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We study lattice Hamiltonian realisations of (3+1)d Dijkgraaf-Witten theory with gapped bound-

aries. In addition to the bulk loop-like excitations, the Hamiltonian yields bulk dyonic string-like

excitations that terminate at gapped boundaries. Using a tube algebra approach, we classify such ex-

citations and derive the corresponding representation theory. Via a dimensional reduction argument,

we relate this tube algebra to that describing (2+1)d boundary point-like excitations at interfaces

between two gapped boundaries. Such point-like excitations are well known to be encoded into a

bicategory of module categories over the input fusion category. Exploiting this correspondence, we

define a bicategory that encodes the string-like excitations ending at gapped boundaries, showing that

it is a sub-bicategory of the centre of the input bicategory of group-graded 2-vector spaces. In the

process, we explain how gapped boundaries in (3+1)d can be labelled by so-called pseudo-algebra

objects over this input bicategory.
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SECTION 1

Introduction

A prominent class of gapped quantum phases of matter are given by so-called topological phases

of matter. Such phases can be defined as equivalence classes of gapped quantum models whose low-

energy effective descriptions realise topological quantum field theories (TQFTs) [1]. In (2+1)d, spherical

fusion categories can be used to define a state-sum TQFT known as the Turaev-Viro-Barrett-Westbury

TQFT [2, 3]. Given such data, one can define an exactly solvable Hamiltonian model on a closed

manifold, in a canonical manner, that describes non-chiral topological phases in (2+1)d [4–6]. Such

models support topological excitations referred to as anyons, which display exotic braiding and fusion

statistics. Topological excitations are typically described via the so-called Drinfel’d center of the

input spherical fusion category [7]. For any spherical fusion category, the center construction defines

a modular tensor category, which is widely accepted as being the right classification tool for anyons

in (2+1)d [8, 9].

Given an open manifold, it is often possible to extend the lattice Hamiltonian to the boundary,

while preserving the gap. Equivalence classes of such extensions define the notion of gapped bound-

aries, which realise anomalous TQFTs. These are found to be described by indecomposable module

categories over the input spherical category. Furthermore, boundary Hamiltonians yield point-like

excitations that can be classified through the language of module category functors [10]. Domain walls

between distinct topological phases can be considered in a similar fashion. By iterating the procedure,

it is possible to further extend such models to interfaces between different gapped boundaries. The

corresponding zero-dimensional Hamiltonians yield point-like excitations in their own right. These

different settings have received a lot of attention in recent years within the topological order commu-

nity [10–20], partly due to their application to the field of topological quantum computation [16, 21].

Mathematically, these fit in the wider topic of defect TQFTs [22–29].

Despite tremendous progress in our understanding of (2+1)d topological models, a lot of questions

remain open regarding generalizations to higher dimensions. It is expected that topological models

in (3+1)d should take as input a spherical fusion bicategory. Although the precise definition of such

notion remains partly elusive, a compelling definition has been recently put forward by Douglas et al.

in [30]. In this manuscript, the authors show that their definition encompasses a large class of four-

dimensional state-sum invariants. Ultimately, we would like to derive properties of (3+1)d topological

models within this general higher category theoretical framework, which is admittedly tantalizing but

difficult. In order to make progress in this direction, we decide to focus on so-called gauge models

of topological phases, i.e. models that have a lattice gauge theory interpretation [8, 31–33]. These

models are interesting for diverse reasons. Technically, they are particularly manageable allowing to

carry out computations in full detail, and they are easily definable in any dimensions. Physically, they

happen to be extremely relevant in (3+1)d as they seem to encapsulate a large class of Bosonic models

displaying topological order [34–37].

In (2+1)d, topological gauge models are obtained by choosing as input the category of G-graded

vector spaces, withG a finite group and monoidal structure twisted by a cohomology class inH3(G,U(1)).

The corresponding state-sum invariant is referred to as the Dijkgraaf-Witten invariant [38]. In this

context, (bulk) anyonic excitations are described in terms of the so-called twisted quantum double of

the group, whose irreducible representations provide the simple objects of the Drinfel’d centre of the

category of G-graded vector spaces [39, 40]. Gapped boundaries are found to be labelled by a simple

set of data, namely a subgroup of the input group and a 2-cochain that is compatible with the input

3-cocycle [14, 41], and their excitations have been considered for instance in [16, 18, 29, 42, 43].
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More generally, given a closed (d+1)-manifold, the input data of Dijkgraaf-Witten theory is a

finite group G and a cohomology class [ω] ∈ Hd+1(G,U(1)). It is always possible to define a lattice

Hamiltonian realization of the theory on a d-dimensional hypersurface Σ, such that the ground state

subspace of the model is provided by the image of the partition function assigned to the cobordism

Σ×[0, 1]. In (3+1)d, the resulting gauge models are known to yield loop-like excitations, i.e. excitations

with the topology of a circle. In general such a loop-like excitation corresponds to a loop-like magnetic

flux to which a point-like charge is attached, while being threaded by an auxiliary flux. This threading

flux plays a crucial role as it can constrain the quantum numbers associated with the other flux and

the charge. In [33, 44], their classification and statistics were found to be described in terms of the

so-called twisted quantum triple of the group, which is a natural extension of the twisted quantum

double. Although a general theory of gapped boundaries in (3+1)d is still lacking, examples have

already been proposed in the case of topological gauge models [15, 20]. These are labelled by a set of

data akin to (2+1)d, namely a subgroup of the input group and a 3-cochain compatible with the input

4-cocycle. The main objective of our manuscript is to study excitations for such gapped boundaries

in (3+1)d.

In order to reveal the algebraic structure underlying the bulk excitations in arbitrary spatial

dimension, several strategies exist. Our focus is on the so-called tube algebra approach [5, 33, 42, 44–

48], which is a generalization of Ocneanu’s tube algebra [49, 50]. In general, the ‘tube’ refers to

the manifold ∂Σ × [0, 1], where ∂Σ is the boundary left by removing a regular neighbourhood of

the excitation in question, and the ‘algebra’ to an algebraic extension of the gluing operation (∂Σ ×
[0, 1]) ∪∂Σ (∂Σ × [0, 1]) ' (∂Σ × [0, 1]) to the Hilbert space of states on the tube. For instance,

the twisted quantum double and the twisted quantum triple are found to be isomorphic to the tube

algebras associated with the manifolds S1× [0, 1] and T2× [0, 1], respectively. This approach relies on

the fact that properties of a given excitation are encoded into the boundary conditions that the model

assigns to the boundary ∂Σ [33]. This strategy has been extensively applied to general two-dimensional

models, and more recently to gauge and higher gauge models in three dimensions [33, 48].

The tube algebra approach can be adapted in order to study excitations on defects and gapped

boundaries, and has been employed in some specific cases in [10, 42, 43, 51]. In this context, the

tube possesses two kinds of boundary: a physical gapped boundary that corresponds to the one of

the spatial manifold, and a boundary obtained by removing a local neighbourhood of an excitation

incident on the boundary of the spatial manifold. Although, the method is very general and could be

used to study any pattern of excitations in (3+1)d, we shall focus on a specific configuration, namely

bulk string-like excitations that terminate at gapped boundaries. There are several motivations to

consider these specific excitations. The first one is that, due to the topology of the problem, we can

relate the corresponding tube algebra to the one relevant to the study of point-like excitations at

the zero-dimensional interface of two gapped boundaries in (2+1)d. This is a generalization of what

happens in the bulk, where upon dimensional reduction, bulk loop-like excitations can be treated as

point-like anyons [52, 53]. In [33], this mechanism was made precise in terms of so-called lifted models,

where we showed that higher-dimensional tube algebras could be recast in terms of lower-dimensional

analogues using the language of loop groupoids. We generalize these techniques in this manuscript

by introducing the notion of relative groupoid algebras, which we use to unify both the (2+1)d and

(3+1)d tube algebras.

Although this correspondence between two seemingly very different types of excitations is interest-

ing per se, it turns out to be a precious technical tool. Indeed, since it allows us to recast the (3+1)d

tube algebra as a (2+1)d one, we can use the (2+1)d scenario, which is easier to visualise and intuit,

as a guideline for the more complex (3+1)d case. Using this framework, we derive the irreducible

∼ 3 ∼



representations of the (3+1)d tube algebra, which classify the elementary string-like excitations whose

endpoints lie on gapped boundaries. We further define a notion of tensor product that encodes the

concatenation of these excitations, and compute the Clebsch-Gordan series compatible with this tensor

product. Moreover, we find the 6j-symbols that ensure the quasi-coassociativity of this tensor product.

All these mathematical notions can then be put to use in order to define canonical bases of ground

states or excited states in the presence of gapped boundaries.

The second reason we decide to focus on such open string-like excitations pertains to category

theory. The same way the relevant category theoretical data to describe gauge models in (2+1)d

is the category of G-graded vector spaces, the one relevant to describe (3+1)d gauge models is the

bicategory of G-graded 2-vector spaces. In a recent work [54], Kong et al. applied the generalised

centre construction to this bicategory and demonstrated that the result was given by the bicategory

of module categories over the multi-fusion category of loop-groupoid-graded vector spaces. This is a

categorification of the well-know result that the centre of the category of group-graded vector spaces

can be described as the category of modules for the loop-groupoid algebra [55]. The latter relation

can be appreciated from the point of view of the tube algebra approach, which we use to argue that

the centre of the bicategory of G-graded 2-vector spaces describes string-like excitations together with

boundary conditions for the string endpoints.

