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We study lattice Hamiltonian realisations of (3+1)d Dijkgraaf-Witten theory with gapped bound-
aries. In addition to the bulk loop-like excitations, the Hamiltonian yields bulk dyonic string-like
excitations that terminate at gapped boundaries. Using a tube algebra approach, we classify such ex-
citations and derive the corresponding representation theory. Via a dimensional reduction argument,
we relate this tube algebra to that describing (2+1)d boundary point-like excitations at interfaces
between two gapped boundaries. Such point-like excitations are well known to be encoded into a
bicategory of module categories over the input fusion category. Exploiting this correspondence, we
define a bicategory that encodes the string-like excitations ending at gapped boundaries, showing that
it is a sub-bicategory of the centre of the input bicategory of group-graded 2-vector spaces. In the
process, we explain how gapped boundaries in (34+1)d can be labelled by so-called pseudo-algebra
objects over this input bicategory.
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SECTION 1
Introduction

A prominent class of gapped quantum phases of matter are given by so-called topological phases
of matter. Such phases can be defined as equivalence classes of gapped quantum models whose low-
energy effective descriptions realise topological quantum field theories (TQFTs) [1]. In (2+1)d, spherical
fusion categories can be used to define a state-sum TQFT known as the Turaev- Viro-Barrett- Westbury
TQFT [2, 3]. Given such data, one can define an exactly solvable Hamiltonian model on a closed
manifold, in a canonical manner, that describes non-chiral topological phases in (2+1)d [4-6]. Such
models support topological excitations referred to as anyons, which display exotic braiding and fusion
statistics. Topological excitations are typically described via the so-called Drinfel’d center of the
input spherical fusion category [7]. For any spherical fusion category, the center construction defines
a modular tensor category, which is widely accepted as being the right classification tool for anyons
in (24+1)d [8, 9].

Given an open manifold, it is often possible to extend the lattice Hamiltonian to the boundary,
while preserving the gap. Equivalence classes of such extensions define the notion of gapped bound-
aries, which realise anomalous TQFTs. These are found to be described by indecomposable module
categories over the input spherical category. Furthermore, boundary Hamiltonians yield point-like
excitations that can be classified through the language of module category functors [10]. Domain walls
between distinct topological phases can be considered in a similar fashion. By iterating the procedure,
it is possible to further extend such models to interfaces between different gapped boundaries. The
corresponding zero-dimensional Hamiltonians yield point-like excitations in their own right. These
different settings have received a lot of attention in recent years within the topological order commu-
nity [10-20], partly due to their application to the field of topological quantum computation [16, 21].
Mathematically, these fit in the wider topic of defect TQFTs [22-29].

Despite tremendous progress in our understanding of (2+1)d topological models, a lot of questions
remain open regarding generalizations to higher dimensions. It is expected that topological models
in (3+1)d should take as input a spherical fusion bicategory. Although the precise definition of such
notion remains partly elusive, a compelling definition has been recently put forward by Douglas et al.
in [30]. In this manuscript, the authors show that their definition encompasses a large class of four-
dimensional state-sum invariants. Ultimately, we would like to derive properties of (3-+1)d topological
models within this general higher category theoretical framework, which is admittedly tantalizing but
difficult. In order to make progress in this direction, we decide to focus on so-called gauge models
of topological phases, i.e. models that have a lattice gauge theory interpretation [8, 31-33]. These
models are interesting for diverse reasons. Technically, they are particularly manageable allowing to
carry out computations in full detail, and they are easily definable in any dimensions. Physically, they
happen to be extremely relevant in (3+1)d as they seem to encapsulate a large class of Bosonic models
displaying topological order [34-37].

In (2+1)d, topological gauge models are obtained by choosing as input the category of G-graded
vector spaces, with G a finite group and monoidal structure twisted by a cohomology class in H?(G,U(1)).
The corresponding state-sum invariant is referred to as the Dijkgraaf-Witten invariant [38]. In this
context, (bulk) anyonic excitations are described in terms of the so-called twisted quantum double of
the group, whose irreducible representations provide the simple objects of the Drinfel’d centre of the
category of G-graded vector spaces [39, 40]. Gapped boundaries are found to be labelled by a simple
set of data, namely a subgroup of the input group and a 2-cochain that is compatible with the input
3-cocycle [14, 41], and their excitations have been considered for instance in [16, 18, 29, 42, 43].



More generally, given a closed (d+1)-manifold, the input data of Dijkgraaf-Witten theory is a
finite group G and a cohomology class [w] € HY (G, U(1)). It is always possible to define a lattice
Hamiltonian realization of the theory on a d-dimensional hypersurface ¥, such that the ground state
subspace of the model is provided by the image of the partition function assigned to the cobordism
¥x0,1]. In (34+1)d, the resulting gauge models are known to yield loop-like excitations, i.e. excitations
with the topology of a circle. In general such a loop-like excitation corresponds to a loop-like magnetic
flux to which a point-like charge is attached, while being threaded by an auxiliary flux. This threading
flux plays a crucial role as it can constrain the quantum numbers associated with the other flux and
the charge. In [33, 44], their classification and statistics were found to be described in terms of the
so-called twisted quantum triple of the group, which is a natural extension of the twisted quantum
double. Although a general theory of gapped boundaries in (3+1)d is still lacking, examples have
already been proposed in the case of topological gauge models [15, 20]. These are labelled by a set of
data akin to (2+1)d, namely a subgroup of the input group and a 3-cochain compatible with the input
4-cocycle. The main objective of our manuscript is to study excitations for such gapped boundaries
in (3+1)d.

In order to reveal the algebraic structure underlying the bulk excitations in arbitrary spatial
dimension, several strategies exist. Our focus is on the so-called tube algebra approach [5, 33, 42, 44—
48], which is a generalization of Ocneanu’s tube algebra [49, 50]. In general, the ‘tube’ refers to
the manifold 0% x [0, 1], where 9% is the boundary left by removing a regular neighbourhood of
the excitation in question, and the ‘algebra’ to an algebraic extension of the gluing operation (9% x
[0,1]) Uss (0% x [0,1]) ~ (932 x [0,1]) to the Hilbert space of states on the tube. For instance,
the twisted quantum double and the twisted quantum triple are found to be isomorphic to the tube
algebras associated with the manifolds S* x [0, 1] and T? x [0, 1], respectively. This approach relies on
the fact that properties of a given excitation are encoded into the boundary conditions that the model
assigns to the boundary 9% [33]. This strategy has been extensively applied to general two-dimensional
models, and more recently to gauge and higher gauge models in three dimensions [33, 48].

The tube algebra approach can be adapted in order to study excitations on defects and gapped
boundaries, and has been employed in some specific cases in [10, 42, 43, 51]. In this context, the
tube possesses two kinds of boundary: a physical gapped boundary that corresponds to the one of
the spatial manifold, and a boundary obtained by removing a local neighbourhood of an excitation
incident on the boundary of the spatial manifold. Although, the method is very general and could be
used to study any pattern of excitations in (3+1)d, we shall focus on a specific configuration, namely
bulk string-like excitations that terminate at gapped boundaries. There are several motivations to
consider these specific excitations. The first one is that, due to the topology of the problem, we can
relate the corresponding tube algebra to the one relevant to the study of point-like excitations at
the zero-dimensional interface of two gapped boundaries in (2+1)d. This is a generalization of what
happens in the bulk, where upon dimensional reduction, bulk loop-like excitations can be treated as
point-like anyons [52, 53]. In [33], this mechanism was made precise in terms of so-called lifted models,
where we showed that higher-dimensional tube algebras could be recast in terms of lower-dimensional
analogues using the language of loop groupoids. We generalize these techniques in this manuscript
by introducing the notion of relative groupoid algebras, which we use to unify both the (2+1)d and
(34+1)d tube algebras.

Although this correspondence between two seemingly very different types of excitations is interest-
ing per se, it turns out to be a precious technical tool. Indeed, since it allows us to recast the (3+1)d
tube algebra as a (241)d one, we can use the (2+1)d scenario, which is easier to visualise and intuit,
as a guideline for the more complex (34+1)d case. Using this framework, we derive the irreducible



representations of the (3+1)d tube algebra, which classify the elementary string-like excitations whose
endpoints lie on gapped boundaries. We further define a notion of tensor product that encodes the
concatenation of these excitations, and compute the Clebsch-Gordan series compatible with this tensor
product. Moreover, we find the 6j-symbols that ensure the quasi-coassociativity of this tensor product.
All these mathematical notions can then be put to use in order to define canonical bases of ground
states or excited states in the presence of gapped boundaries.

The second reason we decide to focus on such open string-like excitations pertains to category
theory. The same way the relevant category theoretical data to describe gauge models in (241)d
is the category of G-graded vector spaces, the one relevant to describe (3+1)d gauge models is the
bicategory of G-graded 2-vector spaces. In a recent work [54], Kong et al. applied the generalised
centre construction to this bicategory and demonstrated that the result was given by the bicategory
of module categories over the multi-fusion category of loop-groupoid-graded vector spaces. This is a
categorification of the well-know result that the centre of the category of group-graded vector spaces
can be described as the category of modules for the loop-groupoid algebra [55]. The latter relation
can be appreciated from the point of view of the tube algebra approach, which we use to argue that
the centre of the bicategory of G-graded 2-vector spaces describes string-like excitations together with
boundary conditions for the string endpoints.

In order to prove this statement, we construct explicitly the bicategory of module categories
over the multi-fusion category of groupoid-graded vector spaces. To do so, we rely on the familiar
correspondence between indecomposable module categories and category of module over algebra objects
[56-58]. When applied to the group treated as a one-object groupoid, this provides a description for
(24+1)d point-like excitations at the interface between two gapped boundaries. When applied to
the loop-groupoid of the group, we demonstrate that it describes the string-like excitations and their
endpoints boundary conditions, which string-like excitations ending at gapped boundaries is a subclass
of.

Organisation of the paper

In sec. 2 we review the construction of the lattice Hamiltonian realization of Dijkgraf-Witten theory in
any spatial dimension. We then describe an extension of the Hamiltonian model to introduce gapped
boundary conditions. In the subsequent discussion, we apply the tube algebra approach to point-
like excitations at the interface of two one-dimensional gapped boundaries in sec. 3. In sec. 4, we
consider string-like bulk excitations that terminate at gapped boundaries and apply the tube algebra
approach to this scenario. We also introduce in this section the notion of relative groupoid algebra
that unifies the (241)d and (34+1)d computations. The representation theory of the tube algebras is
presented in full detail in sec. 5. Finally, the category theoretical structures capturing the properties
of boundary excitations in (24+1)d and (3+1)d are developed in sec. 6. The correspondence with the
centre construction of the bicategory of group-graded 2-vector spaces is also established in this section.



SECTION 2
Dijkgraaf-Witten Hamiltonian Model

In this section, we first review the definition of the Dijkgraaf- Witten theory and the construction of its
Hamiltonian realisation. We then generalise the construction to include gapped boundaries.

2.1 Partition function

The input for the (d+1)-dimensional Dijkgraaf- Witten theory is given by a pair (G, [w]) where G is
a finite group and [w] € H¥1(G,U(1)) is a (d+1)-cohomology class.! Given a closed manifold, this
theory can be conveniently expressed as a sigma model with target space the classifying space BG
of the group G. In order to extend the definition of the partition function to open manifolds, it is
necessary to endow the manifold with a triangulation, in which case the partition function is obtained
by summing over G-labellings of the 1-simplices that satisfy compatibility constraints. Ultimately, we
are interested in lattice Hamiltonian realisations of such theory, for which we need the expression of
the partition function that the Dijkgraaf-Witten theory assigns to a special class of open manifolds
referred to as pinched interval cobordisms. We shall directly define the partition function for this
special class of manifolds. Details regarding more basic aspects of this theory can be found in [33, 38].

Let Z be a compact, oriented d-manifold with a possibly non-empty boundary. We define the
pinched interval cobordism = X, I over 2 as the quotient manifold

Ex, I=2x1/~, (2.1)

where I = [0, 1] denotes the unit interval, and the equivalence relation ~ is such that (x,7) ~ (z,4),
for all (z,i), (z,i') € O x I. By definition, we have (= x,, [) = EUsz = and EN E = 9=, where Z is
the manifold = with reversed orientation. In contrast, the boundary of the interval cobordism = x I
over = reads 9(Z x I) = EUZ U (JZ x I). To illustrate this distinction, we can consider the following
simple examples:

[071] Xp [07 1] :O ) [Oa 1] X [07 H =

Naturally, if 0= = @, then we have the identification = x, I =2 x L.

In order to define the Dijkgraaf-Witten partition function, we shall further require our pinched
interval (spacetime) manifold be equipped with a choice of triangulation, i.e. a A-complex whose geo-
metric realisation is homeomorphic to the manifold. We shall further assume that every triangulation
has a chosen total ordering of its 0-simplices (vertices), referred to as a branching structure. A choice
of branching structure for a triangulation naturally encodes the structure of a directed graph on the
corresponding one-skeleton. By convention, we choose the 1-simplices (edges) to be directed from the
lowest ordered vertex to the highest ordered vertex. Given a compact, oriented d-manifold =, we notate
a triangulation of the pinched interval cobordism = x, I by A=, such that d(a/Za) = EUaEA, Ear,
where ZA and Z A/ denote two possibly different triangulations of =. Let us remark that by definition,
we have (2a) = 9(Ear).

Let = x, I be a (d+1)-dimensional pinched interval cobordism endowed with a triangulation Ao/Ex.
We define a G-colouring of A'Za as an assignment of group elements g,,,;, € G' to every oriented 1-
simplex (v;v;) C aEa, with v; < vj;, such that for every 2-simplex (v;v;vr) C A/Ea, with v; <

IHere U(1) denotes the circle group as a G-module with action & : G x U(1) — U(1) given by gbu =u for all g € G
and u € U(1).



vj < v, the condition g, gv;v, = gu,v, 18 satisfied. The set of G-colourings on A/=x is notated by
Col(a/En, G). Given a G-colouring g € Col(A'Ea,G) and an n-simplex A = (vgvy1 ... v,) C AEn,
we denote by g[vov1 ... vn] = (Gugvys -« - s Go,_1v,, ) € G™, the n group elements specifying the restriction
of g to a G-colouring of (vgvy...vy). Using this notation, we further define the evaluation of a
(d+1)-cocycle w € Z*1(G,U(1)) on a G-colouring g € Col(aEa,G) restricted to a (d+1)-simplex
(Vg ...v44+1) C ArEA as

w(glvo - .. vas1]) = W(Guowvis -+ Goavars) -

Equipped with the above, let us now define the partition function that the (d+1)-dimensional Dijkgraaf-
Witten theory assigns to a given pinched interval cobordism. Letting = be a compact, oriented d-
manifold and A/ZEa a triangulation of = x, I, the partition function defines a linear operator

Z5[aEnl : HE[Eal = HE[EAT]
where the Hilbert spaces HG[ZA] and HE[EA/] are defined according to

niEl= K Cla. (2.2)

AV cCE,

In the equation above, the tensor product is over all 1-simplices A1) in the corresponding triangulation,
and C[G] denotes the Hilbert space spanned by {|g) }v4ec with inner product (g|h) =41, Vg, h € G.
Explicitly, the linear operator ZG[A/Za] reads

ZE[A'EA] = ; Z H w(g[A(d+1)])f(A(d+l)) ® |g[A(1)}> ® <g[A(1)]| 7

|G|#(arE2)
gECOl(ArEn,G) A+ C 4/ En AMCEA, AMCE

where #(aEn) == |aEa @] - %\GA/EA((W - %|8E(AO)| and e(A@HD) € +1 denotes the orientation of
the (d+1)-simplex A+ C A/ZA.

Before concluding this section, let us describe some of the salient features of the partition function
above. Firstly, given a pinched interval cobordism = x;, I and two choices of triangulation A'=Ea and
A2 such that d(aoEa) = d(aEa), we find the operators ZG[anEa] = Z5[aEa] to be equal.
This property follows directly from the (d+1)-cocycle condition satisfied by w, i.e. d@t1y = 1. This
implies that the operator ZG is boundary relative triangulation independent, i.e. it remains invariant
under retriangulation of the interior int(a/Z2a) := A/Z2A\O(A/ZA) of A/Ex but does depend on a
choice of boundary triangulation. Using this boundary relative triangulaton independence, we find
the crucial relation

A I PA INSIN SR NN B

Secondly, given a d-manifold ¥ equipped with a triangulation ¥ and Ex a subcomplex of int(Xa),
there is a natural action of Z&[A/EA] on HEG[SA] such that

ZS A EA] 1 HS[SA] = HE[SaY]

where ¥ A/ is a triangulation of ¥ induced from ¥ A by replacing the subcomplex Za C int(Xa) with
=7, while keeping the remaining triangulation the same. On the subspace

VS[EA] = Im ZS[AEn] C HS[EA], (2.3)



the operator Z&[a'E 4] further defines a unitary isomorphism
Z5[aEa] VS [Bal = VI (24)

This follows directly from the boundary relative triangulation independence of Z& as well as the
Hermicity condition

Z5[nEall = Z5[aBnr] . (2.5)

2.2 Hamiltonian realisation of Dijkgraaf-Witten theory

Let us now construct an exactly solvable model that is the lattice Hamiltonian realisation of Dijkgraaf-
Witten theory in d spatial dimensions [31-33]. The input of the model is a pair (G,w) where G is
a finite group and w a normalised representative of a cohomology class in H4T!(G,U(1)). Given an
oriented (possibly open) d-manifold ¥ representing the spatial manifold of the theory, and a choice of
triangulation ¥ A, the microscopic Hilbert space of the model is given by

nizalz @ Clal,

A(UCZA

as in (2.2). A natural choice of basis for HG[EA] is given by an assignment of g,,,, € G for each
oriented edge (v;v;) C ¥ A defined by the vertices v; < v;. Henceforth, we shall refer to such states as
graph-states.

The bulk Hamiltonian is obtained as a sum of mutually commuting projectors that come in two
families. Firstly, to every 2-simplex (voviv2) C int(XA) of the interior of ¥ A, we assign an operator
B (uov,0,) that is defined via the following action on a graph-state |g) € HG[SAl:

B('UO'UI'UZ) : ‘g> — 6.(]1101)191)1112 s Gugug |g> .

This definition can be extended linearly to an operator on any state ) € HG[XA]. Secondly, to every
0-simplex (vg) C int(¥X), we assign an operator A(,,) which acts on a local neighbourhood of (vg)
defined as the subcomplex E,, := clost(vg) C ¥ a. Here st(—) and cl(—) are the star and the closure
operations, respectively, so that =,, corresponds to the smallest subcomplex of ¥ A that include all
the simplices of which (vg) is a subsimplex. The definition of A(,,) requires the triangulated pinched
, defined as

interval cobordism =z ==

=vg v,

= (vg) Lj clost(vg) ,

where — LJj — denotes the join operation. Given two simplices A = (vovy ... vy,) and AM) =
(Vp41Un42 - - - Unpn+1), the join operation creates the new simplex A(™) LJ; AM) = (VoV1 + - Vnpm/ +1)-
In the definition above, (v{)) refers to an auxiliary vertex such that vy < v{, < v, and which follows the
ordering of (vg) with respect to the other vertices in ¥ . For the sake of concreteness, we illustrate
these various definitions with the following two-dimensional example:

=

DI "@Y‘ and  (0") L clost(0) = (0) L &Y‘ = .

Q



Finally, given a state [) € HE[E 4], the action of the operator A(,,) is defined via
Aguny + 1) = ZS[(uh) Uy o st (0p)] ) (2.0

For instance, in (3+1)d the action of the operator A4 on a vertex (4) shared by four 3-simplices
explicitly reads

Ay > =z7 >
3 4 1 3 3 4 1
2 2 2 0
_ b (901912, 923, 934, 9aar) T(go1, 912, 923934, Jaa’)
G| keG 7(912, 923, 934, gaar) T(go1, 912923, 934, Gaa) 3 4 1/’
2
where 7 € Z4(G,U(1)). The lattice Hamiltonian is finally obtained as
H[EA]™™ == Y Baw— Y, Ano, (2.7)

AP Cint(ZA) A Cint(ZA)

where the sums run over all the 2-simplices and O-simplices in the interior of ¥ A, respectively. It
follows from the definitions and the boundary relative triangulation independence that the operators
{Ar©®,Ba® by A0, A@ cing(s ) Satisfy the algebra
Aw)Bw) = Bwy s Aenbey) = Ae)he)
Bojve) Bojoivy) = Beojoro) s Bojoro) B o o)) = Beojivgv) Bojuen) »
A(vi)B(vjvkvz) = B(’Ujvk'ul)A(vi) )
VAN AN

for all (v;), (vir), (vjvrwr), (Vivpvy) € Ea. All the operators are mutually commuting projectors and
the Hamiltonian is exactly solvable. It follows that the ground state projector Pglik simply reads

]P)glik = H AA(O) H BA(z) . (28)
A Cint(ZA) AP Cint(ZA)

Notice that the ordering in the product is superfluous by the commutativity of the operators. Fur-
thermore it follows from inspection that

PR = ZJ[aZAl, (2.9)
such that the ground state subspace of HG[XA]P"¥ is given by
ImPY™ = Im ZG[AZA] = VI([24A], (2.10)

with the last equality following from (2.3). This is the space spanned by linear superpositions [\)
of graph-states fulfilling the stabiliser constraints Axw[P) = [¥) and Bae b)) = [U) at every
AO AR Cint(ZA).



Let us conclude this construction by making two observations. The first one is that we showed in
(2.4) how given two triangulations ©a and Y as of ¥ such that 9% = 9%'4, the subspaces VS [SA]
and VS[X /] were unitarily isomorphic. This signifies that it is always possible to perform local
changes of the triangulation in the interior of ¥ while remaining in the same gapped phase. This will
turns out to be very useful when performing explicit computations. In particular, we shall often apply
unitary isomorphisms obtained from pinched interval cobordisms describing so-called Pachner mowves.
The second observation is that the Hamiltonian operators do not mix ground states with differing
boundary G-colourings, so that there exists a natural decomposition of the Hilbert space as

ViEal= P ViZal (2.11)
a€Col(0X A ,G)

where VS [Sa]a € VG[SA] denotes the subspace of states identified by the boundary colouring a €
Col(0X A, G). More details regarding the construction up to that point can be found in [33].

