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Abstract 

Background:  There is a huge body of scientific literature describing the relation between tumor types and anti-
cancer drugs. The vast amount of scientific literature makes it impossible for researchers and physicians to extract all 
relevant information manually.

Methods:  In order to cope with the large amount of literature we applied an automated text mining approach to 
assess the relations between 30 most frequent cancer types and 270 anti-cancer drugs. We applied two different 
approaches, a classical text mining based on named entity recognition and an AI-based approach employing word 
embeddings. The consistency of literature mining results was validated with 3 independent methods: first, using 
data from FDA approvals, second, using experimentally measured IC-50 cell line data and third, using clinical patient 
survival data.

Results:  We demonstrated that the automated text mining was able to successfully assess the relation between 
cancer types and anti-cancer drugs. All validation methods showed a good correspondence between the results from 
literature mining and independent confirmatory approaches. The relation between most frequent cancer types and 
drugs employed for their treatment were visualized in a large heatmap. All results are accessible in an interactive web-
based knowledge base using the following link: https://​knowl​edgeb​ase.​micro​disco​very.​de/​heatm​ap.

Conclusions:  Our approach is able to assess the relations between compounds and cancer types in an automated 
manner. Both, cancer types and compounds could be grouped into different clusters. Researchers can use the inter-
active knowledge base to inspect the presented results and follow their own research questions, for example the 
identification of novel indication areas for known drugs.
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Background
Cancer is one of the leading causes of mortality with an 
estimated number of 18.1M cases and 9.6M deaths in 
2018 [1]. For the chemotherapeutic or targeted treat-
ment of cancer, there is a large number of anti-cancer 
drugs available. 156 anti-cancer drugs were approved 
by the FDA (from 1989 to 2017) [2] but there are many 

more potential anti-cancer drugs. The NIH website1 
lists currently more than 600 drugs (generic names and 
brand names) approved for anti-cancer theraphy. There 
is a huge number of scientific publications describing the 
relation between tumor types and anti-cancer drugs (e.g. 
the effectiveness of a drug for a tumor type). The vast 
amount of literature makes it impossible for a human to 
extract all relevant information, even for a specific topic 
(e.g. search term ‘breast cancer’ results in 258K publica-
tions-on August 14, 2019). A second problem arises from 
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inequality of attention a publication receives. While cited 
articles are receiving more attention and in turn more 
citations, approximately 15% will most likely never be 
cited [3].

Most of the scientific knowledge is published as 
unstructured text. Although these texts are human read-
able they are not per se machine-interpretable. There are 
two different kinds of widely used approaches to trans-
form text into machine-interpretable data.

First: classical text mining tools aim to recognize cer-
tain types of entities (e.g. genes/proteins [4, 5] or com-
pounds [6, 7]). In addition to specific entities, some tools 
are also trying to extract relations between those enti-
ties e.g. protein–protein interactions [8, 9] or relations 
between genes and miRNAs [10]. These tools are typi-
cally using prior knowledge about entities such as syno-
nyms, trivial names, or ontologies as well as knowledge 
about semantics (e.g. keywords that imply a certain rela-
tion between entities [8]). Other approaches are extract-
ing less clearly defined events such as CHAT, a text 
mining tool to visualize cancer hallmarks [11]. There are 
also approaches to integrate several text mining tools in a 
standardized way, such as iTextMine which offers a web 
interface to search for relations between genes, miRNAs, 
diseases, or drugs [12].

Second: Word embeddings are designed to transform 
the text into machine interpretable numeric vectors. 
They allow to identify similar words by comparing the 
word vectors. The two most common implementations 
are Global Vectors for Word Representation (Glove) 
[13] and Word2Vec [14]. To learn the word embeddings 
a large amount of text is required. This large amount of 
text makes it difficult to analyze rare words. For better 
learning rare words, approaches with a sub-word embed-
ding model have been proposed [15]. Word embeddings 
have been applied in material science to demonstrate 
that an unsupervised method can recommend materi-
als for functional applications several years before their 
discovery [16]. There are also biomedical application, 
e.g. for combining sub-word information and biomedi-
cal controlled vocabulary (MeSH) [17]. However, there 
is no consistent global ranking of word embeddings for 
all downstream biomedical natural language processing 
applications [18]. Also a comparison between the two 
approaches (classical text mining vs. word embeddings) 
is difficult as they are quite different in nature.

In this manuscript, we aim to automatically assess the 
relations between the 30 most frequent cancer types and 
270 anti-cancer drugs using biomedical publications. We 
apply two different text mining strategies, first a super-
vised approach with classical text mining strategies and 
second an unsupervised approach based on the calcula-
tion of word embeddings. To assess the relation between 

cancer types and anti-cancer drugs we downloaded and 
analyzed almost 4 million publications (abstracts from 
PubMed). We demonstrate that an automated text min-
ing is able to assess the relation between cancer types and 
anti-cancer drugs. The relevance of the extracted rela-
tions was confirmed using three independent methods: 
First, by the comparison with FDA approval informa-
tion, second, by using IC-50 values from a huge experi-
mental dataset of compounds and cancer cell lines [19] 
and third, by the comparison with clinical survival data. 
To our knowledge this is the first large scale application 
of literature mining to characterize the relation between 
compounds and cancer types.