In order to prove this statement, we construct explicitly the bicategory of module categories

over the multi-fusion category of groupoid-graded vector spaces. To do so, we rely on the familiar

correspondence between indecomposable module categories and category of module over algebra objects

[56–58]. When applied to the group treated as a one-object groupoid, this provides a description for

(2+1)d point-like excitations at the interface between two gapped boundaries. When applied to

the loop-groupoid of the group, we demonstrate that it describes the string-like excitations and their

endpoints boundary conditions, which string-like excitations ending at gapped boundaries is a subclass

of.

Organisation of the paper

In sec. 2 we review the construction of the lattice Hamiltonian realization of Dijkgraf-Witten theory in

any spatial dimension. We then describe an extension of the Hamiltonian model to introduce gapped

boundary conditions. In the subsequent discussion, we apply the tube algebra approach to point-

like excitations at the interface of two one-dimensional gapped boundaries in sec. 3. In sec. 4, we

consider string-like bulk excitations that terminate at gapped boundaries and apply the tube algebra

approach to this scenario. We also introduce in this section the notion of relative groupoid algebra

that unifies the (2+1)d and (3+1)d computations. The representation theory of the tube algebras is

presented in full detail in sec. 5. Finally, the category theoretical structures capturing the properties

of boundary excitations in (2+1)d and (3+1)d are developed in sec. 6. The correspondence with the

centre construction of the bicategory of group-graded 2-vector spaces is also established in this section.
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SECTION 2

Dijkgraaf-Witten Hamiltonian Model

In this section, we first review the definition of the Dijkgraaf-Witten theory and the construction of its

Hamiltonian realisation. We then generalise the construction to include gapped boundaries.

2.1 Partition function

The input for the (d+1)-dimensional Dijkgraaf-Witten theory is given by a pair (G, [ω]) where G is

a finite group and [ω] ∈ Hd+1(G,U(1)) is a (d+1)-cohomology class.1 Given a closed manifold, this

theory can be conveniently expressed as a sigma model with target space the classifying space BG

of the group G. In order to extend the definition of the partition function to open manifolds, it is

necessary to endow the manifold with a triangulation, in which case the partition function is obtained

by summing over G-labellings of the 1-simplices that satisfy compatibility constraints. Ultimately, we

are interested in lattice Hamiltonian realisations of such theory, for which we need the expression of

the partition function that the Dijkgraaf-Witten theory assigns to a special class of open manifolds

referred to as pinched interval cobordisms. We shall directly define the partition function for this

special class of manifolds. Details regarding more basic aspects of this theory can be found in [33, 38].

Let Ξ be a compact, oriented d-manifold with a possibly non-empty boundary. We define the

pinched interval cobordism Ξ×p I over Ξ as the quotient manifold

Ξ×p I ≡ Ξ× I / ∼ , (2.1)

where I ≡ [0, 1] denotes the unit interval, and the equivalence relation ∼ is such that (x, i) ∼ (x, i′),

for all (x, i), (x, i′) ∈ ∂Ξ× I. By definition, we have ∂(Ξ×p I) = Ξ ∪∂Ξ Ξ and Ξ ∩ Ξ = ∂Ξ, where Ξ is

the manifold Ξ with reversed orientation. In contrast, the boundary of the interval cobordism Ξ × I
over Ξ reads ∂(Ξ× I) = Ξ ∪ Ξ ∪ (∂Ξ× I). To illustrate this distinction, we can consider the following

simple examples:

[0, 1]×p [0, 1] = , [0, 1]× [0, 1] = .

Naturally, if ∂Ξ = ∅, then we have the identification Ξ×p I = Ξ× I.
In order to define the Dijkgraaf-Witten partition function, we shall further require our pinched

interval (spacetime) manifold be equipped with a choice of triangulation, i.e. a ∆-complex whose geo-

metric realisation is homeomorphic to the manifold. We shall further assume that every triangulation

has a chosen total ordering of its 0-simplices (vertices), referred to as a branching structure. A choice

of branching structure for a triangulation naturally encodes the structure of a directed graph on the

corresponding one-skeleton. By convention, we choose the 1-simplices (edges) to be directed from the

lowest ordered vertex to the highest ordered vertex. Given a compact, oriented d-manifold Ξ, we notate

a triangulation of the pinched interval cobordism Ξ×p I by 4′Ξ4, such that ∂(4′Ξ4) = Ξ4∪∂Ξ4′ Ξ4′ ,

where Ξ4 and Ξ4′ denote two possibly different triangulations of Ξ. Let us remark that by definition,

we have ∂(Ξ4) = ∂(Ξ4′).

Let Ξ×p I be a (d+1)-dimensional pinched interval cobordism endowed with a triangulation 4′Ξ4.

We define a G-colouring of 4′Ξ4 as an assignment of group elements gvivj ∈ G to every oriented 1-

simplex (vivj) ⊂ 4′Ξ4, with vi < vj , such that for every 2-simplex (vivjvk) ⊂ 4′Ξ4, with vi <

1Here U(1) denotes the circle group as a G-module with action . : G×U(1)→ U(1) given by g . u = u for all g ∈ G

and u ∈ U(1).
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vj < vk, the condition gvivjgvjvk = gvivk is satisfied. The set of G-colourings on 4′Ξ4 is notated by

Col(4′Ξ4, G). Given a G-colouring g ∈ Col(4′Ξ4, G) and an n-simplex 4(n) = (v0v1 . . . vn) ⊂ 4′Ξ4,

we denote by g[v0v1 . . . vn] ≡ (gv0v1
, . . . , gvn−1vn) ∈ Gn, the n group elements specifying the restriction

of g to a G-colouring of (v0v1 . . . vn). Using this notation, we further define the evaluation of a

(d+1)-cocycle ω ∈ Zd+1(G,U(1)) on a G-colouring g ∈ Col(4′Ξ4, G) restricted to a (d+1)-simplex

(v0 . . . vd+1) ⊂ 4′Ξ4 as

ω(g[v0 . . . vd+1]) ≡ ω(gv0v1
, . . . , gvdvd+1

) .

Equipped with the above, let us now define the partition function that the (d+1)-dimensional Dijkgraaf-

Witten theory assigns to a given pinched interval cobordism. Letting Ξ be a compact, oriented d-

manifold and 4′Ξ4 a triangulation of Ξ×p I, the partition function defines a linear operator

ZGω [4′Ξ4] : HGω [Ξ4]→ HGω [Ξ4′ ] ,

where the Hilbert spaces HGω [Ξ4] and HGω [Ξ4′ ] are defined according to

HGω [Ξ∗] ≡
⊗

4(1)⊂Ξ∗

C[G] . (2.2)

In the equation above, the tensor product is over all 1-simplices4(1) in the corresponding triangulation,

and C[G] denotes the Hilbert space spanned by {|g〉}∀ g∈G with inner product 〈g|h〉 = δg,h, ∀ g, h ∈ G.

Explicitly, the linear operator ZGω [4′Ξ4] reads

ZGω [4′Ξ4] ≡ 1

|G|#(4′Ξ4)

∑
g∈Col(4′Ξ4,G)

∏
4(d+1)⊂4′Ξ4

ω(g[4(d+1)])ε(4
(d+1))

⊗
4(1)⊂Ξ4′

|g[4(1)]〉
⊗

4(1)⊂Ξ4

〈g[4(1)]| ,

where #(4′Ξ4) := |4′Ξ4(0)| − 1
2 |∂4′Ξ4

(0)| − 1
2 |∂Ξ

(0)
4 | and ε(4(d+1)) ∈ ±1 denotes the orientation of

the (d+1)-simplex 4(d+1) ⊂ 4′Ξ4.

Before concluding this section, let us describe some of the salient features of the partition function

above. Firstly, given a pinched interval cobordism Ξ×p I and two choices of triangulation 4′Ξ4 and

4′Ξ̃4 such that ∂(4′Ξ4) = ∂(4′Ξ̃4), we find the operators ZGω [4′Ξ4] = ZGω [4′Ξ̃4] to be equal.

This property follows directly from the (d+1)-cocycle condition satisfied by ω, i.e. d(d+1)ω = 1. This

implies that the operator ZGω is boundary relative triangulation independent, i.e. it remains invariant

under retriangulation of the interior int(4′Ξ4) := 4′Ξ4\∂(4′Ξ4) of 4′Ξ4 but does depend on a

choice of boundary triangulation. Using this boundary relative triangulaton independence, we find

the crucial relation

ZGω [4′′Ξ4′ ]ZGω [4′Ξ4] = ZGω [4′′Ξ4] .