2.3 Gapped boundary partition function

Given an open d-dimensional surface % endowed with a triangulation XA, we reviewed above how
to define an exactly solvable model as the Hamiltonian realisation of Dijkgraaf~-Witten theory whose
input data is a finite group G' and normalised (d+1)-cocycle in H+1(G,U(1)). The lattice Hamiltonian
HY S A]P"E was obtained as a sum of mutually commuting projectors that act on the interior of ¥ A.
We would like to extend this Hamiltonian to XA while preserving the gap of the system, giving
rise to the notion of gapped boundaries. In order to do so, we shall first define a generalisation of
the partition function introduced in sec. 2.1 for spacetime (d+1)-manifolds presenting two types of
boundaries.

Let us begin by introducing the notion of relative pinched interval cobordisms. Let Z be a compact,
oriented, d-manifold with non-empty boundary and Q C 9= a choice of (d—1)-dimensional submanifold
of the boundary. The relative pinched interval cobordism = xg I over = with respect to €2 is defined
as the quotient manifold

S1=Ex1/ ~q, (2.12)
where ~q is defined such that (z,%) ~q (z,4), for all (z,7), (z,7') € (0=\int(Q)) x I. By definition, we

have O(2 x{21) = EUq (Q xp I) Uspz E and ENZE = 9E\int(Q). To illustrate this definition we consider
the following simple examples:

0,1 x, [0,1] =< > , [0,1] x¥ [0,1]:&,

with Q = 0 C {0,1} = 9. Henceforth, we shall utilise the convention that Z x ! I defines a cobordism

(1]
(1]
(1]

Q.
x21: 2 E, (2.13)
and refer to Q x, I C 9(E xf} I) as a time-like boundary. A triangulation of = xg I can be constructed
as follows: Let =, Za/ be a pair of triangulations of = such that Qa C 024 and Qas C 0= define

two possibly different triangulations of ) satisfying

EA\Int(Qa) = OZAN\Int(Qa) - (2.14)



Considering a triangulation o/Qa of the time-like boundary Q x, I, we define o/=Z% A as the triangula-

tion of the relative pinched interval cobordism = xg I whose boundary reads Za Ug, A'£2aUsz ., Ea--

Given a triangulation o/Z% 4 of X1, let us now define a generalisation of the (d+1)-dimensional
Dijkgraaf-Witten theory with input data (G,w) such that the corresponding partition function eval-
uated on A/Z2 A remains invariant under triangulation changes of both the interior of AER A and
the interior of the time-like boundary A/Q2a. Let Q = U;2; be a decomposition of £ into con-
nected components €;, each with triangulations Qa,; C 0=Za and Qar; C 02a,. The generalised
theory associates to each connected component €; a pair (A;, ¢;), where A; C G is a subgroup and
¢; € C%(A;,U(1)) a normalised group d-cochain such that d¥¢; = w™l|,.. We refer to the data
(A;, ¢:) as a choice of gapped boundary condition.”? We define a (G, {A;})-colouring g of A/Z%4 as
a G-colouring such that g[a/Qa ;] € Col(aQna.i, Ai). The set of (G, {A;})-colourings on A=A is
denoted by Col(a/Z%A,G,{A;}). Equipped with such choices, we define the generalised partition
function as follows:

GAA} =0 7 _ 1
Z i [A - A] B ‘G|#(A’EQA) 1_[z |Ai|#(A’QA,1) (215)

Z H ( H ¢i(g[A(d)])£(A(d))> H w(g[A(d+1)])e(A(d+1))

gECOl(A/EQA,G,{Ai}) % A(d)CA/QAJ A(‘H’DCA/EQA

X 192V Q) (glaMl

AMCEA, A CEA

where #(A,EQA) = \int(A/EA)(O)\+%|int(EA/)(0)|—|—%|int(EA)(0)| and #(AQa i) == |int(A/QAﬂ»)(0)|—|—
%ﬁnt(QA/,i)(o)l + %\int(QA,i)(O) ‘

As stated previously, the partition function remains invariant under retriangulation of the interior
of A as well as the interior of A/Z%A. In this manner, the partition function Zf’{{fg} [AEDA]
defines a projection operator and we associate to the triangulation = the following Hilbert space:

GlAi}= 1. G{A}r =Q
Vo Ea]l = 1m 250 [AE) (2.16)
Furthermore, akin to equations (2.4) and (2.5), the triangulation invariance properties of the partition
function together with the Hermicitiy condition

G.{A; - G A} =
2o Az = 280 [AE ] (2.17)
demonstrate that the operator
G {A; = G{Ai} = 1 ~ 1, {Ai} =
Zw,{{qbi}} [A’:QA] : Vw,{{lbi}} [-:A] — V%{{@}} [:A/] (218)

defines a unitary isomorphism of Hilbert spaces.

2.4 Hamiltonian model in the presence of gapped boundaries

In sec. 2.2, we described the Hamiltonian realisation HG[XA]P"% of the Dijkgraaf-Witten theory in
d spatial dimensions in the presence of open boundary conditions. Utilising the partition function
(2.15) introduced in the previous section, we shall now define an extension of the Hamiltonian model
to include gapped boundary conditions [14, 15].

2In sec. 6, we shall revisit gapped boundary conditions from a category theoretical point of view.



Let us consider an oriented d-manifold ¥ with non-empty boundary and a choice of triangulation
Y. The input of the model is a pair (G,w) and a choice of gapped boundary conditions {(A;, ¢;)}
for each connected component X ; C ¥ a, where A; C G is a subgroup and ¢; € C%(4;,U(1)) is a
normalised group d-cochain satisfying the condition d(®¢; = w™! 4,- In the interior of ¥, the (bulk)
Hamiltonian was defined in eq. 2.7. Given such a choice of gapped boundary conditions, let us now
define an operator that acts on a local neighbourhood of a boundary vertex (vg) C 90X ;. Mimicking
the definition of the bulk vertex operator, we consider the subcomplex E,, := cl o st(vg), which
corresponds to the smallest subcomplex that includes all the simplices of which (vg) is a subsimplex.
We next define the triangulated relative pinched interval cobordism over =,, with respect to € :=
clost(vg) NI A

2,25, = (Vo) Uj clost(v) , (2.19)

whose boundary is given by
0(z,,22.,) = Zv, Ya (0,,20,,) Usz,, Ev, (2.20)
where Q,, = (v}) L; Q. Given this relative pinched interval cobordism, we define the action of the

operator Aﬁ)"fh on a state ) € HSQ [XA] via

ALY 1) = 250 2, e, ) - (2.21)

(vo w,p; =vg

The gapped boundary Hamiltonian is finally defined as

G G,A; .
HY DAl =HS[SAP™ + Y HEM [0S (2.22)
8ZA,iC02A
where
G,Ai ry . A i
Hw,qb,- [aEA»i]bd V= Z AA(O? . (223)
AOYCOSA ;

w
tonian is a sum of mutually commuting projection operators, and as such it is still exactly solv-

From the triangulation invariance properties of the partition function ZG[{{ﬁ’}} follows that the Hamil-

able. Furthermore, analogously to the bulk Hamiltonian, we can identify the ground-state subspace

G {A; .
Vw,{{m}} [XA] with

G {A; _ .G {A;
m 25 a2 ) = VI EA] (2.24)

and verify that the unitary isomorphism

G, {A; G {A; ~ G {A;
20 A n ] VOB mA] 2 VS N E ) (2.25)

commutes with the Hamiltonian. This last statement implies that we can always replace a given
triangulated subcomplex QA C 0X A by Qs while remaining in the ground state sector.

Note finally that in the subsequent discussion, we shall also refer to gapped interfaces between
several gapped boundaries. However, we will not require an explicit form of the Hamiltonian for such
interfaces, and as such we omit here the explicit definition. Despite such an omission, the corresponding
Hamiltonian can be explicitly defined in close analogy with the construction of the gapped boundary
Hamiltonian presented in this section.



In order to illustrate the definition and some properties of the gapped boundary Hamiltonian, let us
now specialize to two dimensions (see also [14]). We consider a two-dimensional surface ¥ endowed
with a triangulation XA and a single connected boundary component 9%a. The input data for the
bulk Hamiltonian is a finite group G and a normalised group 3-cocycle a. Furthermore, we define on
0¥ a a gapped boundary whose input data is a pair (4, ¢), where A C G is a subgroup and ¢ a group
2-cochain satisfying d® ¢ = a1, which is explicitly expressed via

¢(a’,a”) ¢(a,a’a”)

1 ! 2
o (a’ a/7 a//) = d( )(b(a, a/7a//) — ¢(aa/,a“) ¢(a7 a’) , (2.26)
for every a,a’,a” € A C G. We consider the following situation:
0 1 2
3
where the dashed area represents the bulk of the manifold, whereas the coloured line stands for

the gapped boundary. The black lines represent the 1-simplices on the interior XA that are included
in clost(1). We first want to write down the action of the boundary operator at the vertex (1) on
graph-states of the form

0 1 2 0 a 1 a 2
SpanC{ g{ \]/ ]>} = Spanc{‘ ag g a’—lg>}V o (2.27)
V g€Col(clost(1),G,A) Vgea’eA
3 3 ’
A,é

The boundary vertex operator A(l) boils down to evaluating the partition function (2.15) on the

relative pinched interval cobordism (023) ><§)02) I defined by

1

; (2.28)

such that 0 < 1 < I < 2 < 3 and the orange edges represent the time-like boundary. Explicitly, the
action of this boundary vertex operator reads

A
A)

1 5 51 5 oa—1 7
ag 9 a1y Y = § O‘(??f"va g) o(a,a a~)
|A| ala,a"ta',a’"1g) ¢(a,a)

as &*lga/lg> . (2.29)

Let us now compute a triangulation changing boundary operator on a graph state (2.27). More
specifically, let us construct the isomorphism that replaces the boundary subcomplex (01) U (12) by a
single 1-simplex (02). The corresponding operator is conveniently obtained by evaluating the partition



function (2.15) on the relative pinched interval cobordism

: (2.30)

with time-like boundary (012), implementing the isomorphism

‘ \V |Al|2 a a¢“ o~ ’ \/ (2.31)

We can now confirm that this triangulation changing operator does commute with the Hamilto-

nian operator. This follows from the cocycle relations d®¢(a,a,a ' a’) = a'(a,a,a *a’) and

d®a(a,a,a ' a’"1g) = 1.

SECTION 3
Tube algebra for gapped boundary excitations in (241)d

In this section, we apply the tube algebra approach in order to derive the algebraic structure underlying
the boundary point-like excitations in two spatial dimensions.

3.1 Definition

Let us consider an open two-dimensional surface . Its boundary 9% is referred to as the physical
boundary of the system. In the previous section, we explained how to construct the lattice Hamiltonian
realisation of Dijkgraaf-Witten theory on a triangulation of 3. We further detailed how this model
could be extended to the physical boundary of ¥ in such way as to remain gapped. Bulk excitations
of this model were studied in detail in general dimensions in [33]. In addition to bulk excitations, the
lattice Hamiltonian yields point-like boundary excitations that are excitations obtained by violating
some of the stabiliser constraints on the boundary. We are interested in the classification and the
statistics of such gapped boundary excitations. More specifically, we consider the situation where two
different one-dimensional gapped boundaries meet at a zero-dimensional interface, and are interested
in the point-like excitations living at such interface. This situation can be locally depicted as follows:

A¢ B,,/,

(3.1)

Given that the input data for the bulk theory is a pair (G, a), where « is a normalized representative
of a cohomology class in H3(G,U(1)), the thick coloured lines stand for two gapped boundaries
characterized by the boundary conditions Ay = (A,¢) and By, = (B, ), respectively, while the
black dot illustrates the binary interface between them. The boundary conditions A, and By, which
were defined in the previous section, are such that A, B C G, d®¢ = a~ ', and d®¢ = a~1|5.

We denote the lattice Hamiltonian for this specific choice of boundary conditions by HS ;f [X], and

its associated ground state subspace by fo;f [X]. In the following discussion, we will suppose that

the Hamiltonian is further extended to the interface, but we do not require the explicit form of the



corresponding operator. Note that although we restrict our attention to gapped boundaries, our
exposition could be easily generalised to accommodate domain walls, which can be thought of as
shared gapped boundaries between two (possibly different) topological phases.

By definition, given a point-like excitation at the interface of two one-dimensional gapped bound-
aries, there is a local neighbourhood of ¥ for which the energy density is higher than the one of the
ground state. Removing such a local neighbourhood leaves a new boundary component, referred to
as the excitation boundary, that is incident on the physical boundary 0% of the manifold. We denote
the resulting manifold by 3° and the excitation boundary by 9%° We illustrate this configuration
as follows:

lex. -

@y . \_/ (3.2)

where the dashed area represents the region whose energy density is higher than the one of the
ground state. The black line represents the excitation boundary, whose topology is the one of the unit
interval I = [0,1]. Endowing X° with a triangulation, we are interested in the lattice Hamiltonian
Hi’f’f[ A \OEX lex.] Obtained by removing all the operators whose supports are on X% |o,.. In a way
reminiscent to the bulk Hamiltonian in sec. 2.2, this Hamiltonian displays open boundary conditions
such that the corresponding ground state subspace can be decomposed over them. Properties of the
point-like excitations can then be encoded into the boundary conditions, so that a classification of
the boundary conditions induces a classification of the corresponding point-like excitations. In other

words, ground states in ngf [X%], which are characterised by a given excitation boundary colouring,

define specific excitations with respect to ground states in the Hilbert space Vgﬁf [XA]. In general,
any such excitation is a superposition of elementary point-like excitations. In order to find these point-
like elementary boundary excitations, we apply the tube algebra approach, whose general construction
can be found in [33].

Let us consider the manifold 0%°|., x I. Naturally, it has the topology of a 2-cell but we would
like to emphasize the fact that it has two kinds of boundary components, namely a pair of physical
boundary components and a pair of excitation boundary components. More precisely, it is the system
obtained by removing from the two-disk D? local neighbourhoods at the interface of two different

o _/
— ~ ) (3.3)

@ N
where the nomenclature is the same as before. A crucial, yet trivial, fact is that we can always glue a
x I to X° along 0%°

physical boundaries:

copy of 9%° without modifying its topology, i.e.

|ex. ‘ex.

Y, . \_/

12

As explained in more detail in [33], given a triangulation of 3° and making use of the triangulation
changing unitary isomorphisms, this simple gluing operation induces a symmetry map on the ground
state subspace, whose simple modules classify the boundary conditions on 9%°|,, and as such the
corresponding point-like boundary excitations. In order to compute these simple modules, we further



remark that it is always possible to apply a diffeomorphism so that a local neighbourhood of 9%°|.,
is of the form 93°|,.
of such diffeomorphism is to localise the action of the symmetry map so that it only involves degrees
of freedom living within 9%°|,,
corresponds to the gluing of two copies of the manifold 93%°|,, x I, i.e.

x I so that the corresponding ground state subspaces are isomorphic. The effect

x I. Consequently, it is enough to consider the symmetry map that

(02°) oy, X ) Uasel (03°| . X I) =2 0%°| x T (3.4)
We pictorially summarize these operations below:
N — —
u Y _
U ~ reduces N ~

to

Given a triangulation of 9%°|,,
subspace with a finite-dimensional algebraic structure referred to as the tube algebra. Irreducible
representations of the tube algebra label the simple modules of the original symmetry map, classifying
boundary conditions on 9%°

x I, this symmetry map in turn endows the associated ground state

and thus the corresponding point-like boundary excitations.

|8X.7

3.2 Computation of the tube algebra

Let us now derive the tube algebra for the configuration described above so as to determine the
elementary boundary excitations at the interface of two one-dimensional gapped boundaries. First, we
need to specify the ground state subspace on 0%°|,, X1 by picking a triangulation. Crucially, the choice
of triangulation does not matter. Indeed, given a triangulation of the excitation boundary, changing
the discretisation of the physical boundary or the bulk of 9%°
subspace, which would in turn induce an isomorphic tube algebra. Furthermore, a different choice
of triangulation for the excitation boundary would yield a Morita equivalent tube algebra, which by
definition has the same simple modules as the original algebra. As such, we should make the simplest
choice of triangulation possible. We choose to discretise the excitation boundary by a single 1-simplex
and 0X°
the corresponding ground state subspace explicitly reads®

lex. X I yields an isomorphic ground state

x I as a triangulated 2-cell. The resulting triangulated manifold is denoted by T[Ia] and

lex.

0 1 0 a 1
sl I ), g B
V geCol(Z[1],G,A,B) v«‘(?a byeAx B
o 1 o b 1 '
= Span(c{ ’g% >}vgeG , (3.5)
V (a,b)EAXB

where some labellings are left implicit since they can be deduced from the flatness constraints, i.e.
the stabiliser constraints with respect to the B A (2)-operators. The tube algebra can be computed
using the following algorithm:* Recall that the tube algebra is an extension of the gluing operation

3Note that we rotated the drawings by 90° for convenience.
4We refer the reader to [33] for a general and more detailed definition of the tube algebra.



%[0 Ur T[I) ~ F[I] to the ground state subspace Vﬁﬁl’f [Z[I]]. Using the relation (2.11), we obtain the

following decomposition of the Hilbert space Vﬁﬁ;f (Z[I]]:

G,A,B G,A,B
Voo Bl = @ VI W
g1 €Col(Ix{0},G)
g2€Col(Ix{1},G)

The gluing itself is then performed via an injective map GLU defined according to

A, VA, VA, A,
U VEAPEM VAR - D VIS 0 VORI
91,91 €Col(Ix{0},G)

92,95€Col(Ix{1},G)

! !’
91,95 7

. G,A,B G,A,B e
which acts on states [, ,g,) € V5 [Z(I]lg,,9. and \ll)’gi7gé> €V, 5 [EMlg; g, via identification of

the boundary conditions along the gluing interface, i.e.

GLU : N)ghgz> ® |1|):7§,g§> = 692,91 |1")91’92> ® |lb/gz,g§> .

This map can be linearly extended to states displaying mixed grading. Importantly, the image of
this map typically differs from the ground state subspace Vﬁﬁz’f [T]I] Uy T[] since all the stabiliser
constraints might not be satisfied along the gluing interface. This can be resolved by applying the
Hamiltonian projection operator Py, < with respect to the full Hamiltonian Hg’ﬁf[f[ﬂ] Ur T[],
which was defined in sec. 2.4. Finally, we can apply a triangulation changing isomorphism in order

to obtain a final state in fof [Z[I]]. Putting everything together, this defines a *x-product, which

together with Vf,’(ﬁ;f [Z[1]] defines the tube algebra:

GLU Prmupzi ~
« VOAPIRI @ v PIEm) == 1SR o s ——5 vE PR o R S vE PR
G,A,B

Given two basis states of V(" [Z[I]] as defined in (3.5), let us now compute explicitly this x-product.
Firstly, the G-colourings along the gluing interface are identified via the map GLU, i.e.

GLU<

Secondly, we apply the Hamiltonian projector Pz, in order to enforce the gauge invariance at the
physical boundary vertices that are along the gluing interface. This operator is obtained by evaluating
the partition function (2.15) on the relative pinched interval cobordism

’ ’

0 a 1 1 a 2 0 a 1 a 2

g N a_lgb> ®|g N a’_lg’b’>> = (59/7,1719() g w (aa')lgbb'> .

o b 1 1y 2 o b 1 » 2




and its action explicitly reads

g

Prmusm (

0 aa 1 a‘d 2

, N\‘ (aa,)lg,bb/> ’

0" pp 1 plp 2

1 )
- AIBl ;éw 9B (@, ata[b, b 1)

where we introduced the cocycle data

Y(b,b') afa,a’,a’Lagbb') ag, b, ')
o(a,a’) ala,a=1gb,b')

AB ._
957 (a,a'[b, ) := (3.7)

It follows from a~ ', = d® ¢ and a~'|5 = dP4), as well as the cocycle conditions

d(S)Oz(a, a/’ CLH, a//—la/—la—lgbb/b//) -1 d(3)a(a, ailgb, b,, b”) -1
d(3)a(a, a,ata7tgbt b)) =1 cl(‘g)oz(g7 b, b') =1
that 948 satisfies
19AB (a/7 al/lb/’ b//) 19gAB (a’ a’a”\b, b/b//)

2) gAB . _a"'gb _
d( )199 (a’a/’a”‘b’b/’b//) T ﬁAgB(aa/ a”|bb’ b”) ﬁAB(a a’|b b') =1, (3'8)
g ? ’ g ’ ’

which in particular implies the following property

V25 (™ alb™hb) = 90 (a,a b, b7 (3.9)

a—1lgb
Furthermore, given that o, ¢ and 1 are normalized cocycles, we have the normalisation conditions:
055 (1a,d'|15,6") =9 (0, 1alb, 1) =1 = 9P (14, d|b, 1) = 9,7 (a, 1|15, V') . (3.10)

Going back to the tube algebra, it remains to apply a triangulation changing isomorphism in order to
recover the initial triangulation. This can be done by evaluating the partition function for the pinched
interval cobordism (012)* x I endowed with the triangulation depicted below:

= (00'1'2')* U (011'2")~ U (0122)F . (3.11)

The corresponding operator implements the isomorphism

0 aa 1 a ta 2 1 aad 2

1 -
aa) g ) o~ ———— 9% (ad,a” " a/|bb, bV aa’)lgbt ) .
gN\‘( )"y > VEEE (aa,a " a’|bb, )9 (aa')"'g

o »p 1" ply 2 1 by 2




Putting everything together, we obtain

’ ’

0 a 1 1 a 2 1 aa 2
g a Yab * ’ =10y — 65]/1‘171.‘717 19AB( /‘b b/) g N=1opb’
| AN ANV ERCER R (o) )
0/ b 1/ 1/ b/ 2/ 1/ bb/ 2/
where we used the cocycle relation d(z)ﬁﬁB(a,d,&_laﬂb, b,b=) = 1. Using the more symbolic

notation introduced in (3.5), the *-product reads

a a’ 1) I a— aa’
‘9?>*|91T>:ﬁﬁ;]g(a,a’\b,b’) |gT> (3.12)

3.3 Groupoid algebra

Before concluding this section about boundary point-like excitations in (2+1)d, we are going to show
that the tube algebra derived above can be recast as a twisted groupoid algebra[55]. Although this might
seem a little bit artificial at the moment, this will turn out to be very useful in the subsequent sections.
Indeed, we will show that in the language of groupoid algebras, both the tube algebras in (24+1)d and in
(34+1)d can be unified allowing for a simultaneous study of the corresponding representation theories.

