ is defined by the quotient ΛI⊗̂ZpK/tΛI⊗̂ZpK
∼=

K where t is a regular element of ΛI⊗̂ZpK. Since multiplication by t is injective on wk and on
W•

k and taking slope decomposition is an exact operation, the Corollary follows applying the
snake lemma to the multiplication by t to the sequences in Theorem 3.34.

We also have the following Definition inspired by [Ur14, §3.5]:

Definition 3.36. With the notation above, we denote by

H†
n : H

1
dR

(
Xr,I ,Fil

•
n(Wk)

)
⊗ΛI

ΛI
[ n∏

i=0

(uk − i)
−1
]
∼= H0

(
Xr,I ,w

k+2
)
⊗ΛI

ΛI
[ n∏

i=0

(uk − i)
−1
]

the isomorphism induced by the inclusion H0
(
Xr,I ,wk+2

)
−→ H1

dR

(
Xr,I ,Fil

•
nWk

)
of Lemma 3.32.

Similarly we define

H† : H1
dR

(
Xr,I ,W

•
k

)≤h
⊗ΛI

ΛI
[ n∏

i=0

(uk − i)
−1
]
∼= H0

(
Xr,I ,w

k+2
)≤h
⊗ΛI

ΛI
[ nh∏

i=0

(uk − i)
−1
]

as the isomorphism provided via Theorem 3.34 (here the integer nh depends on h). We call such
maps the overconvergent projections in families.

Note that for every ρ : Spa(K,OK)→WI as above such that the image of uk− i is non-zero
in K for i = 0, . . . , n, the maps ρ∗

(
H†
n

)
and ρ∗

(
H†
)
are well defined and provide the isomorphism

of Corollary 3.35 upon identifying H0
(
Xr,K ,w

k+2
K

)
∼= ρ∗

(
H0
(
Xr,I ,wk+2

))
(and similarly if one

considers (≤ h)-slope decompositions).

3.10 The overconvergent projection and the Gauss-Manin connec-
tion on q-expansions.

Let us recall that we have fixed a pair I, r consisting of a closed interval I ⊂ [0,∞) and an
integer r > 0 adapted to I. Consider the Tate curve E = Tate(qN) over Spf(R) with R = Λ0

I((q))
and fix a basis

(
ωcan, ηcan := ∇(∂)(ωcan)

)
of HE as in §3.5. Using this basis the matrix of the

connection ∇ on HE is given by (
0 0
dq
q

0

)
.
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Write W0
k(q) = R〈V 〉(1 + pZ)k and set Vk,n := Y n(1 + pZ)k−n as in loc. cit. We have

∇k(aVk,h) = ∂(a)Vk+2,h + a(uk − h)Vk+2,h+1 ∀h ≥ 0, (7)

where let us recall that uk ∈ p1−sΛ0
I is such that k(t) = exp(uk log(t)) for all t ∈ 1 + psZp for

s≫ 0. One immediately gets the following:

Proposition 3.37. Consider an element γ ∈ H0
(
Xr,I ,Filn+1(W

0
k+2)

)
with class [γ] ∈ H1

dR

(
Xr,I ,Fil

•
n(W

0
k)
)

via (6). Let γ(q) =
∑n+1

i=0 γi(q)Vk+2,i be its evaluation at the Tate curve. Then the q-expansion

of H†
n([γ]) is

n+1∑

i=0

∂iγi(q)

(uk − i+ 1)(uk − i+ 2) · · ·uk
.

We also have the following formula describing the iterations of ∇k. For simplicity we omit
the subscript k and write simply ∇ for the connection.

Lemma 3.38. Let g(q) ∈ R and N ≥ 1 and write ∇N
(
g(q)Vk,h

)
:=
∑N

j=0 aN,k,h,j∂
N−j
(
g(q)

)
Vk+2N,j+h,

with aN,k,h,j ∈ R. We then we have aN,k,h,0 = 1 and for j ≥ 1 we have

aN,k,h,j =

(
N
j

)
(uk − h +N − 1) · · · (uk − h+ 1)(uk − h)

(uk − h+N − 1− j) · · · (uk − h+ 1)(uk − h)
=

(
N
j

) j−1∏

i=0

(uk−h+N−1−i).

In particular, if uk ∈ pΛ0
I , then aN,k,h,j ∈ ΛI for all 0 ≤ j ≤ N and aN,k,h,j ∈ pΛI if N = p and

j ≥ 1.

Proof. We first prove the formula for aN,k,h,j by induction on N . For N = 1 the statement
is clear using (7). Assume the statement true for N = n. For j = 0 or j = n + 1 the
statement is also clear. So we assume 0 < j < n + 1. It follows once more from (7) that
an+1,k,h,j = an,k,h,j + (uk + 2n − h − j + 1)an,k,h,j−1. In particular, an+1,k,h,j ∈ ΛI ⊂ R∂=0.
Moreover we compute

an+1,k,h,j =

(
n
j

)
(uk − h+ n− 1) · · · (uk − h)

(uk − h+ n− 1− j) · · · (uk − h)
+

+(uk − h+ 2n− j + 1)

(
n

j − 1

)
(uk − h + n− 1) · · · (uk − h)

(uk − h+ n− j) · · · (uk − h)
=

=
(uk − h + n− 1) · · · (uk − h)

(uk − h+ n− j) · · · (uk − h)

(
(uk − h + n− j)

(
n
j

)
+ (uk − h + 2n− j + 1)

(
n

j − 1

))
=

=
(uk − h + n− 1) · · · (uk − h)n! ((uk − h + n− j)(n+ 1− j) + (uk − h + 2n− j + 1)j)

(uk − h + n− j) · · · (uk − h)j!(n+ 1− j)!
=

=
(uk − h + n− 1) · · · (uk − h)n!(n+ 1)(uk − h+ n)

(uk − h+ n− j) · · · (uk − h)j!(n + 1− j)!
=

(uk − h+ n) · · · (uk − h)(n + 1)!

(uk − h + n− j) · · · (uk − h)j!(n+ 1− j)!
,
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as claimed. The last two claims of the Lemma are clear as p divides

(
p
j

)
for 0 < j < p. For

j = p there exists an integer i with 0 ≤ i ≤ p− 1 such that and −h +N − 1− i ≡ 0 modulo p
and then p divides

∏p−1
i=0 (uk − h +N − 1− i) as uk ∈ pΛ0

I .

Remark 3.39. The formula in Lemma 3.38 suggests that for an arbitrary locally analytic weight
s : Z∗

p → Λ∗
Is one should define

∇s
(
g(q)Vk,h

)
:=
∑

j=0

(
us
j

) j−1∏

i=0

(uk + us − h− 1− i)∂s−j
(
g(q)

)
Vk+2s,j+h.

Here us ∈ Λ0
Is[p

−1] is such that s(t) = exp(us log(t)) for all t ∈ 1 + paZp for a ≫ 0 and(
us
j

)
= us·(us−1)···(us−j+1)

j!
. In particular, in order not to have unbounded denominators in p

we must have that us ∈ ΛIs and uk ∈ Λ0
I and there should be some divisibility by p. We will see

that these conditions are also sufficient in order to define ∇s for overconvergent families in such
a way that the formula above on q-expansions is satisfied.

Lemma 3.40. For every positive integers u and h, consider the element 1 + pZ ∈ W0
0(q). We

then have

∇u
0

(
((1 + pZ)2(p−1) − 1)ph

ph

)
=

h∑

j≥max(h−u,0)

Pu,h,j(1 + pZ)
((1 + pZ)2(p−1) − 1)pj

pj
V0,u

with Pu,h,j(T ) ∈ Z[T ] a polynomial with coefficients in Z, divisible by p if u ≥ p.

Proof. Recall that Vk+s,n = (1 + pZ)sVk,n. For simplicity we omit the subscript in ∇. We use
the formula (7) that gives

∇
(
(1 + pZ)H

)
= ∇

(
VH,0

)
= HVH+2,1 = H(1 + pZ)H+2V0,1.

Hence ∇
(
(1 + pZ)2(p−1) − 1)ph

)
= 2ph(p − 1)

(
(1 + pZ)2(p−1) − 1

)ph−1
(1 + pZ)2(p−1)+2V0,1. As(

(1 + pZ)2(p−1) − 1
)ph−1

=
(
(1 + pZ)2(p−1) − 1

)p(h−1)(
(1 + pZ)2(p−1) − 1

)p−1
we get that

∇
(((1 + pZ)2(p−1) − 1)ph

ph
)
= 2hQ(1 + pZ)

((1 + pZ)2(p−1) − 1)p(h−1)

ph−1
V0,1,

where Q(T ) is a polynomial with coefficients in Z. Proceeding inductively on u the first claim
follows.

We prove the second statement. For p = 2 we have divisibility applying ∇ once and the
claim is clear. Assume that p ≥ 3. It suffices to deal with the case that u = p. Notice that

∇p(fg) = ∇p(f)g + f∇p(g) +
∑p−1

s=1

(
p
s

)
∇s(f)∇p−s(g). Thus taking f = ((1+pZ)2(p−1)−1)p

p
and

g = f i = ((1+pZ)2(p−1)−1)pi

pi
and proceedng by induction on i and using the first part for the

contribution of ∇s(f)∇p−s(g), one is reduced to prove the claim for f . Write

∇ (f) = 2(p−1)
(
(1+pZ)2(p−1)−1

)p−1
(1+pZ)2V0,1+2p(p−1)

((1 + pZ)2(p−1) − 1)p

p
(1+pZ)2V0,1.
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Recall that

∇s
(
(1 + pZ)HV2,1

)
= (H + 1) · · · (H + s)VH+2s+2,s+1 = (H + 1) · · · (H + s)(1 + pZ)H+2s+2V0,s+1

thanks to formula (7). In particular, if s = p− 1 and H is prime to p then (H +1) · · · (H + s) is

divisible by p. We conclude that ∇p−1 of
(
(1+pZ)2(p−1)−1

)p−1
(1+pZ)2V0,1 =

(
(1+pZ)2(p−1)−

1
)p−1

V2,1 is divisible by p as all the exponents of (1 + pZ) appearing in
(
(1 + pZ)2(p−1) − 1

)p−1

are prime to p. The second claim follows.

In particular let g(q) =
∑∞

n=0 anq
n ∈ ΛI [[q]] be the q-expansion of a p-adic modular form g of

weight k and assume that U
(
g(q)

)
= 0 that is an = 0 if p divides n. Let c be a positive integer

such that pc−1uk ∈ Λ0
I .

Proposition 3.41. For every positive integer N we may write

((∇p−1 − Id
)Np

pN

)(
g(q)Vk,0

)
=

(p−1)Np∑

r=0

∑

h∈N

pN−(c+1)r−h

(
(1 + pZ)2(p−1) − 1

)hp

ph
g
(N)
r,h Vk,r

with g
(N)
r,h ∈ RU=0[1 + pZ] a polynomial in 1 + pZ with coefficients in RU=0. If we assume

that uk ∈ pΛ0
I , then pN−2r−hg

(N)
r,h ∈ R

U=0[1 + pZ] for every r and h, i.e., p2r+h−N divides g
(N)
r,h

whenever 2r + h−N ≥ 0.

Proof. We first compute
(
∇p−1 − Id

)H(
g(q)Vk,n

)
for every positive integer H :

(
∇p−1 − Id

)H(
g(q)Vk,n

)
=

H∑

s=0

(
H
s

)
(−1)H−s∇(p−1)s

(
g(q)Vk,n

)
=

=

H∑

s=0

(p−1)s∑

j=0

(
H
s

)
(−1)H−sa(p−1)s,k,n,j∂

(p−1)s−j
(
g(q)

)
Vk+2(p−1)s,n+j =

=

H∑

s=1

(p−1)s∑

j=1

(
H
s

)
(−1)H−sa(p−1)s,k,n,j∂

(p−1)s−j
(
g(q)

)
(1 + pZ)2(p−1)sVk,n+j+

+
H∑

s=0

(
H
s

)
(−1)H−s∂(p−1)s

(
g(q)

)
(1 + pZ)2(p−1)sVk,n =

H∑

s=1

(p−1)s∑

j=1

(
H
s

)
(−1)H−sa(p−1)s,k,n,j∂

(p−1)s−j
(
g(q)

)
(1 + pZ)2(p−1)sVk,n+j+

+
H∑

s=1

(
H
s

)
(−1)H−s

(
∂(p−1)s(g(q))− g(q)

)
(1 + pZ)2(p−1)sVk,n +

(
(1 + pZ)2(p−1) − 1

)H
Vk,n.
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Base step N = 1: We prove the Lemma for N = 1 using the previous computation with
H = p.

For 1 ≤ s ≤ p − 1 we have that ∂(p−1)s(g(q)) − g(q) ∈ pRU=0 so that
(p
s

)(
∂(p−1)s(g(q)) −

g(q)
)
∈ p2RU=0. On the other hand also ∂(p−1)p(g(q))− g(q) ∈ p2RU=0. Considering the term(

(1 + pZ)2(p−1) − 1
)p
, the first part of the claim is proven for h = 0 or h = 1 and r = 0. Recall

from Lemma 3.38 that a(p−1)s,k,n,j is a polynomial with coefficients in Z in uk of degree j so that
by assumption pj(c−1)a(p−1)s,k,n,j ∈ Λ0

I . The first part of the claim then follows also for the terms
with r ≥ 1.

We prove the second part. For j ≥ 1 we have 2j − 1 ≥ 1 so that p2j−1∂(p−1)s−j
(
g(q)

)
(1 +

pZ)2(p−1)s ∈ RU=0[1 + pZ]. It follows from Lemma 3.38 that

(
p
s

)
a(p−1)s,k,n,j ∈ pΛI : in fact

for 1 ≤ s ≤ p − 1 the binomial coefficient

(
p
s

)
is divisible by p, for s = p and j prime to p

then a(p−1)p,k,n,j has a factor

(
p(p− 1)

j

)
which is divisible by p and for j divisible by p then

a(p−1)p,k,n,j has a factor
∏p−1

i=0 (uk+ p(p− 1)− 1− i) divisible by p. This proves the statement for
N = 1.