Secondly, given a d-manifold Σ equipped with a triangulation Σ4 and Ξ4 a subcomplex of int(Σ4),

there is a natural action of ZGω [4′Ξ4] on HGω [Σ4] such that

ZGω [4′Ξ4] : HGω [Σ4]→ HGω [Σ4′ ]

where Σ4′ is a triangulation of Σ induced from Σ4 by replacing the subcomplex Ξ4 ⊂ int(Σ4) with

Ξ4′ , while keeping the remaining triangulation the same. On the subspace

VGω [Σ4] := ImZGω [4′Ξ4] ⊂ HGω [Ξ4] , (2.3)
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the operator ZGω [4′Ξ4] further defines a unitary isomorphism

ZGω [4′Ξ4] : VGω [Σ4]
∼−→ VGω [Σ4′ ] . (2.4)

This follows directly from the boundary relative triangulation independence of ZGω as well as the

Hermicity condition

ZGω [4′Ξ4]† = ZGω [4Ξ4′ ] . (2.5)

2.2 Hamiltonian realisation of Dijkgraaf-Witten theory

Let us now construct an exactly solvable model that is the lattice Hamiltonian realisation of Dijkgraaf-

Witten theory in d spatial dimensions [31–33]. The input of the model is a pair (G,ω) where G is

a finite group and ω a normalised representative of a cohomology class in Hd+1(G,U(1)). Given an

oriented (possibly open) d-manifold Σ representing the spatial manifold of the theory, and a choice of

triangulation Σ4, the microscopic Hilbert space of the model is given by

HGω [Σ4] ≡
⊗

4(1)⊂Σ4

C[G] ,

as in (2.2). A natural choice of basis for HGω [Σ4] is given by an assignment of gvivj ∈ G for each

oriented edge (vivj) ⊂ Σ4 defined by the vertices vi < vj . Henceforth, we shall refer to such states as

graph-states.

The bulk Hamiltonian is obtained as a sum of mutually commuting projectors that come in two

families. Firstly, to every 2-simplex (v0v1v2) ⊂ int(Σ4) of the interior of Σ4, we assign an operator

B(v0v1v2) that is defined via the following action on a graph-state |g〉 ∈ HGω [Σ4]:

B(v0v1v2) : |g〉 7→ δgv0v1gv1v2 , gv0v2 |g〉 .

This definition can be extended linearly to an operator on any state |ψ〉 ∈ HGω [Σ4]. Secondly, to every

0-simplex (v0) ⊂ int(Σ4), we assign an operator A(v0) which acts on a local neighbourhood of (v0)

defined as the subcomplex Ξv0 := cl ◦ st(v0) ⊂ Σ4. Here st(−) and cl(−) are the star and the closure

operations, respectively, so that Ξv0
corresponds to the smallest subcomplex of Σ4 that include all

the simplices of which (v0) is a subsimplex. The definition of A(v0) requires the triangulated pinched

interval cobordism Ξv0
Ξ Ξv0

defined as

Ξv0
Ξ Ξv0

:= (v′0) tj cl ◦ st(v0) ,

where − tj − denotes the join operation. Given two simplices 4(n) ≡ (v0v1 . . . vn) and 4(n′) ≡
(vn+1vn+2 . . . vn+n′+1), the join operation creates the new simplex 4(n) tj4(n′) ≡ (v0v1 . . . vn+n′+1).

In the definition above, (v′0) refers to an auxiliary vertex such that v0 < v′0 < v1, and which follows the

ordering of (v0) with respect to the other vertices in Σ4. For the sake of concreteness, we illustrate

these various definitions with the following two-dimensional example:

Σ4 = 0 and (0′) tj cl ◦ st(0) = (0′) tj 0 =

0′

0 .
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Finally, given a state |ψ〉 ∈ HGω [Σ4], the action of the operator A(v0) is defined via

A(v0) : |ψ〉 7→ ZGω [(v′0) tj cl ◦ st(v0)] |ψ〉 . (2.6)

For instance, in (3+1)d the action of the operator A(4) on a vertex (4) shared by four 3-simplices

explicitly reads

A(4)

∣∣∣∣∣
0

1

2

3

4

〉
= ZGπ

[ 0

1

2

3

4′

4

] ∣∣∣∣∣
0

1

2

3

4

〉

=
1

|G|
∑
k∈G

π(g01g12, g23, g34, g44′)π(g01, g12, g23g34, g44′)

π(g12, g23, g34, g44′)π(g01, g12g23, g34, g44′)

∣∣∣∣∣
0

1

2

3

4′

〉
,

where π ∈ Z4(G,U(1)). The lattice Hamiltonian is finally obtained as

HGω [Σ4]bulk = −
∑

4(2)⊂int(Σ4)

B4(2) −
∑

4(0)⊂int(Σ4)

A4(0) , (2.7)

where the sums run over all the 2-simplices and 0-simplices in the interior of Σ4, respectively. It

follows from the definitions and the boundary relative triangulation independence that the operators

{A4(0) ,B4(2)}∀4(0),4(2)⊂int(Σ4) satisfy the algebra

A(vi)A(vi) = A(vi) , A(vi)A(vj) = A(vj)A(vi) ,

B(vjvkvl)B(vjvkvj) = B(vjvkvl) , B(vjvkvl)B(v′jv
′
kv
′
l)

= B(vj′vk′vl′ )
B(vjvkvl) ,

A(vi)B(vjvkvl) = B(vjvkvl)A(vi) ,

for all (vi), (vi′), (vjvkvl), (v
′
jv
′
kv
′
l) ⊂ Σ4. All the operators are mutually commuting projectors and

the Hamiltonian is exactly solvable. It follows that the ground state projector Pbulk
Σ4

simply reads

Pbulk
Σ4

:=
∏

4(0)⊂int(Σ4)

A4(0)

∏
4(2)⊂int(Σ4)

B4(2) . (2.8)

Notice that the ordering in the product is superfluous by the commutativity of the operators. Fur-

thermore it follows from inspection that

Pbulk
Σ4

= ZGω [4Σ4] , (2.9)

such that the ground state subspace of HGω [Σ4]bulk is given by

ImPbulk
Σ4

= ImZGω [4Σ4] ≡ VGω [Σ4] , (2.10)

with the last equality following from (2.3). This is the space spanned by linear superpositions |ψ〉
of graph-states fulfilling the stabiliser constraints A4(0) |ψ〉 = |ψ〉 and B4(2) |ψ〉 = |ψ〉 at every

4(0),4(2) ⊂ int(Σ4).
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Let us conclude this construction by making two observations. The first one is that we showed in

(2.4) how given two triangulations Σ4 and Σ4′ of Σ such that ∂Σ4 = ∂Σ′4, the subspaces VGω [Σ4]

and VGω [Σ4′ ] were unitarily isomorphic. This signifies that it is always possible to perform local

changes of the triangulation in the interior of Σ while remaining in the same gapped phase. This will

turns out to be very useful when performing explicit computations. In particular, we shall often apply

unitary isomorphisms obtained from pinched interval cobordisms describing so-called Pachner moves.

The second observation is that the Hamiltonian operators do not mix ground states with differing

boundary G-colourings, so that there exists a natural decomposition of the Hilbert space as

VGω [Σ4] =
⊕

a∈Col(∂Σ4,G)

VGω [Σ4]a (2.11)

where VGω [Σ4]a ⊆ VGω [Σ4] denotes the subspace of states identified by the boundary colouring a ∈
Col(∂Σ4, G). More details regarding the construction up to that point can be found in [33].

2.3 Gapped boundary partition function

Given an open d-dimensional surface Σ endowed with a triangulation Σ4, we reviewed above how

to define an exactly solvable model as the Hamiltonian realisation of Dijkgraaf-Witten theory whose

input data is a finite group G and normalised (d+1)-cocycle in Hd+1(G,U(1)). The lattice Hamiltonian

HGω [Σ4]bulk was obtained as a sum of mutually commuting projectors that act on the interior of Σ4.

We would like to extend this Hamiltonian to ∂Σ4 while preserving the gap of the system, giving

rise to the notion of gapped boundaries. In order to do so, we shall first define a generalisation of

the partition function introduced in sec. 2.1 for spacetime (d+1)-manifolds presenting two types of

boundaries.

Let us begin by introducing the notion of relative pinched interval cobordisms. Let Ξ be a compact,

oriented, d-manifold with non-empty boundary and Ω ⊆ ∂Ξ a choice of (d−1)-dimensional submanifold

of the boundary. The relative pinched interval cobordism Ξ ×Ω
p I over Ξ with respect to Ω is defined

as the quotient manifold

Ξ×Ω
p I ≡ Ξ× I/ ∼Ω, (2.12)

where ∼Ω is defined such that (x, i) ∼Ω (x, i′), for all (x, i), (x, i′) ∈ (∂Ξ\int(Ω))× I. By definition, we

have ∂(Ξ×Ω
p I) = Ξ ∪Ω (Ω×p I)∪∂Ξ Ξ and Ξ∩Ξ = ∂Ξ\int(Ω). To illustrate this definition we consider

the following simple examples:

[0, 1]×p [0, 1] = , [0, 1]×Ω
p [0, 1] = ,

with Ω ≡ 0 ⊂ {0, 1} = ∂I. Henceforth, we shall utilise the convention that Ξ×Ω
p I defines a cobordism

Ξ×Ω
p I : Ξ→ Ξ , (2.13)

and refer to Ω×p I ⊂ ∂(Ξ×Ω
p I) as a time-like boundary. A triangulation of Ξ×Ω

p I can be constructed

as follows: Let Ξ4, Ξ4′ be a pair of triangulations of Ξ such that Ω4 ⊂ ∂Ξ4 and Ω4′ ⊂ ∂Ξ4′ define

two possibly different triangulations of Ω satisfying

∂Ξ4\int(Ω4) = ∂Ξ4′\int(Ω4′) . (2.14)
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Considering a triangulation 4′Ω4 of the time-like boundary Ω×p I, we define 4′Ξ
Ω
4 as the triangula-

tion of the relative pinched interval cobordism Ξ×Ω
p I whose boundary reads Ξ4 ∪Ω4 4′Ω4∪∂Ξ4′ Ξ4′ .