Let us first review some basic category theoretical definitions. More details can be found for
example in [57, 59]. Given a category C, the set of objects and the set of morphisms between objects
are denoted by Ob(C) and Hom(C), respectively. Given two objects X, Y € Ob(C), the set of morphisms
from X to Y is written Home(X,Y) 3 f: X — Y, such that X = s(f) and Y = t(f) are the source
and target objects of f, respectively. Composition rule of morphisms is defined according to

x vy Lo x I 7.

Furthermore, for every object X € Ob(C), the corresponding identity morphisms is denoted by idx €
Home (X, X). Finally, we notate the set of n composable morphims in C by C% = :={(f1,...,fn) €

comp

Hom(C)™ | t(f;) = s(fix1), Vi € 1,...,n—1}. Let us now specialize to groupoids:

DEFINITION 3.1 (Groupoids). A (finite) groupoid G is a category whose object and morphism sets
are finite and all morphisms are invertible, i.e. for each morphism g € Homg(X,Y'), there exists
a morphism g~ € Homg(Y, X) such that gg~! = idx and g~'g = idy.

Every finite group provides a finite one-object groupoid refers to as the delooping of the group:

ExaMPLE 3.1 (Delooping of a group). Let G be a finite group. The delooping of G is the one-
object groupoid G with Ob(G) = {e} and morphism set Homg (s, ) = G with the composition rule
being provided by the group multiplication in G.

Henceforth, we shall identify any group G and its delooping G, denoting both by G. Generalizing the
notion of group cohomology in an obvious way, we obtain the notion of groupoid cohomology:®

DEFINITION 3.2 (Groupoid cohomology). Let G be a finite groupoid and M a G-module. Given

the set of n composable morphisms Gz, in G, we define an n-cochain on G as a map wy :

5 Analogously to group cohomology, groupoid cohomology of a groupoid is implicitly defined as the simplicial coho-
mology of its classifying space.



Goomp — M. On the space C"(G, M) of n-cochains, the coboundary operator d™ : C"(G,M) —
C"1(G, M) is defined via

d™wn (g1, Gng1) (3.13)

_1\nt1 n )i
=01 >wn(927.~.,gn+1)wn(g17~.gn)( D Hwn(g1,~.~,9i717g¢gi+179¢+2,~~~79n+1)( D
i=1

The n-th cohomology group of groupoid cocycles is then defined as usual by

Ker d(™ zZ"(G,M)

A G M) = 1 3emD = Brg, M)

(3.14)

Throughout this manuscript, we shall always consider cohomology groups of the form H™(G,U(1)),
where U(1) is taken to be the G-module with the trivial groupoid action. Naturally, the cohomology of
a group coincides with the groupoid cohomology of its delooping. Furthermore, we shall often require,
without loss of generality, that cocycles are normalised:

DEFINITION 3.3 (Normalised cocycles). Given a groupoid n-cocycle [wy,] € H™(G,U(1)), we call
Wy, € [wn] a normalised representative if wn(g1,--.,8n) = 1, whenever any of the arguments is an
identity morphism. In particular there always exists a normalised representative of each n-cocycle
equivalence class [wy] € H™(G,U(1)).

Utilising the technology of groupoid cohomology, we can now introduce twisted groupoid algebras,
generalising the theory of twisted group algebras [55]:

DEFINITION 3.4 (Twisted groupoid algebra). Given a finite groupoid G and a normalised 2-cocycle
9 € Z%(G,U(1)), the twisted groupoid algebra C[G]” is the algebra defined over the vector space

Spanc{]g) | Vg € Hom(G)} (3.15)

with algebra product

|9) *|9") = de(g).5(0) V(9,9") l9g) - (3.16)
The requirement that ¥ is a 2-cocycle ensures that C[G]” is an associative algebra.

Putting everything together, let us now recast the (2+1)d tube algebra as a twisted groupoid algebra.
Let G 4 be the (finite) groupoid whose objects are given by group elements in G, and whose morphisms
read g%)a_lgb = g%, where (a,b) € A x B with the composition given by the multiplication in G:

g%a‘lgb%a'_la_lgbb’ = g%a’_la_lgbb’ ) (3.17)
Utilising this definition, we can conveniently redefine 942 as a normalised groupoid 2-cocycle in

H?(G ap,U(1)), in such a way that the tube algebra defined earlier is isomorphic to the groupoid
algebra (C[GAB]ﬁAB = (C[GAB]gw of Gap twisted by 9486

6Notice that the normalization conditions (3.10) do not state that the cocycle is equal to one whenever any of the
entry is one, but instead whenever any of the morphism in the corresponding groupoid is the identity. It is therefore
compatible with the definition given earlier.



SECTION 4
Tube algebra for gapped boundary excitations in (341)d

In this section, we apply the tube algebra approach to study excitations in the presence of gapped
boundaries in (8+1)d. Although the excitation content of the model is rich in (3+1)d, we focus on
a special configuration, which turns out to be related to that comsidered in the previous section via a
dimensional reduction argument.

4.1 Definition

The strategy we presented in sec. 3 applies identically in three dimensions. Given a pattern of two-
dimensional gapped boundaries, excitations can be classified by considering boundary conditions of
the manifold obtained by removing local neighbourhoods of these excitations. Given that the input
data for the bulk theory is a pair (G, ), where is 7 a normalized representative of a cohomology
class in H*(G,U(1)), we are interested in the situation where two two-dimensional gapped boundaries
characterized by the boundary conditions Ay = (A, \) and B, = (B, 1) meet at a one-dimensional
interface. The boundary conditions are such that A, B € G, d®X = 77|, and d®p = 7= 5. We
denote the Hamiltonian defined according to (2.7) for these boundary conditions as Hf;;f ;LB 2]

Given this situation, several types of excitations could be studied. For instance, we could inves-
tigate point-like boundary excitations at the one-dimensional interface. Instead, we consider a bulk
string-like excitation that terminates at two (possibly different) gapped boundaries. This situation
can be depicted as follows:

where the dark volume represents a local neighbourhood of the string-like excitation, and thus the
region whose energy density is higher than that of the ground state. Removing this local neighbour-
hood leaves an excitation boundary 9%°|., that has the topology of cylinder. Classifiying boundary
conditions on such cylinder corresponds to classifying the string-like excitations.

Let us consider the manifold 0%°|., x I. This manifold has the topology of a hollow cylinder,
which has two kinds of boundary components, namely a pair of physical boundary components and
a pair of excitation boundary components. Given the 3-ball endowed with two gapped boundaries,
the same manifold can be obtained by removing local neighbourhoods of the interface and of a string
terminating at the two gapped boundaries:

1R




By construction, this manifold can be glued to the original system along the excitation boundary
0%°|.. without affecting its topology. It follows from the discussion in sec. 3 that there is a tube algebra
associated with the gluing of two copies of this tube-like manifold, whose irreducible representations
classify this special type of string-like excitations.

4.2 Computation of the tube algebra

Let us derive the tube algebra for the special configuration described above. As before, we first need to
specify the ground state subspace on 0%°|., X I by choosing a discretisation. We choose to discretise
0%« % I as a triangulated cube with two opposite faces identified. The resulting triangulated
manifold is denoted by T[S x I] and the corresponding ground state subspace explicitly reads

G,A,B
N 4.2
VTr,)\,;,L v gea | g:a;lgbg ( )
Vai,a2€A
Vb1,bs€ B
— ay
= Span(c{’(g,ag,bg) - >}vgeG|g:a;19b2 , (4.3)
! Yai,as€A
Vb1, ba€B

where we make the identifications (0) = (0), (0') = (0), (1) = (1), (1') = (1), (00") = (00'), (01) = (01),
(0'1") = (0'T") and (11') = (11’). As before, some labellings are left implicit since they can be deduced
from the flatness constraints. Let us now compute the *-product for two such states adapting in the
obvious way the definition of the previous section. Firstly, colourings along the gluing interface are
identified via the map GLU, i.e.

:5/ ’

-1 5 ay
g,a, gby Yas,a,

6b’2,bgl

where we introduced the notation z¥ := y~!

xy. Secondly, we apply the Hamiltonian projector
]Pf}:[glx]]]uslxllfz[glxﬂ] in order to enforce the twisted gauge invariance at the physical boundary ver-

tices along the gluing interface. This operator can be expressed by evaluating the partition function



(2.15) on the relevant pinched cobordism. The result reads

Pestxnug, , 55t <] < (4.4)

1
IAHB\ Z

€AXB

Q;i,bg (a1,albr, ~)

AB ( a1 /|b b 1b/)

o

1 ay by
aj gbi,a, »bg

where we introduced the cocycle data

T by, by) Ta La e bt
ngq,§27b2(a1,a/1|b1,b/1) — bz(:u‘)( 1y 1) 2(71')(@1,(11,(11 a; goi 1)

Taz (71—) (ga bla bll)
T Nandh) Tur (M) (ar, @ "gbr, b)) “5)

in terms of the cocycle data T(A), T(x) and T(w) that are itself defined according to

a(x y17y2) a(y17y21‘ry1y2)
Ta(a)(y1,92) = 7 a(yr, xv1,y2) ’

T (7‘(’)( ) - 7T(y1733y1a292,y3) Tr(ylay27y3axyly2y3)
¢ b2, Us) ’/T(maylay27y3)¢(y13y27l’y1y27y3)

for any group elements x,y;,y2,y3 € H in a finite group H and group cochains a € C*(H,U(1))
7 € C*(H,U(1)). Defining

T 000) = T o ) “
GT (r - Tan (m)(y2, Y3, Ya) Ta () (Y1, Y2y, Ya) To () (Y1, Y2, Y3)
T v ) = To(m) (Y192, Y3, Ya) To (@) (Y1, Y2, Y3y4) ’ (1)

it follows from the cocycle conditions d¥7 =1, d®\ =7
dDT\) = T(7) Y14 and dPT(p) = T(7) !

Y4 and d®y = 7715 that d®)T(7) = 1,
|- Utilising the cocycle conditions

1n—1 / 1
al,al,a17a1

d®T,, (7)( aytgh b)) =

d(3)Ta2(7T)(a1,aflgb1, Lo =1
d(S)Taz(ﬂ')(al,al,a/l YaT gyt b))

AT, (1) (9, b1, 07, 07) = 1,

we finally obtain that o4? satisfies

AB /i NAB 11 v
L L, Q=1 by a1 B (a, ay by, by )Qg,az,bQ(a’17a’1al‘bl’blbl)
o 1 3oy
ang bg(abahal‘bh 1,b1) -

=1. (4.8)
Oty b, (aray, ay[brby, ) 027 (a1, a[br, b7)

d® A

Going back to the tube algebra, it remains to apply a triangulation changing isomorphism in order to
recover the initial triangulation, and thus a state in VG A B[ T[S x I]]. This is done by evaluating the



partition function for the pinched interval cobordism (012)* x S! x I endowed with the triangulation
defined as

012)T x S' x I= (01222)" U (01233)” U (01122)" U (00133~
U (011'2'2)” U (011'T'2)" u(01i1’?)” U (00ii'2)*
U (00122 U (00'1'T'2) " U (000’12 T U (000112 (4.9)

The corresponding operator implements the isomorphism

0 wa i a'a 3

az

1 N o o
> = AR B]E G (18,87 a1 bad b
2

(4.10)

where we used the cocycle relation d(2),92‘7527b2 (ar,a,a 'a|by,b,b=10,). Using the more symbolic
notation introduced in (4.2), we obtained

0, —1, 0. a10,, b /
a’ g’,ay "gb1 “aj,a bl bt aia

‘(gaa23b2) e >* |(g/>a/27b/2) ,1 >> = ! . 1 2 21 22 92527112((117@/1‘&717&7/1) |(gaa23b2) . /1 >> .
by by |A|2|B‘2 b1by

4.3 Relative groupoid algebra

Similarly to its (24+1)d analogue, the tube algebra found above can be recast as a twisted groupoid
algebra. Interestingly, due to the topology of the problem, we shall notice how in this language the
(341)d tube algebra can be recast in terms of the (2+1)d one, unifying both computations. This is
reminiscent of the notion of lifted models and lifted tube algebras developed in [33] in the context of
bulk excitations.

An important ingredient of our construction is the notion of loop groupoid:



DEFINITION 4.1 (Loop groupoid). Given a finite groupoid G, the loop groupoid AG is the groupoid
with object set {g € Endg(X) |V X € Ob(G)} and morphisms of the form b : g — h~1gh, for every
g € Endg(X) and b € Homg(X,Y). Composition in AG is inherited from the one in G.

Specialising to the case where the finite groupoid is taken to be the delooping of a finite group G, we
obtain that AG is the groupoid with object set Ob(AG) = G and morphism set Hom(AG) = {g %
a"'ga|Vg,a € G}. Composition is given by multiplication in G such that

’ ’
g atga2= (ad') gad = g 2% (ad’) " 'gad’,

for all g,a,a’ € G. Using this terminology, we can check that the cocycle data T(w), T(A\) and T(u)
defined in (4.5) actually correspond to loop groupoid cocycles in Z3(AG,U(1)), Z?(AA,U(1)) and
Z%(AB,U(1)), respectively. More generally, for any group G, we have a map T : Z*(G,U(1)) —
Z*7Y(AG,U(1)) referred to as the S'-transgression map. More details regarding this map can be
found in [33, 55, 60]. We further require the notion of relative groupoid:

DEFINITION 4.2 (Relative groupoid). Given a groupoid G, and a pair of subgroupoids A,B C G,
the relative groupoid Gup is the groupoid with object set Ob(Gag) := {g € Hom(G)|s(g) €
Ob(A), t(g) € Ob(B)} and morphism set provided by

g%ailgb = g%) , (4.11)
for all g € Ob(Gag), a € Hom(s(g), —) and b € Hompg(t(g), —). Composition is defined by
g%ailgb%alflaflgbb’ = g:—:jm/*la*lgbb’, (4.12)

Jor all composable pairs (a,d') € A2, and (b,b") € BZ, .

comp

It follows immediately from the definition above that the groupoid G4p, whose twisted groupoid
algebra is isomorphic to the (2+1)d tube algebra, actually corresponds to the relative groupoid defined
for the delooping of the groups. We are almost ready to define the (3+1)d tube algebra in this
language. The last item we require is a notion of normalised cocycle for relative groupoid. To this end
we introduce (G, a)-subgroupoids:

DEFINITION 4.3. Given a finite groupoid G and a normalised 3-cocycle o € Z3(G,U(1)), we call
a pair (A, ¢) a (G, a)-subgroupoid when A C G is a subgroupoid of G and ¢ € C*(A,U(1)) is a
2-cochain satisfying the condition d®¢(a,a’,a”) = a~(a,a’,a”)| 4 for all composable (a,a’,a") €
A3

comp *

For any pair of (G, «a)-subgroupoids (A, $) and (B,%), we construct a normalised 2-cocycle 948 €
Z2%(G ap,U(1)) for the relative groupoid G5 via:

(b, b") afa, a0 a" ' gbb’) (g, b, b')

ﬁAB(g%’ailgb%) = ¢(a,a’) a(a,a"1gb, b’) (4.13)
= 9;'%(a,a'[b,b') (4.14)

for all composable morphisms
9%7 ﬂ_lgb:—:> €048, (4.15)



where we are using the shorthand notation introduced in (4.11). It follows from a~'|4, = d®% and

a~ !z =d? ¢, as well as the cocycle conditions

d®a(a,a’,a”, a"1a' " Ta"lgbb'b") = 1 d®a(a,agb,b’,b") =1
d®a(a,d ;o' ta"lgbb’, b") =1 d®a(g,b,b',b") =1
that 948 satisfies the 2-cocycle relation

d@9AB(q o’ a"|b, b, b") = 028 (0,0 [6",0") 93 (a, a’a”|b, b'b")
g P s U . ﬁélg(aa/7a”|bb/7b”) 19@46(517 al|bab/)

=1. (4.16)

Unsurprisingly, this equation mimics (3.8). Furthermore, given that « is a normalized cocycle, we
have the normalisation conditions:

19346 (ids(a/), a’|ids(h/), b/) = ﬁ';B(CL, idt(a)|b, idt(h)) =1
038 (idg(ary, @[, idy(v)) = 95 (a, idy(q)lids(e), ') = 1,
which further imply
028 (@t alb™ b) = 97 (a,a 6,07 ") (4.17)

Let G be a finite group and 7 € Z*(G,U(1)). We consider two subgroups A,B C G and \ €
C3(A,U(1)), p € C3(B,U(1)) such that d®X = 77!, and d®pu = 71z, Tt follows from the
computations in sec. 4 that (A4, T(A\)) and (AB, T(p)) are (AG, T(r))-subgroupoids. We define 92448
by applying the formula (4.13) for « = T(7), ¢ = T()\) and ¥ = T(p). Putting everything together, we
obtain the twisted relative groupoid algebra (C[AGAAABWAAAB. We can show that this twisted relative
groupoid algebra is isomorphic to the (34+1)d tube algebra by identifying

(g7a27b2):—i>zgz—i>7 (418)

such that as % by = g € Ob(AGaanB), a2 ET a5’ = a; € Hompa(s(g), —) and by LN bgl =b, €

Homypp(t(g), —), as well as 92428 = p4B | which was defined in (4.5).

Thereafter, we make use of the shorthand notations A(Gap) = AGaaap and (C[A(GAB)]M(AB) =
C[A(GaB)]gy = C[AGAAA BWAAAB to refer to this relative groupoid algebra. We purposefully choose a
notation very similar to describe the (2+1)d and (3+1)d tube algebras in order to emphasize the fact
that the framework presented in this section unifies both. As a matter of fact, we can obtain the (241)d
algebra from the (34+1)d one by restricting the loop groupoid AG to morphisms whose source and target
objects are the identity in G' and by replacing the loop groupoid 3-cocycle o = T(7) € Z3(AG, U(1)),
where 7 € Z4(G,U(1)), by a group 3-cocycle @ € Z3(G,U(1)). In virtue of this last remark, we
may now focus on the algebra relevant to the (3+1)d scenario, namely C[A(Gap)]§,, and deduce the
results for the (2+1)d gapped boundary excitations as a limiting case.

We conclude this section with a remark regarding the notation. Since the morphisms a; €
Homp 4(s(g), —) and by € Hompp(t(g), —) in (4.18) are specified by a choice of group variables in
the finite groups A and B, respectively, we shall often loosely identify both in the following for nota-
tional convenience.



SECTION 5
Representation theory and elementary gapped boundary excitations

In this section, we derive the irreducible representations of the algebra (C[A(GAB)];‘W and elucidate
their physical interpretation as a classifier for the elementary string-like excitations in (3+1)d. As
mentioned earlier, due to the topology of the problem, and the common description as relative groupoid
algebras, this study can be straightforwardly applied to describe elementary boundary excitations in
(2+1)d.

5.1 Simple modules

Given a finite group G, two subgroups A, B C G and cocycle data m € Z4(G,U(1)), A € C3(A4,U(1)),
p € C3(B,U(1)) satisfying d¥7m = 1, dDX = 771,, d®pu = 7715, respectively, we define @ =
T(m) € Z3(AG,U(1)), ¢ = T(A) € C%(AA,U(1)) and ¢ = T(u) € C?(AB,U(1)). We explained above
that the simple modules of the groupoid algebra C[A(G a5)]3,, = (C[A(GAB)WA(AB) classify elementary
string-like excitations terminating at gapped boundaries. Let us now derive these simple modules.
We shall find that they are labelled by a pair (O, R), where O is an equivalence class of boundary
colourings with respect to the action of the tube algebra, and R is a projective group representation
that decomposes the symmetry action of the tube algebra on a given boundary colouring.

We begin by first decomposing the algebra C[A(G ap)]3,, into a direct sum of subalgebras. To this
end, we notice that the tube algebra defines an action on the set of boundary colourings yielding an
equivalence relation on Ob(A(G 4p)) given by

g~g , if3 g% € Hom(A(Gap)) such that g’ = t(g%)) .