Inductive step N =⇒ N + 1: It suffices to prove the following:

CLAIM: Let g
(N)
r,h ∈ RU=0[1 + pZ] and suppose that pN−2r−hg

(N)
r,h ∈ RU=0[1 + pZ] in case

uk ∈ pΛ
0
I . Then

(∇p−1 − Id)p

p

(
pN−(c+1)r−h

(
(1 + pZ)2(p−1) − 1

)ph

ph
g
(N)
r,h Vk,r

)
=

=
∑

j

∑

v

pN+1−(c+1)(r+j)−v

(
(1 + pZ)2(p−1) − 1

)pv

pv
g
(N+1)
j,v Vk,r+j

with g
(N+1)
j,v ∈ RU=0[1+pZ]. Furthermore, if we assume that uk ∈ pΛ0

I then p
N+1−2(r+j)−vg

(N+1)
j,v ∈

RU=0[1 + pZ] for every j.

We compute (∇p−1−Id)p

p

(
pN−(c+1)r−2h

(
(1 + pZ)2(p−1) − 1

)ph
g
(N)
r,h Vk,r

)
as the sum of two terms:

pN−(c+1)r−h

(
(1 + pZ)2(p−1) − 1

)ph

ph
(∇p−1 − Id)p

p

(
g
(N)
r,h Vk,r

)
(8)

and

p∑

s=1

(
p
s

)
(−1)p−spN−(c+1)r−h−1

s(p−1)∑

u=1

(
s(p− 1)

u

)
∇u

((
(1 + pZ)2(p−1) − 1

)ph

ph

)
∇s(p−1)−u

(
g
(N)
r,h Vk,r

)
.

(9)
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We start with the contribution given by (8). As (1 + pZ)sVk,n = Vk+s,n, the computation at
the beginning of the proof shows that if we write

(∇p−1 − 1)p

p

(
g
(N)
r,h Vk,r

)
=
∑

j

p1−(c+1)jg
(N+1)
r,j Vk,r+j

then g
(N+1)
r,j ∈ RU=0[1+pZ] for j ≥ 1 and g

(N+1)
r,0 is the sum of a term α with α ∈ RU=0[1+pZ] and

a term

(
(1+pZ)2(p−1)−1

)p
p2

β with β ∈ RU=0[1 + pZ]. Those terms multiplied by pN−(c+1)r−2h
(
(1 +

pZ)2(p−1) − 1
)ph

satisfy the claim:
We start with the terms j ≥ 1 and we use that N − (c+1)r−h ≥ N +1− (c+1)(r+ j)−h.

Then pN−(c+1)r−h

(
(1+pZ)2(p−1)−1

)ph
ph

g
(N+1)
r,j is equal to

pN+1−(c+1)(r+j)−h

(
(1 + pZ)2(p−1) − 1

)ph

ph
(
p(N−(c+1)r−h)−(N+1−(c+1)(r+j)−h)g

(N+1)
r,j

)

with p(N−(c+1)r−h)−(N+1−(c+1)(r+j)−h)g
(N+1)
r,j ∈ RU=0[1 + pZ]. Assuming that uk ∈ pΛ0

I we also
have

pN+1−2(r+j)−hp(N−2r−h)−(N+1−2(r+j)−h)g
(N+1)
r,j = pN−2r−hg

(N+1)
r,j ∈ RU=0[1 + pZ]

using the inductive hypothesis that pN−2r−hg
(N)
r,h ∈ R

U=0[1 + pZ].

Consider next the contribution for j = 0, i.e., pN+1−(c+1)r−h

(
(1+pZ)2(p−1)−1

)ph
ph

g
(N+1)
r,0 . It is the

sum of two terms. The first is pN+1−(c+1)r−h

(
(1+pZ)2(p−1)−1

)ph
ph

·α. If we assume that uk ∈ pΛ
0
I then

pN+1−2r−hα = pN−2r−h(pα) ∈ RU=0[1 + pZ] by the hypothesis that pN−2r−hg
(N)
r,h ∈ R

U=0[1 + pZ].
On the other hand

pN−(c+1)r−h

(
(1 + pZ)2(p−1) − 1

)ph

ph

(
(1 + pZ)2(p−1) − 1

)p

p
β =

= pN+1−(c+1)r−(h+1)

(
(1 + pZ)2(p−1) − 1

)p(h+1)

ph+1
β.

If uk ∈ pΛ0
I then p

N−2r−hg
(N)
r,h ∈ R

U=0[1+pZ] so that pN+1−2r−(h+1)β = pN−2r−hβ ∈ RU=0[1+pZ].

Consider next the contribution of the terms in (9), namely

(
p
s

)
pN−(c+1)r−h−1

(
s(p− 1)

u

)
∇u

((
(1 + pZ)2(p−1) − 1

)ph

ph

)
∇s(p−1)−u

(
g
(N)
r,h Vk,r

)

for 1 ≤ s ≤ p and 1 ≤ u ≤ s(p− 1) and write

∇s(p−1)−u
(
g
(N)
r,h Vk,r

)
=
∑

j≥0

α
(N+1)
r,j Vk,r+j.
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It follows from Lemma 3.40 that ∇u
((
(1 + pZ)2(p−1) − 1

)ph
p−h
)
can be written as a sum

h∑

i≥max(h−u,0)

Pu,h,i(1+pZ)
(((1 + pZ)2(p−1) − 1)pi

pi
)
V0,u with Pu,h,j(T ) a polynomial with coefficients

in Z. Hence we need to analyze the expression

∑

j≥0

h∑

i≥max(h−u,0)

(
p
s

)
pN−(c+1)r−h−1

(
s(p− 1)

u

)
Pu,h,i(1 + pZ)

((1 + pZ)2(p−1) − 1)pi

pi
α
(N+1)
r,j Vk,r+j+u

As 1 ≤ s, if s ≤ p − 1 then

(
p
s

)
is divisible by p. If s = p and u is coprime to p then

(
p(p− 1)

u

)
is divisible by p. If s = p and u is divisible by p then the polynomials Pu,h,j(T ) are

divisible by p. In all these cases

(
p
s

)(
s(p− 1)

u

)
Pu,h,i(1 + pZ) is divisible by p. Write this as

pβs,u,h,i with βs,u,h,i ∈ Z[1 + pZ].
As j ≥ 0, c+1 ≥ 2, u ≥ 1 and i ≥ h−u, we also have N−(c+1)r−h ≥ N−(c+1)(r+j)−h ≥

N − (c+ 1)(r + j + u)− (h− u) + u ≥ N + 1− (c+ 1)(r + j + u)− i. Hence
(
p
s

)
pN−(c+1)r−h−1

(
s(p− 1)

u

)
Pu,h,i(1 + pZ)

((1 + pZ)2(p−1) − 1)pi

pi
α
(N+1)
r,j =

= βs,u,h,ip
N+1−(c+1)(r+j+u)−i ((1 + pZ)2(p−1) − 1)pi

pi
(
p(N−(c+1)r−h)−(N+1−(c+1)(r+j+u)−i)α

(N+1)
r,j

)

and
(
p(N−(c+1)r−h)−(N+1−(c+1)(r+j+u)−i)α

(N+1)
r,j

)
∈ RU=0[1 + pZ].

Furthermore, assuming that uk ∈ pΛ0
I and that pN−2r−hα

(N+1)
r,j ∈ RU=0[1 + pZ] by induc-

tive hypothesis, we have pN+1−2(r+j+u)−i
(
p(N−2r−h)−(N+1−2(r+j+u)−i)α

(N+1)
r,j

)
= pN−2r−hα

(N+1)
r,j ∈

RU=0[1 + pZ]. This proves the inductive step and the Claim follows.

Write wk(q) for the sheaf wk evaluated on the Tate curve. We consider it as a submodule
of Wk(q) using the identification wk(q) = Fil0Wk(q). Recall that Wk(q) := W0

k(q) ⊗R wkf (q),
where wkf is the evaluation at the Tate curve of the coherent sheaf

(
gi,∗
(
OIGord

i,I

)
⊗Λ0

I
ΛI
)[
k−1
I,f

]

where i = 1 for p odd and i = 2 for p = 2.

Corollary 3.42. Let g(q) ∈ wk(q) with U
(
g(q)

)
= 0 and let c be a positive integer such that

pc−1uk ∈ Λ0
I. Then for every positive integer N we have

((
∇p−1 − Id

)Np)(
g(q)

)
∈

(p−1)pN∑

n=0

p2N−(c+1)nwkf (q)[Z]Vk,n.

Moreover, if uk ∈ pΛ0
I then

((
∇p−1 − Id

)Np)(
g(q)

)
∈ pN ·

((p−1)pN∑

n=0

wkf (q)[Z]Vk,n

)
.
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Proof. The Igusa tower IGord
i,I over Spf(R) becomes a disjoint union of copies of Spf(R), permuted

transitively by the group Gi = (Z/qZ)∗. We denote it by IG(q) = Spf(R′). The connection
on Wk(q) is the composite of the connection on W0(q) and of the connection on wkf (q) defined
by usual the derivation on R′ and, hence, by the derivation on R. It suffices to prove the
claim replacing wkf (q) with R′′ := R′ ⊗Λ0

I
ΛI which is a finite and free R-module, i.e., we work

with W0
k(q) ⊗R R

′′. Fix a basis {ej}j, with j varying in a set of indices J , so that W0
k(q) ⊗R

R′′ = ⊕jW0
k(q)ej . Taken g(q) ∈ wk(q) ⊂ Wk(q) we can decompose it as a sum

∑
j gj(q)ej

with gj(q) ∈ wk,0(q) ⊂ W0
k(q) and ∇(g(q)) =

∑
j∇(gj(q))ej. The assumption U(g(q)) = 0 is

equivalent to require that U
(
gj(q)

)
= 0 for every j. The statement then follows from Proposition

3.41.

4 p-Adic iterations of the Gauss Manin connection.

Let us fix closed intervals Is = [pa, pb] and I = Ik = [pc, pd] with a ≤ b, c ≤ d, a, b, c, d ∈ N

and an integer r adapted to Is and Ik. The main topic of this chapter, in view of applications
to the construction of p-adic L-functions attached to triple products of finite slope families of
eigenforms in the next chapter, is the following: given weights k : Z∗

p −→ Λ∗
I and s : Z

∗
p −→ Λ∗

Is

define the operator “(∇k)
s”.

To see what this should be we’ll first look at q-expansions. Let g(q) =
∑∞

n=0 anq
n ∈ ΛI [[q]]

be the q-expansion of a p-adic modular form g of weight k. Then the q-expansion of ∇k(g)
is ∂(

∑∞
n=0 anq

n)ω2
can = (

∑∞
n=1 nanq

n)ω2
can seen as the q-expansion of a p-adic modular form

of weight k + 2. Here ∂ := q
d

dq
. Let g[p](q) :=

∑∞
n=0,(p,n)=1 anq

n be the p-depletion of g(q).

Seeing the weight s as a continuous homomorphism s : Z∗
p −→ Λ∗

Is, we define the operator ∂s on
p-depleted q-expansions by:

∂s
(
g[p](q)

)
:=

∞∑

n=1,(n,p)=1

ans(n)q
n.

It can be seen easily that g[p](q) is the q-expansion of a p-adic modular form of weight k which
lies in the kernel of the U -operator and that ∂s

(
g[p](q)

)
, thus defined is the q-expansion of a

p-adic modular form of weight k + 2s : Z∗
p → ΛI⊗̂ΛIs.

Therefore we’d expect that ∇s
k were a differential operator defined on H0(Xr,I ,W

0
k)
U=0 with

values in H0(Xr,I ⊗ ΛIs,W
0
k+2s), but unfortunately things are not as simple as this.

The first problem is that ∇k, seen as a connection on the sheaf W0
k over Xr,I , has poles along

Hdg; see section 3.4. This makes it difficult to iterate it.
The second problem is that the definition of ∂s on q-expansions given above is not algebraic

enough and what we would like to interpolate is not ∂ but the whole connection ∇. We then
incur in the problem discussed in Remark 3.39.

To remedy this let us suppose that the weight s has the property: there is us ∈ ΛIs such that
for every t ∈ Z∗

p, s(t) = exp
(
uslog(t)

)
. In particular s|µp−1 = 1 and s|1+pZp is analytic. Then let

us remark that the operator ∂p−1− Id on p-depleted q-expansions is divisible by p, i.e., if g(q) =
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∑∞
n=1,(n,p)=1 anq

n ∈ ΛI [[q]]
U=0, then ∂p−1(g(q))− g(q) =

∑∞
n=1,(n,p)=1 an

(
np−1−1

)
qn ∈ pΛI [[q]]. So

if we put:

δ(g) := exp
( us
p− 1

log(∂p−1)
)
(g)

then the definition makes sense and moreover we have that δ(g), on p-depleted q-expansions,
equals the previously defined ∂s(g). Our strategy to define∇s

k in general is based on the following
assumption:

Assumption 4.1. k and s are weights satisfying the condition: k = χ · k0 · v and s = χ′ · s0 ·w
where:

a) χ, χ′ are finite order characters of Z∗
p and χ is even;

b) k0, s0 are integer weights such that k0 is even modulo p, i.e., there are integers a, b with
a even modulo p such that k0(t) = ta, s0(t) = tb for all t ∈ Z∗

p.

c) v, w : Z∗
p −→ Λ∗

I are weights such that there exist uv ∈ pΛI , uw ∈ qΛI satisfying: v(t) =

exp
(
uv log(t)

)
and w(t) = exp

(
uw log(t)

)
for all t ∈ Z∗

p.

We recall that q = p if p ≥ 3 and q = 4 if p = 2 and that a finite order character χ : Z∗
p −→ O

∗
K

is called even if there is a finite field extension K ⊂ L and a character ε : Z∗
p −→ O

∗
L such that

ε2 = χ.

Remark 4.2. Assume that p is odd. Then χ : Z∗
p −→ O∗

K has the form χ = ǫ · τ , where
ǫ|1+pZp = 1 and τ |(Z/pZ)∗ = 1, i.e. ǫ = ωi with i a positive divisor of p− 1, while τ is a character
of order a power of p. Here we have denoted by ω the Teichmüller character composed with
reduction modulo p. Let us remark that ǫ, i and τ are uniquely determined by χ. Then, the
character χ is even if and only if ǫ is even, i.e., if and only if i is even. In this case the field L
may be taken L = K.