Given a triangulation 4′Ξ
Ω
4 of Ξ×Ω

p I, let us now define a generalisation of the (d+1)-dimensional

Dijkgraaf-Witten theory with input data (G,ω) such that the corresponding partition function eval-

uated on 4′Ξ
Ω
4 remains invariant under triangulation changes of both the interior of 4′Ξ

Ω
4 and

the interior of the time-like boundary 4′Ω4. Let Ω = tiΩi be a decomposition of Ω into con-

nected components Ωi, each with triangulations Ω4,i ⊂ ∂Ξ4 and Ω4′,i ⊂ ∂Ξ4′ . The generalised

theory associates to each connected component Ωi a pair (Ai, φi), where Ai ⊂ G is a subgroup and

φi ∈ Cd(Ai,U(1)) a normalised group d-cochain such that d(d)φi = ω−1|Ai . We refer to the data

(Ai, φi) as a choice of gapped boundary condition.2 We define a (G, {Ai})-colouring g of 4′Ξ
Ω
4 as

a G-colouring such that g[4′Ω4,i] ∈ Col(4′Ω4,i, Ai). The set of (G, {Ai})-colourings on 4′Ξ
Ω
4 is

denoted by Col(4′Ξ
Ω
4, G, {Ai}). Equipped with such choices, we define the generalised partition

function as follows:

ZG,{Ai}ω,{φi} [4′Ξ
Ω
4] =

1

|G|#(4′Ξ
Ω4)

∏
i |Ai|

#(4′Ω4,i)
(2.15)

∑
g∈Col(4′Ξ

Ω4,G,{Ai})

∏
i

( ∏
4(d)⊂4′Ω4,i

φi(g[4(d)])ε(4
(d))

) ∏
4(d+1)⊂4′ΞΩ4

ω(g[4(d+1)])ε(4
(d+1))

⊗
4(1)⊂Ξ4′

|g[4(1)]〉
⊗

4(1)⊂Ξ4

〈g[4(1)]| ,

where #(4′Ξ
Ω
4) := |int(4′Ξ4)(0)|+ 1

2 |int(Ξ4′)
(0)|+ 1

2 |int(Ξ4)(0)| and #(4′Ω4,i) := |int(4′Ω4,i)
(0)|+

1
2 |int(Ω4′,i)

(0)|+ 1
2 |int(Ω4,i)

(0)|.
As stated previously, the partition function remains invariant under retriangulation of the interior

of 4′Ω4 as well as the interior of 4′Ξ
Ω
4. In this manner, the partition function ZG,{Ai}ω,{φi} [4ΞΩ

4]

defines a projection operator and we associate to the triangulation Ξ4 the following Hilbert space:

VG,{Ai}ω,{φi} [Ξ4] := Im ZG,{Ai}ω,{φi} [4ΞΩ
4] . (2.16)

Furthermore, akin to equations (2.4) and (2.5), the triangulation invariance properties of the partition

function together with the Hermicitiy condition

ZG,{Ai}ω,{φi} [4′Ξ
Ω
4]† = ZG,{Ai}ω,{φi} [4ΞΩ

4′ ] (2.17)

demonstrate that the operator

ZG,{Ai}ω,{φi} [4′Ξ
Ω
4] : VG,{Ai}ω,{φi} [Ξ4]

∼−→ VG,{Ai}ω,{φi} [Ξ4′ ] (2.18)

defines a unitary isomorphism of Hilbert spaces.

2.4 Hamiltonian model in the presence of gapped boundaries

In sec. 2.2, we described the Hamiltonian realisation HGω [Σ4]bulk of the Dijkgraaf-Witten theory in

d spatial dimensions in the presence of open boundary conditions. Utilising the partition function

(2.15) introduced in the previous section, we shall now define an extension of the Hamiltonian model

to include gapped boundary conditions [14, 15].

2In sec. 6, we shall revisit gapped boundary conditions from a category theoretical point of view.
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Let us consider an oriented d-manifold Σ with non-empty boundary and a choice of triangulation

Σ4. The input of the model is a pair (G,ω) and a choice of gapped boundary conditions {(Ai, φi)}
for each connected component ∂Σ4,i ⊂ Σ4, where Ai ⊂ G is a subgroup and φi ∈ Cd(Ai,U(1)) is a

normalised group d-cochain satisfying the condition d(d)φi = ω−1|Ai . In the interior of Σ4, the (bulk)

Hamiltonian was defined in eq. 2.7. Given such a choice of gapped boundary conditions, let us now

define an operator that acts on a local neighbourhood of a boundary vertex (v0) ⊂ ∂Σ4,i. Mimicking

the definition of the bulk vertex operator, we consider the subcomplex Ξv0
:= cl ◦ st(v0), which

corresponds to the smallest subcomplex that includes all the simplices of which (v0) is a subsimplex.

We next define the triangulated relative pinched interval cobordism over Ξv0 with respect to Ω :=

cl ◦ st(v0) ∩ ∂Σ4,i

Ξv0
Ξ Ξv0

:= (v′0) tj cl ◦ st(v0) , (2.19)

whose boundary is given by

∂(Ξv0
Ξ Ξv0

) = Ξv0 ∪Ω (Ωv0
Ω Ωv0

) ∪∂Ξv0
Ξv0

(2.20)

where Ωv0
:= (v′0) tj Ω. Given this relative pinched interval cobordism, we define the action of the

operator AAi,φi(v0) on a state |ψ〉 ∈ HG,Aiω,φi
[Σ4] via

AAi,φi(v0) : |ψ〉 7→ ZG,Aiω,φi
[Ξv0Ξ Ξv0

]|ψ〉 . (2.21)

The gapped boundary Hamiltonian is finally defined as

HG,{Ai}ω,{φi} [Σ4] = HGω [Σ4]bulk +
∑

∂Σ4,i⊂∂Σ4

HG,Aiω,φi
[∂Σ4,i]

bdry , (2.22)

where

HG,Aiω,φi
[∂Σ4,i]

bdry := −
∑

4(0)⊂∂Σ4,i

AAi,φi4(0) . (2.23)

From the triangulation invariance properties of the partition function ZG,{Ai}ω,{φi} follows that the Hamil-

tonian is a sum of mutually commuting projection operators, and as such it is still exactly solv-

able. Furthermore, analogously to the bulk Hamiltonian, we can identify the ground-state subspace

VG,{Ai}ω,{φi} [Σ4] with

Im ZG,{Ai}ω,{φi} [4Σ∂Σ
4] ≡ VG,{Ai}ω,{φi} [Σ4] , (2.24)

and verify that the unitary isomorphism

ZG,{Ai}ω,{φi} [4′Σ
∂Σ
4] : VG,{Ai}ω,{φi} [Σ4]

∼−→ VG,{Ai}ω,{φi} [Σ4′ ] (2.25)

commutes with the Hamiltonian. This last statement implies that we can always replace a given

triangulated subcomplex Ω4 ⊂ ∂Σ4 by Ω4′ while remaining in the ground state sector.

Note finally that in the subsequent discussion, we shall also refer to gapped interfaces between

several gapped boundaries. However, we will not require an explicit form of the Hamiltonian for such

interfaces, and as such we omit here the explicit definition. Despite such an omission, the corresponding

Hamiltonian can be explicitly defined in close analogy with the construction of the gapped boundary

Hamiltonian presented in this section.
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In order to illustrate the definition and some properties of the gapped boundary Hamiltonian, let us

now specialize to two dimensions (see also [14]). We consider a two-dimensional surface Σ endowed

with a triangulation Σ4 and a single connected boundary component ∂Σ4. The input data for the

bulk Hamiltonian is a finite group G and a normalised group 3-cocycle α. Furthermore, we define on

∂Σ4 a gapped boundary whose input data is a pair (A, φ), where A ⊂ G is a subgroup and φ a group

2-cochain satisfying d(2)φ = α−1|A which is explicitly expressed via

α−1(a, a′, a′′)
!
= d(2)φ(a, a′, a′′) =

φ(a′, a′′)φ(a, a′a′′)

φ(aa′, a′′)φ(a, a′)
, (2.26)

for every a, a′, a′′ ∈ A ⊂ G. We consider the following situation:

0 1 2

3

where the dashed area represents the bulk of the manifold, whereas the coloured line stands for

the gapped boundary. The black lines represent the 1-simplices on the interior Σ4 that are included

in cl ◦ st(1). We first want to write down the action of the boundary operator at the vertex (1) on

graph-states of the form

SpanC

{∣∣∣∣g[
0 1 2

3

]〉}
∀ g∈Col(cl◦st(1),G,A)

≡ SpanC

{∣∣∣∣ ag a′−1gg

a a′0 1 2

3

〉}
∀ g∈G
∀ a,a′∈A

. (2.27)