In addition, we make the results of the analyses acces-
sible in an interactive web-based knowledge base. The 
knowledge base enables researchers and clinicians to 
investigate relations between a certain combination of 
cancer type and compound very efficiently. We are not 
aware of other available tools with a similar scope.

Methods
Selection of publications
For retrieving cancer type related publications we 
selected the 30 most frequent cancer types (world wide 
for both sexes) according to the World Cancer Research 
Fund International2. For each cancer type we manu-
ally defined a list of synonyms (e.g. for stomach cancer: 
‘stomach cancer’, ‘cancer of the stomach’ or ’gastric can-
cer’). The full list is provided as Additional file 1. These 
synonyms were then used to build a PubMed query by 
concatenating the synonyms with a logical ‘OR’. The 
abstracts of the corresponding publication where down-
loaded as XML-files using the R package easyPubMed 
(version 2.11). For the 30 tumor types we downloaded 
abstracts from a total of ∼ 2.4M publications.

For retrieving compound related publications we 
selected a set of 266 compounds from cancerrxgene 
archive (Genomics of Drug Sensitivity in Cancer) [19] 
(RRID:SCR_011956). Furthermore we included the 24 
compounds used in the Cancer Cell Line Encyclope-
dia (CCEL) [20] (RRID:SCR_013836). This resulted in 
a total number of 270 compounds. For each compound 
we retrieved all known synonyms by using the PubChem 
web service [21] (RRID:SCR_004284). We tested each 
synonym for any results from the PubMed database 
(RRID:SCR_004846) and removed synonyms if they do 
not show any result. All synonyms for which we found 
any publications were then used to build a query by con-
catenating the synonyms with a logical ’OR’. The abstracts 
of the corresponding publications where downloaded 

2  https://​www.​wcrf.​org/​dieta​ndcan​cer/​cancer-​trends/​world​wide-​cancer-​data.

https://www.wcrf.org/dietandcancer/cancer-trends/worldwide-cancer-data
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as XML-files using R package easyPubMed. For the 270 
compounds we downloaded a total of ∼ 1.3M publication 
abstracts.

Furthermore we downloaded all abstracts as XML 
files from 1996 to 2019 using the PubMed web interface. 
This reference set is used to calculate the significance of 
a set of publications based on the Fisher test (detailed 
examples of the Fisher test are given later for the extrac-
tion of genes and the relation between compounds and 
tumor types). The reference set includes more than 30M 
publications.

Please note: The keyword search was performed using 
a PubMed query (with standard settings). As an effect the 
keywords must not explicitly occur in the title or abstract 
since PubMed used Automatic Term Mapping (ATM). 
E.g. the search for ’cervical cancer’ results in the follow-
ing detailed query: “uterine cervical neoplasms”[MeSH 
Terms] OR (“uterine”[All Fields] AND “cervical”[All 
Fields] AND “neoplasms”[All Fields]) OR “uterine cervi-
cal neoplasms”[All Fields] OR (“cervical”[All Fields] AND 
“cancer”[All Fields]) OR “cervical cancer”[All Fields].

Extraction of genes/proteins from literature
To extract genes/proteins from literature is to apply an 
algorithm for named entity recognition (NER). For gene/
protein NER and normalization we used the GNAT 
library [4] (version 1.22) with all available filters (see also 
[5] for a comparions of GNAT and GNormPlus). In lit-
erature, there are omni-present genes/proteins occur-
ing in many publications without a specific relation (e.g. 
Albumin). Since we are not interested in omni-present 
proteins, we perform an over-representation analysis in 
order to assess if a gene is specific for a given context (e.g. 
if a gene is significantly over-represented in a set of publi-
cations for a compound or cancer type). For assessing the 
significance of an association we calculate a Fisher test 
p-value as well as an odds ratio. With this procedure we 
extract a ranked list of specific genes/proteins associated 
with a set of publications.

The calculation of the Fisher test p-value is demon-
strated on the example of breast cancer and the two 
genes/proteins: ’Albumin’ (ALB) and ’Breast cancer type 
1 susceptibility protein’ (BRCA1). For breast cancer we 
extracted ∼ 387K publications, ∼ 95K of which contain-
ing any genes/proteins. Albumin was found in 817 pub-
lications, BRCA1 was found in 5912 publications. As 
reference set we used ∼ 30M publications, 2.8M of which 
containing any genes/proteins. Albumin was found in 
55K publications, BRCA1 was found in 9357 publica-
tions. This corresponds to a p-value of 1 for the Albumin 
(not specific for breast cancer) and < 10−300 (highly spe-
cific for breast cancer) for BRCA1 (see contingency tables 
below).