For all g ∈ H0
(
Xr,I ,W

0
k

)U=0
, if k and s satisfy Assumption 4.1 we set

(∇k)
s(g) := exp

( us
(p− 1)

log
(
∇(p−1)
k

))
(g)

and claim that this makes sense and it is the desired section of Wk+2s.
The rest of this section is devoted to the implementation of this strategy. Let r and I be as

at the beginning of this section and let n be an integer adapted to I. The main result is the
following:

Theorem 4.3. Let K, k and s be a finite extension of Qp and respectively a pair of weights
satisfying the Assumptions 4.1 such that K contains the images of the finite parts of k, s. Let
g ∈ H0(Xr,I ,Wk)

U=0. Then there exist positive integers b and γ depending on r, n and p and an
element ∇s

k(g) of Hdg−γH0(Xb,I ,Wk+2s) such that on q-expansions, in the notations of §3.5, if
g(q) =

∑
h gh(q)Vk,h then

∇s
k

(
g
)
(q) :=

∑

h

∑

j=0

(
us
j

) j−1∏

i=0

(uk + us − h− 1− i)∂s−j
(
gh(q)

)
Vk+2s,j+h;
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here

(
us
j

)
= us·(us−1)···(us−j+1)

j!
and if gh(q) =

∑
n,p 6|n ah,nq

n then

∂s−j
(
gh(q)

)
=
∑

n,p 6|n

s(n)n−jah,nq
n.

Proof. We show how to reduce the proof of the Theorem to the case that k and s as in Assumption
4.1 which in addition satisfy χ = χ′ = 1 and k0 = s0 = 1 (i.e. a = b = 0) (we’ll call these “strict
assumptions”). The proof in this case is postponed to §4.1.

Case I. First of all assume that k(t) = exp
(
(a + uv) log(t)

)
and s(t) = exp

(
(b+ uw) log(t)

)

for all t ∈ Z∗
p, where a, b ∈ Z with a even modulo p, uv ∈ pΛI and uw ∈ qΛI . Let then α, β ∈ Z

be integers such that:
i) p|(a+ 2α) and α > 0
and
ii) q|β and β − α + b > 0.
Then let us remark that we can write formally:

(∇k)
s(g) := (∇uv+a+2α+2uw−2β)

β−α+b
(
(∇uv+a+2α)

uw−β
(
(∇k)

α(g)
))
.

Remark that everything written on the right hand side makes sense either because the weights
satisfy the strict assumptions or because the exponent of ∇ is a positive integer.

Here we wrote the weights additively, i.e. uv + a + 2α is the weight sending t ∈ Z∗
p to

exp
(
(uv + a + 2α) log(t)

)
= k(t) · t2α etc. We leave to the reader to prove that one obtains

the expected formula on q-expansions using Lemma 3.38 and the assumption that the Theorem
holds for (∇uv+a+2α)

uw−β.

Case II. We next consider weights of the form k = k′χ and s = s′χ′ with k′ and s′ weights
with trivial character of the type considered in Case I and χ and χ′ characters such that χ even.
Let L be a finite extension of K and ε : Z∗

p −→ O
∗
L a finite character such that χ = ε2. Thanks

to Proposition 3.29 we have an element

θε
−1

(g) ∈ H0(Xr,I ,Wk−2τ ⊗K L)U=0 = H0(Xr,I ,Wk′ ⊗K L)U=0.

Define:

∇s
k(g) := θε χ

(
∇s′

k′

(
θε

−1

(g)
))
∈ H0(Xr,I ,Wk+2s ⊗K L)U=0.

We leave to the reader to check that one gets the required formula on q-expansions using Propo-
sition 3.29. One deduces from this that in fact ∇s

k(g) ∈ H0(Xr,I ,Wk+2s)
U=0, concluding the

proof.

Following a suggestion of Eric Urban define:

Definition 4.4. If s = χ′ is a finite character and a is a positive integer and f ∈ H0(Xb,I ,w
k)

set ∇a+s
k (f) := θχ

′(
∇a
k(f)

)
.
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Remark 4.5. Notice that ∇a+s
k (f) is a modular form of weight k+2a+2χ′ that coincides with

∇a
k

(
θχ

′
(f)
)
as can be checked on q-expansions using Lemma 3.38 and Proposition 3.29.

With the notations of the Theorem 4.3 and Assumptions 4.1, take OK-valued points α
(resp. β) of ΛI so that the induced weight k0 + v (resp. s0 + w) specialize to classical weights
v0 ∈ N and w0 ∈ N. Let gα be the specialization of g at α. One deduces from the formula on
q-expansions and using the notations of Definition 4.4 the following:

Corollary 4.6. The specialization of (∇k)
s(g) at α and β is ∇w0+χ′

v0+χ (gα).

4.1 The proof of Theorem 4.3

From now on until the end of this section we will assume that the weights k and s satisfy the
strict assumptions:

Assumption 4.7. There are uk ∈ pΛI and us ∈ qΛI such that k(t) = exp(uk log(t)) and
s(t) = exp(us log(t)) for all t ∈ Z∗

p.

Our goal for the rest of the section is to define for all g ∈ H0
(
Xr,I ,W

0
k

)U=0

(∇k)
s(g) = exp

( us
(p− 1)

log
(
∇(p−1)
k

))
(g).

We start with the following

Definition 4.8. Let us denote W
0,′

k ⊂ W0 := π∗
(
O

V0(H
#
E ,s)

)
the subsheaf of W0 defined by

W
0,′

k :=
∑

n∈Z W
0
k+2n ⊂ W0. We let W′

k ⊂ W be the sheaves obtained from W
0,′

k ⊂ W0 by
twisting by wkf (see Definition 3.1).

We also define the differential operator∇ : W′ −→
(

1
Hdgcn

)
·W′ by∇|Wk+2n

:= ∇k+2n : Wk+2n −→

Wk+2n+2 ⊂W′
k.

The fact that inside W we have Wk+2n ∩Wk+2n′ = {0} for n 6= n′ implies that ∇ is well
defined on W′. We start with the following result:

Proposition 4.9. Under the Assumption 4.7 above for every g ∈ H0(Xord
r,I ,W

ord
k )U=0 and every

positive integer N we have

(
∇p−1 − Id

)Np(
g
)
∈ pNH0(Xord

r,I ,W) ∩H0
(
Xord
r,I ,W

′
k

)
.

The same result applies if we replace Xr,I with any layer of the Igusa tower IGn,r,I.

Proof. This follows from Corollary 3.42 and the fact that the evaluation at the Tate curve
provides an injective map H0

(
Xord
r,I ,W

0/pW0
)
→W0(q)/pW0(q).

The second claim follows as the map IGord
n,r,I → Xord

r,I is finite étale.
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Proposition 4.10. Let s be a non-negative integer. Then there exists a positive integer b ≥ r
depending on r, n and s with the following property: for every w ∈ Hdg−sH0(Xr,I ,W) such that
w|Xord

r,I
∈ H0(Xord

r,I , p
jW) we have w ∈ H0

(
Xb,I , p

[j/2]W
)
.

Proof. Recall that W := W0⊗OXr,I
wkf where wkf is the coherent OXr,I

-module
(
gi,∗
(
OIGi,r

)
⊗Λ0

Λ
)[
k−1
f

]
of Definition 3.1. It follows from Theorem 3.11 that tensoring W0⊗OXr,I

with a coherent

OXr,I
-modules is exact so that Wk is also Wk =

(
W0

k ⊗OXr,I

(
gi,∗
(
OIGi,r

)
⊗Λ0 Λ

)) [
k−1
f

]
. Thus

it suffices to prove the statement locally on Xr,I and replacing W with W ⊗OXr,I
F with F :=(

gi,∗
(
OIGi,r

)
⊗Λ0 Λ

)
.

Consider first the case of W0. Let V = Spf(S) ⊂ Xr,I and let U = Spf(R) ⊂ IGn,r,I

be its inverse image. For V small enough W0(U)/pjW0(U) ∼= R/pjR[Z, Y ] is a free R/pjR-
module and Word(U)/pjWord(U) ∼= Rord/pjRordR

[
Zord, Y ord

]
is a free Rord/pjRord-module. We

may choose the variables so that the restriction map W0(U)/pjW0(U) −→Word(U)/pjWord(U)
sends Y 7→ Y ord and Z 7→ pnβ−1

n Zord = δp
n−1Zord. It follows from Lemma 3.4 that the ker-

nel of W0(U)/pjW0(U) −→Word(U)/pjWord(U) is annihilated by δip
r+1(p−1)+pn−p. This implies

that the kernel of W0(V )/pjW0(V ) −→ Word(V )/pjWord(V ) is annihilated by δjp
r+1(p−1)+pn−p

since pjW0(V ) =
(
pjW0(U)

)
∩W0(V ) by construction. The same then applies for the kernel of

W0(U)/pjW0(U) −→ W0,ord(U)/pjW0,ord(U) as pjW0(U) =
(
pjW0(V )

)
∩W0(U) by construc-

tion.
As explained in the proof of Lemma 3.4, the morphism g1 : IG1,r → Xr,I is flat and IG2,r →

IG1,r can be factored via a flat morphism IG′
i,r → IG1,r with δ

pi−pOIGi,r,I
⊂ OIG′

i,r,I
. Since ΛI

is a finite and free Λ0
I-module, the tensor product of the pushforward of the structure sheaf of

IG′
i,r → Xr,I via Λ0

I → ΛI defines a finite and flat OXr,I
-module G such that δp

i−pF ⊂ G ⊂ F .

This implies that the kernel of
(
W0(V )/pjW0(V )

)
⊗R F(V ) −→

(
Word(V )/pjWord(V )

)
⊗R

F(V ) is annihilated by δjp
r+1(p−1)+pn−p+pi−p. We also conclude that δjp

r+1(p−1)+pn−p+pi−pw ∈
pjW(V ) as δ is invertible in Rord

Then passing to Xb,I with b such that (p − 1)pb+1 ≥ 2pr(p − 1) + 2(pn − p) + 2(pi − p) and

considering the open Vb := Spf(Sb) corresponding to V we have that a = pδ−(p−1)pb+1

∈ Sb and

p2

δ2p
r+1(p−1)+2(pn−p)+2(pi−p)

= pa
(
δ(p−1)pb+1−2pr+1(p−1)−2(pn−p)−2(pi−p)

)
∈ pSb.

Hence, if we denote by w′ the image of w in H0
(
Vb,W

)
, we have that w′ ∈ p[j/2]W(Vb) as claimed.

Consider now the connection ∇ : W′ −→
(

1
Hdgcn

)
·W′ over Xr,I defined in Section 3.4. We

have the following key result:

Corollary 4.11. There exists an integer b depending on r and n such that for every g ∈
H0(Xr,I ,Wk)

U=0 and every positive integer N we have

Hdgcn(p−1)2
(
∇p−1 − Id

)N
(g) ⊂ p[N/2p]H0

(
Xb,I ,W

)
∩H0

(
Xb,I ,W

′
k

)

and there exists a positive integer γ (depending on r, n and p) such that, given positive integers
h and j1, . . . , jh with N = j1 + · · ·+ jh, then
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Hdgγ
ph

′

h!

( h∏

a=1

(
∇(p−1) − Id

)ja
ja

)
(g) ⊂ p[N/2p

2]H0
(
Xb,I ,W

)
∩ H0

(
Xb,I ,W

′
k

)
;

here h′ = h if p 6= 2 and h′ = 2h if p = 2.

Proof. Note that

HdgcnN(p−1)
(
∇p−1 − Id

)N
: W′ −→W′ ⊂W

is well defined, i.e., it does not have poles. Write N = p[N/p] +N0 the division with reminder
of N by p. Then

HdgcnN(p−1)
(
∇p−1 − Id

)N
(g) = HdgcnN0(p−1)Hdgcnp(p−1)[N/p]

(
∇p−1 − Id

)[N/p]((
∇p−1 − Id

)N0(g)
)

We then deduce from Proposition 4.9 that the restriction to the ordinary locus belongs to
p[N/p]H0

(
Xord
r,I ,W

)
. Thanks to Proposition 4.10 there exists b, depending on n, r and p such that

HdgcnN0(p−1)
(
∇p−1 − Id

)[N/p]((
∇p−1 − Id

)N0
(g)
)
∈ p[N/2p]H0

(
Xb,I ,W

)
.

As N0 ≤ p− 1, the first claim follows.
We prove the second claim. Write N = p[N/p] +N0 Also in this case

Hdgcnp(p−1)[N/p]+cn(p−1)N0
(
∇p−1 − Id

)p[N/p]
◦
(
∇p−1 − Id

)N0(g) : W′ −→W′

over Xr,I is integral. Over the ordinary locus the image of g is zero modulo p[N/p] thanks to
Proposition 4.9. Arguing as in the proof of Proposition 4.10 there exists a linear function
ℓ(X) = αX + β with α and β positive integers depending on r, n and p such that

Hdgℓ([N/p])
(
∇p−1 − Id

)p[N/p]((
∇p−1 − Id

)N0
(g)
)
∈ p[N/p]H0

(
Xr,I ,W

)

and hence Hdgℓ([N/p])w ∈ p[N/p
2]H0

(
Xr,I ,W

)
with

w :=
ph

h!j1 · · · jh

(
∇p−1 − Id

)p[N/p]((
∇p−1 − Id

)N0
(g)
)

thanks to Lemma 4.12. Replacing ℓ([N/p]) with ℓ′([N/p2]) := pα[N/p2]+γ with γ := (p−1)α+β,
noticing that ℓ′([N/p2]) ≥ ℓ([N/p]) and arguing as the proof of Proposition 4.10 we find a positive
integer b depending on α and β, and hence on r and n, such that Hdgγw ∈ p[N/2p

2]H0
(
Xb,I ,W

)
,

concluding the proof of the Corollary.

Lemma 4.12. Let j1, . . . , jh be positive integers and write N = j1 + · · · + jh. Then we have
δh+ N

p
−
∑h

i=1 vp(ji)− vp(h!) ≥
N
p2

with δ = 1 if p ≥ 3 and δ = 2 if p = 2.