The boundary vertex operator AA,φ(1) boils down to evaluating the partition function (2.15) on the

relative pinched interval cobordism (023)×(02)
p I defined by

0
1

2

3

1̃

, (2.28)

such that 0 < 1 < 1̃ < 2 < 3 and the orange edges represent the time-like boundary. Explicitly, the

action of this boundary vertex operator reads

AA,φ(1)

∣∣∣∣ ag a′−1gg

a a′0 1 2

3

〉
=

1

|A|
∑
ã∈A

α(a, ã, ã−1g)φ(ã, ã−1a′)

α(ã, ã−1a′, a′−1g)φ(a, ã)

∣∣∣∣ ag
a′−1g

ã−1g

aã ã−1a′0 1 2

3

〉
. (2.29)

Let us now compute a triangulation changing boundary operator on a graph state (2.27). More

specifically, let us construct the isomorphism that replaces the boundary subcomplex (01) ∪ (12) by a

single 1-simplex (02). The corresponding operator is conveniently obtained by evaluating the partition
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function (2.15) on the relative pinched interval cobordism

0

1

2

3 , (2.30)

with time-like boundary (012), implementing the isomorphism

∣∣∣∣ ag a′−1gg

a a′0 1 2

3

〉
' 1

|A| 12
α(a, a′, a′−1g)

φ(a, a′)

∣∣∣∣ ag a′−1g

aa′0 2

3

〉
. (2.31)

We can now confirm that this triangulation changing operator does commute with the Hamilto-

nian operator. This follows from the cocycle relations d(2)φ(a, ã, ã−1a′) = α−1(a, ã, ã−1a′) and

d(3)α(a, ã, ã−1a′, a′−1g) = 1.

SECTION 3

Tube algebra for gapped boundary excitations in (2+1)d

In this section, we apply the tube algebra approach in order to derive the algebraic structure underlying

the boundary point-like excitations in two spatial dimensions.

3.1 Definition

Let us consider an open two-dimensional surface Σ. Its boundary ∂Σ is referred to as the physical

boundary of the system. In the previous section, we explained how to construct the lattice Hamiltonian

realisation of Dijkgraaf-Witten theory on a triangulation of Σ. We further detailed how this model

could be extended to the physical boundary of Σ in such way as to remain gapped. Bulk excitations

of this model were studied in detail in general dimensions in [33]. In addition to bulk excitations, the

lattice Hamiltonian yields point-like boundary excitations that are excitations obtained by violating

some of the stabiliser constraints on the boundary. We are interested in the classification and the

statistics of such gapped boundary excitations. More specifically, we consider the situation where two

different one-dimensional gapped boundaries meet at a zero-dimensional interface, and are interested

in the point-like excitations living at such interface. This situation can be locally depicted as follows:

Aφ Bψ

. (3.1)

Given that the input data for the bulk theory is a pair (G,α), where α is a normalized representative

of a cohomology class in H3(G,U(1)), the thick coloured lines stand for two gapped boundaries

characterized by the boundary conditions Aφ ≡ (A, φ) and Bψ ≡ (B,ψ), respectively, while the

black dot illustrates the binary interface between them. The boundary conditions Aφ and Bψ, which

were defined in the previous section, are such that A,B ⊂ G, d(2)φ = α−1|A and d(2)ψ = α−1|B .

We denote the lattice Hamiltonian for this specific choice of boundary conditions by HG,A,Bα,φ,ψ [Σ], and

its associated ground state subspace by VG,A,Bα,φ,ψ [Σ]. In the following discussion, we will suppose that

the Hamiltonian is further extended to the interface, but we do not require the explicit form of the
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corresponding operator. Note that although we restrict our attention to gapped boundaries, our

exposition could be easily generalised to accommodate domain walls, which can be thought of as

shared gapped boundaries between two (possibly different) topological phases.

By definition, given a point-like excitation at the interface of two one-dimensional gapped bound-

aries, there is a local neighbourhood of Σ for which the energy density is higher than the one of the

ground state. Removing such a local neighbourhood leaves a new boundary component, referred to

as the excitation boundary, that is incident on the physical boundary ∂Σ of the manifold. We denote

the resulting manifold by Σo and the excitation boundary by ∂Σo|ex.. We illustrate this configuration

as follows:

→ , (3.2)

where the dashed area represents the region whose energy density is higher than the one of the

ground state. The black line represents the excitation boundary, whose topology is the one of the unit

interval I ≡ [0, 1]. Endowing Σo with a triangulation, we are interested in the lattice Hamiltonian

HG,A,Bα,φ,ψ [Σo
4\∂Σo

4|ex.] obtained by removing all the operators whose supports are on ∂Σo
4|ex.. In a way

reminiscent to the bulk Hamiltonian in sec. 2.2, this Hamiltonian displays open boundary conditions

such that the corresponding ground state subspace can be decomposed over them. Properties of the

point-like excitations can then be encoded into the boundary conditions, so that a classification of

the boundary conditions induces a classification of the corresponding point-like excitations. In other

words, ground states in VG,A,Bα,φ,ψ [Σo
4], which are characterised by a given excitation boundary colouring,

define specific excitations with respect to ground states in the Hilbert space VG,A,Bα,φ,ψ [Σ4]. In general,

any such excitation is a superposition of elementary point-like excitations. In order to find these point-

like elementary boundary excitations, we apply the tube algebra approach, whose general construction

can be found in [33].

Let us consider the manifold ∂Σo|ex. × I. Naturally, it has the topology of a 2-cell but we would

like to emphasize the fact that it has two kinds of boundary components, namely a pair of physical

boundary components and a pair of excitation boundary components. More precisely, it is the system

obtained by removing from the two-disk D2 local neighbourhoods at the interface of two different

physical boundaries:

→ ' , (3.3)

where the nomenclature is the same as before. A crucial, yet trivial, fact is that we can always glue a

copy of ∂Σo|ex. × I to Σo along ∂Σo|ex. without modifying its topology, i.e.

∪
→ ' .

As explained in more detail in [33], given a triangulation of Σo and making use of the triangulation

changing unitary isomorphisms, this simple gluing operation induces a symmetry map on the ground

state subspace, whose simple modules classify the boundary conditions on ∂Σo|ex. and as such the

corresponding point-like boundary excitations. In order to compute these simple modules, we further
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remark that it is always possible to apply a diffeomorphism so that a local neighbourhood of ∂Σo|ex.

is of the form ∂Σo|ex.× I so that the corresponding ground state subspaces are isomorphic. The effect

of such diffeomorphism is to localise the action of the symmetry map so that it only involves degrees

of freedom living within ∂Σo|ex. × I. Consequently, it is enough to consider the symmetry map that

corresponds to the gluing of two copies of the manifold ∂Σo|ex. × I, i.e.

(∂Σo|ex. × I) ∪∂Σo|ex.
(∂Σo|ex. × I) ' ∂Σo|ex. × I . (3.4)

We pictorially summarize these operations below:

∪
'

∪

reduces−−−−→
to

∪
→ ' .

Given a triangulation of ∂Σo|ex. × I, this symmetry map in turn endows the associated ground state

subspace with a finite-dimensional algebraic structure referred to as the tube algebra. Irreducible

representations of the tube algebra label the simple modules of the original symmetry map, classifying

boundary conditions on ∂Σo|ex., and thus the corresponding point-like boundary excitations.

3.2 Computation of the tube algebra

Let us now derive the tube algebra for the configuration described above so as to determine the

elementary boundary excitations at the interface of two one-dimensional gapped boundaries. First, we

need to specify the ground state subspace on ∂Σo|ex.×I by picking a triangulation. Crucially, the choice

of triangulation does not matter. Indeed, given a triangulation of the excitation boundary, changing

the discretisation of the physical boundary or the bulk of ∂Σo|ex.× I yields an isomorphic ground state

subspace, which would in turn induce an isomorphic tube algebra. Furthermore, a different choice

of triangulation for the excitation boundary would yield a Morita equivalent tube algebra, which by

definition has the same simple modules as the original algebra. As such, we should make the simplest

choice of triangulation possible. We choose to discretise the excitation boundary by a single 1-simplex

and ∂Σo|ex. × I as a triangulated 2-cell. The resulting triangulated manifold is denoted by T[I4] and

the corresponding ground state subspace explicitly reads3

VG,A,Bα,φ,ψ [T[I]] := SpanC

{∣∣∣∣g[
0 1

0′ 1′

]〉}
∀ g∈Col(T[I],G,A,B)

≡ SpanC

{∣∣∣∣ g a−1gb

b

a0 1

0′ 1′

〉}
∀ g∈G
∀ (a,b)∈A×B

≡ SpanC
{∣∣g a−→

b

〉}
∀ g∈G
∀ (a,b)∈A×B

, (3.5)

where some labellings are left implicit since they can be deduced from the flatness constraints, i.e.

the stabiliser constraints with respect to the B4(2)-operators. The tube algebra can be computed

using the following algorithm:4 Recall that the tube algebra is an extension of the gluing operation

3Note that we rotated the drawings by 90◦ for convenience.
4We refer the reader to [33] for a general and more detailed definition of the tube algebra.
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T[I] ∪I T[I] ' T[I] to the ground state subspace VG,A,Bα,φ,ψ [T[I]]. Using the relation (2.11), we obtain the

following decomposition of the Hilbert space VG,A,Bα,φ,ψ [T[I]]:

VG,A,Bα,φ,ψ [T[I]] =
⊕

g1∈Col(I×{0},G)
g2∈Col(I×{1},G)

VG,A,Bα,φ,ψ [T[I]]g1,g2
.