Breast cancer Reference

Albumin 817 ∼54K

Other Prot ∼94K ∼2.7M

P-value: 1

Breast cancer Reference

BRCA1 5912 3445

Other Prot ∼90K ∼2.7M

P-value: < 10
−300

Assessing the relation between compounds and tumor 
types
To calculate the significance of the association between 
a compound and a cancer type we use the Fisher test and 
perform an over-representation analysis. E.g. for breast 
cancer or doxorubicin we found 378K publications, 10K 
of which were found for both. The significance is cal-
culated by comparing to all ∼ 30M publications and is 
highly significant < 10−300.

The significance for the overlap of genes is calculated in 
the same way. For breast cancer or doxorubicin we found 
759 genes in all publications, 95 genes were found for 
both. The significance is calculated by comparing to all ∼ 
15K genes found in all ∼ 30M publications and is highly 
significant ∼ 10−82.

Overlap of publications

Breast cancer Reference

Doxorubicin ∼10K ∼68K

Reference ∼300K ∼29M

P-value: < 10
−300

Overlap of genes

Breast cancer Reference

Doxorubicin 95 579

Reference 86 ∼15K

P-value: ∼ 10
−82

Identification of co‑occuring compounds

In order to identify co-occuring compounds for a tumor 
type, we are using all publications for the corresponding 
tumor type. For all pairs of compounds we are than using 
the Fisher test to assess if the co-occurrence of the com-
pounds is statistically significant. The calculation of the 
statistics is analogously to the extraction of genes and the 
relation between compounds and tumor types.
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The list of co-occuring compounds for a tumor type is 
than used to build a co-occuring network graph. To this 
end we are using all pairs of compounds with a −log10 
p-value > 50 and generate the co-occurrence graph.

Word embeddings
For the calculation of word embeddings we used the pub-
lications downloaded for all tumor types and all com-
pounds. The most common way to calculate numerical 
vectors for text representation is to use neural networks 
as implemented in Word2Vec [14]. For the calculation 
of word embeddings we used the Deeplearning4J (DL4J) 
platform (version 1.0.0-beta4) [22]. We used the fol-
lowing set of parameters: minimal word frequency = 1 
(consider all words); layer size = 200 (length of the word 
vector); window size = 500 (approximately the number of 
words per abstract). To calculate the similarity between 
compounds and cancers we use the cosine distance.

Text preprocessing
Typically word embeddings are working on single words. 
They are used to identify similar words or synonyms. 
We want to apply word embeddings to assess similar-
ity between compounds and cancer types (including the 
known synonyms for both). To this end we replaced all 
relevant synonyms with a specific compound or can-
cer ID during the extraction of sentences. E.g.: the 
phrase ’liver cancer were treated with the same proce-
dure employing 5-FU, mitomycin C, adriamycin’ is trans-
formed to ’cancerlivercancer were treated with the same 
procedure employing 5-fluorouracil mitomycin-c doxoru-
bicin’. Note: We used ’cancerlivercancer’ as an internal 
ID for all synonyms of liver cancer for the calculation of 
word embeddings.

Validation
FDA approval information
In order to get information about FDA (U.S. Food and 
Drug Administration, RRID:SCR_012945) approval of a 
drug for a certain cancer type we used the list published 
by Sun et  al. [23]. The drug annotations from this list 
where mapped to the drug identifiers used in our analy-
ses based on the information from PubChem web service 
[21] (RRID:SCR_004284).

IC‑50 values
IC-50 values for a compound and a tumor type were 
extracted from the cancerrxgene dataset [19] (Genom-
ics of Drug Sensitivity in Cancer, RRID:SCR_011956). 
To this end, cell lines where mapped manually to tumor 
types using the GDSC labels. The final IC-50 value is cal-
culated as the 10% quantile of all corresponding IC-50 
values. The 10% quantile is chosen in order to select a low 

IC-50 value of all cell lines representing the same tumor 
type (instead of using a minimal value which could lead 
to a certain instability of the results).

Survival data
Patient survival data for different tumor types were 
downloaded from Broad Institute (RRID:SCR_007073) 
http://​gdac.​broad​insti​tute.​org/. We downloaded merged 
clinical datasets, containing information about survival 
times and medication for a larger number of patients 
for each tumor type. The drugs annotations from the 
clinical datasets was mapped to the drug identifi-
ers used in our analyses via PubChem web service [21] 
(RRID:SCR_004284).

Statistics
All statistics were calculated in R (version 3.5.1) (R Pro-
ject for Statistical Computing, RRID:SCR_001905). Sig-
nificance of overlaps for sets of publications or sets of 
genes was calculated with Fisher’s exact test (see above 
for an example). P-values from Fisher’s test were trans-
formed to −log10 p-values. Kaplan-Meier curves were 
calculated with the R packages: ’survival’ (version 2.42-6) 
and ’rms’ (version 5.1-2). Survival curves were compared 
with Cox proportional hazard regression. P-values of Cox 
regression are calculated using a log-likelihood test.