The subsets of Ob(A(Gap)), i.e. boundary colourings of the tube, that are in the same equivalence
class form a partition of Ob(A(Gap)) into disjoint sets. Let us denote by Oap, Oz € Ob(A(G4aB))
two such equivalence classes. Considering two basis elements of the form

o200 lo' ) (5.1)
such that g € Oap and ¢ € Oy, it follows from the definition of the algebra that the product of
these two states necessarily vanishes. Consequently, each equivalence class of Ob(A(Gap)) defines a
subalgebra (C[A(GaB)]3,)oas C C[A(Gap)]3, whose defining vector space is

a
Spanc{ |9T>>}va>eHom(A<GAB>> ' (5:2)

s.t. g€Oap

Since orbits O4p form a partition of Ob(A(G 4p)), we have the following decomposition

CIAGaB)Sy = P (CIMGaB)Sy)0us - (5.3)
OapCG

Given an equivalence class O 4, we notate its elements by {0;};—1 .. |0, | and call 0, the representative
element of O,p. We further consider the set {p;, qi}i=1,... |0, C Hom(AA) x Hom(AB) defined by

a choice of morphism
0; p_7> 0] € HOHI(A(GAB)) , Vo; € OuB
9i



and the requirement (pi,q1) = (idg(o,),1d¢(o,)). The stabiliser group of O4p is then defined as
Zo,5 = {(a,b) € Hom(AA) x Hom(AB) | 01 = a 'o;b} . (5.4)

Remark that the orbit-stabiliser theorem implies |Zo, |- |Oap| = |A||B|. Finally, we construct the
twisted group algebra C[Zo ,,] as the algebra with defining vector space

Spanc{’ % >}V(a,b)€ZoAB (5.5)

and product rule

[ ) x| =) = 00 (b, b)) 2

> . (5.6)
Given that « is normalized, it follows from definition (4.13) that ?901 B) is a representative normalised
group 2-cocycle in H?(Zo ,,,, U(1)). For each simple unitary ﬁé\l(AB)—pro jective representation (D®, Vg)
of Zo,, we can define a simple representation of the relative groupoid algebra C[A(Gap)]3, via a
homomorphism DC45F . (C[A(GAB)]gw — End(Vo , 5,r) where

bb’

VOAB7R = Spanc{‘oiv'Um>}Vi:1,‘.»,\OAB| : (57)
Vm=1,...,dim(Vg)
For i,j € {1,...,|0aB|}, m,n € {1,...,dim(Vg)} the matrix elements are defined to be
ﬂA(AB)( Cl|q 1 b) v lap,
DOAB . (| —>>) dg,0, 5u*19b 0 . DE ( e >) (5.8)
im][jn i %5 A(AB _ mn 1
il Uo ( )(pz apj, p _j1|qi 1bqjaqj 1) a; baj
such that
|OAB‘ dlm(VR)
pOas,
|0i, 0m) > DOABF( (la—=)) = > > DA (la—))loj,vn) - (5.9)
i,j=1 m,n=1

Henceforth, we make use of the shorthand notation pap = (Oap, R), I = [im], J = [jn] and d,,, =

do 5.k =|0ap| - dim(Vg). It follows immediately from the definition and the linearity of the 19A(AB)

projective representations of Zp,, that these matrices define an algebra homomorphism, i.e.

S0 (|82 DR (18 22)) = Sya a0 Vg P (10,60 DE (j35)) . (5.0)
K
Furthermore, the matrix elements satisfy the conjugation relation
1 B -1
D%B(’g—)» 9AAB) (o a*l|b,b*l)D§?B(|a lgb:T)» ; (5.11)

which follows from the unitarity of the projective representation D of the stabilizer subgroup Zo ,,,
inducing a unitary representation of C[A(G ap)]3,. This endows C[A(Gap)]3, with the structure of
a *-algebra which in turn implies its semi-simplicity due to finiteness. Finally, the representations
matrices satisfy the following orthogonality and completeness conditions

1 PPAB (|4 O\ Opan.Pyp
\A|| | Z Diy*° (|g—>>)Df,“ff( 9H>) = pgip Or.r 070 (5.12)
G—>EA(GAB) PAB
|A\|B| DY doan D1 (I8 ) D057 (| 5 )) = g Saar oo - (5.13)

pas I,J

A proof of the orthogonality relation can be found in app. A.1, the completeness following from similar
arguments.



5.2 Comultiplication map and concatenation of string-like excitations

The simple modules of the relative groupoid algebra C[A(G aB)]3,, classify string-like bulk excitations
terminating at gapped boundaries labelled by Ay and B,,, such that ¢ = T(A) and ¥ = T(u). Let us
now delve deeper into the exploration of the properties of this algebra, in relation to the concatenation
of the corresponding excitations. We consider the following system of three gapped boundaries and
string-like excitations terminating at these gapped boundaries:

(5.14)

The two string-like excitations depicted above are characterized by the relative groupoid algebras
C[A(GaB)]gy and C[A(GBo)ly,. respectively, where ¢ = T(v). We will show that these string-
like excitations can be concatenated, and the result of this concatenation is a string-like excitation
terminating at the gapped boundaries labelled by A and C,.” More specifically, we will demonstrate
that a pair of modules for the relative groupoid algebras C[A(Gap)]3, and C[A(Gpc)l}, can be
composed to form a module for the relative groupoid algebra C[A(Gac)],,-

Let us consider a pair of elementary string-like excitations with internal Hilbert spaces V,,,
and V., respectively. In the absence of external constraints, the corresponding join Hilbert space
is provided by the tensor product V,,, ® V,,.. It remains to understand how the tube algebra
acts on this join Hilbert space. We introduce an algebra homomorphism Ap : C[A(Gac)lg, —
CA(GaB)]gy ® C[A(G )]y, defined by

A(ABC b
As(le=)) = > el e) o) e le-o) (5.15)
g1€Ob(A(GaB))
g2€O0b(A(GBc))
g192=9g
beHomap (t(g1),s(g2))
where
-1 -1
A(ABC a(gr, g2,¢) ala,a”g1b, b gac
P (g1, 02) = (81,82,) o ). (5.16)

a(gla bv bilQQC)

As mentioned earlier, when no confusion is possible, we shall loosely identify b € Homag(t(g1),s(g2))
and the group variable b € B it evaluates to in order to make the notation lighter. By analogy with
the theory of Hopf algebras, we refer in the following to Ap as the B-comultiplication map of the
twisted groupoid algebra C[A(G ac)]3,,. It follows from the cocycle conditions

d¥a(a, o 0 ta " g bb’, 6" T gacd) = 1 d®a(a,a tg1b, b gec, ) =
d®a(a,a b, b, 6" gaed’) = 1 d®a(gy, b, b gac, ¢)
d®a(gy, b, 6,6 0 gaed’) = 1

1
1
d(g)a(gh g2,¢, cl) =1

"Because of the geometry of the operation under consideration, we refrain from referring to this process as the
‘fusion’ of the corresponding string-like excitations. That being said, in (2+1)d, the same map defines the usual fusion
of point-like excitations.



that (;\’%ACBC) satisfies the relation

A(A
ﬁgl(AB)(a, a/|b, b/) ﬂggBC)(b,b/‘c, Cl) _ <u§/7£f2c/(gl7g2) (5 17)
A(AC ~ A(ABC A(ABC :
Iatas ) (a,ole,¢) Ca,ﬁ,,c Y(g1.92) 02 (a1g,b,61g,0)
ensuring that the map Ap is an algebra homomorphism, i.e.
Ap(ls—)) o An(le' =) = An(la—) o)) - (5.18)

Putting everything together, given the relative groupoid algebras C[A(G )], C[A(Gpc)lg, and a
pair of representations (D?45,V,, ) and (D?5°,V,,.), the comultiplication Ap allows us to define
the tensor product representation ((D°4% @ DP5¢) o Ap,V,,, ® V,,.), where

(DP42 @ DPEC) o Ap : CIA(Gap)|Sy ® CIA(GEE)|S, — End(V,,, ® V,pse) (5.19)
such that
a ]- a

(@D ) (Mplla-p)) = D Gabe (018D (o)) D7 (g2 ).

g1€0b(A(GaB))
g2 Eob(A(GBc))

9192=9
bEB
where we loosely identified b € Homap(t(g1),s(g2)) and the corresponding group variable for nota-
tional convenience. In the following, it will be often useful to write the so-called truncated tensor

product ®p of representation matrices defined as
DPAB ®B DPBC = (DPAB ®’DPBC) o AB . (5.20)

Using the semisimplicity of relative groupoid algebras, the tensor product representations defined above
are generically not simple and as such admit a decomposition into direct sum of simple representations,
i.e.
DPav @ DPEC = (P NPae | Drac (5.21)
PAC

where the number Np4¢ € Z{§ is referred to as the multiplicity of the simple C[A(Gac)lg, rep-
resentation (Dr4°,V,, ) appearing in the tensor product of the representations (D?45,V,,.) and
(Drse,V, ). Henceforth, we assume multiplicity-freeness of the multifusion category of representa-
tions, i.e. NJ4c € {0,1} in order to simplify the notations. Note however that it is straightforward
to lift this assumption. Using the orthogonality relations of the irreducible representations, we find a
useful expression to compute explicitly this number, namely

1

NDAC poe = it D tr[(D’”AB ®B DPBC)(|9L>>)W} : (5.22)
: |A\|c|g%>€A(GAC) : c

Note finally that given the algebras C[A(G a4)]34 and C[A(G p)]3,,, the regular modules® C[A(G 44)]%,
C[A(GBB)]},, satisfy the unit module properties

CIA(Gaa)lgs ®a pap = pap = pap @B CIA(GBB)]jy (5.23)

8The regular module of an algebra is defined as the algebra viewed as a module over itself.



as C[A(Gap)]3, modules.

As explained above, thanks to our formulation in terms of relative groupoid algebras, we can easily
extract all the relevant structures for the (2+1)d algebra as a limiting case. This is done in the next
section, where we define a canonical basis of excited states. In this scenario, the comultiplication map
yields the fusion of the corresponding point-like excitations.

5.3 Clebsch-Gordan series

In preparation for the later discussion, let us study further the properties of the comultiplication
map introduced earlier. Since the comultiplication map Ap is an algebra homomorphism, there exist
intertwining unitary maps

UrAaBPBC . @VPAC = Vpun @8 Vope (5.24)

pAC

where the sum is over labels p ¢ such that DPAC € DPAB @ DPBC | that satisfy the defining relation

PAB pBC a _ Z PAB.PBC pPAC a PAB.PBC
(DIABJAB @B DIBCJBC)(’g ¢ >) - M[IABIBC][PACIAC]DIACJAC(’g ¢ >)U[JABJBC][PACJA0]'
PAC
Isc,Jac

Henceforth, we will denote the matrix elements of this unitary map as

|:pABPBC'
)

IagIBc

PAC ,:upABach
Tac | - [TapIpcllpaclac]

and refer to them as Clebsch-Gordan coefficients. Using the orthogonality of the representation ma-
trices, we obtain the equivalent defining relation

dﬂAc PA PBC a PAC a PABPBC |PAC | |PABPBC |PAC
‘A||C| N Z (DIAgJAB KB DIgcJBC)(|gT)>)DIACJAC(|gT>>) = [IAB Isc [AC} |:JA§J§C JACj|'
Q?EA(GAC)
The unitarity of UP4B-PBS imposes the following orthogonality and completeness relations:
paBpPBC|p Pac| _
S [rampmeliac] [paztze 0] = dracrnepac e (5.25)
Iag,IBC
S [rmtmeliac] [rmtee pac] = taminpOtac e - (5.26)
pac,lac
Furthermore, the Clebsch-Gordan coefficients satisfy the following crucial property
14 P a P a PABPBC |PAC | _ |PABPBC |PAC
Z Z(DIngAB ®n DI;SJBC)GQT)»DIXEJAC(‘gT}>) |:JABJBC JAC:| - |:IAB Ipc IAC‘:|
g€Hom(s(a),s(c)) {J}
(5.27)

referred to as the gauge invariance of the coefficients. This property can be checked as follows: Firstly,
utilise the unitarity of the intertwining maps to rewrite the defining equation as the intertwining

property

§ : PAB PBC a PABPBC |PAC | __ PABPBC
(DIABJAB @p DIBCJBC)(|g ¢ >) |:JABJBC JAC:| - 2 : |:IAB Igc

Jas,JBC Iac

| pre e (la5)) -



Secondly, multiply this equation on both side by D7A¢ (|g %) >) and use the identity

KacJac

Z Z §:gJAc g%»D%AA%JAc(‘g%»

g€Hom(s(a),s(c))Jac

-1

= Z Z A(AC ,D?,:‘gJAc(|g%>>)ID§22KAc(|a_lgca7—1>>)
g€Hom(s(a), s(c))JAc Cl a- l|c o l) ¢

= Z D?jcc‘KAcﬂgﬁ» = 5IA07KAC )
g€Hom(s(a),s(c))

where we used (5.11). Note that we use the notation 14 to refer to the morphism in Hom(s(a), —)
characterized by the group variable 14 € A, and similarly for 1¢. Summing over Jac =1,...,d,,.
finally yields the gauge invariance. This invariance of the Clebsch-Gordan coeflicients further implies

S DL (-2 DA, (a2 0)) 2252

PAC]DPAC (’933—,’>>) (5.28)

Jac | T Jaclac

{J}
> Ui (.36, 6) 00" (01, Ble,©) A(ABC)(u‘lglb,b’—lggc)é
,a1gybb/—1
|B| beB 1993,(“)(@1 a—ta’|c,c1c’) LENC gac
a b'b oy
3 DYk, (19 ) DR e (2 ) [R5 R | PG e (187 e S22 )
{K}

which is true for all composable morphisms a,a in AA and ¢,¢ in AC. A proof of this identity can be
found in app. A.2. It is straightforward to check that this last relation induces another one, namely

s (3 0)) D5 (18220 )) [0 52 a2 | DE S e (s —2) (5.29)
{7}
= ;‘ Ig P (@, a alb, b70) g P (b, 506, 1 0) (NP (g1, g2) W M (ol B)
beB o
a-1 ~ - b—1lp’
Xzéa"lgﬂ’,gmz D?&ZIABO“ glbﬁ» D?(BBCCIBC(“’?ngC%)»
{K}
x |:/IJ<AABB/IJ(BBCC ?Acc}ijgKAcqgg o “ >)

5.4 Associativity and 6j-symbols

Given two relative groupoid algebras C[A(G ap)|3,, C[A(Gpo)]j, and a pair of representations defined
by (DF45.V,, ), (DPB¢,V,, ), we constructed earlier the tensor product representation ((DP42 ®
DPc)o A,V @ Vype) of C[A(GAC)]%D- Let us now consider the quasi-invertible algebra element
Papep € (C[ (GAB)]?Z;UJ X C[A(GBC)]?L(P X (C[A(GCD)]gx defined as

_ 1 1 1

®apcp = Z «a 1(91,92,93)|91 12 >® |92 Jlj >® |93*H%> ) (5.30)
91€0b(A(GaB))
92€0b(A(GBC))
93€0b(A(Gep))

such that g1, g2 and gs are composable morphisms in AG. The cocycle conditions

d(g)a(aa ailglba 57192% cilg?)b) =1 d(g)a(gla g2, ¢, cilgSD) =1
d(g)a(gla ba 5719257 cilg?)a) =1 d(g)a(glag%g&b) =1



imply the identity

A(BCD) A(ABD)

b,c,0 (92793) Ca,b,a (91’9293) _ 0[(91792793) (5 31)
AT (4 0 3) Cﬁﬁfc) (g1,90) @(a~lgib,b~'gac, cm'gsd)

which in turn ensures that the comultiplication is quasi-coassociative, i.e

(Ap® id)Ac(‘g%ﬁ) =®pcp * [([d® AC)AB(‘Q%»] *P®apep s ¥ ’9%)> € ClA(GaB)lgy -

(5.32)
This signifies that the truncated tensor product of representations (DP45 ®p DPBC) @¢ DPCP and
Dras @p (DPBC Q¢ DPeP) defined as

(DPAB @ DPEC) @ DPEP = (DPAE @ DPEC @ DPCP) o (Ap ®id)Ac (5.33)
‘DPAB B (’DPBC QRc DPCD) = (’DPAB ® DPBC ® DPCD) o (id ® AC)AB (5.34)

must be isomorphic as C[A(Gap)]3,-modules. More specifically, it follows immediately from the
quasi-coassociativity condition that the maps

HPABPBC:PCD . — (DPAB ® ‘DPAB ® DPAB)((I)ABCD) c End(VPAB ® Vch ® VPCD) (5.35)
define intertwiners between the tensor product of representations above such that
(I)PAB,PBC,PCD[DPAB QB (DPBC Rc DPCD)] — [(DPAB QB ’DPBC’) Rc ’DPCD]@PABJ)BC:PC’D . (5.36)

Let us consider two vector spaces V,,, and V,_,. These are spanned by vectors |paplap) and
lppcIBe), respectively, such that the corresponding groupoid algebras act on these basis vectors from
the right. We define the truncated tensor product of two such vectors as

lpaslap) @5 lppclpe) == (lpapla) @ lppclpe)) > Ap(lac) , (5.37)

which span the vector space V,,, ®p V,5c C V.5 ® V,,. More specifically. we have

lpaBlaB) @B lpBcipC) = Z lpaB ®B pBC; pac, Lac) {fﬁf;?ﬁg 5’;;‘2] ; (5.38)
e
where we define
|paB ®8 pBC,paclac) == > [?jﬁfﬁjg ’};‘2] (lpaBlas) @ |psclpe)) - (5.39)

Iag,IBC

Noting that
paB ®5 paC, Paclac) (D" @5 D) (lg—+)) = lpas @5 pBC, paclac)D* (la—5+)) , (5.40)

we realize that Spanc{|pap @B pBc, paclac)vise = Voo as (C[A(GAC)]&P representations through
the map |pap ®B pBC, paclac) — |paclac). Similarly, we can define the following truncated tensor
product of vectors

(IpaBlas) @B |lpsclpe)) ®c lpeplep)
= (lpaplaB) ® lppclpe) ® |peplep)) > [(Ap ®@id)Ac](Lap)

lpaslas) @ (lpBclBe) ®c |peplep))
= (IpaBlaB) ® lppclse) ® lpeplop)) v [(id ® Ac)Ag](1ap) ,



which define basis vectors in (V,,, ®5 V,pe) ®c Voo and V,,, , @5 (Vope @c Vppe ), respectively. We
then find that ® 4gpcp induces the following isomorphism:

<VPAB ®B ‘/;JBC) ®c VPBC = VPAB ®B (VPBC ®c VPBC) . (5'41)

Vectors (|pABIAB> B |pBCIBC>) ®c |peplep) are typically not linearly independent, however a basis
for the vector space (V,,, ®B Vyp0) ®c Vp e is provided by the vectors

PABPBC
§ : IagIBc
{1}

PAD

pAO:| |:PACPCD KAD:| lpaslaB) ® |lpeclse) ® |peplep) - (5.42)

Iac | |lacIcp

We obtain that ® 4gcp acts on such basis vectors as

> > {nnans menelne] (et [loantan) @ lppelse) @ loenlop) » ®ancp
pac {1}
=3 [nammelsan | smeten ren Ipantan) @ lpsclsc) @ loeplon) (5.43)
{1}

such that the so-called 6j-symbols are defined as

pPAD | |pABPBD
Iac | |IaBIBD

Iac | |1aclIcp Iap | |IBcIcD

PACj| [pAc pcD

pAD:| |:pBCpCD

PABPBCPCD (.__ 1 04(0' 0: 0 ) PABPBC PBD
PADPACPED [T g z: tABy tBC Ve /) | Ia IBC Igp |’

PAD {1}

where the notation is the one of definition (5.8) of the representation matrices. This establishes the
isomorphism (5.41). A detailed proof of the defining relation (5.43) can be found in app. A.3.
Furthermore, given the vector space ((V,,5 ®B Vppe) @c Voen) @D Vppp, we find that

[(id®id ® Ap ) (®PacE)] * [(Ap ®id ®id)(PacpE)]
and

(1ap ® Pepr) * [(id ® Ac ®1d)(PappE)] * (Papcp ® 1pg) (5.44)

induce the same isomorphism. This is referred to as the so-called pentagon identity and ensures the
self-consistency of the quasi-coassociativity. A proof of the pentagon identity can be found in app. A.4.

In a similar vein, it can be shown that the regular C[A(Gp B)]fgw—module satisfies the so-called
triangle identity such that the following diagram commutes

PaBBC

(paB ®5 CIA(GEB)I},) ®B pBC pas ®5 (C[AMGBEB)|g, ®©B pBC)

IR
IR

pAB @B pBC
(5.45)

as C[A(GAB)}g¢-modules for all (C[A(GAB)Ew-modules pap and (C[A(GBC)]f[w—modules PBC-



5.5 Canonical basis for (2+1)d boundary excited states

So far we have been dealing with the groupoid algebra C[A(G a5)]3,,, which is isomorphic to the (3+1)d
tube algebra derived in (4). We have defined its simple modules, which classify elementary string-like
excitations terminating at gapped boundaries, and introduced a comultiplication map that defines a
notion of concatenation for these string-like excitations. Furthermore, we constructed the Clebsch-
Gordan series and 6j-symbols associated with this comultiplication map. As mentioned earlier, we
have been using the language of relative groupoid algebras, since it unifies both the tube algebras
in (241)d and in (34+1)d. More specifically, we explained earlier how to obtain the (241)d algebra
from the (3+1)d one by restricting the object in A(Gap) to group variables in G and by replacing
the loop groupoid 3-cocycle a = T(w) € Z3(AG,U(1)), where 7 € Z4(G,U(1)), by a group 3-cocycle
a € Z3(G,U(1)). We shall now use this mechanism to adapt all the notions derived so far to the
study of elementary point-like excitations at the interface between two gapped boundaries in (2+1)d.
Thanks to our formulation, the notations remain almost identical. Concretely, it simply amounts
to replacing g € Ob(A(Gag)) by g € G, and (a,b) € AA x AB by (a,b) € A x B, and to picking
a in H3(G,U(1)), the other cocycle data descending from it. Note that replacing (a,b) by (a,b) is
merely formal as we have often identified the morphisms a and b with the group variables they are
characterized by for notational convenience.

Using the definition of the representation matrices together with the Clebsch-Gordan series, we
shall now illustrate the mathematical structures introduced earlier by defining a complete and or-
thonormal basis of excited states for any pattern of elementary point-like excitations in (24+1)d. The
same basis can also be used to define ground state subspaces in the absence of excitations. Naturally,
the same construction could be carried out in (3+1)d since we have derived all the relevant notions
in this case, which encompasses the (241)d one. However, we choose to focus in (241)d where it is
easier to visualise the construction.