The gluing itself is then performed via an injective map GLU defined according to

GLU : VG,A,Bα,φ,ψ [T[I]]⊗ VG,A,Bα,φ,ψ [T[I]]→
⊕

g1,g
′
1∈Col(I×{0},G)

g2,g
′
2∈Col(I×{1},G)

VG,A,Bα,φ,ψ [T[I]]g1,g2
⊗ VG,A,Bα,φ,ψ [T[I]]g′1,g′2 ,

which acts on states |ψg1,g2
〉 ∈ VG,A,Bα,φ,ψ [T[I]]g1,g2

and |ψ′g′1,g′2〉 ∈ V
G,A,B
α,φ,ψ [T[I]]g′1,g′2 via identification of

the boundary conditions along the gluing interface, i.e.

GLU : |ψg1,g2
〉 ⊗ |ψ′g′1,g′2〉 7→ δg2,g′1

|ψg1,g2
〉 ⊗ |ψ′g2,g′2

〉 .

This map can be linearly extended to states displaying mixed grading. Importantly, the image of

this map typically differs from the ground state subspace VG,A,Bα,φ,ψ [T[I] ∪I T[I]] since all the stabiliser

constraints might not be satisfied along the gluing interface. This can be resolved by applying the

Hamiltonian projection operator PT[I]∪IT[I] with respect to the full Hamiltonian HG,A,Bα,φ,ψ [T[I] ∪I T[I]],
which was defined in sec. 2.4. Finally, we can apply a triangulation changing isomorphism in order

to obtain a final state in VG,A,Bα,φ,ψ [T[I]]. Putting everything together, this defines a ?-product, which

together with VG,A,Bα,φ,ψ [T[I]] defines the tube algebra:

? : VG,A,Bα,φ,ψ [T[I]]⊗VG,A,Bα,φ,ψ [T[I]] GLU−−→ HG,A,Bα,φ,ψ [T[I]∪I T[I]]
PT[I]∪IT[I]−−−−−−→ VG,A,Bα,φ,ψ [T[I]∪I T[I]] ∼−→ VG,A,Bα,φ,ψ [T[I]] .

Given two basis states of VG,A,Bα,φ,ψ [T[I]] as defined in (3.5), let us now compute explicitly this ?-product.

Firstly, the G-colourings along the gluing interface are identified via the map GLU, i.e.

GLU

(∣∣∣∣ g a−1gb

b

a0 1

0′ 1′

〉
⊗
∣∣∣∣ g′ a′−1g′b′

b′

a′1 2

1′ 2′

〉)
= δg′,a−1gb

∣∣∣∣ g (aa′)−1gbb′

b b′

a a′0 1

0′ 1′ 2′

2 〉
.

Secondly, we apply the Hamiltonian projector PT[I]∪IT[I] in order to enforce the gauge invariance at the

physical boundary vertices that are along the gluing interface. This operator is obtained by evaluating

the partition function (2.15) on the relative pinched interval cobordism

0′ 1′ 2′

1̃′

0

1 2

1̃

, (3.6)
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and its action explicitly reads

PT[I]∪IT[I]

(∣∣∣∣ g (aa′)−1gbb′

b b′

a a′0 1

0′ 1′ 2′

2 〉)

=
1

|A||B|
∑

(ã,b̃)∈A×B

ϑABg (a, ã|b, b̃)
ϑABa−1gb(ã, ã

−1a′|b̃, b̃−1b′)

∣∣∣∣ g (aa′)−1g′bb′

bb̃ b̃−1b′

aã ã−1a′0 1

0′ 1′ 2′

2 〉
,

where we introduced the cocycle data

ϑABg (a, a′|b, b′) :=
ψ(b, b′)

φ(a, a′)

α(a, a′, a′−1a−1gbb′)α(g, b, b′)

α(a, a−1gb, b′)
. (3.7)

It follows from α−1|A = d(2)φ and α−1|B = d(2)ψ, as well as the cocycle conditions

d(3)α(a, a′, a′′, a′′−1a′−1a−1gbb′b′′) = 1 d(3)α(a, a−1gb, b′, b′′) = 1

d(3)α(a, a′, a′−1a−1gbb′, b′′) = 1 d(3)α(g, b, b′, b′′) = 1

that ϑAB satisfies

d(2)ϑABg (a, a′, a′′|b, b′, b′′) :=
ϑABa−1gb(a

′, a′′|b′, b′′)ϑABg (a, a′a′′|b, b′b′′)
ϑABg (aa′, a′′|bb′, b′′)ϑABg (a, a′|b, b′)

= 1 , (3.8)

which in particular implies the following property

ϑABa−1gb(a
−1, a|b−1, b) = ϑABg (a, a−1|b, b−1) . (3.9)

Furthermore, given that α, φ and ψ are normalized cocycles, we have the normalisation conditions:

ϑABg (1A, a
′|1B , b′) = ϑABg (a,1A|b,1B) = 1 = ϑABg (1A, a

′|b,1B) = ϑABg (a,1A|1B , b′) . (3.10)

Going back to the tube algebra, it remains to apply a triangulation changing isomorphism in order to

recover the initial triangulation. This can be done by evaluating the partition function for the pinched

interval cobordism (012)+ × I endowed with the triangulation depicted below:

(012)+ × I :=

0′ 2′

1′

0 2

1
≡ (00′1′2′)+ ∪ (011′2′)− ∪ (0122′)+ . (3.11)

The corresponding operator implements the isomorphism

∣∣∣∣ g (aa′)−1g′bb′

bb̃ b̃−1b′

aã ã−1a′0 1

0′ 1′ 2′

2 〉
' 1

|A| 12 |B| 12
ϑABg (aã, ã−1a′|bb̃, b̃−1b′)

∣∣∣∣ g (aa′)−1gbb′

bb′

aa′1 2

1′ 2′

〉
.
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Putting everything together, we obtain

∣∣∣∣ g a−1gb

b

a0 1

0′ 1′

〉
?

∣∣∣∣ g′ a′−1g′b′

b′

a′1 2

1′ 2′

〉
=

δg′,a−1gb

|A| 12 |B| 12
ϑABg (a, a′|b, b′)

∣∣∣∣ g (aa′)−1gbb′

bb′

aa′1 2

1′ 2′

〉
,

where we used the cocycle relation d(2)ϑABg (a, ã, ã−1a′|b, b̃, b̃−1b′) = 1. Using the more symbolic

notation introduced in (3.5), the ?-product reads

∣∣g a−→
b

〉
?
∣∣g′ a′−−→

b′

〉
=

δg′,a−1gb

|A| 12 |B| 12
ϑABg (a, a′|b, b′)

∣∣g aa′−−−→
bb′

〉
. (3.12)

3.3 Groupoid algebra

Before concluding this section about boundary point-like excitations in (2+1)d, we are going to show

that the tube algebra derived above can be recast as a twisted groupoid algebra[55]. Although this might

seem a little bit artificial at the moment, this will turn out to be very useful in the subsequent sections.

Indeed, we will show that in the language of groupoid algebras, both the tube algebras in (2+1)d and in

(3+1)d can be unified allowing for a simultaneous study of the corresponding representation theories.

Let us first review some basic category theoretical definitions. More details can be found for

example in [57, 59]. Given a category C, the set of objects and the set of morphisms between objects

are denoted by Ob(C) and Hom(C), respectively. Given two objectsX,Y ∈ Ob(C), the set of morphisms

from X to Y is written HomC(X,Y ) 3 f : X → Y , such that X = s(f) and Y = t(f) are the source

and target objects of f , respectively. Composition rule of morphisms is defined according to

X
f−−→ Y

f ′−−−→ Z = X
ff ′−−−−→ Z .

Furthermore, for every object X ∈ Ob(C), the corresponding identity morphisms is denoted by idX ∈
HomC(X,X). Finally, we notate the set of n composable morphims in C by Cncomp := {(f1, . . . , fn) ∈
Hom(C)n | t(fi) = s(fi+1), ∀ i ∈ 1, . . . , n− 1}. Let us now specialize to groupoids:

Definition 3.1 (Groupoids). A (finite) groupoid G is a category whose object and morphism sets

are finite and all morphisms are invertible, i.e. for each morphism g ∈ HomG(X,Y ), there exists

a morphism g−1 ∈ HomG(Y,X) such that gg−1 = idX and g−1g = idY .

Every finite group provides a finite one-object groupoid refers to as the delooping of the group:

Example 3.1 (Delooping of a group). Let G be a finite group. The delooping of G is the one-

object groupoid G with Ob(G) = {•} and morphism set HomG(•, •) = G with the composition rule

being provided by the group multiplication in G.