Results
Relation between tumor types and compounds
Common publications
We investigate the relation between 270 compounds and 
30 cancer types by assessing the significance of the over-
lap of common publications compared to the reference. 
For each combination of compound and cancer-type 
the significance is calculated with Fisher’s exact test as 
described in the Methods section. Based on this data we 
calculate a comprehensive heatmap visualizing the rela-
tion between compounds, between cancer types as well 
as the mutual correspondence as reflected by the litera-
ture (see Fig. 1).

This map facilitates to assess the structure in the space 
of cancer types and compounds. In general, the anti-can-
cer drugs can be divided in two different groups: On one 
side there are compounds which are very significantly 
related to many different (but not all) tumor types such 
as doxorubicin or 5-fluorouracil. On the other side some 
compounds are very specifically related to a single can-
cer type. E.g. nilotinib is exclusively related to leukemia 
or rucaparib is almost exclusively related to ovary can-
cer. These two groups typically reflect the different tar-
get pathways of the compounds. 13 compounds show 
very high association ( −log10p-value ≥ 100) to more 
than 5 tumor types. These compounds mainly target 

http://gdac.broadinstitute.org/
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Fig. 1  Heatmap overlap of publications. Heatmap visualizing the significance of the overlap between compounds (y-axis) and cancer types (x-axis). 
The overlap is assessed based on the number of common publications in comparison to the total number of publications ( −log10 p-value of 
Fisher’s test truncated at 100). Compounds showing no significant association to any of the tumor types are not shown
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very general pathways such as ’DNA replication’ (8 com-
pounds) or ’Mitosis’ (3 compounds). On the other side 
47 compounds are highly associated to one or two tumor 
types. These compounds target much more specific (sign-
aling) pathways such as ’RTK signaling’ (9 compounds), 
’ERK MAPK signaling’ (7 compounds) or PI3K/MTOR 
signaling (4 compounds).

A similar grouping also applies for the tumor types. 
Cancer of pancreas, colon and stomach seem to be sim-
ilar with respect to the compounds. Although lung and 
breast cancer have a large list of common compounds, 
they also show some distinct associations to drugs (e.g. 
alectinib for lung cancer-approved for treatment of non 
small cell lung cancer by the FDA on 2017-11-06 or pal-
bociclib in breast cancer [24]). Especially leukemia has a 
large number of specific compounds.

Common molecular descriptor (genes/proteins)
As a variation of the previous approach, we are now add-
ing further knowledge about molecular background such 
as involved genes/proteins. We perform a similar analy-
sis but focusing on the genes and proteins mentioned in 
the corresponding publications. For each compound and 
for each cancer type, we calculate a list of specific genes/
proteins (see Methods section). For targeted compounds 
the top hit is typically the target itself, e.g. for erlo-
tinib (tyrosine kinase inhibitor, acting on the epidermal 
growth factor receptor) we found a total of 2570 publi-
cations containing any gene names, 2164 (84%) of which 
containing the gene/protein EGFR. As a second example, 
for ruxolitinib (janus kinase inhibitor) we found a total of 
499 publications containing any gene names, 345 (69%) 
of which containing the gene/protein JAK1 and 191 
(38$) containing the gene/protein JAK2. The association 
between compound and cancer-type is assessed by cal-
culating the significance of the overlap of specific genes 
(again using Fisher’s test). The association is significant 
if the overlap of genes extracted from compound related 
publications and genes extracted from the cancer-type 
related publications is high compared to the reference of 
all publications. (see Additional file  2: Figure S1 for the 
corresponding heatmap).

The number of significant associations is much 
smaller compared to the previous analysis. The main 
reason is that less than 20% of the publications contain 
genes or proteins. However, the −log10 p-values of both 
approaches are nicely correlated with a Pearson correla-
tion coefficient of r = 0.64 . Especially the clustering of 
cancer types is very similar with an adjusted Rand index 
of ∼ 0.85 . The adjusted Rand index of the compounds is 
∼ 0.35 . Again the compounds doxorubicin and 5-fluoro-
uracil are generic and related to many tumor types while 
nilotinib is only related to leukemia.

Word embeddings
In contrast to the two previous approaches word embed-
dings represent an unsupervised approach. Word vec-
tors are trained using all publications of any cancer and 
any compound (2.4M + 1.3M) together. Distance matrix 
of compounds and cancer types is calculated using the 
cosine similarity of the corresponding word vectors. A 
high cosine similarity reflects a similar orientation of the 
corresponding word vectors and does not necessarily 
mean a direct relation.

The results from unsupervised word embeddings are 
slightly different from the previous results. The Pearson 
correlation coefficient between cosine similarity and 
the −log10 p-values from the overlap of publications is 
only r = 0.4 (see Additional file 3: Figure S2 for the cor-
responding heatmap). The clustering of cancer types is 
quite different with an adjusted Rand index of ∼ 0.24 . 
Also the clustering of compounds is different with an 
adjusted Rand index of ∼ 0.16.