Proof. Write h = h0 + · · ·+ htp
t for the p-adic expansion of h. Then the p-adic valuation vp of

h! is

vp(h!) =
h− (h0 + · · ·+ ht)

p− 1
≤

h

p− 1
.
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It suffices to prove that δh+ N
p
−
∑

i vp(ji)−
h
p−1
≥ N

p2
with δ = 1 if p ≥ 3 and δ = 2 for p = 2.

As N = j1+ · · ·+ jh it suffices to prove the claim for h = 1, i.e., that for every positive integer j

δ +
(p− 1)

p2
j ≥ vp(j) +

1

p− 1
.

If vp(j) = 0 this is holds for any δ ≥ 1. Else write j = γpr with p not dividing γ and r ≥ 1,
then the inequality becomes

δ +
(p− 1)

p
γpr−1 ≥ r +

1

p− 1
.

It suffices to prove it for γ = 1. If p ≥ 3, we can take δ = 1 as pr−1 ≥ r + 1 for r ≥ 1. If p = 2,
we can take δ = 2 as 2r−1 ≥ r for every r ≥ 1. This concludes the proof of the Claim.

Proposition 4.13. The notations are as in Corollary 4.11 and let s : Z∗
p −→ (Λ0

Is
)∗ that satisfies

the Assumption 4.7. Then, there exist positive integers γ, b depending on r, n and p such that
for every g ∈ H0(Xr,I ,Wk)

U=0, the sequences

A(g, s)n :=
n+1∑

j=1

(−1)j−1

j

(
∇p−1 − Id

)j
(g)

and, if we write Hi,n for the set of i-uple (j1, . . . , ji) of positive integers having j1+· · ·+ji ≤ n+1,

B(g, s)n :=

n∑

i=0

1

i!

uis
(p− 1)i

( ∑

(j1,...,ji)∈Hi,n

( i∏

a=1

(−1)ja−1

ja

)(
∇p−1 − Id

)j1+···+ji
)
(g), for n ≥ 0

converge in Hdg−γH0(Xb,I⊗̂ΛIs,W). Moreover if we denote the limits

limn→∞A(g, s)n =: log(∇p−1
k )(g)

and
limn→∞B(g, s)n =: exp

( us
(p− 1)

log(∇p−1
k )

)
(g) =: ∇s

k(g),

we have that ∇s
k(g) ∈ Hdg−γH0(Xb,I⊗̂ΛIs,Wk+2s). Finally on q-expansions we have

∇s
k

(
g
)
(q) :=

∑

h

∑

j=0

(
us
j

) j−1∏

i=0

(uk + us − h− 1− i)∂s−j
(
gh(q)

)
Vk+2s,j+h.

Proof. The first convergence follows immediately from the first claim of Corollary 4.11. Therefore
log
(
∇p−1
k

)
(g) converges p-adically in Hdg−cn(p−1)2H0

(
Xb,I ,W

)
.

We prove the second claim. Thanks to Corollary 4.11 we have a positive integer γ such that
for positive integers h, N and j1, . . . , jh with j1 + · · ·+ jh = N we have

Hdgγ
ph
(
∇p−1 − Id

)j1+...+jh(g)
h!j1 · · · jh

⊂ p[N/2p
2]H0

(
Xb,I ,W

)
∩ H0

(
Xb,I ,W

′
k

)
.
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In particular the series B(g, s)m − B(g, s)n for m ≥ n lie in p[n+1/2p2]H0
(
Xb,I ,W

)
. i.e., B(g, s)n

is a Cauchy sequence for the p-adic topology and in particular converges.
To see that ∇s

k(g) belongs to H0(Xb,I ,Wk+2s) it is enough to see how a section of the torus
Text acts on this section of W. By density it is enough to see how an element t ∈ Z∗

p acts. As
t ∗∇k( ) = t2∇k(t ∗ ) and t ∗ g = tkg, we obtain: t ∗∇s

k(g) = t2s∇s
k(t

kg). This proves the claim.
It remains to show the claim on q-expansions. Assume first that s is an integral weight.

Then B(g, s)n converges p-adically to exp
(

us
(p−1)

log(∇p−1
k )

)
(g) which is ∇s

k(g). Its q-expansion

coincides with the one claimed in the Proposition thanks to Lemma 3.38. In the general case,
consider the coefficients

∑
n cn(q)Vk+2s,n of the q-expansion of ∇s

k(g) and the coefficients of∑
n bn(q)Vk+2s,n with

bn(q) :=
∑

h,j,h+j=n

(
us
j

) j−1∏

i=0

(uk + us − h− 1− i)∂s−j
(
gh(q)

)
.

For every n both cn(q) and bn(q) are functions with values in R⊗̂ΛIs, where R = ΛIk((q)) is the
completed local ring at the cusp. For every n the coefficients in the q-expansion of cn and bn lie
in ΛIk⊗̂ΛIs and coincide for all the integral specializations of us, i.e., for infinitely many points.
Hence they coincide. The claim follows.

5 Applications to the construction of the triple product

p-adic L-function in the finite slope case.

In the first two sections of this chapter, in which we recall the known construction of the triple
product p-adic L-function attached to a triple of Hida families, we follow closely the exposition
in Section §4 of [DR1].
Let f be a newform of level Nf , character χf and let Qf denote the number field generated by all
Hecke eigenvalues of f . We write f ∈ Sk(Nf , χf ,Qf ). We denote by πf the automorphic repre-
sentation of GL2(AQ) generated by f . If N is a multiple of Nf and Qf ⊂ K we let Sk(N,K)[πf ]
denote the f -isotypic subspace of Sk(N,K) attached to the automorphic representation πf . For
every divisor a of N/Nf consider the elements [a]∗(f) of Sk(N,K)[πf ] defined by pull–back via
the morphism [a] from the modular curve of level Γ1(N) to the modular curve of level Γ1(Nf )
given as follows. Take an elliptic curve E with cyclic subgroup HN . Let HaNf

, resp. Ha be the

kernel of multiplication by aNf , resp. a on HN . Then [a]
(
E,HN

)
=
(
E ′, H ′

Nf

)
with E ′ := E/Ha

and H ′
Nf

= HaNf
/Ha. Note that [a]∗(f) = f(qa). Then, as recalled in loc. cit.:

Lemma 5.1. The space Sk(N,K)[πf ] is a finite dimensional K-vector space of dimension

σ0
( N
Nf

)
, where σ0(n) = #{d | d|n}, and a basis of Sk(N,K)[πf ] is given by

{
[a]∗(f)

}
a| N

Nf

.

Let f , g, h be a triple of normalized primitive cuspidal classical eigenforms of weights k, ℓ,
m, characters χf , χg, χh and tame levels Nf , Ng, Nh respectively. We write f ∈ Sk(Nf , χf ),
g ∈ Sℓ(Ng, χg), h ∈ Sm(Nh, χh). We set N := ℓ.c.m(Nf , Ng, Nh), Qf,g,h := Qf ·Qg ·Qh the number
field generated over Q by the Hecke eigenvalues of f , g, h. We assume that χf · χg · χh = 1
and the triple of weights (k, ℓ,m) is unbalanced, i.e., there is t ∈ Z≥0 such that k = ℓ+m+ 2t.
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We have the following result of M. Harris and S. Kudla ([HaKu]), previously conjectured by
H. Jacquet and recently refined by A. Ichino ([I]) and T.C. Watson ([W]):

Theorem 5.2 (Theorem 4.2. [DR1]). Let f , g, h be a triple as at the beginning of this section.
Then there exist:
• holomorphic modular forms

f o ∈ Sk(N,Qf,g,h)[πf ], , g
o ∈ Sℓ(N,Qf,g,h)[πg], h

o ∈ Sm(N,Qf,g,h)[πh]

• for each q|N∞ a constant Cq ∈ Qf,g,h, which only depends on the local components at q of
f o, go, ho such that

∏
q|N∞Cq

π2k
L
(
f, g, h,

k + ℓ+m− 2

2

)
= |I(f o, go, ho)|2.

Moreover, there is a choice of f o, go, ho such that all Cq 6= 0.

In the above theorem L(f, g, h, s) is the complex Garrett-Rankin triple product L-function
attached to f , g, h and

I(f o, go, ho) := 〈(f o)∗, δt(go)ho〉,

where 〈 , 〉 is the Peterson inner product on weight k-modular forms, δ is the Shimura-Maass
differential operator and (f o)∗ = f o ⊗ χ−1

f is an eigenform having prime-to-N eigenvalues equal

to those of f o, twisted by the character χ−1
f .

5.1 The triple product p-adic L-function in the ordinary case.

Let f , g, h be as at the beginning of Section 5 with the additional assumption that f , g, h
are ordinary at p. Let f o, go, ho be as in Theorem 5.2 such that all constants Cq for q|N∞
are non-zero. Let f , g, h be Hida families of modular forms on Γ1(N) (seen as q-expansions
with coefficients in the finite flat extensions of Λ denoted Λf , Λg, Λh respectively) deforming the
ordinary p-stabilizations of f , g, h in the weights k, ℓ, m respectively. As explained in [DR1, §2.6]
the families f , g, h determine Hida families fo, go and ho deforming the ordinary p-stabilization
of f o, go and ho respectively. Define also (go)[p], the p-depletion of (g)o, on q-expansions by: if
go(q) =

∑∞
n=1 anq

n, then (go)[p](q) :=
∑∞

n=1,(n,p)=1 anq
n. We then have

Definition 5.3 (Definition 4.4 [DR1]). The Garrett-Rankin triple product p-adic L-function
attached to the triple (fo, go,ho) of Hida families is the element

Lfp
(
fo, go,ho

)
:=
〈(fo)∗, eord

(
d•(go)[p] × h0

)
〉

〈f∗, f∗〉
∈ Λ′

f ⊗Λ (Λg ⊗Λh ⊗Λ).

The p-adic L-function Lfp
(
fo, go,ho

)
in Definition 5.3 is a function of three weight variables.

In particular if x, y, z ∈ W are classical weights which are unbalanced and if we denote by t ≥ 0
the integer such that x = y + z + 2t then we have (see section 4 of [DR1])

Lfp
(
fo, go,ho

)
(x, y, z) =

〈
(
fox
)∗
, eord

(
dt(go

y)
[p] × h0

z

)
〉

〈f∗x, f
∗
x〉

.
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Thanks to [DR1, Thm. 4.7] the above value of the p-adic L-function at x = k, y = ℓ, z = m is
related to the classical L-function via

Lfp
(
fo, go,ho

)
(k, ℓ,m) = ×

(
Lalg

(
f, g, h,

k + ℓ+m− 2

2

)) 1
2

for some non-zero constant×. It follows from Theorem 5.2 that the p-adic L-function Lfp
(
fo, go,ho

)

is non-zero if the value of the special value of the classical L-function is non zero; see [DR1, Rmk
4.8].

5.2 The triple product p-adic L-function in the finite slope case.

Let f ∈ Sk(Nf , χf), g ∈ Sℓ(Ng, χg), h ∈ Sm(Nh, χh) be a triple of normalized primitive cuspidal
eigenforms such that f has finite slope a and χf · χg · χh = 1 and assume (k, ℓ,m) is unbalanced
and denote t a non-negative integer such that k = ℓ +m+ 2t. Let N := ℓ.c.m(Nf , Ng, Nh) and
let f o, go, ho be as in Theorem 5.2 such that all constants Cq are non-zero. In particular f o has
finite slope a. We denote by K a finite extension of Qp which contains all the values of χf , χg,
χh.

Let ωf , ωg, ωh denote overconvergent families of modular forms deforming f , g, h and let ωof ,
ωog and ωoh be the overconvergent families deforming f o, go, ho and associated to ωf , ωg and ωh
via the procedure described in [DR1, §2]; for example if we express f o as a K-linear combination∑

a λa · [a]
∗(f) of the basis elements [a]∗(f)’s, for a varying among the divisors of N/Nf , provided

in Lemma 5.1, then ωof :=
∑

a λa · [a]
∗
(
ωf
)
.

We then have a non-negative integer r, closed intervals If , Ig and Ih such that the weights
of these families, denoted respectively kf : Z

∗
p → Λ∗

If ,K
, kg : Z

∗
p → Λ∗

Ig,K , kh : Z
∗
p → Λ∗

Ih,K
are all

adapted to a certain integer n ≥ 0. This data gives a tower of formal schemes IGn,r,I −→ Xr,I −→
X, where X is the formal completion along its special fiber of the modular curve X1(N)Zp and
Xr,I = Xr,If ×X Xr,Ig ×X Xr,Ih and likewise for IGn,r,I . We denote by wkf ,wkg ,wkh the respective
modular sheaves (over Xr,I or on the analytic adic fiber Xr,I), then ωf , ω

o
f ∈ H0(Xr,If ,w

kf ),

similarly ωg, ω
o
g ∈ H0(Xr,Ig ,w

kg) and ωh, ω
o
h ∈ H0(Xr,Ih,w

kh). We make the following assumption
on the weights of ωof , ω

o
g, ω

o
h:

Assumption 5.4. 1) Suppose that the weights kf , kg, kh are such that kf − kg − kh is even, i.e.
there is a weight u : Z∗

p −→ (ΛI,K)
∗ such that 2u = kf − kg − kh.

2) the weights kg, u (in this order) satisfy the Assumption 4.1, i.e. kg = ℓ · χg · k′ and
u = t · ǫ · s where ǫ is a finite order, even character of Z∗

p and k′, s are weights such that
k′(η) = exp(uk′ log(η)), s(η) = exp(us log(η)), for all η ∈ Z∗

p with uk′ ∈ pΛI , us ∈ qΛI .

We see ωf , ω
o
f , ωg, ω

o
g , ωh, ω

o
h as global sections of Fil0(W

an
kf
), Fil0(W

an
kg
) and Fil0(W

an
kh
)

respectively. Let ω
o,[p]
g be the p-depletion of ωog as in Definition 3.27. Then Assumption 4.1

implies via Theorem 4.3 that (∇kg)
u(ω

o,[p]
g ) makes sense and

(∇kg)
u(ωo,[p]g ) ∈ H0(Xr′,I ,W

an
kg+2u),

for some positive integer r′ ≥ r. Therefore we have a section

(∇kg)
u
(
ωo,[p]g

)
× ωoh ∈ H0(Xr′,Iu,W

an
kf
).
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Consider its class in H1
dR

(
Xr′,Iu,Wkf−2

)
, which after base change to Kf , where Kf is obtained from

ΛIf ,K by inverting the elements {us−n|n ∈ N}, we obtain a section in H0(Xr′,Iu ,w
kf )⊗ΛIf ,K

Kf .