Henceforth, we shall identify any group G and its delooping G, denoting both by G. Generalizing the

notion of group cohomology in an obvious way, we obtain the notion of groupoid cohomology:5

Definition 3.2 (Groupoid cohomology). Let G be a finite groupoid and M a G-module. Given

the set of n composable morphisms Gncomp in G, we define an n-cochain on G as a map ωn :

5Analogously to group cohomology, groupoid cohomology of a groupoid is implicitly defined as the simplicial coho-

mology of its classifying space.
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Gncomp →M. On the space Cn(G,M) of n-cochains, the coboundary operator d(n) : Cn(G,M)→
Cn+1(G,M) is defined via

d(n)ωn(g1, . . . , gn+1) (3.13)

:= g1 . ωn(g2, . . . , gn+1)ωn(g1, . . . gn)(−1)n+1
n∏
i=1

ωn(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)(−1)i .

The n-th cohomology group of groupoid cocycles is then defined as usual by

Hn(G,M) :=
Ker d(n)

Im d(n−1)
≡ Zn(G,M)

Bn(G,M)
. (3.14)

Throughout this manuscript, we shall always consider cohomology groups of the form Hn(G,U(1)),

where U(1) is taken to be the G-module with the trivial groupoid action. Naturally, the cohomology of

a group coincides with the groupoid cohomology of its delooping. Furthermore, we shall often require,

without loss of generality, that cocycles are normalised :

Definition 3.3 (Normalised cocycles). Given a groupoid n-cocycle [ωn] ∈ Hn(G,U(1)), we call

ωn ∈ [ωn] a normalised representative if ωn(g1, . . . , gn) = 1, whenever any of the arguments is an

identity morphism. In particular there always exists a normalised representative of each n-cocycle

equivalence class [ωn] ∈ Hn(G,U(1)).

Utilising the technology of groupoid cohomology, we can now introduce twisted groupoid algebras,

generalising the theory of twisted group algebras [55]:

Definition 3.4 (Twisted groupoid algebra). Given a finite groupoid G and a normalised 2-cocycle

ϑ ∈ Z2(G,U(1)), the twisted groupoid algebra C[G]ϑ is the algebra defined over the vector space

SpanC{|g〉 | ∀ g ∈ Hom(G)} (3.15)

with algebra product

|g〉 ? |g′〉 := δt(g),s(g′) ϑ(g, g′) |gg′〉 . (3.16)

The requirement that ϑ is a 2-cocycle ensures that C[G]ϑ is an associative algebra.

Putting everything together, let us now recast the (2+1)d tube algebra as a twisted groupoid algebra.

LetGAB be the (finite) groupoid whose objects are given by group elements inG, and whose morphisms

read g
a−→
b
a−1gb ≡ g a−→

b
, where (a, b) ∈ A×B with the composition given by the multiplication in G:

g
a−→
b
a−1gb

a′−−→
b′

a′−1a−1gbb′ = g
aa′−−−→
bb′

a′−1a−1gbb′ . (3.17)

Utilising this definition, we can conveniently redefine ϑAB as a normalised groupoid 2-cocycle in

H2(GAB ,U(1)), in such a way that the tube algebra defined earlier is isomorphic to the groupoid

algebra C[GAB ]ϑ
AB ≡ C[GAB ]αφψ of GAB twisted by ϑAB .6

6Notice that the normalization conditions (3.10) do not state that the cocycle is equal to one whenever any of the

entry is one, but instead whenever any of the morphism in the corresponding groupoid is the identity. It is therefore

compatible with the definition given earlier.
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SECTION 4

Tube algebra for gapped boundary excitations in (3+1)d

In this section, we apply the tube algebra approach to study excitations in the presence of gapped

boundaries in (3+1)d. Although the excitation content of the model is rich in (3+1)d, we focus on

a special configuration, which turns out to be related to that considered in the previous section via a

dimensional reduction argument.

4.1 Definition

The strategy we presented in sec. 3 applies identically in three dimensions. Given a pattern of two-

dimensional gapped boundaries, excitations can be classified by considering boundary conditions of

the manifold obtained by removing local neighbourhoods of these excitations. Given that the input

data for the bulk theory is a pair (G, π), where is π a normalized representative of a cohomology

class in H4(G,U(1)), we are interested in the situation where two two-dimensional gapped boundaries

characterized by the boundary conditions Aλ ≡ (A, λ) and Bµ ≡ (B,µ) meet at a one-dimensional

interface. The boundary conditions are such that A,B ⊂ G, d(3)λ = π−1|A and d(3)µ = π−1|B . We

denote the Hamiltonian defined according to (2.7) for these boundary conditions as HG,A,Bπ,λ,µ [Σ].

Given this situation, several types of excitations could be studied. For instance, we could inves-

tigate point-like boundary excitations at the one-dimensional interface. Instead, we consider a bulk

string-like excitation that terminates at two (possibly different) gapped boundaries. This situation

can be depicted as follows:

Aλ Bµ

→ , (4.1)

where the dark volume represents a local neighbourhood of the string-like excitation, and thus the

region whose energy density is higher than that of the ground state. Removing this local neighbour-

hood leaves an excitation boundary ∂Σo|ex. that has the topology of cylinder. Classifiying boundary

conditions on such cylinder corresponds to classifying the string-like excitations.

Let us consider the manifold ∂Σo|ex. × I. This manifold has the topology of a hollow cylinder,

which has two kinds of boundary components, namely a pair of physical boundary components and

a pair of excitation boundary components. Given the 3-ball endowed with two gapped boundaries,

the same manifold can be obtained by removing local neighbourhoods of the interface and of a string

terminating at the two gapped boundaries:

' .
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By construction, this manifold can be glued to the original system along the excitation boundary

∂Σo|ex. without affecting its topology. It follows from the discussion in sec. 3 that there is a tube algebra

associated with the gluing of two copies of this tube-like manifold, whose irreducible representations

classify this special type of string-like excitations.

4.2 Computation of the tube algebra

Let us derive the tube algebra for the special configuration described above. As before, we first need to

specify the ground state subspace on ∂Σo|ex. × I by choosing a discretisation. We choose to discretise

∂Σo|ex. × I as a triangulated cube with two opposite faces identified. The resulting triangulated

manifold is denoted by T[S1 × I] and the corresponding ground state subspace explicitly reads

VG,A,Bπ,λ,µ [T[S1 × I]] := SpanC

{∣∣∣∣∣

a1

g

a2

b2

b10′ 1′

10

0̃′
1̃′

1̃0̃

〉}
∀ g∈G | g=a−1

2 gb2
∀ a1,a2∈A
∀ b1,b2∈B

(4.2)

≡ SpanC
{∣∣(g, a2, b2)

a1−−→
b1

〉}
∀ g∈G | g=a−1

2 gb2
∀ a1,a2∈A
∀ b1,b2∈B

, (4.3)

where we make the identifications (0) ≡ (0̃), (0′) ≡ (0̃′), (1) ≡ (1̃), (1′) ≡ (1̃′), (00′) ≡ (0̃0̃′), (01) ≡ (0̃1̃),

(0′1′) ≡ (0̃′1̃′) and (11′) ≡ (1̃1̃′). As before, some labellings are left implicit since they can be deduced

from the flatness constraints. Let us now compute the ?-product for two such states adapting in the

obvious way the definition of the previous section. Firstly, colourings along the gluing interface are

identified via the map GLU, i.e.

GLU

(∣∣∣∣∣

a1

g

a2

b2

b10′ 1′

10

0̃′
1̃′

1̃0̃

〉
⊗

∣∣∣∣∣

a′1

g′

a′2

b′2

b′11′ 2′

21

1̃′
2̃′

2̃1̃

〉)

= δg′,a−1
1 gb1

δa′2,a
a1
2
δ
b′2,b

b1
2

∣∣∣∣∣

a′1

b′1

a1

g

a2

b2

b10′ 1′

1
0

0̃′ 1̃′

1̃0̃

2′

2

2̃′

2̃

〉
,

where we introduced the notation xy := y−1xy. Secondly, we apply the Hamiltonian projector

PT[S1×I]∪S1×IT[S1×I] in order to enforce the twisted gauge invariance at the physical boundary ver-

tices along the gluing interface. This operator can be expressed by evaluating the partition function
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(2.15) on the relevant pinched cobordism. The result reads

PT[S1×I]∪S2×IT[S1×I]

(∣∣∣∣∣

a′1

b′1

a1

g

a2

b2

b10′ 1′

1
0

0̃′ 1̃′

1̃0̃

2′

2

2̃′

2̃

〉)
(4.4)

=
1

|A||B|
∑

(ã,b̃)∈A×B

%ABg,a2,b2
(a1, ã|b1, b̃)

%AB
a−1

1 gb1,a
a1
2 ,b

b1
2

(ã, ã−1a′1|b̃, b̃−1b′1)

∣∣∣∣∣

ã−1a′1

b̃−1b′1

a1ã

g

a2

b2

b1b̃0′ 1′

1
0

0̃′ 1̃′

1̃0̃

2′

2

2̃′

2̃

〉
,

where we introduced the cocycle data

%ABg,a2,b2(a1, a
′
1|b1, b′1) :=

Tb2(µ)(b1, b
′
1)

Ta2
(λ)(a1, a′1)

Ta2
(π)(a1, a

′
1, a
′−1
1 a−1

1 gb1b
′
1)Ta2

(π)(g, b1, b
′
1)