Validation
The primary goal of this validation is to demonstrate that 
relations between tumor types and compounds extracted 
by the automatic literature mining are confirmed by dif-
ferent independent sources. In addition we will use the 
three validation strategies to compare the different litera-
ture mining approaches.

Comparison with drug approval information
As a first independent validation, we compare the liter-
ature results with data from FDA approval. We assume 
combinations of tumor types and drugs that are approved 
by the FDA to be often reported in the literature and 
thus, to result in a significant association. And indeed, 
the vast majority of the combinations that are approved 
by the FDA shows a very significant support from the 
literature. 85% of the approved combinations show very 
high support from the literature (p-value ≤ 10−100 for the 
overlap of publications). The other way around, almost 
50% of the combinations of drugs and compounds with 
very high literature support are approved by the FDA.

In order to compare the three methods we calculated a 
single value ROC curve for a potential prediction of the 
FDA approval. Considering the overlap of publications, 
we receive an AUC of ∼ 0.9 for the prediction of FDA 
approval by literature results (see Fig.  2). For the other 
two methods (overlap of genes and word embeddings) 
AUCs are ∼ 0.8.

Only a very few FDA-approved combinations of drug 
and cancer-types show a low support from literature, 
e.g. imatinib and stomach cancer (We found only 47 
publication for this combination while there are more 
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than 8000 for imatinib and leukemia). When looking 
at the corresponding IC-50 values for stomach can-
cer cell lines we also see rather low support for this 

combination (lowest log IC-50 is 2 for imatinib and cell 
line SNU-1).

See Additional file 4: Figure S3 for a heatmap limited 
to the entities where we have information about FDA 
approval with highlighted entries.

IC‑50 values
As a second validation approach, we compare the sig-
nificances of the relations between tumor types and 
compounds from literature analysis with the experi-
mentally determined IC-50 values. We assume that a 
significant relation between a tumor type and a com-
pound obtained by the literature data reflects a higher 
sensitivity of the tumor type to the compound and 
thus shows a lower IC-50 value. Especially for the first 
two methods (overlap of publications or genes), there 
is a high difference between the IC-50 values: IC-50 
values for pairs of compounds and tumor types with 
a low association (p-value > 0.1 ) are ∼ 4-6 fold higher 
compared to the group with high association (p-value 
between 10−20 and 10−80 ) (see Fig. 3 for a boxplot of the 
IC-50 values). When considering the overlap of publi-
cations there is no further difference of the IC-50 value 
between a high (p-value between 10−20 and 10−80 ) and 
a very high association (p-value ≤ 10−80 ). Considering 
significances of the relation based on overlap of genes, 

Fig. 2  ROC curves FDA approval. Single value ROC curves comparing 
the scores ( log10p-value or cosine similarity) from the three 
approaches and the FDA approval data (prediction of approval)

Fig. 3  Valication with IC-50 values. Left hand side: boxplot of the IC-50 values for cancer/compound combinations with low, high and very high 
association. For ’Overlap Publications’ and ’Overlap Genes’ grouping is based on −log10 Fisher test p-values (low: < 1 , high: between 20 and 80 and 
very high ≥ 80 ). For ‘Word Embedding’ grouping is based on cosine similarity (low: < 0.1 , high: between 0.2 and 0.6 and very high ≥ 0.6 ) Right hand 
side: boxplot of the IC-50 values for compound Nilotinib comparing leukemia derived cell lines with the remaining cell lines
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the difference of the IC-50 values is even higher com-
paring a high versus a very high association.

For word embeddings there is no difference in IC-50 
values for cancer/compound combinations between 
low (cosine similarity < 0.1 ) and high cosine similarities 
(cosine similarity between 0.3 and 0.6). However, pairs of 
compounds and tumor types with very high cosine simi-
larities ( > 0.6 ) show slightly lower IC-50 values.

The observation that nilotinib is only related to leuke-
mia can also be confirmed using the IC-50 values (see 
right hand side of Fig.  3). IC-50 values of leukemia cell 
lines treated with nilotinib are much lower ( ∼ factor 6.5) 
compared to other cell lines.

Comparison with patient survival data
As a third independent validation strategies the com-
pare the significance of the relations from the literature 
mining with patient survival data. To this end, clinical 
patient data was parsed for the annotation of survival 
and treatment data (see Methods). The treatment data 
was mapped to the used compounds and three survival 
curves were generated: first, patients without drug anno-
tation, second, patients that received drugs with high lit-
erature support and third, patients that received drugs 
with low literature support (see Fig. 4 for survival curves 
for kidney cancer, ovary cancer, breast cancer, bladder 
cancer, uterine cancer and brain cancer). Please note 
that for many cancer types we could not generate these 
survival curves since we found either only a very limited 
number of patients with clinical or exclusively drugs with 
high literature support. Due to the limited number of 
data we restrict the analysis to the approach with overlap 
of publications.