Using Definition 3.36 and the spectral theory of the U -operator on H0
(
Xr′,Iu ,w

kf
)
developed in

[AIPHS, Appendice B] we have its overconvergent projection onto the slope ≤ a subspace:

H†,≤a
(
(∇kg)

u
(
ωo,[p]g

)
× ωoh

)
∈ H0

(
Xr′,Iu,w

kf
)≤a
⊗ΛIf

Kf .

The family ωo,∗f : In order to define triple product L-functions we need to pass from the

family ωof to a different family ωo,∗f ∈ H0(Xr,If ,w
kf ), with the property that for any classical

specialization of ωof which is an eigenform of conductor prime to p the specialization of ωo,∗f is

also an eigenform of conductor prime to p with prime-to-N Hecke eigenvalues twisted by χ−1
f .

For this reason one also writes ωof ⊗ χ
−1
f for ωo,∗f .

We follow [BDP, Lemma 5.2] and [BSV, Lemma 5.1]. Possibly after base change from Zp to
the ring of integers of a finite extension of Zp we may assume that Λ contains a primitive N -th
root of unity ζ . This allows to define an Atkin-Lehner involution wN on X1(N): given an elliptic
curve E with a cyclic subgroup of ψN : Z/NZ ⊂ E[N ] we let wN(E, ψN ) be the elliptic curve E

′,
quotient of E by the image HN of ψN , with subgroup H ′

N := E[N ]/HN trivialized by identifying
H ′
N with the Cartier dual H∨

N , identifying H
∨
N with µN using the dual of ΨN : Z/NZ ∼= HN and

using the chosen N -th root of unity to provide an isomorphism Z/NZ ∼= µN . Such involution
extends to an involution on Xr,I , Wk etc. We let ωo,∗f := wN

(
ωof
)
. As explained in loc. cit. it has

Definition 5.5. The Garrett-Rankin triple product p-adic L-function attached to the triple(
ωof , ω

o
g, ω

o
h

)
of p-adic families of modular forms, of which ωof has finite slope ≤ a, is

Lfp
(
ωof , ω

o
g, ω

o
h

)
:=
〈ωo,∗f , H†,≤a

(
(∇kg)

u
(
ω
o,[p]
g

)
× ωoh

)
〉

〈ω∗
f , ω

∗
f〉

∈ Kf⊗̂Λkg,K⊗̂Λkh,K .

We refer to [Ur14, §4.2.1] for the Petersson inner product in this context; see also the dis-
cussion below. By the definition of the overconvergent projection in Definition 3.36 the p-adic
L-function Lfp(ω

o
f , ω

o
g, ω

o
h) has only finitely many poles, i.e., it is meromorphic.

On the Petersson product for families of overconvergent forms: Consider the space M =
H0(Xr,I ,wk)≤a defined over an affinoid WI := SpmA of the weight sapce with total ring of
fractions K. Let T be the subalgebra of EndM generated by the Hecke operators. It defines an
open affinoid of the eigencurve and SpmT→WI is finite and generically étale. Thus we have a
trace map T→ T∨ := HomA(T, A) which defines an isomorphism ι : T⊗AK ∼= T∨⊗AK. We also
have a pairing M × T → A sending a pair (f, T ), consisting of a form f and a Hecke operator
T , to the Fourier coefficient a1(f |T ) in the q-expansion of f |T . This defines an A-linear map
j : M → T∨. The Petersson product is defined as the composite

〈, 〉 : M ×M
j×j
−→ T∨ × T∨ → T∨ ⊗A K× T∨ ⊗A K

ι−1×1
−→ T⊗A K× T∨ ⊗A K→ K

(the last map is defined by the natural pairing T× T∨ → A).
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5.3 Interpolation properties

Let now x ∈ WIf , y ∈ WIg , z ∈ WIg be a triple of unbalanced classical weights, i.e., such
that x, y and z are obtained by specializing kf , kg and kz at integral weights in Z≥2 and there
is a classical weight t′ with x − y − z = 2t′. Let us denote by fx, f

o
x , gy, g

o
y, hz, h

o
z the

specializations of ωf , ω
o
f , ωg, ω

o
g , ωh, ω

o
h at x, y, z respectively, seen as sections over Xr′,Iu of

ωx ⊂ Filx−2(W
an
x−2) = Symx−2(HE), ω

y ⊂ Fily−2(W
an
y−2) = Symy−2(HE), ω

z ⊂ Filz−2(W
an
z−2) =

Symz−2(HE) respectively. Let us denote by
(
∇u
kg
(ω

o,[p]
g )

)
y,t′

the specialization of ∇u
kg
(ω

o,[p]
g ) ∈

H0(Xr′,Ig ,W
an
kg+2u) at the classical weight y + 2t′. We have:

Lemma 5.6. We have
(
∇u
kg
(ω

o,[p]
g )

)
y,t′

= ∇t′(g
o,[p]
y ), the equality taking place in H0

(
Xr′,Iu,W

an
y+2t′

)
.

In particular,

Lfp
(
ωof , ω

o
g , ω

o
h

)
(x, y, z) :=

(
Lfp(ω

o
f , ω

o
g , ω

o
h)
)
x,y,z

=
〈f o,∗x , H†,a

(
∇t′
(
g
o,[p]
y

)
× hoz

)
〉

〈f ∗
x , f

∗
x〉

.

Proof. The first claim follows from Corollary 4.6. The second claim follows as the specialization
map commutes with the overconvergent projection and the cup product by Corollary 3.35.

As now t′ ≥ 0 is a classical weight we can relate the right hand side of the formula of Lemma
5.6 to more classical objects. This is the content of the present section.

In order to do that we fix embeddings of Q in C and Cp respectively. We also assume that
fx, gy and hz are eigenforms of level Γ1(N) and nebentypus χx, χy and χz respectively and with
eigenvalues ax, ay and az respectively for the operator Tp; that is the Hecke polynomial for Tp
and the eigenform fx, for example, is X2 − axX + χx(p)p

x−1 and likewise for gy and hz.
Let αx, βx, α

∗
x, β

∗
x, αy, βy and αz, βz be the corresponding roots of the Hecke polynomials

of Tp for the forms fx, resp. f
∗
x , resp. gy, resp. hz. Recall that f

∗
x = fx ⊗ χ−1

x ; it has nebentypus
χ−1
x and its eigenvalues for Tp are the complex conjugates of αx and βx. In particular a∗x is the

complex conjugte of ax. We assume that αx 6= βx, αy 6= βy and αz 6= βz. In particular also
α∗
x 6= β∗

x. Then we have the following interpolation result. With the notation of Theorem 5.2
write

Lalg
(
fx, gy, hz,

x+ y + z − 2

2

)
:=

(∏
q|N∞ Cq

π2kx L
(
fx, gy, hz,

x+y+z−2
2

)) 1
2

〈f ∗
x , f

∗
x〉

.

Following [DR1, Thm. 1.3] define

E(gy, hz, T ) :=
(
1− pt

′

αyαzT
−1
)(
1− pt

′

αyβzT
−1
)(
1− pt

′

βyαzT
−1
)(
1− pt

′

βyβzT
−1
)
,

E1(gy, hz, T ) := 1− p2t
′

αyβyαzβzT
−2, E0(S, T ) := 1−

T

S
and

E2(T ) = 1−
χ−2
x (p)a∗xT

px−1(p+ 1)
.

Theorem 5.7. We have Lfp
(
ωof , ω

o
g, ω

o
h

)
(x, y, z) =

=
( E

(
gy, hz, α

∗
x

)
E2
(
β∗
x

)

E0
(
α∗
x, β

∗
x

)
E1
(
gy, hz, α∗

x

) + E
(
gy, hz, β

∗
x

)
E2
(
α∗
x

)

E0
(
β∗
x, α

∗
x

)
E1
(
gy, hz, β∗

x

)
)
Lalg

(
fx, gy, hz,

x+ y + z − 2

2

)
.
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The Theorem will be proven via a series of Lemmas and Propositions. We start with:

Lemma 5.8. We have U
(
∇u
y

(
g
o,[p]
y

)
× V

(
hoz
))

= 0 and U
(
V
(
(∇y)

u
(
goy
))
× ho,[p]z

)
= 0.

Proof. This is the analogue of [DR1, lemma 2.17]. We prove the first formula, the second one
being analogous to the first. Using Theorem 4.3 we have the following formula on q-expansion

(
∇t′

y

(
go,[p]y

)
× V

(
hoz
))

(q) =
∑

ℓ

∑

j=0

(
t′

j

) j−1∏

i=0

(u+y−ℓ−1−i)∂t
′−j
(
gyo, [p](q)

)
·V
(
hoz
)
(q)Vy+2t′,j+ℓ.

As U acts on ∂t
′−j
(
g
o,[p]
y (q)

)
V
(
hoz
)
(q)Vy+2t′,j+ℓ as p

j+ℓU
(
∂t

′−j
(
g
o,[p]
y (q)

)
V
(
hoz
)
(q)
)
Vy+2t′,j+ℓ, where

U
(∑

n anq
n
)
=
∑

n apnq
n, it suffices to prove that the Fourier coefficients an of the product

∂t
′−j
(
g
o,[p]
y (q)

)
V
(
hz
)
(q) are zero whenever p divides n. By construction the Fourier coefficients

∂t
′−j
(
g
o,[p]
y (q)

)
=
∑

n bnq
n are zero if p|n and V

(
hoz
)
(q) =

∑
n cnq

pn. The claim is then clear.

Given the roots αy and βy of the Hecke polynomial of Tp associated to the form gy, we get two
associated eigenforms for U , of level Γ1(Np), with eigenvalues αy and βy respectively, namely
gαy := gy − βyV

(
gy
)
and gβy := gy − αyV

(
gy
)
. These are called the p-stabilizations of gy. We

start with the following analogue of [DR1, Lemma 4.10]:

Lemma 5.9. Fix p-stabilizations goαy
and hoαz

of goy and hoz with eigenvalues αy and αz respec-
tively. Then,

H†,≤a
(
∇t′
(
go,[p]y

)
× hoz

)
=
(
1− pt

′

αyαzU
−1
)
H†,≤a

(
∇t′
(
goαy

)
× hoαz

)
.

Notice that U is invertible on the slope ≤ a part so that the formula makes sense.

Proof. This is the analogue of [DR1, lemma 4.10(iv)]. Recall from §3.7 that g
o,[p]
αy := goαy

−

V
(
U(goαy

)
)
. In particular, as U(goαy

) = αyg
o
αy
, then g

o,[p]
αy = goαy

− αyV
(
goαy

)
. We also have

∇t′
(
V
(
goαy

))
= ptV

(
∇t′(goαy

)
)
as ∇ ◦ V = pV ◦ ∇. Hence,

H†,≤a
(
∇t′
(
go,[p]αy

)
× hoαz

)
= H†,≤a

(
∇t′
(
goαy

)
× hoαz

)
− pt

′

αyH
†,≤a
(
V
(
∇t′
(
goαy

))
× hoαz

)
.

One computes

H†,≤a
(
V
(
∇t′(goαy

)
)
× V (hoαz

)
)
= H†,≤a

(
V
(
∇t′(goαy

)× hoαz

))
= U−1H†,≤a

(
∇t′(goαy

)× hoαz

)
;

the last equality follows using that U ◦ V = Id and the fact that H†,≤a can be expressed as an
entire power series

∑
n≥1 snU

n so that
∑

n≥1 snU
n ◦ V =

∑
n≥1 snU

n−1. It then follows from the
second formula of Lemma 5.8 that

H†,≤a
(
V
(
∇t′
(
goαy

))
× hoαz

)
= αzH

†,≤a
(
V
(
∇t′
(
goαy

))
× V

(
hoαz

))
= αzU

−1H†,≤a
(
∇t′(goαy

)× hoαz

)
.

Assembling these formulas we get that

H†,≤a
(
∇t′
(
go,[p]αy

)
× hoαz

)
=
(
1− pt

′

αyαzU
−1
)
H†,≤a

(
∇t′
(
goαy

)
× hoαz

)
.
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Since hαz = hz − βzV (hz), it follows using Lemma 5.8 that

H†,≤a
(
∇t′
(
go,[p]y

)
× hoz

)
= H†,≤a

(
∇t′
(
go,[p]y

)
× hoαz

)

which is also H†,≤a
(
∇t′
(
g
o,[p]
y

)
× ho,[p]αz

)
, using again the Lemma 5.8, as h

o,[p]
αz = hoαz

− αzV
(
hoαz

)
.

Since ∇t′
(
g
o,[p]
y

)
= ∇t′

(
goy
)
+ pt

′
V
(
∇t′
(
U(goy)

))
, by loc. cit. we have

H†,≤a
(
∇t′
(
go,[p]y

)
× ho,[p]αz

)
= H†,≤a

(
∇t′
(
goy
)
× ho,[p]αz

)
= H†,≤a

(
∇t′
(
goαy

)
× ho,[p]αz

)
;

the last equality follows from goαy
= goy − βyV

(
goy
)
and the fact that ∇t′

(
V (goy)

)
= pt

′
V
(
∇t′(goy)

)

so that H†,≤a
(
∇t′
(
V (goαy

)
)
× ho,[p]αz

)
= 0. Arguing in the same way backwards we have

H†,≤a
(
∇t′
(
goαy

)
× ho,[p]αz

)
= H†,≤a

(
∇t′
(
go,[p]αy

)
× hoαz

)
.

The claim follows.

We also have the following analogue of [DR1, Prop. 4.11]:

Lemma 5.10. We have

H†,≤a
(
∇t′
(
go,[p]y

)
× hoz

)
=
E(gy, hz, U)

E1(gy, hz, U)
H†,≤a

(
∇t′
(
goy
)
× hoz

)
.