First, let us derive the canonical basis for a pair of dual elementary point-like excitations living
at the interfaces of two gapped boundaries labelled by the data (A, ¢) and (B, ). This corresponds
to the situation depicted in (3.3) so that we are merely looking for a canonical basis for the vector
space C[G 4 B]$w~ For each simple module labelled by pap, this basis is defined by the set of elements
lpaplJ) € (C[GAB]gd), with I,J € {1,...,d,,,}, such that

pasts) = ()’ > P 5" (lg5 ) lo=5) - (5.46)

(a, b)€A><B

This transformation defines an isomorphism such that the inverse is provided by the formula
a 1
Stk (IAHB|> Z pan ZD"AB l9=)) lpasl) . (5.47)
P

The latter formula expresses the fact that a given state describing such point-like boundary excitations
can be written as a sum of states describing elementary excitations. It follows immediately from the
orthonormality (5.12) of the representation matrices that this basis is orthonormal:

pandy ! a \Npas(|. @ _\\ a’ a
(papl' T |paplt) = % Y. Drplle iR (lg-)) (a2 la—)
(a,b),(%?,bg)céAxB
= 6P,AB7PAB 61’,1 6J’,J (548)



and complete:

S pasldlpaslty= Y &”ﬁ; > D (le-)Dis (l9-))

pas,l,J paB,Il,J geqG
(a,b)eAXB
= > 1=|G|-|A]-|B| = [C[Gasl3y] - (5.49)
geG
(a,b)eAXB

Crucially, the canonical basis diagonalizes the x-product (see proof in app. B.1):

panlT) x|danl' 7'y = |AJ} B3 222208 000 gy (5.50)
2

PAB

As a useful corollary, we have that
9=+ ) *lpaplJ) = ZD?;‘,B lg=-))lpI'J) (5.51)

paslJ)* |9 =) zngf‘f(‘g%»\/ﬂf). (5.52)
I/

Let Zcig )z, be the centre of ClG aglg, consisting of all elements [p) € C[G a3, that satisfy

(W) *|g—>) =|g9-) <), ¥]g—~) € ClGapl3, (5.53)

Let us consider the states

Z lpapll) . (5.54)

|PAB
p

It follows immediately from corollaries (5.51) and (5.52) that these states are central, i.e.

a

|paB) * |g%>> = |QT>> xlpap), V¥ |g%>> € ClGaglgy » (5.55)
from which we can easily deduce that |pap) form a complete and orthonormal basis for the centre:

ZetGas)y, = Spanc{lpan)}y,, - (5.56)

We now would like to show that this centre describes the ground state subspace of our model for the
annulus O depicted below:

(5.57)

A triangulation Oa for O can be inferred from ¥[I] defined in (3.5) by imposing the identifications
(0) = (1), (0') = (1) and (00") = (11). It further follows that we can identify the space of coloured
graph-states on QO as the subspace of coloured graph-states on T[] that satisfy ¢ = a~1gb. The ground
state subspace can be finally obtained by enforcing the twisted gauge invariance at the two vertices



via the Hamiltonian projector Pp,. This operator can be easily deduced from the one appearing in
the definition of the (2+1)d open tube algebra:

1 5 A8 (a, alb, b) . am1-
P, = — 5 o g9 ’ ~’~ _ ~—1 b a “aa a ) 558
(0N |AHB| o g,a—1gb ﬂAB(d,&_laﬂb,b—lbb)‘ 5105 <g b ‘ ( )
9€G  (a,b)eAxB 9
(a,b)eAXB

Crucially, this operator can be identically expressed in terms of algebra elements in (C[GAB]gw as
follows (cf. proof in app. B.2)

1 ~ a \—1 a ~ a a
P@A:W Z Z (’g?> *’g?>*‘g?>)<g? R (5.59)
geG geG
(a,b)€EAXB (a,b)c AxB
where 1 )
~ a -1 ~—1~7 G~
= — b . 5.60
) = a0 o0
Note furthermore that we can express the identity algebra element in C[Gaplg, as
Lag)= Y |32 x|g-2) (5.61)
GEG b b
(a,b)eAxB
such that
[Las) *|g-53) = [9-5) = |9} x[Las) . Y]g-+) € ClGaslSy - (5.62)

It implies that the image of the Hamiltonian projector Pg, is spanned by states \p) € C[Gap]3,
satisfying

(W) *lg—) =lg-2) <), V]g—>) € ClGanlGy . (5.63)
which is precisely the definition of the centre of \p) € C[Gap]j,,. We deduce that the ground state

subspace on Q4 is spanned by the states [pap):

G A,
VP 0a] = ImPo, = ZetGasly, = Spanc{lpas)}y,,, - (5.64)

As an immediate consequence of this statement is the fact that the ground state degeneracy of the
annulus equals the number of elementary boundary point-like excitations at the interface of two gapped
boundaries. This mimics the well-know result that the number of bulk point-like excitations equals
the ground state degeneracy on the torus.

Let us pursue our construction by defining the canonical basis associated with the following configu-

ration:
A

s T O o

B, T, N

i.e. the two-disk D? from which local neighbourhoods at the interface of the three gapped boundaries
have been removed. This manifold is referred to as the thrice-punctured two-disk and is denoted



by Y. We choose a triangulation Y for this manifold and consider the following space of coloured
graph-states:

vV g1,92€G
Va,a' €A
vb,b'eB
Ye,c'eC

VgeCol(Ya,G,A,B,C)

a'g1gac’ ™t
. / ! /
=l|q1,a,b,92,0,¢c,a’, )y, .

We are interested in the ground state subspace Vf’(f;ﬁf [Y ] on this manifold. In order to obtain this

Hilbert space, we need to apply the Hamiltonian projector Py, simultaneously at all three physical
boundary vertices. This operator is obtained by evaluating the partition function (2.15) on the relative
pinched interval cobordism

N

A

[~}

e (5.6)

and its action explicitly reads

PYA (|gl7a7b7927b/7c7g37a/76/>YA) (567)
> Worgpe1 (0], )
IAHBIIC| Sh VAP (@ atalb,bm1b) 9BC (5,71 E, 6 1e) (PO (g1, g2)
beB
ceC N N N N
X |d_1glb7af_1a7b_1bu b_ngé, b_lb/7é_1c7 a/d70/é>YA . (568)

Let us now define the following basis states

lpaslag,peclpe, paclac)ya

= > Y Dr (9 ) D5 (e =) [Fan e e | PR (J0 91920~ )
{9€G}a,a’eA{J}

bbb €B / ot
076/60 X |gl;a7bag2abacaaaC>YA

We can show using the invariance property (5.29) of the Clebsch-Gordan coefficients that these basis
states diagonalise the action of the Hamiltonian projector, i.e. for every {p;I;}z=aB BC,AC We have

Py, (Ipaslas, peclse, paclac)y,) = lpaslas, peclse, paclac)y. - (5.69)

A proof of this crucial relation can be found in app. B.3. We refer to these states as the canonical basis
states for Ya. It follows from the orthogonality and the completeness of the representation matrices
as well as the Clebsch-Gordan series, that this basis is orthogonal and complete.



It is now possible to use the canonical basis states we have derived so far in order to define
excited states associated with more complicated boundary patterns. For instance, the case of D? with
four different gapped boundaries can be treated easily by noticing that the manifold resulting from
removing local neighbourhoods at every interface can be realised as the gluing of two copies of Y.
Similarly, canonical basis states for this manifold are obtained via the x-product by contracting two
states of YA along one magnetic index. Interestingly, two different bases can be defined following this
scheme, but they are equivalent. This is ensured by the quasi-coassociativity, and more specifically
the isomorphism (5.41). As a matter of fact, the two bases can be explicitly related to each other via
the 6j-symbols as defined in (5.43), which was the motivation for introducing them. More generally,
any number of gapped boundaries can be treated in a similar fashion by gluing several copies YA
according to a fusion binary tree. Thanks to the quasi-coassociativity, the choice of tree is not relevant
as the corresponding bases are all equivalent.

SECTION 6
Gapped boundaries and higher algebras

In this section, we describe a higher categorical construction capturing the salient features of the
gapped boundary excitations considered in the previous sections. We begin by reviewing the definitions
of monoidal categories and bicategories before introducing the theory of module categories. For more
details on such constructions, see for example [30, 57, 60, 61]. Building upon such notions, we then
demonstrate the relation between gapped boundary excitations and bicategories of module categories.
In particular we review that the bicategory MOD(Vecg:) provides a convenient description of gapped
boundary excitations in (2+1)d Dijkgraaf-Witten theory [10], and show that MOD(VecXg)) describes

string-like bulk excitations terminating at the boundary in (3+1)d Dijkgraaf- Witten theory.

6.1 Higher category theory

We begin this section by first introducing higher category theory. In order to motivate the ethos of
higher category theory, it is illuminating to first consider the notion of categorification. Generally,
categorification refers to a collection of techniques in which statements about sets are translated into
statements about categories. Let us consider a simple example. Given a pair of sets X,Y and a
triple of functions f,g,h : X — Y, it is natural to pose relations between such functions in terms of
equations. For instance, we may have f = g and g = h as functions from X to Y, from which we can
infer the relation f = h by transitivity. In this setting, categorification is the process whereby each set
X is replaced by a category Cx, and each function f : X — Y is sent to a functor Fy : Cx — Cy. Using
the additional structure proper to categories, we have a choice about the way we lift the equations
f =g and g = h. We could either require the corresponding functors to be equal, i.e. Fy = F,; and
F, = F}, implying Fy = F},, or alternatively, we could instead require only the existence of natural
isomorphisms, i.e. 1y : Fy = Fy and ngp : Fy = Fy,. In the latter case, we use equations on the
natural transformations in order to prescribe a natural transformation ns, = npg 0 ngn © Fy — F)
replacing transitivity.

Building upon the idea of categorification, let us now introduce bicategories, which will form the
model of higher category theory utilised in the following discussion. Given a (small) category C, recall
that we denote by Home (X, Y) the set of (1-)morphisms (hom-set) between the objects X, Y € Ob(C).
Roughly speaking, a bicategory is obtained by applying the categorification mechanism spelt out above
to such sets of morphisms. More specifically, we replace Home (X, Y) with a category that we denote
by Hom¢(X,Y). The composition function o : Home(X,Y) x Home(Y, X) — Home(X, Z) is then



replaced with a composition bifunctor ® : Hom¢(X,Y) x Home(Y,Z) — Home (X, Z). Moreover,
equations between morphisms are replaced with natural transformations between functors together
with equations defined for such natural transformations. With this idea in mind, we now define our
notion of bicategory:

DEFINITION 6.1 (Bicategory). A bicategory Bi consists of:
« A set of objects Ob(Bi).

« For each pair of objects X, Y € Ob(Bi), a category Homp;(X,Y'), whose objects and morphisms
are referred to as 1- and 2-morphisms, respectively. Given a I-morphism f € Hompg;(X,Y),
X =:8(f) andY =:t(f) are referred to as the ‘source’ and the ‘target’ objects of f, respectively.
The composition of 2-morphisms in Hompg;(X,Y") is designated as the ‘vertical’ composition.

« For each triple of objects X,Y, Z € Ob(Bi), a binary functor ® : Hompg;(X,Y) x Homg,(Y, Z) —
Homp; (X, Z) designated as the ‘horizontal’ composition.

« For each object X € Ob(Bi), a 1-morphism 1x € Ob(Hompg;(X, X)), and for each morphism
[+ X =Y, apair of natural isomorphism £; : 1x @ f — f and ry : f @ 1y — f called the
‘left” and ‘right’ unitors, respectively.

« For each triple of composable 1-morphisms f, g, h, a natural isomorphism aygp 2 (fQg)Qh —
f® (g®@h) called the 1-associator.

This data is subject to coherence relations encoded in the commutativity of the diagrams

(feg)@h)k

‘/&k K
ik

(fegeh) (fegehek)

af,g@’lJCJ Jo‘f,g,h@k

fe(g@h)©k) folge(hek)

idf®ag n,k
and

X Ly(s)9

(fely ey f® (L ®9)
(6.1)
’l"f®idg idf®ég
feg

for all composable 1-morphisms f,g,h,k, referred to as the pentagon and the triangle relations,
respectively.

As in conventional category theory, it is customary to depict relations in a bicategory using diagram-
matic calculus. Unlike the directed graph structure utilised in category theory, the diagrammatic
presentation of bicategories is given in terms of so-called pasting diagrams of the form



where X, Y € Ob(Bi) are objects, f, g € Ob(Homp,(X,Y")) are 1-morphisms and F' € Hompomy, (x,v) (f; 9)
is a 2-morphism. In this notation, horizontal and vertical compositions are depicted as

f £ fof f f

/\
o Z = X ﬂF@F’Z and X—— Y = X HFG Y |,
YT N v YA \\i}a/ VA

/

9 g’ 9®g Iz 1
respectively. Explicit examples of bicategories will be provided in sec. 6.5 and 6.6

6.2 Higher groupoid algebra Vecg

We shall now apply the idea of categorification to groupoid algebras, yielding a notion of ‘higher
groupoid algebra’. First, let us review the relation between monoids and categories. A monoid is
defined by a set X equipped with a function - : X x X — X called the product, and a distinguished
element 1 € X called the unit, satisfying the relations 1 -z =z = x -1, Vo € X. Alternatively,
a monoid can be defined as a (small) category C with a single object o« and Hom(C) = Homec/(e, o)
such that the composition function o : Home/(e,e) X Home(e,e) — Home (e, ) provides the monoid
product on Homg (e, ¢), and the identity morphism ide provides the corresponding monoid unit. Using
this presentation of a monoid as a one-object category, we recover upon categorification the notion of
monoidal category as a one-object bicategory: given a bicategory Bi with a single object Ob(Bi) = {e},
the category of homorphisms Homp;(e, ¢) defines a monoidal category equipped with a tensor product
structure provided by the bifunctor ® : Hompg;(e,s) x Homp;(e,e) — Hompg(e,s). In particular, the
1-associator in Bi induces the (0-)associator in the monoidal category Hompg; (e, o).

Akin to the categorification of a monoid to a monoidal category, one can consider a categorification
of an algebra over a field. Instead of presenting the general case, we shall restrict ourselves to the
categorification of groupoid algebras. Recall that given a finite groupoid G, the (complex) groupoid
algebra C[G] is the algebra defined over the vector space Spanc{|g)|Vg € Hom(G)} with algebra
product [g) % [g’) := y(q),s(¢’) [08'). One natural categorification of C[G] is given by replacing the
complex field with the (symmetric) monoidal category Vec of finite dimensional complex-vector spaces,
which yields the monoidal category of groupoid-graded vector spaces:

DEFINITION 6.2 (Category of G-graded vector spaces). Let G be a finite groupoid. A G-graded
vector space is a vector space of the form V = @geHom(g) Vy. We call a G-graded vector space V'
‘homogeneous’ of degree g € Hom(G) if Vy is the zero vector space Q for all g’ # g. The monoidal
category Vecg is then defined as the category whose objects are G-graded complex-vector spaces,
and morphisms are grading preserving linear maps. The tensor product is defined on homogeneous
components Vg and Wy according to

(Ve W)y ift(e) =s(g')

(6.3)
0 otherwise

VQ®W9/—{

with unit object 1 = B ycpom(g) did,- There are [Hom(G)| simple objects denoted by Cq,Vg €
Hom(G). Every object is isomorphic to a direct sum of simple objects, making Vecg semi-simple.
Finally, the associator is given by the canonical map

ide, . (Ug @ V) @ Wy = Ug @ (Vg @ W) (6.4)



Note that by choosing the groupoid to be the delooping of a finite group, we recover the more familiar
fact that the category of G-graded vector spaces is a categorification of the notion of group algebra.
Analogously to the twisting of a groupoid algebra by a groupoid 2-cocycle, we can twist the associator
of Vecg by a normalised groupoid 3-cocycle o € Z3(G,U(1)) so as to define the monoidal category
Vecg, whereby the associator on simple objects is provided by

O[(CB’(CD,’(CB,, = O[(g, g/, g/,) . id(cgg,g/, . (Cg ® (Cg/) ® Cg// :—> Cg ® (Cg/ X Cg//) . (65)
The monoidal category Vecg has the additional property of being a multi-fusion category:

DEFINITION 6.3 (Multifusion category). A category C is called multi-fusion if C is a finite semi-
simple, C-linear, abelian, rigid monoidal category such that tensor product @ : C x C — C 1is
bilinear on morphisms. If additionally Home(1,1) = C then we call C a fusion category.

We shall not expand on this definition here, but instead refer the reader to the chapter 4 of [57].
Conceptually, the observation that Vecg is a multi-fusion category plays a similar role to semi-simplicity
in the theory of algebras. Recall that given a semi-simple algebra A, every module is isomorphic to
a direct sum of simple modules. These simple modules can be found via the notion of primitive
orthogonal idempotents. An idempotent in an algebra A is an element e € A such that e-e = e, and
a pair of idempotents e, e’ € A are orthogonal if e - ¢’ = §. - e. Such an idempotent is called primitive
if it cannot be written as sum of non-trivial idempotents. Specifying a complete set of primitive
orthogonal idempotents {e1,...,e,} for A, we can define a simple right A-module M; = e; - A, for
each ¢ € 1,...,n. In the following, we will review the notion of module category over a multi-fusion
category, categorifying the notion of module over a semi-simple algebra. In this setting the analogue
of idempotent will be given by so called separable algebra objects.

6.3 Module categories

In this part, we introduce the notions of module category over multi-fusion category C, and module
category functors following closely [57]. These happen to be relevant notions to describe gapped
boudaries and their excitations [10]. However, as we explain below, we use in practice an equivalent
description in terms of separable algebra objects. First, let us define a module category:

DEFINITION 6.4 (C-Module category). Given a multi-fusion category C = (C,®,1,4,7, &), a (left)
C-module category is defined by a triple (M, ®, &) consisting of a category M, an action bifunctor
®:Cx M — M and a natural isomorphism

axym:(XRY)oM S5 Xo(YoM), VX,Y €O0Ob(C)and M € Ob(M), (6.6)
referred to as the module associator, such that the diagram

(XeY)oZ)oM

LAM a
Z@;&W X®)’g
axL ZAz

XeoYeZ)oM (XoY)o(ZoM) (6.7)

dx,y@z,MJ JQ'X,Y,ZQM

Xo(Y®Zz)oM) XoYo(ZoM)

idx®dy,z,m



commutes for every X,Y,Z € Ob(C) and M € Ob(M). Additionally there is o unit isomorphism
Oy 1M =5 M, where 1 is the tensor unit of C, such that the following diagram commutes:

(Xol) oM dxm X @ (1o M)
, (6.8)
?”m WM
XoM

for all X € Ob(C), M € Ob(M).
Every module category can be decomposed into so-called indecomposable module categories [56]:

DEFINITION 6.5 (Indecomposable module category). A C-module category M is said to be ‘inde-
composable” when M is not equivalent to a direct sum of non-zero C-module categories.

Indecomposable module categories will turn out to be the relevant data to label gapped boundaries.
To describe excitations, we further require the notion module category functors:

DEFINITION 6.6 (Module category functor). Given a multi-fusion category C and a pair (M1, Ms)
of C-module categories with module associators & and &, respectively, a C-module functor is a pair
(F,s) where F : My — Ma is a functor, and s is natural isomorphism given by

sxa: F(XOM) = X©F(M), VX €O0Ob(C)and M € Ob(M,), (6.9)

such that the diagram

FX oY o M) L% pix o v)o M) X2 (X 9 V) o F(M)

SX,Y@MJ JdX,Y,F(M) (610)
XoFYoM)

XoYoFM)

idx Osy,m

commutes for every X, Y € Ob(C) and M € Ob(M).

We are almost ready to define a bicategory, the remaining ingredient is a notion of morphism for
module functors:

DEFINITION 6.7 (Morphism of module functors). Given a multi-fusion category C and two C-
module functors (F, s) and (F',s"), a morphism of module functors between F and F’ is a natural
transformation 1 : F — F' such that the diagram

F(XoM) Y X o F(M)
UXQMJ/ Jidx Onm (6~11)

FI(X®M) —XY 4 X o F/(M)

commutes for every X € Ob(C) and M € Ob(M).

Putting everything together, we obtain the following definition of a bicategory of module categories



DEFINITION 6.8 (Bicategory of module categories). Given a multi-fusion category C, we denote by
MOD(C) the bicategory with objects, C-module categories, 1-morphisms, C-module functors, and
2-morphisms, C-module natural transformations.

The remainder of this section is dedicated to providing a more practical formulation of this bicategory
using the fact that for a multi-fusion category C, every indecomposable C-module category is equivalent
to the category of module objects for a separable algebra object in C [57]. Using this latter formulation,
we shall then explain how the bicategory of module categories is indeed the relevant notion to describe
gapped boundaries and their excitations in gauge models of topological phases.

6.4 Algebra objects in Vecg

Let us now present the notion of algebra objects in the multi-fusion category Vecg thought as a
categorification of the groupoid algebra over G. In the subsequent discussion, we will build upon
this notion in order to define module categories over higher groupoid algebras as a categorification of
modules over semi-simple algebras.

DEFINITION 6.9 (Algebra object). Given a multi-fusion category C = (C,®,1,4,r,«), an (asso-
ciative) algebra object in C is defined by a triple (A, m,u) consisting of an object A as well as
morphisms m: AQA — A andu : 1 — A in C referred to as multiplication and unit, respectively,
such that the diagrams below commute:

« Associativity:

(ARA)RA — 5 A® (A A) -4, A A

m®idAJ/ J{m B (6.12)

A®A A

. Unit:

r—t ida®u
A—— A1l ——— A® A

ZIJ jdA an 5 (613)

1084 — ARA —= A
u®id 4 m

where o, £, refer to the associator, left unitor and right unitor for the monoidal structure of C,

respectively.

Given the above definition, an important observation is that algebra objects in the fusion category Vec
correspond to associative, unital, finite-dimensional, complex algebras. Let us now consider algebra
objects in Vecg. For each (G, a)-subgroupoid (A, ¢), as defined in sec. 4.3, we construct an algebra
object Ay = (@ueHom(.A) Cq, m,u) with multiplication and unit defined according to

m: Ay @Ay = Ag .
and u(]lvecg) = Z idx
a®a = Oya)sa) O(a,a) ad’ X €Ob(Ay)

respectively. In particular, we remark that the algebra object Ay in Vecg corresponds to a generali-
sation of a twisted groupoid algebra over A, where the twisting by a 2-cocycle is instead given by the



2-cochain ¢. Since ¢ is not a groupoid 2-cocycle, algebra objects are not associative as conventional
algebras, but instead are only associative within Vecg due to the condition d@¢ = a1 A- We leave
it to the reader to check that every algebra object in Vecg is in one-to-one correspondence with a
(G, a)-subgroupoid and Vecg algebra objects.