For the majority of cancer types where we found 
patients for all groups we observed lower survival rates 
for patients which received drugs with low literature 
support compared to patients receiving drugs with high 
literature support. For kidney cancer (0.016), lung can-
cer (0.008) and ovary cancer (0.04) we found significant 
differences between the corresponding survival curves. 
Patients with brain cancer show a slightly higher sur-
vival rate for drugs with low literature support at least 
for the first 900 days. For long term survival (> 900 days) 
we again observed an advantage for patients treated with 
drugs with high literature support.

Accessibility of results in an interactive knowledge base
The interactive knowledge base is accessible freely using 
the following link:

http://​www.​compo​undCa​ncerK​nowle​dgeba​se.​com.
This resource can be used to perform in depth min-

ing analyses using the data from this analysis. The user 
can select a compound and a cancer type either from 
a heatmap similar to Figure  1 or using an auto-com-
pletion search field. The results contain the following 
information: 

1)	 A list of publications for the selected tumor and 
the selected cancer type. Occurrences of cancers, 
compounds and genes are highlighted for intuitive 
extraction of important information. Publications are 
linked to PubMed website.

2)	 A list of genes extracted from the set of correspond-
ing publications. The genes are ordered according to 
absolute frequencies. The underlying publications 
can be accessed for further inspection. The gene 
symbols are visualized in a word cloud.

3)	 A list of protein protein interactions extracted from 
the set of corresponding publications. The interac-
tions are visualized in an interactions graph using 
‘Cytoscape.js’ [25] (Cytoscape, RRID:SCR_003032).

4)	 A list of the corresponding IC-50 scores from the 
cell lines of the selected tumor type and the selected 
compound.

5)	 A list of words with the highest similarities to the 
selected tumor type and the selected compound 
retrieved from word embeddings.

6)	 A list of co-occuring compounds and the co-occur-
rence graph for the corresponding tumor type.

All lists can be downloaded for further analyses in text 
based format.

For example, clicking on the leftmost upper cell 
(5’-Flourouracil and Leukaemia) retrieves 1320 publica-
tions having this co-occurrence. The tab ‘Genes’ refers 
to 288 cancer genes that have been found in these pub-
lications. The tab ‘Interactions’ gives us one interaction 
of proteins that has been reported. Further tabs show 
to compounds sensitivity values, word lists and related 
compounds.

Fig. 4  Kaplan–Meier survival curve. Kaplan–Meier survival curve for 6 selected tumor types (Top left: Kidney cancer, Top right: Ovary cancer, Middle 
left: Breast cancer, Middle right: Bladder cancer, Bottom left: Uterine cancer and Buttom right: Brain cancer). Three different survival curves are 
shown: noDrug: no drug was annotated for the patient, high: drugs with high literature support were annotated for the patient, low: drugs with low 
literature support were annotated for the patient. The p-value in the title compares the high vs. low group

(See figure on next page.)

http://www.compoundCancerKnowledgebase.com
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Fig. 4  (See legend on previous page.)
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Discussion
By applying a large scale literature mining, we character-
ized the relation between 270 anti-cancer drugs and the 
30 most frequent cancer types. The results are visual-
ized in a large map depicting the relation between com-
pounds, between cancer types as well as the mutual 
correspondence as reflected by the literature.

Good agreement between literature and experimental 
data
The literature results were validated using three different 
approaches: first, by comparing with FDA approval data, 
second, based on experimentally measured IC-50 val-
ues and third, using clinical survival data. We observed 
a high agreement between the literature and the FDA 
drug approval. 85% of the approved combinations of 
drugs and cancer types showed very high support from 
the literature. The other way around, almost 50% of the 
combinations of drugs and compounds with very high 
literature support were approved by the FDA. The AUC 
of the ROC curve for a potential prediction of the FDA 
approval was high, up to ∼ 0.9 . Although this is a more 
or less expected result, it nicely shows the consistency of 
the results from literature mining with the clinical proce-
dures and can be interpreted as a proof-of-principle.

In addition we were able to show that highly significant 
relations between a cancer type and a compound found 
in our literature mining analysis had lower experimen-
tally measured IC-50 values compared to non-significant 
pairs of cancer types and compounds. Our analysis also 
showed that compounds specific for one cancer type, 
e.g. Nilotinib for leukemia, had low IC-50 values in these 
cell lines compared to cell lines for other cancer types. In 
other words, we have seen a good support of the litera-
ture results by experimental data.

The correspondence between the literature and exper-
imental data might even be higher when including 
knowledge on molecular data such as genes or proteins. 
Comparing the association between cancer types and 
compounds based on the overlap of genes or proteins 
leads to a lower number of significant hits, but there is 
a strong support from experimental data. The lower 
number of significant results is mostly due to the lower 
number of publications, since less than 20% of the publi-
cations included genes or proteins.

The comparison of the results from literature mining 
with clinical survival data showed that drugs with higher 
literature support led to an improved survival compared 
to drugs with lower literature support for most tumor 
types. This comparison is limited by several factors: first, 
for some tumor types we did not find a sufficient number 
of patients with clinical data. Second, most of the applied 
drugs showed a high support from literature (see above: 

85% of the approved drug/cancer type combinations 
showed very high support from the literature). Third, the 
application of non-approved drugs maybe the ‘last hope’ 
for the patient and thus these patients may have a very 
poor prognosis. Nevertheless, we see clear evidence that 
the literature support between drugs and cancer types 
correlates with the patient survival.