Proof. It follows from Lemma 5.9 that

H†,≤a
(
∇t′
(
go,[p]y

)
× hoz

)
=
(
1− pt

′

aybzU
−1
)
H†,≤a

(
∇t′
(
goay
)
× hobz

)

for a, b = α, β.
If hoαz

and hoβz are the two p-stabilizations of hoz, then h
o
z = (αz − βz)−1

(
αzh

o
αz
− βzhoβz

)
and

similarly for gy. Hence

H†,≤a
(
∇t′
(
go,[p]y

)
× hoz

)
=
(
1− pt

′

αyαzU
−1
)(
1− pt

′

αyβzU
−1
)
H†,≤a

(
∇t′
(
goαy

)
× hoz

)

and

H†,≤a
(
∇t′
(
go,[p]y

)
× hoz

)
=
(
1− pt

′

βyαzU
−1
)(
1− pt

′

βyβzU
−1
)
H†,≤a

(
∇t′
(
goβy
)
× hoz

)
.

Thus, using that goy = (αy − βy)−1
(
αyg

o
αy
− βygoβy

)
, we obtain

H†,≤a
(
∇t′
(
goy
)
×hoz

)
= (αy−βy)

−1αyH
†,≤a
(
∇t′
(
goαy

)
×hoz

)
− (αy−βy)

−1βyH
†,≤a
(
∇t′
(
goβy
)
×hoz

)
.

A simple computation provides the claimed formula.

Proposition 5.11. We have 〈f o,∗x , H†,≤a
(
∇t′
(
g
o,[p]
y

)
× hoz

)
〉 =

=
( E

(
gy, hz, α

∗
x

)
E2
(
β∗
x

)

E0
(
α∗
x, β

∗
x

)
E1
(
gy, hz, α∗

x

) + E
(
gy, hz, β

∗
x

)
E2
(
α∗
x

)

E0
(
β∗
x, α

∗
x

)
E1
(
gy, hz, β∗

x

)
)
〈f o,∗x , H†,≤a

(
∇t′
(
goy
)
× hoz

)
〉.
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Proof. Consider now the projection efo,∗x
onto the Hecke eigenspace corresponding to f o,∗x . Write

γ := efo,∗x
H†,≤a

(
∇t′
(
goy
)
× hoz

)

and write γα∗
x
= γ − β∗

xV (γ) and γβ∗
x
= γ − α∗

xV (γ) for the two p-stabilizations. Then

〈f o,∗x , H†,≤a
(
∇t′
(
goy
)
× hoz

)
〉 = 〈f o,∗x , γ〉

and
E
(
gy, hz, U

)

E1
(
gy, hz, U

)(γα∗
x

)
=
E
(
gy, hz, α

∗
x

)

E1
(
gy, hz, α∗

x

)(γα∗
x

)

and similarly for γβ∗
x
. Recalling that γ = (α∗

x−β
∗
x)

−1
(
α∗
xγα∗

x
−β∗

xγβ∗
x

)
=
(
1−β∗

x/α
∗
x

)−1
γα∗

x
+
(
1−

α∗
x/β

∗
x

)−1
γβ∗

x
the conclusion follows from Lemma 5.10 and Lemma 5.12 noticing that the Hecke

eignspace associated to f o,∗x has nebentypus χ−1
x .

Lemma 5.12. Let δ and γ ∈ Sk
(
Γ1(N)

)
. Assume that γ is an eigenform with eigenvalue ap for

the operator Tp and with nebentypus χ. Then

〈δ, V (γ)〉 =
χ(p)2ap

pk−1(p+ 1)
〈δ, γ〉.

Proof. Let α :=

(
1 0
0 p

)
. Following [DS, §5.2] we write

Γ1(N)αΓ1(N) = ∐p−1
j=0Γ1(N)βj ∐ Γ1(N)

(
m n
N p

)
β∞,

where βj =

(
1 j
0 p

)
for 0 ≤ j ≤ p − 1, β∞ =

(
p 0
0 1

)
and mp − nN = 1. Moreover Tp(γ) =

∑p−1
j=0 γ|kβj+γ|k

(
m n
N p

)
β∞. Hence, ap〈δ, γ〉 = 〈δ, Tp(γ)〉 =

∑p−1
j=0〈δ, γ|kβj〉+〈δ, γ|k

(
m n
N p

)
β∞〉.

Write βj = ajαbj . Then

〈δ, γ|kβj〉 = 〈δ, γ|kajαbj〉 = 〈δ|kb
−1
j , γ|kajα〉 = 〈δ, γ|kα〉

as the Petersson product is invariant for the action of elements of Γ1(N). Similarly, writing(
m n
N p

)
β∞ = aαb we have

〈δ, γ|kα〉 = 〈δ, γ|ka
−1

(
m n
N p

)
b−1β∞〉 = 〈δ, γ|k

(
m n
N p

)
β∞〉.

We conclude that
ap〈δ, γ〉 = (p+ 1)χ(p)〈δ, γ|kβ∞〉.

Recall that Tp(γ) = U(γ)+χ(p)pk−1V (γ) with V (γ) = χ(p)p1−kγ|kβ∞ and U(γ) =
∑p−1

j=0 γ|kβj .
Hence

〈δ, V (γ)〉 =
χ(p)2ap

pk−1(p+ 1)
〈δ, γ〉.
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Proof. (of Theorem 5.7) It follows from Theorem 5.2 that Lalg
(
fx, gy, hz,

x+y+z−2
2

)
=

I(fox ,g
o
x,h

o
y)

〈f∗x ,f
∗
x〉

.

On the other hand

〈f o,∗x , efo,∗x
H†,≤a

(
∇t′
(
goy
)
× hoz

)
〉 = 〈f o,∗x , efo,∗x

Hhol
(
δt

′(
goy
)
× hoz

)
〉 = I(f ox , g

o
x, h

o
y),

where Hhol the classical holomorphic projection on nearly holomorphic modular forms and δ be
the Shimura–Maass operator; see [Ur14, §2] or [DR1, §2.3 & 2.4]. The claim follows now from
Proposition 5.11.

In particular for x = k, y = ℓ, z = m we have by construction fx = f , gy = g, hz = h and
f ox = f o, goy = go, hoz = ho. Then

Corollary 5.13. We have

Lfp(ω
o
f , ω

o
g, ω

o
h)(x, y, z) = ×

(
Lalg

(
f, g, h,

k + ℓ+m− 2

2

)) 1
2

for some non-zero constant × so that Lfp(ω
o
f , ω

o
g, ω

o
h) 6= 0 if the value of the classical L-function

is non-zero.

Remark 5.14. For Hida families the Euler factors appearing in the formula in 5.7 differ from
those in [DR1]. This is due to the fact that the pairing 〈f o,∗x , H†,≤a

(
∇t′
(
g
o,[p]
y

)
×hoz

)
〉 computed in

Proposition 5.11 is substituted in loc. cit. by the ordinary stabilizations, namely one computes

〈eord
(
f o,∗x
)
, eord

(
∇t′
(
go,[p]y

)
× hoz

)
〉,

where eord = H†,0 is the ordinary projection appearing in Hida theory. Nevertheless, under the
Assumptions (4.1), one can use the techniques of the present paper to provide an alternative
proof of [DR1, Thm. 4.7].

6 Appendix I.

In this appendix we set-up the general theory of formal vector bundles with marked sections for
families of p-divisible groups “which are not far from being ordinay” in order to facilitate the
construction of sheaves of type W0

k on Shimura varieties of type PEL other then modular curves.
However we do not construct these sheaves and we do not construct the triple product p-adic
L-functions in the finite slope case here for other Shimura varieties, only set-up the geometric
machine which should produce the modular sheaves.

6.1 Vector bundles with marked sections associated to p-divisible
groups.

We start by fixing a flat Zp-algebra A0 such that A0 is p-adically complete and separated integral
domain. Let R be a normal domain, which is a p-adically complete and separated A0-algebra,
without A0-torsion. Let G be a p-divisible group over R of height h and dimension d < h.

Let det VG be the determinant ideal of the Vershiebung morphism VG : G → G
(p)
, where G :=
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G ×R (R/pR). Its inverse image via the projection R → R/pR defines an ideal of R that we
denote by Hdg(G). Let n be a positive integer and assume that p ∈ Hdg(G)p

n+1
. It then

follows from [AIPHS, Lemma A.1] that Hdg(G) is an invertible ideal. Furthermore, G admits
a canonical subgroup Hn ⊂ G[pn] of rank pnd thanks to [AIPHS, Cor. A.2]. We assume that
H∨
n (R) =

(
Z/pn)d and that G[p](R)/H1(R) ∼= (Z/pZ)h−d. Thanks to [AIPHS, Prop. A.3] this

implies that there exists an invertible ideal Hdg(G)
1

p−1 ⊂ R whose (p− 1)-th power is Hdg(G).

We also know from [AIPHS, Cor. A.2] that Ker
(
ωG −→ ωHn

)
⊂ pnHdg(G)−

pn−1
p−1 ωG so that we

have a natural diagram
ωG
↓

H∨
n

dlog
−→ ωHn

↓
ωG(

pnHdg(G)
−

(pn−1)
p−1

)
ωG

(10)

Let I ⊂ R be the invertible ideal pnHdg(G)−
pn

p−1 of R. Let ΩG ⊂ ωG be the R-submodule

generated by (any) lifts of the images of a Z/pnZ-basis ofH∨
n (R) in ωG/

(
pnHdg(G)−

(pn−1)
p−1

)
ωG via

d log. It follows from [AIPS, §3] and [AIPHS, §A] that the sheaf ΩG has the following properties:

a) the cokernel of ΩG ⊂ ωG is annihilated by Hdg(G)
1

p−1 ;

b) ΩG is a free R-module of rank d and the map dlog defines an isomorphism

H∨
n (R)⊗Z

(
R/I

)
∼= ΩG ⊗R

(
R/I

)
.

Let E(G∨) → G∨ the universal vector extension of the dual p-divisible group G∨ and let
H1

dR(G) be the sheaf of invariant differentials of E(G∨). It is a locally free R-module of rank h
endowed with an integrable connection ∇ : H1

dR(G)→ H1
dR(G)⊗̂RΩ

1
R/A0

, called the Gauss-Manin
connection. It also fits into the exact sequence

0→ ωG → H1
dR(G)→ ω∨

G∨ → 0.

This defines the so called Hodge filtration on H1
dR(G). Consider the exact sequence

0 −→ Hdg(G)
p

p−1 · ωG −→ Hdg(G)
p

p−1 · H1
dR(G) −→ Hdg(G)

p
p−1 · ω∨

G∨ −→ 0
↓ ↓ ↓

0 −→ ωG −→ H1
dR(G) −→ ω∨

G∨ −→ 0

obtained by multiplying by the invertible ideal Hdg(G)
p

p−1 .

Definition 6.1. Using the inclusion Hdg(G)
p

p−1 · ωG ⊂ ΩG ⊂ ωG define H♯
G to be the pushout

of Hdg(G)
1

p−1 · H1
dR(G) via the inclusion Hdg(G)

1
p−1ωG ⊂ ΩG.

The R-module H♯
G has the simple description H♯

G := Hdg(G)
p

p−1H1
dR(G)+ΩG as R-submodule

of H1
dR(G).

Proposition 6.2. The R-module H♯
G has the following properties:
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i. we have an exact sequence 0 → ΩG → H♯
G → Hdg(G)

p
p−1 · ω∨

G∨ → 0. In particular, it is a
locally free R-module of rank d and it contains ΩG ⊂ H♯

G as a locally direct summand;

ii. it fits into the following diagram with exact rows:

0 −→ ΩG −→ H♯
G −→ Hdg(G)

p
p−1 · ω∨

G∨ −→ 0
↓ ↓ ↓

0 −→ ωG −→ H1
dR(G) −→ ω∨

G∨ −→ 0.

iii. the choice of a Z/pnZ-basis of H∨
n (S) defines a basis s1, . . . , sd of the R/I-module of

ΩG/IΩG via the map dlog.

In particular, we are in the hypotheses of §2.3 with E := H♯
G, F = ΩG and the sections

s1, . . . , sd of ΩG/IΩG where I = pnHdg(G)−
pn

p−1 .

Proposition 6.3. Assume that G∨[pn](R) ∼= (Z/pnZ)h. Then the Gauss-Manin connection ∇
on H1

dR(G) defines a connection

∇G,♯ : H
♯
G −→ H♯

G⊗̂RΩ
1
R/A0

such that ∇G,♯|ΩG
≡ 0 modulo I. In particular, the hypotheses of §2.4, namely that s1, . . . , sd

are horizontal for ∇G,♯ modulo I, hold true.

Proof. The isomorphism ρS : G
∨[pn](R) ∼= (Z/pnZ)h induces a morphism of finite and flat group

schemes ρ : (Z/pnZ)h → G∨[pn] over R. Let Rn := R/pnR. Since dlog is functorial and
ωG[pn],Rn = ωG/p

nωG as G is a p-divisible group, we have a commutative diagram:

(Z/pnZ)h
dlog

µh
pn

−→ ωhµpn,Rn

↓ ρ(S) ↓ dρ∨

G∨[pn](R)
dlogG∨[pn]
−→ ωG[pn],Rn = ωG/p

nωG.

The connection on H1
dR(G) modulo pn is the connection ∇G[pn] on the invariant differentials

of the universal extension of G[pn]∨ = G∨[pn] relative to Rn, that we denote by H1
dR

(
G[pn]/Rn

)
.

Since µhpn is isotrivial over Rn, it follows that the Gauss-Manin connection ∇µh
pn

on H1
dR(µ

h
pn/Rn

)

is trivial so that ∇µh
pn
◦ dlogµh

pn
= 0. By the functoriality of the Gauss-Manin connection and

the commutativity of the diagram above it follows that ∇G[pn] ◦ d logG∨[pn] = 0. Due to (10) the

map dlogG∨[pn] composed with the projection to ωG/Hdg(G)
1

p−1IωG factors via G∨[pn](R) →
H∨
n (R) and dlogH∨

n
. In particular, we can choose lifts s̃1, . . . , s̃d ∈ ΩG of s1, . . . , sd in the image

of dlogG∨[pn] modulo pn and we deduce that ∇(s̃i) ≡ 0 modulo pnH1
dR(G) for i = 1, . . . , d.

Thus the restriction of ∇ to ΩG factors through pnH1
dR(G) ⊂ Hdg(G)

p
p−1H1

dR(G) ⊂ H♯
G (recall

that p ∈ Hdg(G)p
n+1

) and the images ∇(s1), . . . ,∇(sd) are 0 modulo IH♯
G ⊗ Ω1

S/A0
(recall I =

pnHdg(G)−
pn

p−1 ). This defines ∇G,♯ on ΩG.