Given an algebra object A in a multi-fusion category C, we are interested in modules over A
referred to as A-module objects:

DEFINITION 6.10 (Right module object). Let C be a multi-fusion category and A = (A, m,u) an
algebra object in C. A right module object over A (or right A-module) consists of a pair (M,p),
with M € Ob(C) andp: M ® A — M € Hom(C) such that the diagrams below commute:

« Compatibility:
(Mo A) oA peida M®A

QJ Jp , (6.14)

M®A®A) —— o MOA —F—— M

idpr @m

. Unit:

M —9

J Tp . (6.15)

M@l —/— M®A
Homorphisms between modules over a given algebra object are then defined in an obvious way:

DEFINITION 6.11 (Module object homomorphism). Given an algebra object A in a multifusion
category C, let (M1, p1) and (Ma, ps) be two right A-modules. An A-homomorphism between these
A-modules is a morphism f € Home (M, Ms) such that the diagram

MyoA L9 vpoA

P1J Jpz (6.16)

MlﬁMg

commutes.

It follows from the definition above that A-homomorphisms between a pair of A-module objects
(My,p1) and (My,p1) in C define a subspace of Home (M7, Ms), which is notated via Hom 4 (M7, Ma)
in the following. Moreover, composing A-homomorphisms yields another A-homomorphism so that
we can define a category of A-modules as follows:

DEFINITION 6.12 (Category of module objects). Given a multi-fusion category C and an algebra
object A = (A, m,u), we define the category Modc(A) as the category with objects A-module
objects in C and morphisms A-module homomorphisms.

In a similar vein, we can define a left A-module objects and left A-module homomorphisms. We leave
it to the reader to derive the corresponding axioms. Combining both left and right modules over an
algebra object yields the notion bimodule object:



DEFINITION 6.13 (Bimodule object). Let C be a multi-fusion category and (A, B) a pair of algebra
objects in C. We define an (A, B)-bimodule object in C as a triple (M, p,q) such that (M,p) is a
right B-module object, (M, q) is a left A-module object and the diagram

q®idp

(A® M)® B M B

C{ Jp . (6.17)

A9M@B) —— AQM —— M
ida®p q

commutes.

Noticing that the monoidal identity of any multi-fusion category C naturally defines an algebra object,
we can identify the (1, A)-bimodule (M, ¢, p), for a given algebra object A, with the right A-module
(M,p), and similarly the (A, 1)-bimodule (M, ras, q) with the left A-module (M, q).

DEFINITION 6.14 (Bimodule object homomorphism). Let (My,p1,q1) and (Ma,pa,q2) be a pair
of (A, B)-bimodule objects in a multi-fusion category C. An (A, B)-homomorphism between these
(A, B)-bimodules is a morphism f € Home(My, M) such that f: (My,p1) — (Ma,p2) is a right
B-module homomorphism, [ : (My,q1) — (Ma,q2) is a left A-module homomorphism, and the
following diagram commutes:

q1®idp

M, ®B

@7

q2®idp M, ® B

«@ aJ{ lpz P1

AQ(Ma®B) ——— AQ My ————— My
ida®p2 a2

//////(géégsa idA®fT K\\\\<i\\\\
3d P»®

A® (M, ® B) A® M,

ida®p1 a1 My
It follows from the definition that (A, B)-homomorphisms between a pair of (A, B)-bimodule ob-
ject (My,p1,¢q1) and (Ma,p2,q2) in C define a subspace of Home (M7, M), which will be denoted by
Hom 4 (M, Ms) in the following. Moreover, composing two (A, B)-homomorphisms yields another
(A, B)-homomorphism so that we can define the following category of (A, B)-bimodules:

DEFINITION 6.15 (Category of bimodule objects). Given a multi-fusion category C and a pair
of algebra objects A and B, we define the category Bimodc(A, B) as the category with objects
(A, B)-bimodules and morphisms (A, B)-bimodule homomorphisms.

Let us now go back to our example of interest, namely the higher groupoid algebras Vecg, and describe
the corresponding bimodule objects. We consider a pair (A, ¢), (B,v) of (G, a)-subgroupoids, and the
corresponding algebra objects Ay = (@aeHom(A) Cayma,ua), and By = (@beHom(B)Cb’mB7uB)'

Let (M, p,q) be an (Ag, By)-bimodule in Vecg such that M = @geHom(g) Mg, p: M ® By — M and



q: Ay ® M — M. Let us consider the Vecg morphism @ = g o (id 4 ® p) such that

Q@ : A¢®(M®B¢) — M
G ® (Mg ® (Cb) —> (;t(u),s(g) 55(5)71;(9) [Mg D(p(Mg,(Cu,(Cb)] S Magb

where @ (Mg, Cqo,Cp) : Mg — Magp is a linear map which includes a G-grading shift. In virtue of the
compatibility conditions satisfied by p and ¢, the diagram

Ay ® (Ay @ (M @ By)) @ By) —22@58) 4@ (M @ By)

Amsl Jq) , (6.18)

.A¢®(M®Bw) M

commutes, where gmp decomposes as

ams Ay ® (As @ (M ® By)) ® By) —22MAMEE, A o (A, @ (M @ By) @ By))
) Ay @ (Ay @ (M @ (By @ By)))
id4A®(id A®(idp @mp)) .A¢ ® (.A¢ ® (M@Bw))

CAAME (U@ A,) @ (M ® By)
mABMEE, Ay @ (M @ By) . (6.19)
Furthermore, it acts on non-zero basis vectors (a,a’,b,b") € Cq x Cyr x Cp x Cyr and vy € My as
amp 1@ @ ((a® (vg® b)) @ b') = Sy(ar) s(a) Fe(o),56n) Tow (a,@'[b,6") [0'a @ (vg @ bb')] (6.20)

for any set of a’,a, g, b, b’ composable morphisms in G, where we introduced the cocycle data

a(a, gb, b') a(g, b, b')

AB I /
,a'lb,b’) =
@y (a0, b) a(a,a,gbb")

o(a’,a)y(b,b’) . (6.21)

Writing
p: Ay (M@By) - M

a® (vg®b) = vg>@(vg,a,b) € Magp
it follows from equation (6.20) that @ (vg,a,b) € End(M) satisfies the algebra

@ (vg, a0, 0) > @ (vg,a',6') = Sy(ar) s(a) Ou(6),5(6") O’ sagn Ty = (@, @'[b,b") @ (vg, a1, bY') (6.22)
fOI‘ au gag/ € HOmg(Ob(A),Ob(B))), ac HOHlA(—,S(g)), Cl/ € HOmA(—,S(g/)), b € Homg(t(g),—)

and b’ € Homp(t(g'), —). Such data can be concisely described by introducing the groupoid G5 with
object set Homg(Ob(A), Ob(B)) and morphism set given by

g—agb=g—-, (6.23)

for all g € Ob(Gaz), a € Hom4(—,s(g)) and b € Homp(t(g), —). Composition is defined by

g——agb——a’aght! = g———d’aght’ (6.24)
a,b a’,b’ a’a,bb’



for all composable pairs (a/,a) € A%, and (b,b') € B2, . Noting that [@*5] € H2(G 45, U(1))
defines a G AB 2-cocycle, @ can then be described via a weak functor

Fou - gAB — Vec
geOb(Gus) +— MycM ,

Pg— € Hom (G 45) @ (g, 0,b) : Mg — Mage

such that every isomorphism @ (vg, a, b) satisfies the composition relation (6.22). Using the equivalence
between representations and modules of algebraic structures, we can thus view the pair (M, Fy,,) as
a module over the twisted groupoid algebra (C[QAB]WAB. Considering the diagram

Ay ® (M ® By) ~222UEE), o (M  By)

4’1\[ lez ’ (6'25)

M,y M,

for a pair of (Ay, By )-bimodules (M1, @1(—)) and (Ma, @2(—)), we conclude that an (A, By )-bimodule
homomorphism is defined via a natural transformation f : @ — @, or equivalently, as an inter-

twiner for representations of C[gAB]wAB. Putting everything together, we obtain the equivalence
. = AB
Bimodvecg (Ag, By) ~ Mod(C[Gas]™ ).

6.5 Bicategory of separable algebra objects in Vecg

Pursuing our construction, we shall now introduce a special class of algebra objects known as separable
algebra objects. We will then construct a bicategory whose objects are separable objects, and mor-
phisms are bimodule objects between them. First, let us define what it means for an algebra object
to be separable:

DEFINITION 6.16 (Separable algebra object). Let C be a multi-fusion category and A = (A, m,u)
an algebra object in C. The algebra object A is said to be ‘separable’ if the multiplication map
m:ARQA— A admits a ‘section’ map A : A — AR A such that

AS A9 AT A=A 2

as an (A, A)-bimodule homomorphism.

Let us now define a binary functor. Let A, B, C' be three separable algebra objects in a multi-fusion
category C, Map = (MaB,qa,pB) = (MaB,®um,p) an (A, B)-bimodule, and Mpc = (Mpc, qB,pc) =
(Mpc, @rrge) a (B, C)-bimodule. Using this data, we want to construct an (A, C')-bimodule, which
we shall notate via (Map @ Mpc, ®rMip OB g ). First, let us define the morphism @, pompe -



A® (Map ® Mpc) @ C) = Map ® Mpc that decomposes as

ida®am, g, Mpo,C

AR ((Map ® Mpc) ®C)

A® (Map ® (Mpc ®C)) (6.26)

1 1 .
YA My, MBc®C ( (eA®MAB)®1dMBC®C
—>

A® Map) ® (Mpc ® C)

(idagm o ®uB)idMg a0

(A® Map)®1)® (Mpc ® C)

(A® Map)® B) ® (Mpc ® C)

(idagm g ®AB)RiIdM g0

(A® Map)® (B® B))® (Mpc ®C)

1 .
Qpgmyp.B,8RdMpoC

(AR Mag) ® B)® B) ®@ (Mpc ® C)

(va, My 5, B®idE)®idMgoac

((A® (Map ® B)) ® B) @ (Mpc @ C)

YAQ(MpB®B),B,MgcRC

®
(A® (Map ® B)) ® (B® (Mpc ® C)) —2422PM5C, ryp @ Mpe .

Using this morphism, let us further define the endomorphism ens, sonpe : Map®@Mpe — Map@Mpe
that decomposes as

1 -1
"MAB®MpC ( (MAp®Mpc)®L
—_—

Map ® Mpc Map ® Mpc) ® 1

uaA®(idm oMo Quc)

1® ((Map® Mpc)®1)  (6.27)

A® ((Map ® Mpc) ® C) PMABONBC, My ® Mpc .

By the requirement that A : B — B ® B is a (B, B)-bimodule section to the (B, B)-bimodule
homomorphism m : B ® B — B, together with the compatibility conditions spelt out above and the
naturalness of the associator «, we can show that enr, ;@ Mmpe 15 an idempotent endomorphism in C, i.e.
EMap®Mpe © EMap®Mpe = EMap@Mpo- Lhe requirement that the multi-fusion category C is abelian
ensures that every idempotent is a split idempotent:

DEFINITION 6.17 (Split idempotent). An idempotent a = a is called split when there exists an

ros

object b and morphisms a < b, b — a such that b 5 b= p anda = a=a % a.

We define the object Map ® g Mpc € C as a choice of splitting object for the idempotent ens, sonmpe
SM g, M 'Mag,Mgo

such that Map ® Mpc —AB B Mag R Mpc and M ®p Mpc ———=—— Msp ® Mpc, where

SMap,Mpc ©'Map,Mpe = €Map@Mpe a0 MMy Mpe ©SMap,Mpe = 1AMap@Mpe- Crucially, a choice of
splitting object is unique up to isomorphism, and independent of a choice of section up to isomorphism.
Using this data, let us further define the following morphism:

PMap OB PMpe = 'Map,Mpc © ((pMAB®MBc) OSMap,Mpc - (6'28)

Putting everything together, we obtain that (Map ®p Mpc, Pmis @B ®rmp.) defines an (A, C)-
bimodule in C. So we have obtained a way to define an (A, C)-bimodule out of an (A, B)- and a
(B, C)-bimodule given three separable algebra objects A, B,C. This can expressed in terms of the
bifunctor

®p : Bimod¢(A, B) x Bimod¢ (B, C') — Bimod¢ (A4, C) (6.29)
where objects M4p € Ob(Bimod¢(A, B)) and Mpe € Ob(Bimode (B, C)) are mapped via

®p: Map X Mpc — Map @ Mpc , (6.30)



and bimodule homomorphisms f4p € Hom(Bimod¢ (A4, B)), fec € Hom(Bimod¢ (B, C)) are sent to

®p : faB X fec = faB @B fBC = SMug,Mpo © (fAB ® [BC) © MMap Mpe - (6.31)

In order to obtain a bicategory, we are left to define a left unitor, a right unitor and an associator.
Considering A and B as (A, A)- and (B, B)-bimodules, respectively, one can verify that for any (A, B)-
bimodule M4p

A®aMap = Map = Map ®5 B, (6.32)

as (A, B)-bimodule in C. This property demonstrates that an algebra A seen as an (A, A)-bimodule
defines a notion a unit morphism for an algebra object A. The corresponding left unitor isomorphism,
which is an (A, B)-bimodule, is defined via the maps

A®a Map %A(@MAB 24 Mg
and

—1

5% A®id s
Mup A8, 1® Magp — ARy

(A® A) @ Map —22M45, 40 (A® Map)
Ma®aa, g Map 2AMan, 4 ®a Magp ,

which can be shown to satisfy the triangle relations. The right unitor can be defined in a similar
fashion. Finally, for any quadruple of algebra objects A, B,C, D and (A, B)-bimodule Mg, (B, C)-
bimodule Mp¢ and (C, D)-bimodule M¢p, the morphism

(Map ®p5 Mpe) ®¢ Mop —AB2MBeMeD, (A1 @5 Mpe) © Mop

Map,Mge®idMep

(Map ® Mpc) ® Mcp 2Man Mo MBC, Mg ® (Mpe ® Mep)

iy g ®SMpo Mop g ®SMpo. Mop
Map ® (Mpc ®c Mcp) Mup ®p (Mpc ®c Mcp)

defines an isomorphism of (A, D)-bimodules in C satisfying the pentagon relation. Putting everything
together, we obtain the following bicategory:

DEFINITION 6.18 (Bicategory of separable algebra objects). Given a multi-fusion C, we no-
tate via sAlg(C) the bicategory with objects, separable algebras objects in C, and hom-category
Homgag(c) (A, B) := Bimodc(A, B) for all separable algebra objects A, B in C. The composition
bifunctor is provided by ®p : Bimod¢(A, B) x Bimod¢ (B, C) — Bimod¢(A, C) as defined in this
section.

Let us now apply the definition above to the multi-fusion category Vecg. First of all, every algebra
object in Vecg can be shown to be separable. Indeed, given an algebra object Ay in Vecg, a choice of
section A : Ay — Ay ® Ay is provided by the following map on basis elements:

1 1
Avams ———— Y g 0. (6.33)
Homa(s(@), I, 4= | lar,a)
ajas=a

Algebra objects equipped with the section defined above form the objects of the bicategory sAlg(Vecg).
Let Ay, By, C, be three objects in sAlg(Vecg), we consider the 1-morphisms Mg = (Mas, @rras) €



Ob(Bimodvecs (Ag, By)) and Mpe = (Mpe, @rge) € Ob(Bimodvecs (By,Cy)). Following (6.26), the
map @ar,seMse acts on basis elements of Cq ® (([Maglg, ® [Mpaclg,) ® C.) as

1 a(g1, 92, ¢) o(a, g1, b) a(ag, b, 6", gac)
AB BC ) B2 s Y1, 1Y )
: T —
PMaseMse © 0@ ((vg,” ®vg,) @) Hom(lg”be%;ﬂ(lg) P(b,671) a(a, g1, gac) a(agy, b, b71)
v3B > @ (vgfa,b) @ VB o @ (vEC 67 ¢) .

Applying the formula above to a = idy,) and ¢ = idy(g,), we obtain that the map sns,, s :
Mg @ Mpe — Mg ®p Mpe acts on basis elements as

1 Z 1 afgib, b7, go)
AB BC ) 3
: —_—
Pz Mee S e [Hom (B) verioms V(0,07 ala1,b,671)
om
Uélg > (p(véga ids(gl)a b) & ,UEQC > (p(véggcv b_ly idt(BQ)) )

whereas raf . Mue : Mas @ Mpe — M ap ® Mpc is given by the inclusion. We can finally check that
the binary functor simplifies such that

PMas OB PMpe = PMap®@Mpc - (6'34)

Left unitor, right unitor and associator can now be readily obtained. Finally, let us remark that

the above bifunctor can be conveniently rephrased as a comultiplication map Ap : C[G AC]WAC —
~ AB =~ BC

ClGas|™  ®C[Gpe]”  defined by

‘A 1 04(91792,5)04(&,91,b)a(aglb,b_l,QQC)
A = E — ).
s(lo ) |[Hom(B)| (b, b71) a(g, g1, 920) *(gg1,9,871) o a,b ) & 1o b1 )
91€0b(G.aB)
92€0b(Gne)

g182=¢g
beHomp(t(g1),t(g2))
(6.35)

6.6 Bicategory of Vecg-module categories

We are now ready to describe the bicategory MOD(Vecg) by spelling out equivalence with the bicate-
gory sAlg(C) described above. In the following, we will describe how this is the relevant structure to
describe boundary excitations in gauge models of topological phases.

Letting Ay be a (separable) algebra object in Vecg, the category Modvecg (Ag) of right Ag-modules
is a left module category for Vecg. Let us spell out this correspondence. The module functor

® :Vecg X MOdVecg (.A¢) — MOdVecg (.A¢) (6.36)
is defined on objects V' € Ob(Vecg) and (Ma,pa) € Ob(Modvecs (Ay) by
O:VXMA—VQRMy, (6.37)

where V@ M4 € Ob(Modvecg (Ap)) is the Ag-module with action defined by the following composition
of morphisms in Vecg:

AV, M 4, A idy ®p.a

(VOMARAy ———= VO (Ms®Ay) —=VOMy. (6.38)



The functor takes morphisms to their tensor product over the field C. The module associator &y, w,
reduces to the associator in Homg such that for V, T € Ob(Vecg) one has

(VW)@ My 274 v o (W e My) . (6.39)

A Vecg-module category Modvecg (Ay) is then indecomposable if and only if the algebra object A, is
not isomorphic a direct sum of two non-trivial algebra objects [57].

Let us now describe Vecg-module functors. Let Ag and By be any pair of algebra objects in
Vecg, with Modvecg (Ag) and Modvecg (By) the corresponding category of module objects. To each
(Ag, By)-bimodule object M 45, we can define a Vecg-module functor

— ®a Map : Modvecg (Ayp) — Modvecg (By) (6.40)
which acts on objects M4 € Ob(Modvecg (Ap)) via the map
— @A Map : Mo Mag®aMas (6.41)
and sends morphisms f € Hom(Modvecg (Ag)) to f ®idar,,. The natural isomorphism
s+ (Vecg @ Modveca (Ag)) ®.4 Bimod( Ay, By) — Vecg ® (Modvecg (Ap) ®.4 Bimod(Ay, By))  (6.42)

is given on objects V' € Ob(Vecg) and M4 € Modvecg (Ay) via the associator a in Vecg such that:

'VOM A, M AR
_)

svmy (VO MA) @4 Mag (VRMy) ® Mg

SUMANAR, v (Ma ® Mag)

idy ®s
—HATAB L Y @ (Mg @4 Mag) - (6.43)

In a similar vein, morphisms of Vecg-module functors are induced by natural transformations between
bimodules. Together, this yields the desired equivalence:

PROPOSITION 6.1. There exists an equivalence of bicategories between sAlg(Vecg) and MOD(Vecg)
by sending separable algebra objects in Vecg to their category of (right) modules in Vecg, bi-
module objects Mz € HomsA|g(Vecg)(A¢,B¢) are sent to the Vecg-module functor — @4 Mag :
Modvecg (A4) — Modvecg (B) and bimodule natural transformations are sent to morphisms of Vecg-
module functors.

6.7 Bicategory of boundary excitations in (2+1)d gauge models

Using the technology developed in this section, we are now ready to describe gapped boundaries and
their excitations in (24+1)d gauge models of topological phases within the language of bicategories.
More specifically, we shall define a bicategory Bdryg whose objects are given by gapped boundary con-
ditions, 1-morphisms provide gapped boundary excitations, and 2-morphisms define fusion processes
of gapped boundary excitations. We shall then demonstrate that Bdryg is equivalent, as a bicategory,
to MOD(Vecg).