General vs. specific compounds
We have seen that compounds can be divided in two 
groups: first, general compounds that are associated to 
many tumor types and second, specific compounds that 
are related to only one or two cancer types. This group-
ing corresponds to the mechanism of drug action. While 
general compounds typically target pathways that are 
not related to a specific tumor type but rather to growth 
and proliferation (‘DNA replication’ or ‘Mitosis’), specific 
compounds typically target signaling pathways that are 
important for one type of tumor. The grouping identified 
with the automated literature mining very nicely corre-
sponds to the actual targets of the compound and thus, 
substantiates the consistency of the retrieved relations 
between tumor types and compounds.

Identification of unexpected results
The heatmap showing the significances of the relations 
between cancer types and compounds (Fig.  1) can be 
used to identify unexpected results. As an example there 
is no significant relation between brain tumors and doc-
etaxel, while all other tumor types in neighborhood as 
well as other compounds in the neighborhood show 
very significant results. So one would assume that doc-
etaxel might be very useful to treat brain tumors. This 
assumption is underlined by experiments showing very 
low IC-50 values for different cell lines (data not shown 
here - but easily accessible in the knowledge base). This 
combination is even approved by the FDA (see also Addi-
tional file  4: Figure S3). The reason why there is almost 
no overlap between brain tumor and docetaxel are the 
physicochemical and pharmacological characteristics of 
the drug making the in vivo passage through blood-brain 
barrier extremely difficult [26].

Drug repositioning
For each compound we searched for co-occuring com-
pounds. This gives us for example for colon cancer 204 
highly significant co-occuring pairs of drugs (with a co-
occurrence −log10 p-value > 50 ). This information can 
now be used for a proposition for drug repositioning. For 
example, mining for the EGFR targeting drug erlotinib 
reveals 224 related publications suggesting a high rele-
vance of this drug for colon cancer ( −log10 p-value = 77 ). 
In contrast, afatinib, another EGFR-targeting drug, which 
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has been used predominantly in lung cancer, has little lit-
erature relevance for colon cancer with only 37 publica-
tions ( −log10 p-value = 2 ). Nonetheless, afatinib appears 
as the top related drug with erlotinib from the combined 
information on colon cancer. This would suggest afatinib 
as a potential candidate for repositioning to colon cancer 
and there are indeed several phase 2 and 3 studies that 
propose afatinib for colon cancer therapy. This sugges-
tion is in line with the IC-50 data. Many colon cancer cell 
lines are very sensitive to afatinib treatment (e.g. cell line 
DiFi with with log IC-50 values up to − 5.2).

Drug combinations
The information of co-occuring compounds can also be 
used to search for promising drug combinations. E.g. the 
top co-occuring compound for 5-fluorouracil in colon 
cancer is the topoisomerase I inhibitor irinotecan (see 
also Additional file 5: Figure S4; all co-occurrrence graphs 
are provided as Additional file 6). 5-fluorouracil together 
with irinotecan and folinic acid (called FOLFIRI) were 
introduced as the standard of care for colorectal cancer 
(see [27] for a description of the drug-drug interactions).

As a second example, dabrafenib co-occurs with 
trametinib in different cancer types such as colon can-
cer or melanoma (see also Additional file  5: Figure S4). 
Combination therapy with dabrafenib and trametinib in 
melanoma improves response rate, progression-free sur-
vival and overall survival when compared to dabrafenib 
alone [28]. Both are targeting the ERK/MAPK signaling 
pathway, in particular the aberrant activation through 
BRAF mutations. The combination of dabrafenib and 
trametinib, targeting mitogen-activated extracellular sig-
nal-related kinase (MEK) which is downstream of BRAF 
in the MAPK pathway, was also approved by US FDA in 
2014 based on increased survival over single dabrafenib 
monotherapy [29].

As a third example: the combination of bortezomib 
together with the immunomodulatory agents (IMiDs) 
such as lenalidomide has led to substantial improvement 
of survival rates in myeloma patients [30]. Both both 
compounds show a very significant co-occurrence.

Comparison of the different approaches
We used two different text-mining approaches (classical 
text mining vs. word embeddings), both with a similar 
goal: the detection of similarity of cancer types and anti-
cancer drugs based on scientific literature. The classi-
cal text mining is supervised since we directly included 
information about cancer types and compounds. The 
similarities were calculated only for cancer types and 
compounds incorporating the prior knowledge. Word 
embeddings are unsupervised. The abstracts were trans-
formed into word vectors without considering knowledge 

about cancer types and compounds. The similarity is cal-
culated based on the word vectors considering all pos-
sible other words. The supervised approach leads to a 
better correspondance with experimental data and seems 
to be better suited for the analysis task. Considering all 
possible words as in the word vector approach prob-
ably leads to a higher noise level and thus less significant 
results.