As H♯
G = ΩG + Hdg(G)

p
p−1H1

dR(G), as R-submodules of H1
dR(G), to conclude we are left to

show that ∇ sends Hdg(G)
p

p−1H1
dR(G) into Hdg(G)

p
p−1H1

dR(G). Using Leibniz’s rule this follows
as Hdg(G)p/(p−1) is a p-th power so that dHdg(G)p/(p−1) ≡ 0 modulo pR and p ∈ Hdg(G)p

n+1
by

assumption.
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6.2 Functoriality in the elliptic case

We keep the assumptions of the previous section on the rings A0 and R. Let G and G′ be p-
divisible groups over R associated to elliptic curves over R. We assume that p ∈ Hdg(G′)p

n+1
and

that Hdg(G′) ⊂ Hdg(G). Then both G and G′ admit canonical subgroups Hn ⊂ G[pn] and H ′
n ⊂

G′[pn], of rank pn. We assume that H∨
n (R)

∼=
(
Z/pn) ∼= H

′,∨
n (R). We set I = pnHdg(G′)−

pn

p−1

(which contains pnHdg(G)−
pn

p−1 ).

We let λ : G′ → G be an isogeny such that H ′
n maps to Hn and the induced map H ′

n → Hn

is an isomorphism after inverting p. Then the dual isogeny λ∨ : G∨ → G
′,∨ defines a map of

universal vector extensions λ∨ : E(G∨) → E(G,∨′
) and, taking the induced map on Lie algebras

λ∨∗ , a commutative diagram:

0 → ωG → H1
dR(G) → ω∨

G∨ → 0

↓ λ∗ ↓ λ∨∗ ↓
(
(λ∨)∗

)∨
0 → ωG′ → H1

dR(G
′
) → ω∨

G′,∨ → 0.

Here λ∗ : ωG → ωG′, resp. (λ∨)∗ : ωG′,∨ → ωG∨ is the pull-back on invariant differentials defined

by λ, resp. λ∨ and
(
(λ∨)∗

)∨
is the R-dual of (λ∨)∗. As λ induces a map H ′

n → Hn, which is an

isomorphism after inverting p, then λ induces a map H∨
n → H

′,∨
n which is an isomorphism after

inverting p and we get an isomorphism H∨
n (R)

∼= H
′,∨
n (R). Then, the functoriality of diagram

(10) provides the commutative diagram

0 → ΩG ⊂ ωG
↓∼= ↓ λ∗

0 → ΩG′ ⊂ ωG′

We denote by λ∗ : ΩG → ΩG′ the induced isomorphism. The choice of a Z/pnZ-basis ofH∨
n (R)

defines a basis s of the R/I-module ΩG/IΩG and, via the isomorphism H∨
n (R) −→ H

′,∨
n (R)

induced by λ∨, also a basis s′ of the OS/I-module of ΩG′/IΩG′ .

Lemma 6.4. Assume that λ has degree pn. Then the map λ∨∗ induces a morphism λ♯ : H♯
G → H♯

G′.
Moreover λ♯ fits in following commutative diagram

0 −→ ΩG −→ H♯
G −→ Hdg(G)

p
p−1 · ω∨

G∨ −→ 0

↓ λ∗ ↓ λ♯ ↓
(
(λ∨)∗

)∨

0 −→ ΩG′ −→ H♯
G′ −→ Hdg(G′)

p
p−1 · ω∨

G′,∨ −→ 0,

with the properties that f ∗(s) = s′ (modulo I) and the image of Hdg(G)
p

p−1 · ω∨
G∨ via

(
(λ∨)∗

)∨

is equal to τλ · Hdg(G′)
p

p−1 · ω∨
G

′,∨ with τλ = 1 if n = 0 and τλ = pn/Hdg(G′)
(p+1)(pn−1)

pn(p−1) .

Proof. If λ is an isomorphism there is nothing to prove. For general n, we remark the H♯
G

and H♯
G′ are locally free R-modules of rank 2 and R is normal; hence it suffices to prove that

λ∨∗
(
H♯
G

)
⊂ H♯

G′ holds after localization at codimension 1 prime idelas of R. This is clear for
prime ideals not containing p. Thus, after replacing R with the localization at a prime ideal
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cotaining p, we may assume that R is a dvr. In this case, we may write λ as the composite of
n isogenies of degree p and we reduce to the case that n = 1, i.e., that λ has degree p. Then
λ is the quotient under a subgroup scheme N such that N ∩H ′

1 = {0}. From now on we view
the dual isogeny λ∨ as a morphism λ∨ : G → G

′
, identifying G ∼= G∨ and G′ ∼= G

′,∨ via the
principal polarizations on G and G′ and ωG ∼= ωG∨ and ωG′ ∼= ωG′,∨ . Then λ∨ is the quotient by
the canonical subgroup H1. This forces Hdg(G′) = Hdg(G)p and λ∨ coincides with Frobenius
modulo p/Hdg(G) (see [AIPHS, Cor. A.2]).

As Hdg(G′) = Hdg(G)p, the image λ∨∗
(
H♯
G

)
is contained in H̃♯

G′ := Hdg(G′)
1

p−1H1
dR(G

′
)+ΩG′ .

We clearly have H♯
G′ ⊂ H̃♯

G′ and since Hdg(G′)
1

p−1ωG′ ⊂ ΩG′ , we have an exact sequence

0→ ΩG′ → H̃♯
G′ → Hdg(G′)

1
p−1 · ω∨

G′ → 0.

In particular H♯
G′ is identified with the pull-back of H̃♯

G′ via the inclusion Hdg(G′)
p

p−1 · ω∨
G′ ⊂

Hdg(G′)
1

p−1 · ω∨
G′. Then λ∨∗

(
H♯
G

)
is contained in H♯

G′ if and only if the image of Hdg(G)
p

p−1 · ω∨
G

via
(
(λ∨)∗)∨ is contained in Hdg(G′)

p
p−1 · ω∨

G′. This amounts to prove that the image of ω∨
G

via
(
(λ∨)∗)∨ is contained in Hdg(G′)

p
p−1Hdg(G)

p
p−1 · ω∨

G′ = Hdg(G′)ω∨
G′. We remarked above

that λ∨ is Frobenius modulo p/Hdg(G) so that the map λ is Vershiebung modulo p/Hdg(G)
and hence λ∗(ωG) = Hdg(G) ·ωG′ modulo p/Hdg(G)ωG′. Since p ∈ Hdg(G)p

n+1
this implies that

λ∗(ωG) = Hdg(G)ωG′. Using that λ∨◦λ is multiplication by p, we deduce that the map (λ∨)∗◦λ∗

on differentials is mutiplication by p so that (λ∨)∗(ωG′) = p/Hdg(G) · ωG. Taking R-duals we

conclude that the image of ω∨
G via

(
(λ∨)∗)∨ is p/Hdg(G) · ω∨

G′ and the image of Hdg(G)
p

p−1 · ω∨
G

via
(
(λ∨)∗)∨ is τλ · Hdg(G′)

p
p−1 · ω∨

G′ with τλ = pHdg(G)−1Hdg(G)
p

p−1Hdg(G′)
−p
p−1 .

Since Hdg(G) = Hdg(G′)
1
p then τλ = p/Hdg(G′)

p+1
p = p/Hdg(G)p+1and, as p ∈ Hdg(G)p

n+1
⊂

Hdg(G)p+1, we deduce that τλ ∈ R so that the first and last claims follow.
The statement concerning f ∗(s) follows from the fact that λ∗ is compatible with dlog : H∨

n (R)→
ΩG/IΩG and dlog : H

′,∨
n (R) → ΩG′/IΩG′ and the isomorphism H∨

n (R) → H
′,∨
n (R) provided by

λ∨.

Let f ′
0 : V0

(
H♯
G′

)
→ S and f0 : V0

(
H♯
G

)
→ S be the formal schemes of Definition 2.3. It

follows from the functoriality of this definition that f ♯ defines a commutative diagram of formal
schemes over S:

V0

(
H♯
G′

) λ♯
−→ V

(
H♯
G

)

↓ ↓

V0

(
ΩG′

) g
−→ V

(
ΩG
).

In conclusion, we deduce from Corollary 2.7:

Proposition 6.5. Assume that λ is an isomorhism or that it has degree p. Then the morphism λ♯

induces a morphism f0,∗
(
O

V0(H
♯
G)

)
−→ f ′

0,∗

(
O

V0(H
♯

G′ )

)
preserving the filtrations Fil•f0,∗

(
O

V0(H
♯
G)

)

and Fil•f
′
0,∗

(
O

V0(H
♯

G′ )

)
. Via the identifications of the graded pieces in Corollary 2.6 the induced

map
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f0,∗
(
OV0(ΩG) ⊗OS

Symh
(
Hdg(G)

p
p−1ω∨

G∨

)
−→ f ′

0,∗

(
OV0(ΩG′ )

)
⊗OS

Symh
(
Hdg(G′)

p
p−1ω∨

G′,∨

)

is the tensor product of the isomorphism f0,∗
(
OV0(ΩG)

)
→ f ′

0,∗

(
OV0(ΩG′ )

)
provided by λ∗ and

the map on Symh provided by the dual of the map (λ∨)∗ : ωG′,∨ → ωG∨.
Furthermore, assume that G[pn](R) ∼= (Z/pnZ)2 and G

′
[pn](R) ∼= (Z/pnZ)2. Then λ♯ : H♯

G →
H♯
G′ is compatible with the connections ∇G,♯ and ∇G′,♯ defined in Proposition 6.3.

7 Appendix II: Application to the three variable Rankin-

Selberg p-adic L-functions. A corrigendum to [Ur14],

by Eric Urban.

7.1 Introduction

In [Ur14], the author introduced nearly overconvergent modular forms of finite order and their
spectral theory. The theory has be refined in [AI17] including intgral structure that allows to
define families of nearly overconvergent modular forms of unbounded degree that was missing
in [Ur14]. The purpose of this appendix is to fill a gap in [Ur14] about the construction of the
three variable Rankin-Selberg p-adic L-functions which we can now solve thanks to the work of
F. Andreatta and A. Iovita [AI17]. The gap lies in the construction made in section §4.4.1 a
few lines before Proposition 11 where the existence of a finite slope projector denoted eR,V is
claimed. Here V is an affinoid of weight space and R is a polynomail in A(V)[X ] dividing the
Fredholm determinant of U acting on the space of V-families of nearly overconvergent modular
forms. It was falsely claimed on top of page 434 that eR,V can be defined as S(U) for some
S ∈ X.A(V)[[X ]] when it would actually be a limit of polynomial in the Hecke operator U with
coefficient in the fractions ring of A(V) that may have unbounded denominators making the
convergence a difficult question. In the following pages, we will explain how the existence of this
projector in the theory of [AI17] can actually be used to define the missing ingredient of the
construction in [Ur14, §4.4.1]. For the sake of brevity, we will use freely the notations of [Ur14]
and [AI17] without recalling all of them.

I would like to thank Zheng Liu for pointing out the gap to me when she was working in her
thesis on a generalization of my work to the Siegel modular case. I would like also to thank F.
Andreatta and A. Iovita for telling me about their work and for including this corrigendum as
an appendix of their paper.

7.2 Families of nearly overconvergent modular forms

Let p be an odd prime. The purpose of this paragraph is to collect some results of [Ur14]and
[AI17] and harmonize the notations. Recall that for any rigid analytic variety X over a non
archimedean field, we denote respectively by A(X) and A0(X) the ring of rigid analytic function
on X and its subring of functions bounded by 1 on X . Recall also that we denote weight space
by X. It is the rigid analytic space over Qp such that X(Qp) = Homcont(Z

×
p ,Q

×
p ). For any integer
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k, we denote by [k] ∈ X(Qp) the weight given by x 7→ xk, ∀x ∈ Z×
p . For any p-power root of unity

ζ , we denote χζ the finite order character of Z×
p trivial on µp−1 and such that χζ(1 + p) = ζ .

Let U ⊂ X be an affinoid subdomain of weight space and choose I = [0, pc] such that
A0(X) = Λ ⊂ ΛI ⊂ A0(U) with Λ and ΛI as defined in [AI17, §3.1]. We also fix integers r and n
compatible with I as in loc. cit. We consider the Frechet space over the Banach algebra A(U)

N †
U := lim

−→
r

(H0(Xr,I ,WkI)⊗ΛI
A(U))

Here Xr,I is the formal scheme defined in [AI17, §3.1] attached to a strict neighborhood (in rigid
geometry) of the ordinary locus of the modular curve.

It is easily seen that the filtration on WkI of [AI17, Thm 3.11] induces the filtration

M†
U = N 0,†

U ⊂ N
1,†
U ⊂ · · · ⊂ N s,†

U ⊂ · · · ⊂ N
†
U

where for each integer s, N s,†
U denotes the space of U-families of nearly overconvergent modular

forms as defined in [Ur14, §3.3]. The work done in [AI17, §3.1] that we use here is the rigorous
construction using the correct integral structure of what was alluded to in [Ur14, Remark 10].
Moreover, it follows from [AI17, §3.6] that there is a completely continuous action of the U
operator on N †

U that respect the above filtration and that is compatible with the one defined
in [Ur14]. Moreover, we easily see for example using [Ur14, Prop. 7 (ii)] that the Fredholm
determinant P∞

U (κ,X) of U acting on N †
U satisfied the relation

P∞
U (κ,X) =

∞∏

i=0

PU[−2i](κ.[−2i], p
iX)

where PU[−2i] stands for the Fredholm determinant of U acting on the space of families of over-
convergent modular forms of weights varying in the translated affinoid U by the weight [−2i].

Recall finally that an admissible pair for nearly overconvergent forms is a data (R,V) where
R ∈ A(U)[X ] is a monic polynomial such that there is a factorization P∞

U (κ,X) = R∗(X)Q(X)
where R∗(X) = R(1/X)Xdeg R and Q(X) are relatively prime in A(U){{X}}. To such a pair,
one can associate a decomposition

N †
U = NR,U ⊕ SR,U

which is stable under the action of U and such that det(1−X.U |NR,U) = R(X). We will call eR,U
the projection of N †

U onto NR,U. This later subspace consists in families of nearly overconvergent
modular forms of bounded order. This is well-known and follows from the generalization by
Coleman and others of the spectral theory of completely continuous operators originally due to
J.P. Serre.