Let us begin with a brief review of the results obtained in the first part of this manuscript within
the tube algebra approach. Hamiltonian realisations of (2+1)d Dijkgraf-Witten theory are defined
in terms of pairs (G, ), where G is a finite group and « is a normalised 3-cocycle in H3(G, U(1)).
In sec. 2, it was argued that gapped boundaries can be indexed by pairs (A, ¢), where A C G is a



subgroup of G and ¢ € C?(A,U(1)) is a 2-cochain satisfying the condition d® ¢ = a~'| 4. In sec. 3, we
showed that boundary excitations at the interface of two one-dimensional gapped boundaries labelled
by (A, ¢) and (B,), respectively, were classified via representations of the boundary tube algebra
that is isomorphic to the twisted groupoid algebra C[G a5]g,-

We now collect the previous results into a bicategory Bdryg. The objects of Bdryg: are given by
the set of all gapped boundary conditions {(A, ¢)}. For each pair (4, ¢), (B,v) of gapped boundary
conditions, we assign the hom-category

Homgarye, ((4, ¢), (B,v)) := Mod(C[G aBl3y) , (6.44)

where Mod(C[G 45]3,) denotes the category of C[G ap|},-modules and intertwiners. In this way, the
l-morphisms pap € Ob(Homgarye ((4, ¢), (B,1)))) correspond to boundary excitations incident at the
interface between gapped boudaries labelled by (A, ¢) and (B, ). The composition bifunctor

® MOd((C[GAB]gw) X MOd((C[GBc]Z‘w) — MOd(C[GAc]g@) (6.45)
is defined on 1-morphisms pap € Ob(Mod(C[Ga5l3,)) and ppc € Ob(Mod(C[Gclj,)) via

® :paB X pc — paB DB pBC = (paB ® ppc) > Ap(lac) , (6.46)
as described in sec. 5.2, and on 2-morphisms fap : pap — pPup € Hom(Mod((C[G’AB]gw)), fBc :
pBc = P € Hom(Mod(C[Gscly,)) via

®: faB X fBc = (faB ®B fBC : paB @B pBC = PAp OB PBC) 5 (6.47)

where the morphism on the r.h.s decomposes as

®
faB ®B fBC : pAB ®B PBC = pAB & PBC SELLIEEN P @ Pse = Pap @B P - (6.48)

In the sequence of linear maps above, the first arrow notates the injection of pap®pppc into pappsc,
and the last arrow notates the projection map

Pap ® Pre = (Pap ® Ppc) > Ap(lac) = Pap @B Po - (6.49)

Furthermore, a 2-morphism of the form ¢ : pap ®5 ppc — pac € Hom(Mod(C[G ac]3,)) is an inter-
twiner interpreted as describing the process of fusing a pair of boundary excitations at the interfaces
of gapped boundaries labelled by (A, ¢), (B, ) and (B, ), (C, ¢), respectively:

Ay By C,

(6.50)

The identity morphism associated with the object (4, ¢) is given by the regular module C[G'44]3, €
Ob(Mod(C[G 44]3,)) with left and right unitors the intertwiner isomorphisms

0 (C[GAA]g¢ ®A PAB l> PAB, T :pAB @B C[GBB]%/, ; PAB ; (651)

as described in sec. 5.2. Finally, the 1-associator for a triple of 1-morphisms pap € Ob(Mod(C[G a5]3,)),
pec € Ob(Mod(C[Grcly,)), pep € Ob(Mod(C[Gepl, ) is given by the intertwiner isomorphism in
Hom(Mod(C[Gapl3,))

QPABPECPCD : (pap ®@p ppc) ®c pcp — PAB @B (PBC @C PCD) » (6.52)



as described explicitly in sec. 5.2.7 It follows from the results of the first part of this manuscript that
such data satisfy the pentagon and triangle relations ensuring we do obtain a bicategory.

So we have recast our results obtained in the first part of this manuscript in terms of the boundary tube
algebra and its representation theory as the bicategory Bdryg. We shall now establish the following
equivalence of bicategories:

Bdryg, ~ MOD(Vecy,) . (6.53)

More precisely, we shall establish the equivalence of the bicategories Bdryg: ~ sAlg(Vecg), from which
we can induce the equivalence above through prop. 6.1, by noting equivalence of bicategories is tran-
sitive. First, we need to introduce a notion of homomorphism between bicategories:

DEFINITION 6.19 (Strict homomorphism of bicategories). Given a pair of bicategories Bi and Bi',
a strict homomorphism F : Bi — Bi’ of bicategories consists of

« a function F : Ob(Bi) — Ob(Bi’),

o a family of functors Fxy : Homp;(X,Y) — Hompgy (F(X), F(Y)) referred to as hom-functors,
for each pair of objects X, Y € Ob(Bi),

such that

Fxy(f) @ Fyz(9) = Fx,z(f ©g) l?ri(/x) = Fx,x(1%)
F(af ) = a.l;i(7y(f),fy7z(g),fz7w(h) Fr) =r¥x) » FUR) =15,

for all objects W, X, Y, Z € Ob(Bi) and morphisms f € Ob(Homp;(X,Y)), g € Ob(Homg;(Y, Z)),
h € Ob(Homg,(Z,W)).

Recall that a functor between categories defines an equivalence if and only if it is full, faithful and
essentially surjective. In a similar vein, a sufficient condition for a strict homomorphism of bicategories
F to define an equivalence of bicategories is that the map is surjective on objects, and the functors
Fx,y forall X, Y € Ob(Bi) define equivalences of the categories Homp;(X,Y") ~ Homp, (F(X), F(Y)).

Using this sufficient condition, let us now establish the equivalence of bicategories F : Bdryg =
sAlg(Vecg). We begin by defining the function F : Ob(Bdryg) — Ob(sAlg(Vecs)). It is given by
sending each boundary condition (A, $) to the corresponding separable algebra object A, in Vecg.
From the previous discussion, we know that both boundary conditions and separable algebra objects
are indexed by subgroups of G and 2-cochains satisfying the compatibility conditions with a. It follows
that the function F is a bijection, and thus surjective. The hom-functors are required to define the
following equivalence of categories:

AB

Hodery‘é((Avd))a (Bﬂ/})) = MOd((C[GAB]gqp) = MOd(C[éAB]w ) = HomsAIg(Vecg)(A¢aB¢) )

where the groupoid G ap and its 2-cocycle wAP is obtained by applying the definition at the end of
sec. 6.4 to the delooping of G. In order to establish this equivalence, it suffices to demonstrate the
isomorphism of twisted groupoid algebras (C[GAB]WAB ~ (C[GAB]gw = (C[GAB]“SAB, for all boundary

9Recall that the derivations in sec. 5.2, and more generally in sec. 5, were carried out explicitly for the boundary
tube algebra in (3+1)d. However, we explained that the (24+1)d boundary tube algebra, which is the one relevant here,
is obtained as a limiting case.



conditions (A, $) and (B,v). The equivalence Mod(C[G 453, ) ~ Mod(C[éAB]wAB) of their module
categories then follows by pre-composition. Noting from the definition that both groupoids have the
same dimension, the isomorphism is provided by the following map on basis elements:

(,25(0,71,0,) | a”?
a(a—l,a,gb)g b

AB

), V|g~a?> € C[éAB]w . (6.54)

9570

Furthermore, one can check that such an isomorphism is compatible with the respective comultiplica-
tion maps through the following commuting diagram

ClGaclg, —2 ClGaBlgy ® ClGpcly,

{ } . (6.55)

C[G ac]® ¢

AC A

—— ClGas]”"” ® C[Gpc]™”

B

Commutativity is ensured by the relation
¢)(a_17a) '(/)(b7 b_l) a(ghg?ac) a(avghb) a(aglb7 b_lngC)
a(a*l, a, glb) Ck(b, bila 926) w(ba bil) a(a’v 917920) a(aglv bv bil)
¢(a_17a) a(gthac) a(a_17aglb7 b_ngC)
ala™t,a, g1g2c) a(g1,b,b71gac)

b

which follows from the cocycle relation
dPa(a ™ a,g1b, b gee) =1, dPa(a,a,9192¢) =1, dPal(agy,b,b ', gac) =1.

Since the composition functors in both bicategories are induced from the respective comultiplication
maps, it can be verified that such hom-functors satisfy the conditions of a strict homomorphism of
bicategories, hence establishing the required equivalence of bicategories.

6.8 Pseudo-algebra objects and gapped boundaries in (341)d gauge models

In the previous discussion, we argued that, given a lattice Hamiltonian realisation of (2+1)d Dijkgraaf-
Witten theory with input data (G, «), gapped boundary conditions are in bijection with algebra objects
in the fusion category Vecg:. We shall now outline the analogue of this statement for lattice Hamiltonian
realisations of (3+1)d Dijkgraaf-Witten theory.

Given a fixed input data (G, ), where G is a finite group and 7 is normalized group 4-cocycle
in H*(G,U(1)), it has been argued that the relevant category theoretical structure is provided by
the monoidal bicategory 2Vec of G-graded 2-vector spaces [30, 33, 34, 54, 62, 63]. Let us begin by
describing the salient features of the monoidal bicategory 2Vec as a categorification of Vec. There
exist several definitions of this bicategory, see e.g. [64—66], in the following we shall consider 2Vec
as the bicategory of finite dimensional, semi-simple Vec-module categories, Vec-module functors and
Vec-module functor homomorphisms. As customary, objects of 2Vec will be referred to as 2-vector
spaces. There is a single simple object provided by the Vec-module category Vec, which implies that
for all objects X € Ob(2Vec), there exists a Vec-module equivalence X ~ Hj, Vec. The monoidal
structure of 2Vec is defined on objects via the weak 2-functor

X : 2Vec x 2Vec — 2Vec
XxY —XKY



for all X,Y € Ob(2Vec), where K denotes the Deligne tensor product of abelian categories [67]. In
particular, for a pair of 2-vector spaces X and Y, the Deligne tensor product yields the category X XY,
whose set of objects is Ob(X ®Y) := Ob(X) x Ob(Y) and set of morphisms given by Hom(X XY) :=
Hom(X) ®c Hom(Y). The composition in Hom(X XY is induced from the ones in Hom(X) and
Hom(Y"), accordingly. This monoidal structure is equipped with a pseudo-natural adjoint equivalence
of Vec-module categories'’

ax,y,z

XRY)RZ —>XR(YRZ), (6.56)
together with a Vec-module functor isomorphism 7 known as the pentagonator:
(XRY)RZ)®W

$\C\\N QA’@
M Yz

(X R (YR Z)) (XRY)R(ZRW) - (6.57)

TX,Y,Z,W
aX,Y&Z,WJ Jaax,y,zgw

XR(YRZ)RW) XR(YR(ZrW))

idx Moy, z,w

Both « and 7 can be shown to evaluate to the identity 1- and 2-morphisms, respectively. Note that the
pseudo-naturality of o specifies that for any triple of 2-vector spaces X, Y, Z and Vec-module functors
Ix: X=X, fy:Y =Y and fz : Z — Z' there exists a 2-isomorphism

ax,vy,z

(XRY)RZ ———— XR(YRZ)

(fx B fy)R f{ / fo R (fy B fz) - (6.58)

X' RY)VRZ —— X'R(Y' RZ)

ax,vy,z

Henceforth, we shall not draw arrows for such 2-isomorphisms but instead notate the 2-cell with the
~ symbol.

Akin to a monoidal category, the monoidal bicategory 2Vec admits a monoidal unit 1 € Ob(2Vec),
which is equipped with the Vec-module category pseudo-natural adjoint equivalences

XR1IZS X and 1RX S5 X, (6.59)

for all X € Ob(2Vec), together with Vec-module functor isomorphisms 71, 79, 73 referred to as trian-
gulators:

aX,11,Y

(IRX)RY —X5 1R (XRY) XR)RY % X R(IRY)

= , = | , 6.60
ém J{EXIXIY TM J{ldx me ( :

XRY XRY
XRY)R1 20 Xx(YRI)

= Jidx . (6.61)

XXY

TXXY

10 Although we use a similar notation, the associator of the monoidal structure is not to be confused with the 1-
associator natural isomorphism of the underlying bicategory.



These isomorphisms can be all be shown to evaluate to the identity 1- and 2-morphisms, respectively.
More generally, for an arbitrary monoidal bicategory, such data is subject to a series of coherence data
which we shall not provide here, instead pointing the reader to e.g. [61, 64, 68].

Having described the most notable features of 2Vec, we now describe the monoidal bicategory
2Vec,, which is obtained following a process analogous to the lift of Vec to Vecg. Let G be a finite
group and 7 a normalised group 4-cocycle in H*(G,U(1)). A G-graded 2-vector space is a 2-vector
space of the form X = BHQEG X4. We call a G-graded 2-vector space homogeneous of degree g € G
if X = X,;. The monoidal bicategory 2Vecg, is then defined as the bicategory whose objects are
given by G-graded 2-vector spaces, 1-morphisms are G-grading preserving Vec-module functors, and
2-morphisms are Vec-module functor homomorphisms. The simple objects of 2Vecg, are given by the
categories Vecy, for all g € G, and every object is equivalent to a direct sum of simple objects. The
monoidal structure of 2Vecg, is given on homogeneous components via the weak 2-functor

X : Vec, x Vecy — Vecyy (6.62)

for all g, ¢’ € G. Since 7 is a normalised representative of [r] € H*(G,U(1)), the adjoint equivalences

QVecy ,Vecg/ Vec 4,

(Vec, K Vec, ) K Vecyn —————— Vecy K (Vecy K Vecy) (6.63)
TVec Lyec
Vec, K Vecy,, —2 Vec,, , Vecy,, K Vec, —2 Vec, (6.64)

are the identity 1-morphisms, the triangulators 71,79, 73 are the identity 2-morphisms, whereas the
pentagonator 2-isomorphism is given by TVec,,Vec, s, Vec, 1 Nec, = m(g9,9',9",9") idVecgg/g,,g,,, for all
9.9,9",9" € G. Tt is straightforward to verify that the requirement that 7 is a 4-cocycle ensures the
coherence relations for the pentagonator are satisfied.

Having defined the monoidal bicategory 2Vecf, we shall now argue that gapped boundary condi-
tions in (3+1)d gauge models of topological phases correspond to pseudo-algebra objects [69] in 2Vecg,
categorifying the relation between algebra objects in Vecg: and gapped boundaries in (2+1)d gauge
models:

DEFINITION 6.20 (Pseudo-algebra object). Let Bi = (Bi, X, 1,a,7,{,m, 71,72, 73) be a monoidal
bicategory. A pseudo-algebra object in Bi is a sextuple (A, m,u,Sm,Sr,se) consisting of an object
A € Ob(Bi), a pair of 1-morphisms m : ARA — A, u:1— A, and a triple of 2-isomorphisms
Sm» Sry Se defined according to

(ARA) KA —2 5 AR(ARA) 257, Ax A

mlgidAJ < J{m ’

AR A - A
A Al 2B A4 4, AT 1mA B A A
I I
id 4 ida



and subject to the following coherence relations:

(ARA)RA)RA (mBida)Xida (ARA)RA "84, Ag4
. QA
aA,A,AgidA % y
(AR(ARA))RA AR Eia (ANA)R A _
QA ARKA,A ~ l{aA,A,A A
AIX((AXIA)X’A) (ida Xida) X m AIEA
idaMaa a4 / \
AR (AR (AR A)) Y TETTE) A&A)—>A®A
is equal to
((AIXA)IZIA)XIA (mXida) Xida (AlZlA)X\A leldA

aa,a,aNida

1

JO‘A,AA
an) AX(ARA) |
paais) A8 AED "Wm

AR(ARA) XA

aaaRaa| —— (ARA)R (AKX A) ~ AxA%A
(id4 575 @ids
AR (AR A)® A) %(A&A)&Am )
idaNaa aa > - J{CYA,A,A "

AN (AKX (AR A)) ida @ (mRida) A®(A&A)WA®A

and

r i1 Rida

ARA

idg et

AR(INKA) —— AR(ARA) ——— AR A

ids X (uRida) ids Bm



is equal to

(An1)m A MaBIE g Ay B gy
QALA ~ QA AA A -
. T2
d«[é&(\] £

AR(ARA) ggrm AR(ARA) —m AR A

Given the above definition, a first observation is that a pseudo-algebra object in 2Vec corresponds to
a finite-dimensional, semi-simple monoidal category. This relies in particular on the fact that semi-
simple abelian categories always have a unique structure of semi-simple Vec-module category [70].
Let us now apply this definition to 2Vecy. For each pair (A, \), where A C G is a subgroup and
A€ C3(A,U(1)) is a 3-cochain satisfying the condition d®\ = 77| 4, we construct a pseudo-algebra
object Vecan = (HH,ca VeCa; ™, U, G, G, <) such that: the multiplication m : Veca x X Veca n —
Vecy » is given on homogeneous components via the functor Mvec, Vec,, : VeCq, B Vecy — Vecgy for
all a,a’ € A, the unit map u is defined in an obvious way, the 2-isomorphisms ¢, and ¢, are trivial,
and the 2-isomorphism

Sm * OVecy x,Veca, x,Vecy x © (idveCA,)\ omiX m) = (m X idVeCA,x) om (6'65)

defines an associator for the product map m that is determined by A. This associator acts on homoge-
nous components labelled by a,a’,a” € A as

)\a,a’,a” * QVec,, ,Vec,,Vec,1© (ldVeca X Mvec,,,Vec, ) O MVec, ,Vec, 1,1 = (mVecu,Veca/ X 1dVecan )O MvVec, ,r,Vec -

The condition d® X = 7~1|, demonstrates that Vec A, is not a monoidal category in the conventional
sense since the associator A fails to satisfy the pentagon equation (6.1). Instead, the associator satisfies
the following equation on homogeneous components labelled by a,a’,a”,a"”" € A:

(>\a7a/7a// |z idVeCa///) (@] /\a,a’a”,a”’ ] (idVeCa & Aa/7a//7a///) ] Wa,a’,a”,a”’ = )\aa/7a//,a/// 0] )\a,a’,a”a’” . (666)

In this way, we see that Vecy » defines a monoidal category which is associative inside 2Vecg; but not
as a conventional monoidal category. This result provides a categorification of the observation that
an algebra object A, in Vecg defines a twisted groupoid algebra, which is associative inside Vecg but
not as a conventional algebra.

6.9 Bicategory of gapped boundary excitations in (341)d gauge models

Mimicking the analysis carried out in sec. 6.7, we shall now introduce a category theoretical formula-
tion of gapped boundaries in (3+1)d gauge models and string-like excitations terminating at gapped
boundaries, which we studied from a tube algebra point of view in sec. 4. In particular, we shall define
a bicategory 2Bdry¢: that is analogous to Bdryg. We shall then relate this construction to the work
of Kong et al. in [54] arguing that 2Bdryg, forms a full sub-bicategory of Z(2Vec(), i.e. the centre of
2Vecg.

Let us begin with a brief review of the results obtained in the first part of this manuscript within
the tube algebra approach. Hamiltonian realisations of (3+1)d Dijkgraaf-Witten theory are defined in



terms of pairs (G, 7), where G is a finite group and 7 a normalised 4-cocycle in H*(G,U(1)). In sec. 2.4,
it was argued that gapped boundaries can be indexed by pairs (A, A), where A C G is a subgroup of
G and X € C3(A,U(1)) is a 3-cochain satisfying the condition d® X\ = 7=1|,. In the previous section,
we explained that such data is in bijection with pseudo-algebra objects Vecy y in 2Vecr. Moreover,
we showed in sec. 4 within the tube algebra approach that given a pair of two-dimensional gapped
boundaries labelled by (A, \) and (B, i), respectively, string-like excitations threading through the
bulk from the former boundary to the latter were defined as modules of the twisted relative groupoid
algebra C[A(G aB)T(x7 (> Where A(Gap) = AGaanp and T : Z%(G,U(1)) — Z*~1(AG, U(1))."! Via
the introduction of a comultiplication map, we further described the concatenation of such string-like
excitations in sec. 5.

Let us now collect these results into a bicategory 2Bdryg, in a way akin to the definition of Bdryg.
The objects of 2Bdry{; are given by pairs (AA, T(X)) for every gapped boundary condition labelled by
(A, )\). Given a pair of objects (AA, T(\)), (AB,T(p)), we define the hom-category

Homagaryz, (A4, T(A)), (AB, T(1))) = Mod (C[A(G a5)TxT (6.67)

(u)) ’

where MOd(C[A(GAB)]iE:;T(#)) denotes the category of (C[A(GAB)EE:;T(#)
The composition functors, associator and unitors are given analogously to the construction of Bdryg.

From this definition, we interpret the objects (AA, T(\)) of 2Bdry¢ as defining boundary conditions
for the endpoints of a string-like excitation that terminates on a gapped boundary labelled by (A, A).
An isomorphism class of objects in AA specifies possible fluxes for a string-like excitation terminating
on the boundary (A, ). This flux corresponds to the closed holonomy going along the non-contractible
cycle perpendicular to the length of the string. Given a pair of objects (AA, T(N)), (AB,T(u)) a 1-
morphism pap € Ob(Homagaryz ((4,A), (B, 1)) specifies a magnetic quantum number describing the
gauge orbit of parallel transports along the length of the string—generically, such a parallel transport
must be compatible with the possible boundary conditions for the endpoints of the string—as well
as a charge quantum number decomposing the symmetries of the gauge action on the string. In this
way, we view such strings as dyonic excitations. The bifunctor on 1-morphisms provides a notion
of concatenation for a pair of string-like excitations that share a boundary endpoint, as described

-modules and intertwiners.

in sec. 5.2. The 2-morphisms correspond to intertwiners, so that a 2-morphism of the form ( :
pAB ®p pBCc — pac can be interpreted as implementing the renormalization of a pair of concatenated
string-like excitations. Identity 1-morphisms and unitors are defined analoguously to Bdryg:. Similarly,
the 1-associator for a triple of 1-morphisms pap, pac, pop in the appropriate hom-categories is given
by the intertwiner isomorphism ®$PABPBCPCD : (pap Qp ppce) @c pep — paB 8 (PBC ®c pep), as
described explicitly in sec. 5.2.

It is well-known that, given a lattice Hamiltonian realisation of (2+1)d Dijkgraaf-Witten theory with
input data (G, «), algebraic properties of the (bulk) anyonic excitations can be encoded into the centre
Z(Vecg:) of the fusion category Vecg:, this centre being in particular a braided monoidal category.
The objects of Z(Vecg) are interpreted as the elementary excitations of the model, or anyons, and
the morphisms implement space-time processes of such anyons. The monoidal structure describes
the fusion and splitting processes of the excitations, whereas the braiding structure encodes their
exchange statistics. Recently, Kong et al. studied in [54] the analogue of this result in (3+1)d.
The relevant category theoretical structure in (3+1)d being the monoidal bicategory 2Vecs, they
computed the braided monoidal bicategory Z(2Vecf) obtained as the categorified centre of 2Vecf,

1 Recall that AG refers to the loop groupoid of the group G treated as a one-object groupoid (see sec. 4).



arguing that such a bicategory should describe string-like excitations and their statistics in (34+1)d
gauge models. More specifically, they demonstrated that as a bicategory Z(2Vecs) is equivalent to the
bicategory MOD(Vec A(”)). Using this equivalence, they suggested that objects of Z(2Vecf) could be
interpreted as string-like topological excitations, 1-morphisms as particle-like topological excitations,
and 2-morphisms as instantons. Relating this bicategory to the boundary tube algebra in (3+1)d, we
shall argue that objects of Z(2Vecs;) should be interpreted as boundary conditions for the endpoints
of a string-like excitation—such a boundary condition specifying in particular allowed fluxes for the
excitation—the 1-morphisms as quantum numbers associated with string-like topological excitations
that are constrained by a choice of endpoints boundary conditions, and 2-morphisms as implementing
the renormalisation of concatenated string-like excitations.