Knowledge base for further data mining
We provide all results as an interactive web-based knowl-
edge base. This knowledge base is freely accessible and 
can be used to further inspect the presented results. 
Researchers can use the knowledge base to follow their 
own research questions. Furthermore all data can be 
downloaded for performing additional analyses.

Limitations
The presented analysis used techniques from literature 
mining to investigate the relation between compounds 
and tumor types. It is based on already published knowl-
edge. Due to this reason it is per se not possible to dis-
cover completely new results. However, a combination 
of different aspects of published knowledge might be 
very helpful to discover new relations and to formulate 
novel hypotheses. We feel that especially the feature of 
co-occuring compounds could indeed be used to esti-
mate efficacy of a drug in particular in the field of drug 
repositioning where on the one hand literature is avail-
able for the drug (a pre-requisite for every mining chal-
lenge) and on the other hand novel indication areas are to 
be investigated.

The restriction to abstracts instead of full-text publi-
cations has lower effects to the first part of the analysis 
(comparison of compounds and tumor types based on 
the overlap of publications) since the actual search is per-
formed by PubMed search engine. However, the extrac-
tion of genes and proteins may be more precise when 
using full text publications. Also the word embeddings 
may benefit from using full text publications. Neverthe-
less, we decided to perform this analysis on abstracts 
especially since the many full text publications are not 
openly accessible and hence, the number of usable publi-
cations is significantly higher.

The description of the tumor types we used in our anal-
ysis is very general. E.g. breast cancer is not subdivided 
according to the status of estrogen-receptor, progester-
one-receptor, HER2 or BRCA1. Although this sub-typing 
is very useful for the choice of treatment the vast major-
ity of publication abstracts does not contain information 
on the tumor subtypes. Therefore we decided to use the 
high level of description of tumor types.
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The body of 270 chemicals was motivated by the GDSC 
database [19] (RRID:SCR_011956). for which a rich body 
of data is available such as drug sensitivity information 
on a huge amount of human cell lines which is not gen-
erally available for every drug in drugbank. However, we 
plan to include more compounds in the next update of 
the knowledgebase tool.

Conclusions
We demonstrated that an automated text mining is able 
to automatically assess the relations between the 30 most 
frequent cancer types and 270 anti-cancer drugs using 
biomedical publications (almost 4 million publications). 
To this end, we applied two different text mining strate-
gies, first a supervised approach with classical text min-
ing strategies and second an unsupervised approach 
based on the calculation of word embeddings. The super-
vised approach based on classical text mining seems to 
be better suited for the assessment of the relations can-
cer types and anti-cancer drugs. The relevance of the 
extracted relations was confirmed using three independ-
ent methods: First, by the comparison with FDA approval 
information, second, by using IC-50 values from a huge 
experimental dataset of compounds and cancer cell lines 
and third, by the comparison with clinical survival data. 
All three methods showed a good agreement between the 
results from automatic literature mining and independ-
ent validation.

In addition, we make the results of the analyses acces-
sible in an interactive web-based knowledge base. The 
knowledge base enables researchers and clinicians to 
investigate relations between a certain combination of 
cancer type and compound very efficiently. All results 
can be exported for further in-depth analysis.
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org/​10.​1186/​s12967-​021-​02941-z.

Additional file 1:Zipped archive of the co-occurence graphs for all tumor 
types. Each co-occurrence graph contains all compounds in the context 
of the corresponding cancer type. Two compounds are connected if they 
show a highly significant co-occurrence with a − log10 p-value > 50 . The 
color reflects the target pathway of the compound (extracted from the 
GDSC database (RRID:SCR_011956)).

Additional file 2: Figure S1. Heatmap visualizing the significance of the 
overlap in genes extracted from publications for compounds (y-axis) and 
cancer types (x-axis). The overlap is assessed based on the number of 
common genes extracted from publications in comparison to the total 
number of genes ( −log10 p-value of Fisher’s test truncated at 100). 
Compounds showing no significant association to anyof the tumor types 
are not shown.

Additional file 3: Figure S2. Heatmap visualizing the cosine similarity 
from word embedding between compounds (y-axis) and cancer types 
(x-axis).

Additional file 4: Figure S3. Heatmap visualizing the significance of 
the overlap between compounds (y-axis) and cancer types (x-axis). The 
overlap is assessed based on the number of common publications in 
comparison to the total number of publications ( −log10 p-value of 
Fisher’s test truncated at 100). We selected only the compounds and can-
cer types with information about approval by the FDA. If the combination 
of compound is approved for a cancer type than a blue box is drawn.

Additional file 5: Figure S4. Co-occurrence graph for all compounds in 
the context of colon cancer. Two compounds are connected if they show 
a highly significant co-occurrence with a − log10 p-value > 50 . The color 
reflects the target pathway of the compound (extracted from the GDSC 
database (RRID:SCR_011956)).

Additional file 6: Text file with cancer type synonyms used for the 
literature search.
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