7.3 The nearly overconvergent Eisenstein family

Recall that we have defined in [Ur14, §4.3] the nearly overconvergent Eisenstein family q-
expansion Θ.E ∈ A0(X× X)[[q]] by

Θ.E(κ, κ′) :=
∞∑

n=1
(n,p)=1

〈n〉κa(n,E, κ
′)qn
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It satisfied the following interpolation property [Ur14, Lemma 6]. If κ = [r] and κ′ = [k]ψ
with ψ a finite order character and k and r positive integers, the evaluation at (κ, κ′) of Θ.E is

Θ.E(κ, κ′) = Θr.E
(p)
k (ψ)(q) and is the p-adic q-expansion of the nearly holomorphic Eisenstein

series δrkE
(p)
k (ψ).

A generalization of this statement is the crucial lemma below which will follow from [AI17,
Thm 4.6]. Because of the hypothesis 4.1 of loc. cit., we need to introduce the following notation.
We denote by X′ ⊂ X the affinoid subdomain of X of the weights κ such that |κ(1 + p)− ζ(1 +
p)n|p ≤ 1/p2 for some integer n and some p-power root of unity ζ . Notice that X′(Qp) contains
all the classical weights.

Lemma 7.1. There exists ΘEX′,X′ ∈ A(X′)⊗̂N †
X′ such that its q-expansion is given by the

canonical image of Θ.E into A(X′)⊗̂QpA(X
′)[[q]] induced by the canonical map Λ ⊗Zp Λ →

A(X′)⊗̂QpA(X
′).

Proof. For a given integer n and p-power root of unity ζ , we denote by X′
n,ζ ⊂ X′ the affinoid

subdomain of the weights κ such that |κ(1+ p)− ζ(1+ p)n|p ≤ 1/p2. When ζ = 1, we just write
X′
n for X′

n,1. Since X′ is the disjoint union

X′ =

p−1⊔

n=0

⊔

ζ

X′
n,ζ

it is sufficient to construct EX′
n,ζ ,X

′
m,η
∈ A(X′

n,ζ)⊗̂N
†
X′
m,η

satisfying the corresponding condition

on the q-expansion. Notice also that X′
n,ζ = [n]χζ .X

′
0 and that, with the notations of [AI17], we

have A0(X′
0) = ΛI′ with I

′ = [0, p2].

It clearly exists E
(p)
X′
m,η
∈M†

X′
m,η
⊂ N †

X′
m,η

such that its q-expansion in A(X′
m,η)[[q]] is given by

ΘE([0], κ). Indeed it is defined by E
(p)
X′
m,η

= Eord
X′
m,η
− Eord

X′
m,η
|Vp where Eord

X′
m,η
∈ eord.M

†
X′
m,η

denotes

the X′
m,η-family of ordinary Eisenstein series and Vp denotes the Frobenius operator inducing

raising q to its p-power on the q-expansion.
We have the isomorphism Λ ∼= Zp[(Z/pZ)

×][[T ]] done by choosing the topological generator
1 + p ∈ 1 + pZp,. Let κX′

0
be the universal weight Z×

p → A(X′
0)

×. We can easily see that

Log(κX′
0
) = log(1+T )

log(1+p)
= uκ where uκ is the notation defined in [AI17] while Log(κX′

0
) is the

notation defined in [Ur14]. The assumption 4.1 of [AI17], now reads easily as I ⊂ [0, p2] and is
therefore satisfied since A0(X′

0) = Λ[0,p2].
Before pursuing, we note that we will use the notation ∇χ following the definition 4.11 of

[AI17] for the twist of nearly overconvergent forms by a finite order character χ of Z×
p . We refer

the reader to loc. cit. for its properties.
Let κs the generic weight Z×

p → A(X′
n,ζ). Since X′

n,ζ = [n]χζ .X
′
0, the weight κs.[−n]χ

−1
ζ

satisfies the assumption 4.1 of [AI17]. Let m′ be a natural integer such that m+2m′ is divisible
by p and let η′ be a p-power root of unity so that η′2 = η−1. Then ([m′].χη′)

2X′
m,η = X′

0 and

therefore the weight of ∇χη′∇m′
E

(p)
X′
m,η

satisfies also the assumption 4.1. of [AI17]. According

to [AI17, Thm 4.6], one can therefore define ∇s−nχζ(∇χη′∇m′
E

(p)
X′
m,η

) where ∇s−nχζ stands for

∇s′ with s′ the weight corresponding to κs′ = κs[−n]χ
−1
ζ taking values in A0(X′

0). Since X′
n,ζ

depends only on n modulo p, we may and do assume that n > m′, and we can therefore set

ΘEX′
n,ζ ,X

′
m,η

:= ∇χζη∇n−m′

(∇s−nχζ(∇χη′∇m′

E
(p)
X′
m,η

))
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From the effect of ∇ on the q-expansion, it is now easy to verify that ΘEX′
n,ζ ,X

′
m,η

satisfies the
condition on the q-expansion claimed in the Lemma.

7.4 Final construction of GE
Q,U,R,V

In this paragraph, we explain how to replace the bottom of page 433 of [Ur14]. We now assume
that U and V are affinoid subdomains of X′. Let (Q,U) be an admissible pair for overconvergent
forms of tame level 1 and let TQ,U be the corresponding Hecke algebra over A(U). By definition it
is the ring of analytic function on the affinoid subdomain EQ,U sitting over the affinoid subdomain
ZQ,U associated to (Q,U) of the spectral curve of the U -operator. Recall that

ZQ,U =Max(A(U)[X ]/Q∗(X)) ⊂ ZU ⊂ A1
rig × U

where ZU is the spectral curve attache to U and

TQ,U = A(EQ,U) with EQ,U = E ⊗ZU
ZQ,U

where E stands for the Eigencurve. The universal family of overconvergent modular eigenforms
of type (Q,U) is an element ofMQ,U ⊗A(U) TQ,U whose q-expansion is given by

GQ,U(q) :=

∞∑

n=1

T (n)qn ∈ TQ,U[[q]]

Tautologically, for any point y ∈ EQ,U of weight κy ∈ U, the evaluation GQ,U(y) at y of GQ,U is
the overconvergent normalized eigenform gy of weight κy associated to y.

We set

GE
Q,U := GQ,U.Θ.EX′X′ ∈ TQ,U ⊗ A(X

′)⊗̂N †
X′ = A(EQ,U)⊗A(X

′)⊗̂N †
X′

Let now (R,V) be an admissible pair for nearly overconvergent forms as in [Ur14, §4.1]. We
consider

GE
Q,U,R,V ∈ A(V× EQ,U × X′)⊗̂NR,V

defined by
GE
Q,U,R,V(κ, y, ν) := eR,V.G

E
Q,U(y, ν, κκ

−1
y ν−2) ∈ N †

κ

for any (κ, y, ν) ∈ V×EQ,U×X′(Qp). Notice that since U and V are contained in X′, so is κκ−1
y ν2

which allows to evaluate GE
Q,U at (y, ν, κκ−1

y ν−2). Its gives a nearly overconvergent modular form
of weight κ which is the running variable in V. We can therefore apply the finite slope projector
eR,V from N †

V onto NR,V specialized at κ.

7.5 Final Remarks

We denote GE
Q,U,R,V(q) ∈ A(V× EQ,U × X′)[[q]] the q-expansion of the family of nearly overcon-

vergent forms we have defined above. This is the family of q-expansion that we wanted to define
in [Ur14, §4.4.1]. The rest of the statements and results of [Ur14, §4] are now valid under the
condition that we replace X by X′ and E by E ′ = E×XX

′ in all of them. To obtain a more general
result, we would need to extend the work of [AI17] to relax their assumption 4.1. This seems
possible by noticing that the condition uκ ∈ p.ΛI can be replaced by uκ topologically nilpotent
in ΛI and by using a congruence for ∇(p−1)pn − id for n sufficiently large. This would allow to
replace X′ by X in Lemma 7.1 above which is the only reason we needed to restrict ourself to X′.

72



References

[AIPHS] F. Andreatta, A. Iovita, V. Pilloni: Le Halo Spectral, Ann. Sci. ENS. 51, 603–655
(2018).

[AIPS] F. Andreatta, A. Iovita, V. Pilloni: p-Adic families of Siegel modular cuspforms, Annals
of Math. 181, 623–697 (2015).

[AIS2] F. Andreatta, A. Iovita, G. Stevens: Overconvergent modular sheaves and modular forms
for GL2/F , Israel J. of Math. 201, 299–359 (2014).

[AI17] F. Andreatta, A. Iovita: Triple product p-adic L-functions asociated to finite slope p-adic
families of modular forms, preprint (this very article).

[AS] A. Ash, G. Stevens, p-Adic deformations of arithmetic cohomology, preprint available at
https://www2.bc.edu/avner-ash/ (2008)

[BO] P. Berthelot, A. Ogus: Notes on crystalline cohomology, Princeton University Press,
Princeton, N.J. (1978).

[BDP] M. Bertolini, H. Darmon, K. Prasanna: Generalised Heegner cycles and p-adic Rankin
L-series (With an appendix by Brian Conrad), Duke Math. J. 162, 1033-1148 (2013).

[BSV] M. Bertolini, M. Seveso, R. Venerucci: Reciprocity laws for diagonal classes and rational
points on elliptic curves, Preprint 2018.

[Col1] R. Coleman: Classical and overconvergent modular forms, Invent. Math. 124, 215-
241 (1996).

[Col2] R. Coleman: p-Adic Banch spaces and families of modular forms, Invent. Math. 127, 417-
479 (1997).

[DS] F. Diamond, J. Shurman: A First Course in Modular Forms, GTM 228, Springer (2005).

[DR1] H. Darmon, V. Rotger: Diagonal cycles and Euler systems I: a p-adic Gross-Zagier
formula, Ann. Sci. ENS 47, 779–832 (2014).

[DR2] H. Darmon, V. Rotger: Diagonal cycles and Euler systems II: the Birch and Swinnerton-
Dyer conjecture for Hasse-Weil-Artin L-series. Journal of the AMS 30, 601–672 (2017).

[GS] M. Greenberg, M. A. Seveso: Triple product p-adic L-functions for balanced weights,
arXiv:1506.05681.

[HaKu] M. Harris, S. Kudla: The central critical value of a triple product L-function, Annals
of Math. 133, 605–672 (1991).

[HaTi] M. Harris, J. Tilouine: p-adic measures and square roots of special values of triple
product L-functions, Math. Annalen 320, 127–147 (2001).

73

http://arxiv.org/abs/1506.05681


[HX] R. Harron, L. Xiao: Gauss-Manin connections for p-adic families of nearly overconvergent
modular forms. Ann. Inst. Fourier 64, 2449–2464 (2014).

[Hi88] H. Hida: A p-adic measure attached to the zeta functions associated with two elliptic
modular forms. II, Ann. Inst. Fourier 38, 1–83 (1988).

[Hs] M.-L. Hsieh: Hida families and p-adic triple product L-functions, arXiv:1705.02717.

[I] A. Ichino: Trilinear forms and the central values of triple product L-functions, Duke
Math. J. 145, 281–307 (2008).

[Ko] N. Koblitz: Introduction to elliptic curves and modular forms. GTM 97. Springer-Verlag,
New York, 1984. viii+248 pp.

[L] Z. Liu: Nearly overconvergent p-adic families of modular forms, preprint, (2017).

[Lo] D. Loeffler: A note on p-adic Rankin-Selberg L-functions, Canad. Math. Bulletin 61,
608-621 (2018).

[Ur11] E. Urban: Eigenvarieties for reductive groups, Annals of Math. 74, 1685–1784 (2011).

[Ur14] E. Urban: Nearly overconvergent modular forms, Iwasawa theory 2012, 401-441, Contrib.
Math. Comput. Sci. 7, Springer, Heidelberg, 2014

[W] T.C. Watson: Rankin triple products and quantum chaos, Ph.D. thesis (Princeton 2002),
available at https://arxiv.org/abs/0810.0425

74

http://arxiv.org/abs/1705.02717

	1 Introduction
	2 Formal vector bundles with marked sections.
	2.1 Formal vector bundles.
	2.2 Formal vector bundles with marked sections.
	2.3 Filtrations on the sheaf of functions of a formal vector bundle with marked sections
	2.4 Connections on the sheaf of functions of a formal vector bundle with marked sections

	3 Applications to modular curves.
	3.1  The sheaves wI.
	3.1.1 Some properties of  IGn,r,I.

	3.2 A new definition of wk,0.
	3.2.1 Local description of wnew, k,0.

	3.3 The sheaf Wk.
	3.3.1 Actions of formal tori on V0(HE,s).
	3.3.2 Local description of V0(to.HE, s)to.
	3.3.3 The proof of theorem 3.11.
	3.3.4 An alternative construction of Wk,.

	3.4 The Gauss-Manin connection on Wk.
	3.4.1 Explicit, local calculation of the connection k.

	3.5 q-Expansions of sections of Wk and nearly overconvergent modular forms.
	3.6 The U-operator
	3.7 The V operator and p-depletion on overconvergent modular forms
	3.8 Twists by finite characters
	3.9 De Rham cohomology with coefficients in Wk and the overconvergent projection.
	3.10 The overconvergent projection and the Gauss-Manin connection on q-expansions.

	4 p-Adic iterations of the Gauss Manin connection.
	4.1 The proof of Theorem 4.3

	5 Applications to the construction of the triple product p-adic L-function in the finite slope case.
	5.1 The triple product p-adic L-function in the ordinary case.
	5.2 The triple product p-adic L-function in the finite slope case.
	5.3 Interpolation properties

	6 Appendix I.
	6.1 Vector bundles with marked sections associated to p-divisible groups.
	6.2 Functoriality in the elliptic case

	7 Appendix II: Application to the three variable Rankin-Selberg p-adic L-functions. A corrigendum to UNO, by Eric Urban.
	7.1 Introduction
	7.2 Families of nearly overconvergent modular forms
	7.3 The nearly overconvergent Eisenstein family
	7.4 Final construction of GEQ,U,R,V
	7.5 Final Remarks