In order to establish the interpretation spelt out above, we begin by showing that 2Bdryg, is
equivalent as a bicategory to a full sub-bicategory OI\/IOD(VecXg)) of MOD(Vec/T\g)). Our argument
mirrors the equivalence of bicategories Bdryg ~ MOD(Vecg) established in sec. 6.7. Utilising prop. 6.1,
we know that, up to equivalence, all Vecxg)—module categories can be expressed as the category of
module objects for an algebra object in Vec A( ), Moreover, we established in sec. 6.4 that all such
algebra objects were indexed by (AG,T(m))-subgroupoids, as defined in sec. 4.3. Given the data
(A, \) of gapped boundary condition in (34+1)d, we explained in sec. 4 that the loop groupoid AA
together with the groupoid 2-cochain T(\) defines such a (AG, T(n))-subgroupoid. Henceforth, we
shall refer to groupoids of this form as 9(AG, T(n))-subgroupoids. In this vein, we define the bicat-
egory 0MOD(Vec A(W)) as the full sub-bicategory of I\/IOD(VecT(ﬁ)) whose objects are Vecxg)—module
categorles mduced from 8(AG, T(7))-subgroupoids, and hom-categories are the corresponding ones in
MOD(Vec AC ) Similarly, we define dsAlg(Vec A(G)) as the full sub-bicategory of sAlg(Vec A(”)) whose
objects are algebra objects in Vec A(W) of the form AAv(y), and hom-categories are the corresponding

T(m)

categories of bimodule objects in Vec, »’. Mimicking our proof of the equivalence Bdry¢; ~ sAlg(Vecg),

we can show the equivalence between 2Bdryg and dsAlg(Vec A(”))

on the isomorphism (C[A(GAB)]TE:;T(M) = (C[AGAAAB]ﬂAAAB ~ (C[AGAAAB]WAAAB of twisted relative
groupoid algebras, which is realised by an obvious generalisation of (6.54). Utilising the proof of

prop. 6.1, it follows that dsAlg(Vecg) ~ 8MOD(VecXg))7 hence establishing the equivalence

This equivalence relies in particular

2BdryZ, ~ dMOD (Vec) 7)) . (6.68)

Let us now explain how we can generalise our approach so as to obtain the bicategory MOD(VecT(7T))7
which we recall was shown to be equivalent to Z(2Vec). When considering the boundary tube algebra
for the (3+1)d gauge models in sec. 4, we could have allowed for a larger spectrum of boundary
colourings beyond the ones inherited from the gapped boundary conditions. More specifically, we
could have considered G-colourings that are provided by morphisms in any (AG, T())-subgroupoid
(X, ¢) such that d®¢ = T(r)3'. Given a pair of (AG, T(r))-subgroupoids (X, ) and (V,v), we
could have then considered G-coloured graph-states of the form

0 1 1

v2 > (6.69)




where we borrowed the notation from sec. 4 and
I= 1o 5 25' € Hom(X), 9=y RAN vyt € Hom(Y) , g%, € Hom(AGxy) ,

such that AGyy denotes the relative groupoid over AG defined by X and Y. In this setting, there

exists a natural multiplication of such boundary tubes defining an algebra isomorphic to the twisted

groupoid algebra C[AG Xy];(;). Letting Stringe, denote the bicategory defined in the same manner as

2Bdry with objects all (AG, T(m))-subgroupoids and hom-categories
Homsuings, (X, ), (V,1)) = Mod(C[AGxy] (") . (6.70)
we obtain the following equivalence of bicategories:
String ~ MOD(Vec/T\g)) . (6.71)

Utilising this equivalence of bicategories, together with the physical interpretation inherited from the
tube algebra approach, we interpret the Vecz(g)—module category Mod,, (Xy) for a (AG,T(m))-
subgroupoid (X, ¢) as the 2-Hilbert space [71] of boundary conditions that appear at the endpoint
of a string-like (bulk) excitation. As before, 1-morphisms are naturally interpreted as the quantum

T(m)
&ra

numbers of string-like excitations.

. . . T(m)
The motivation for calling Vec,

-module categories Mod,,_r(x) (Xy) 2-Hilbert spaces is as follows.
In finite-dimensional quantum mechanics, given a finite set X of classical field configurations, the cor-
responding Hilbert space H[X] is given by the free vector space of functions f : X — C. Categorifying
the set of classical field configurations to a groupoid G, whose objects correspond to classical field
configurations and morphisms, the symmetries of the field configurations. The category [G, Vec]?® of
(weak) functors F' : G — Vec for [§] € H?(G,U(1)) provides a natural categorification of H[X] which
defines a finite 2-vector space (see sec. 6.8). The category [G,Vec]® can then be shown to admit a

categorification of the inner-product of finite Hilbert spaces given by the hom-functor
(=, =) : (|G, Vec]®)°P K [G, Vec]® — Vec . (6.72)

Recalling that Mod,, 1 (X,) is defined by a category of weak functors from a groupoid to Vec, the
AG
term 2-Hilbert space seems most appropriate.

We conclude this section by showing that, in general, objects in aMOD(Vech)) are not indecomposable

as Veclg)—module categories. For convenience, we shall focus on the limiting case where the group G is
abelian, but our analysis can be extended to the non-abelian scenario. Analogously to indecomposable
modules over an algebra, an indecomposable module category is a module category which is not

equivalent to the direct sum of non-zero module categories. Using the equivalence between Veclg)—
module categories and the categories of module objects for a separable algebra object in Veclg), we

have that a Vec/T\(g;)—module category is indecomposable if only if the corresponding algebra object is
not Morita equivalent to a direct sum of non-zero algebra objects. Given a (3+1)d gauge model with
input data (G, ), and a choice of gapped boundary condition (A,\), an algebra object AAr(y in

Vecxg) naturally decomposes as a direct sum via

Aoy = DA (6.73)
acA



where AA, denotes the groupoid with unique object a € A and set of morphisms {a a—/> atvarca- The
2-cochain T,(\) € C?(AA%,U(1)) is then given by the restriction of T(\) € C*(AA,U(1)) to AA,.
This decomposition yields

Modyren (Adr(y)) = 63 Mod, rcr) (Ada)T, () (6.74)

as Veclg)-module categories, so that the category of module objects is not indecomposable as a

module category unless A = 1¢ is the trivial subgroup of G. Generically, for possibly non-abelian G
an indecomposable Veclg)—module category can be specified by a triple (O, H, ¢) , where O denotes
a conjugacy class of G, H is a subgroup of the centralizer Z,, C G for a representative o; € O, and
¢ € C?(H,U(1)) is 2-cochain satisfying d® ¢ = T(7)|y [54]. The corresponding algebra object is then
given by (Ho, )¢, , where H,, denotes the groupoid with unique object o1 € O and hom-set {h : 01 —
01}v hen with composition given by multiplication in H, and the 2-cochain ¢,, € C%(H,,,U(1)) is
defined by the relation ¢,, (h: 01 — 01,h' : 01 — 01) := ¢(h, 1) for all h, ' € H.

SECTION 7
Discussion

Gapped boundaries of topological models have been under scrutiny in the past years. Focusing on
lattice Hamiltonian realisations of Dijkgraaf-Witten theory, a.k.a gauge models of topological phases,
we studied gapped boundaries and their excitations in (241)d and (341)d. More specifically, the goal
of this paper was two-fold: Apply the tube algebra approach to classify gapped boundary excitations
and, using these results, elucidate the higher-category theoretical formalism relevant to describe gapped
boundaries in (3+1)d.

As explained in detail in [33], local operators of lattice Hamiltonian realisations of Dijkgraaf-Witten
theory can be conveniently expressed in terms of the partition function of the theory applied to so-
called pinched interval cobordisms. We introduced a generalisation of the Dijkgraaf-Witten partition
function, from which the gapped boundary Hamiltonian operators could be defined in analogy with the
bulk Hamiltonian operators using the language of relative pinched interval cobordisms. Given gapped
boundaries labelled by subgroups of the input group and cochains compatible with the input cocycle,
we applied the tube algebra approach in order to reveal the algebraic structure underlying two types of
excitations: (i) Point-like excitations at the interface of two gapped boundaries in (24+1)d, where the
‘tube’ has the topology of I x I, and (i) string-like (bulk) excitations terminating at point-like gapped
boundary excitations, where the ‘tube’ has the topology of (S! x I) x I. Crucially, both tube algebras
can be related via a lifting (or dimensional reduction) argument, and as such can be studied in parallel.
This statement was formalised using the notion of relative groupoid algebra. When applied to the
input group treated as a one-object groupoid, this notion yields the (2+1)d tube algebra, whereas
it yields the (3+1)d tube algebra when applied to the loop groupoid of the group. We subsequently
studied the representation theory of the (3+1)d tube algebra in full detail, which encompasses the
(241)d one as a limiting case, deriving the irreducible representations as well as the corresponding
recoupling theory.

In the second part of this manuscript, we reformulated the previous statements in category theo-
retical terms. In (2+1)d, the relevant notion to describe gapped boundaries and their excitations is the
bicategory MOD(Vecg:) of module categories over the category Vecg of group-graded vector spaces.
In practice, a module category can be obtained as a category of modules over an algebra object in
the input category. The bicategory of module categories above can then be shown to be equivalent



to a bicategory of separable algebra objects, such that objects correspond to the gapped boundary
conditions and morphisms to representations of a groupoid algebra isomorphic to the (2+1)d tube
algebra. The identification with the tube algebra allowed us to elucidate the physical interpretation
of the category theoretical notions at play. Mimicking this (241)d construction, we further defined
a bicategory that encodes the string-like excitations terminating at point-like excitations on gapped
boundaries and found that is was equivalent to a sub-bicategory of the bicategory MOD(VecX(GW)) of
modules categories over the category Vecxg) of loop-groupoid-graded vector spaces. Comparing with
the work of Kong et al. [54], MOD(Vech)) is equivalent to the higher categorical centre Z(2Vecg) of
the category 2Vecs, of G-graded 2-vector spaces, which is the input category of (3+1)d gauge models.
In virtue of the physical interpretation inherited from the tube algebra approach, we thus suggested
that Z(2Vecy,) describes dyonic bulk string-like excitations whose end-points are pinned to the bound-
ary of the spatial manifold. This is the higher-dimensional analogue of the well-known statement that
bulk point-like excitations in (2+1)d are described by the centre Z(Vecg:) of the input category.

The distinction between the gapped boundary string-like excitations we focused on, and the more
general ones encoded in the centre Z(2Vec(;) can be appreciated from an extended TQFT point of
view. We should think of Z(2Vecs) as describing the object the extended 4-3-2-1 Dijkgraaf-Witten
TQFT assigns to the circle. It follows from our analysis that such extended TQFT is more general
than what gapped boundary conditions provide. Working out the details of this more general scenario
will be the purpose of another paper.

The study carried out in this manuscript can be generalized in several ways. First of all, we could
study gapped domains walls instead of gapped boundaries and consider string-like excitations that
terminate at gapped domains walls point-like excitations. In (2+1)d, the so-called folding trick can be
used in order to map a gapped domain wall configuration to a gapped boundary one. It would certainly
be interesting to consider how this generalizes in higher dimensions. Once this more general scenario
is well-understood, we could then apply our results to so-called fracton models, which were recently
suggested in [72-74] to have an interpretation in terms of defect TQFTs. A related question would
be to study invertible domain walls such as duality defects and derive the underlying mathematical
structure in category theoretical terms.

Another follow-up work pertains to the relation between the string-like excitations as described
by Z(2Vec(;) and the loop-like excitations of the model. In a recent paper [33], the authors showed
that loop-like excitations and their statistics were captured by the category of modules over the so-
called twisted quantum triple algebra. This algebra can be expressed as the twisted groupoid algebra
(C[AQG]TQ(”) of the loop groupoid of the loop groupoid of G. In comparison, recall that the twisted
quantum double is isomorphic to C[AG]T(Q) in this language. This groupoid algebra was shown
by the authors to be isomorphic to the tube algebra associated with the manifold T? x I, a local
neighbourhood of a loop-like object being a solid torus. Intuitively, we may expect loop-like excitations
to descend from the string-like ones via a tracing mechanism. This can be formalized using the notion
of categorical trace, building upon the fact that it maps a module category over Vecs to a module over
C[AG] [60, 75]. Another way to establish the connection between string-like and loop-like excitations
consists in first realising that, as braided monoidal categories, we have the equivalences Z (Vecxg)) o~
Mod(C[A2G]T" (™)) and Z(Vecxg)) o~ Dim(MOD(VecXg))), where Dim denotes the dimension of a
bicategory [60, 76] obtained via an appropriate categorification of the dimension of a vector space.
The details of this correspondence will be presented in a forthcoming paper [77].



Acknowledgments

CD would like to thank David Aasen and Dominic Williamson for very useful discussions on closely
related topics. CD is funded by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme through the ERC Starting Grant WASCOSYS
(No. 636201) and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy — EXC-2111 — 390814868. AB is funded by the EPSRC doctoral prize
fellowship scheme.



APPENDIX A

Representation theory of the relative groupoid algebra

In this appendiz, we collect the proofs of several important results of the representation theory of the
relative groupoid algebra C[A(Gap)]3,,-

A.1 Proof of the orthogonality relations (5.12)

Let us confirm that the representation matrices as defined in (5.8) satisfy the orthogonality relation
(5.12):

1 .
g L 2 Pt (ls—=) D7 (Js )
Q%EA(GAB)
1 Jo P (p7 apmllqz baj, a5 ") LTI
= W . Z 69’01' 5(17195,0]' 19 (AB) a q ) Dgn( q[lbqj >)
g—EA(GaB) ¢
b AB) —
e o)
X Bg.0/ Oa-tgb.of e Dot
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; m AB
b
1 - , 6 ’ 5 , /(5 s ’
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| OABl (a,b)GZoAB pan

where we first expanded the representation matrices according to definition (5.8) and then used the

orthogonality of the irreducible representation in Zp ,, together with the relation |Zop , .| - |Oag| =
[AllB.

A.2 Proof of the invariance property (5.28)

Let us prove the invariance property (5.28), which we reproduce below for convenience
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Let us consider the left-hand side of (A.1). In virtue of the gauge invariance (5.27) of the Clebsch-
Gordan coefficients, this is equal to

Lhs(A) = Y 3 DpEy (o)) Dree s, (o2 = ) D5, (l9s—5)
g€Hom(s(a),s(t)) {J,K}

X (D58 s @8 D5, ) (850 ) D e (J50)) [0 e [
“ 2 S D (e )P e )P (s )
Q}GOb(A(GAB)) {J,K}
e, () Dy (o) P (b )
S S AN

where we applied the definitions of the truncated tensor product ® g and the comultiplication map
Ap. Using

a

. 1 L L a!
Pherac 882 =2)) = Sacaoy oo PRt (B a1 =50))
9795 (@a=*c,e)

al

together with the fact that the representation matrices define algebra homomorphisms yields
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Finally, using d(2)19/g\;AC)(ﬁ, a t,d|c, i, ) =1, we obtain
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which is the right-hand side of (A.1), as expected. Note that the above is true for every morphism
a,c.



A.3 Proof of the defining relation of the 6j-symbols

In this appendix, we confirm the definition of the 6j-symbols

{PABPBCPCD},? ]'
PADPACPBD [

PABPBC
d O‘(OiABvochvoiCD) {IAB Isc
PAD {1}

PAC | |PACPCD
Iac | |1acIcp
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PAD | [PBCPCD
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PBD]
Igp |’
such that they satisfy the relation
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(A.2)

Inserting the definition of the 6j-symbols into equation (A.2) and writing down explicitly the action
of ® 4pcp using (5.8), we find that the left-hand side is equal to
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The defining relation of the Clebsch-Gordan coefficients yields
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where the second sum is over g1 € Ob(A(Gag)), g2 € Ob(A(Ggc)), 91 € Ob(A(Gac)), g5 €
Ob(A(G¢p)) and the corresponding morphisms, which we loosely identify with the group variables
they are characterized by. Furthermore, we have that
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where we made use of the orthogonality relation (5.12) so that
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Putting everything together so far, we obtain
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In virtue of the definition of the representation matrices, we observe that we must have o; ,,, = a~'g1b,
Oipe = b7lgac, 050, = ¢ 1ghd, 0j,, = 01, 0,0 = 02 and 0., = g5 in order for the whole expression
not to vanish. Applying the quasi-coassociativity condition
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Let us now insert the resolution of the identity
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where h and b’ are implicitly identified via the algebra product. As a special case of (5.28), we have
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We can finally use the gauge invariance of the Clebsch-Gordan coefficients
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so as to yield (A.2) as expected.

A.4 Proof of the pentagon identity

As explained in the main text, the pentagon identity is the statement that the algebra elements

[((d®@id® Ap)(®apcr)] *[(Ap @id ®@id)(Pacpr)]

and

(1ap ® Ppepr) * [(id ® Ac ®1d)(PappE)] * (Papep ® 1pE)

induce the same isomorphism on the four-particle vector space ((V,,; @B Vope) @c Voen) @0 Vop -
In light of the definition of the truncated tensor product of vector spaces, this can be demonstrated
explicitly by showing the equality:
(1ap ® ®pepr) *x [(Id® Ac ®id)(Pappr)] * (Pasep ® 1pE) * L(aB)c)D)E
= [([d®id ® Ap)(Papce)] * [(Ap ®id ® id)(Pacpe)] * L((aB)c)D)E (A7)

where we defined
]l(((AB)C)D)E = [(AB & ld) o (AC ® ld) o AD](]]-AE) .

Writing down explicitly the definition of the comultiplication maps, we have
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and
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Applying the definition of the algebra product, we then obtain

((d®id® Ap)(Papcr)] * [(Ap ®id ®id)(PacpE)]
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It remains to multiply both expression from the right by 1((ap)c)p)e- First, we compute the right-and
side of (A.7):
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1c,0,1k (93794) CC,D’,]IE (930737194)
as well as the quasi-coassociativity conditions
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and

A(CDE A(BCE
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yields
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Let us repeat the same procedure in order to compute the left-hand side of (A.7):
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Using the cocycle relation
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9as” (15, ble, ) 9517 (e, ¢ [1p,0) _ Covord ><gz,ga>
A(BD (BCD
Yasms (Ls,b[Lp,0) 0P (420 S (g )
as well as the quasi-coassociativity conditions
A(BCD _ A(ABD
Covry 7 (gac, ¢ 193)C]1f,,aa (91, 9205) _ (g1, g2¢, ¢ 'g3)
Clll\,gl,éxcca (g192¢, ¢~ 193)C]1A oo/ g1, g2¢) @10, b7 goce’, el g30)
and
A(BCD
b, (cc’ » )(92,93) CnA b,0 )(91,9293) _ (g1, 92, 93)
A(AC = -1 -
G (0102, 05) (0D (g1,92)  @lenb b gacd’ e lgg0)
yields
A(ADE A
Lhs(AL7) = 1 Z Cl,ﬂ,a,l,ﬂ)(glgzgsvm)Cl,ﬁ’ca (g1 gz,gs)Ch b.c P (g1, g2)
|B|IC||D] a(g1, 02, 93) (g1, 9203, 04) (g2, 03, 94)
{a}
b,c,d

x|o =) @ le ) oo ) ©lu)

The equality between L.h.s(A.7) and r.h.s(A.7) finally follows from the groupoid 3-cocycle condition
d® o = 1, hence the pentagon identity.



APPENDIX B
Canonical basis for boundary excitations in (241)d

In this appendix, we collect the proofs of some properties crucial to the definition of the canonical basis
presented in sec. 5.5.

B.1 Proof of the canonical algebra product (5.50)

Using transformations (5.46) and (5.47), as well as the definition of the x-product, we have
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But by linearity of the representation matrices, we have
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Orthogonality of the representation matrices finally yields the desired expression
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B.2 Ground state projector on the annulus

Let us evaluate the quantity

ﬁ Z g;; (lg) " xlg) *la—) ) o (B.3)
(a b)GAxB(a b)EAXB
and confirm that it is equal to Pg, as defined in (5.58). By direct computation, we have
|95 ) %[5 ) = G010 9% (0, b, D) 925 ) (B.4)
and
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so that
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g 7 i
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Using the groupoid cocycle condition d(2)19‘g‘“3((~1,(1_1,ad|1~)7 B_l,bi)) and performing the summations
finally yield the desired result.
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B.3 Proof of the diagonalisation property (5.69)

Given the action of the Hamiltonian projector (5.67) on Y, we show that the basis states defined as

|paBlap,peciIpe, paclac)ya

DPAB a pPBC b’ PABPBC

Z Z JABIAB 1T>>) DJBCIBC(|g2T>>) [JABJBC

91,92€G {J}
a,a’€A
b,b'eB
c,c'eC

D5 (20 =)

X |g1,a,b,92,b",c,a’, )y,
satisfy the relation
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By direct computation, we have
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Using the invariance property (5.29) of the Clebsch-Gordan series, we can rewrite the previous quantity
as
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Let us now use the fact that
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as well as the groupoid cocycle conditions
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Performing a simple relabelling of summation variables, we then obtain
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Moreover, let us notice that (5.29) induces
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A final relabelling of summation variables yields the desired result.
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