Ta2
(π)(a1, a

−1
1 gb1, b′1)

(4.5)

in terms of the cocycle data T(λ), T(µ) and T(π) that are itself defined according to

Tx(α)(y1, y2) :=
α(x, y1, y2)α(y1, y2, x

y1y2)

α(y1, xy1 , y2)
,

Tx(π)(y1, y2, y3) :=
π(y1, x

y1 , y2, y3)π(y1, y2, y3, x
y1y2y3)

π(x, y1, y2, y3)π(y1, y2, xy1y2 , y3)
,

for any group elements x, y1, y2, y3 ∈ H in a finite group H and group cochains α ∈ C3(H,U(1)),

π ∈ C4(H,U(1)). Defining

d(2)Tx(α)(y1, y2, y3) :=
Txy1 (α)(y2, y3)Tx(α)(y1, y2y3)

Tx(α)(y1y2, y3)Tx(α)(y1, y2)
, (4.6)

d(3)Tx(π)(y1, y2, y3, y4) :=
Txy1 (π)(y2, y3, y4)Tx(α)(y1, y2y3, y4)Tx(π)(y1, y2, y3)

Tx(π)(y1y2, y3, y4)Tx(α)(y1, y2, y3y4)
, (4.7)

it follows from the cocycle conditions d(4)π = 1, d(3)λ = π−1|A and d(3)µ = π−1|B that d(3)T(π) = 1,

d(2)T(λ) = T(π)−1|A and d(2)T(µ) = T(π)−1|B . Utilising the cocycle conditions

d(3)Ta2
(π)(a1, a

′
1, a
′′
1 , a
′′−1
1 a′−1

1 a−1
1 gb1b

′
1b
′′
1) = 1 d(3)Ta2

(π)(a1, a
−1
1 gb1, b

′
1, b
′′
1) = 1

d(3)Ta2
(π)(a1, a

′
1, a
′−1
1 a−1

1 gb1b
′
1, b
′′
1) = 1 d(3)Ta2

(π)(g, b1, b
′
1, b
′′
1) = 1 ,

we finally obtain that %AB satisfies

d(2)%ABg,a2,b2(a1, a
′
1, a
′′
1 |b1, b′1, b′′1) :=

%AB
a−1

1 gb1,a
a1
2 ,b

b1
2

(a′1, a
′′
1 |b′1, b′′1) %ABg,a2,b2

(a1, a
′
1a
′′
1 |b1, b′1b′′1)

%ABg,a2,b2
(a1a′1, a

′′
1 |b1b′1, b′′1) %ABg,a2,b2

(a1, a′1|b1, b′1)
= 1 . (4.8)

Going back to the tube algebra, it remains to apply a triangulation changing isomorphism in order to

recover the initial triangulation, and thus a state in VG,A,Bπ,λ,µ [T[S1 × I]]. This is done by evaluating the
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partition function for the pinched interval cobordism (012)+ × S1 × I endowed with the triangulation

defined as

(012)+ × S1 × I= (0122′2̃′)
+ ∪ (0122̃2̃′)

− ∪ (011̃2̃2̃′)
+ ∪ (00̃1̃2̃2̃′)

−

∪ (011′2′2̃′)
− ∪ (011′1̃′2̃′)

+ ∪ (011̃1̃′2̃′)
− ∪ (00̃1̃1̃′2̃′)

+

∪ (00′1′2′2̃′)
+ ∪ (00′1′1̃′2̃′)

− ∪ (00′0̃′1̃′2̃′)
+ ∪ (00̃0̃′1̃′2̃′)

−
. (4.9)

The corresponding operator implements the isomorphism

∣∣∣∣∣

ã−1a′1

b̃−1b′1

a1ã

g

a2

b2

b1b̃0′ 1′

1
0

0̃′ 1̃′

1̃0̃

2′

2

2̃′

2̃

〉
' 1

|A| 12 |B| 12
%ABg,a2,b2(a1ã, ã

−1a′1|b1b̃, b̃−1b′1)

∣∣∣∣∣

a1a
′
1

g

a2

b2

b1b
′
10′ 2′

20

0̃′
2̃′

2̃0̃

〉
.

Putting everything together, we obtain

∣∣∣∣∣

a1

g

a2

b2

b10′ 1′

10

0̃′
1̃′

1̃0̃

〉
?

∣∣∣∣∣

a′1

g′

a′2

b′2

b′11′ 2′

21

1̃′
2̃′

2̃1̃

〉
(4.10)

=
δg′,a−1

1 gb1
δa′2,a

a1
2
δ
b′2,b

b1
2

|A| 12 |B| 12
%ABg,a2,b2(a1, a

′
1|b1, b′1)

∣∣∣∣∣

a1a
′
1

g

a2

b2

b1b
′
10′ 2′

20

0̃′
2̃′

2̃0̃

〉
,

where we used the cocycle relation d(2)%ABg,a2,b2
(a1, ã, ã

−1a′1|b1, b̃, b̃−1b′1). Using the more symbolic

notation introduced in (4.2), we obtained

∣∣(g, a2, b2)
a1−−→
b1

〉
?
∣∣(g′, a′2, b′2)

a′1−−→
b′1

〉
=
δg′,a−1

1 gb1
δa′2,a

a1
2
δ
b′2,b

b1
2

|A| 12 |B| 12
%ABg,a2,b2(a1, a

′
1|b1, b′1)

∣∣(g, a2, b2)
a1a
′
1−−−−→

b1b
′
1

〉
.

4.3 Relative groupoid algebra

Similarly to its (2+1)d analogue, the tube algebra found above can be recast as a twisted groupoid

algebra. Interestingly, due to the topology of the problem, we shall notice how in this language the

(3+1)d tube algebra can be recast in terms of the (2+1)d one, unifying both computations. This is

reminiscent of the notion of lifted models and lifted tube algebras developed in [33] in the context of

bulk excitations.

An important ingredient of our construction is the notion of loop groupoid :
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Definition 4.1 (Loop groupoid). Given a finite groupoid G, the loop groupoid ΛG is the groupoid

with object set {g ∈ EndG(X) | ∀X ∈ Ob(G)} and morphisms of the form h : g→ h−1gh, for every

g ∈ EndG(X) and h ∈ HomG(X,Y ). Composition in ΛG is inherited from the one in G.

Specialising to the case where the finite groupoid is taken to be the delooping of a finite group G, we

obtain that ΛG is the groupoid with object set Ob(ΛG) = G and morphism set Hom(ΛG) = {g a−→
a−1ga | ∀ g, a ∈ G}. Composition is given by multiplication in G such that

g
a−→a−1ga

a′−−→(aa′)−1gaa′ = g
aa′−−→ (aa′)−1gaa′ ,

for all g, a, a′ ∈ G. Using this terminology, we can check that the cocycle data T(π), T(λ) and T(µ)

defined in (4.5) actually correspond to loop groupoid cocycles in Z3(ΛG,U(1)), Z2(ΛA,U(1)) and

Z2(ΛB,U(1)), respectively. More generally, for any group G, we have a map T : Z•(G,U(1)) →
Z•−1(ΛG,U(1)) referred to as the S1-transgression map. More details regarding this map can be

found in [33, 55, 60]. We further require the notion of relative groupoid :

Definition 4.2 (Relative groupoid). Given a groupoid G, and a pair of subgroupoids A,B ⊆ G,

the relative groupoid GAB is the groupoid with object set Ob(GAB) := {g ∈ Hom(G) | s(g) ∈
Ob(A), t(g) ∈ Ob(B)} and morphism set provided by

g
a−→
b

a−1gb ≡ g
a−→
b

, (4.11)

for all g ∈ Ob(GAB), a ∈ HomA(s(g),−) and b ∈ HomB(t(g),−). Composition is defined by

g
a−→
b

a−1gb
a′−−→
b′

a
′−1a−1gbb′ = g

aa′−−−→
bb′

a
′−1a−1gbb′ , (4.12)

for all composable pairs (a, a′) ∈ A2
comp and (b, b′) ∈ B2

comp.

It follows immediately from the definition above that the groupoid GAB , whose twisted groupoid

algebra is isomorphic to the (2+1)d tube algebra, actually corresponds to the relative groupoid defined

for the delooping of the groups. We are almost ready to define the (3+1)d tube algebra in this

language. The last item we require is a notion of normalised cocycle for relative groupoid. To this end

we introduce (G, α)-subgroupoids:

Definition 4.3. Given a finite groupoid G and a normalised 3-cocycle α ∈ Z3(G,U(1)), we call

a pair (A, φ) a (G, α)-subgroupoid when A ⊆ G is a subgroupoid of G and φ ∈ C2(A,U(1)) is a

2-cochain satisfying the condition d(2)φ(a, a′, a′′) = α−1(a, a′, a′′)|A for all composable (a, a′, a′′) ∈
A3

comp.

For any pair of (G, α)-subgroupoids (A, φ) and (B, ψ), we construct a normalised 2-cocycle ϑAB ∈
Z2(GAB,U(1)) for the relative groupoid GAB via:

ϑAB(g
a−→
b
, a−1gb

a′−−→
b′

) :=
ψ(b, b′)

φ(a, a′)

α(a, a′, a′−1a−1gbb′)α(g, b, b′)

α(a, a−1gb, b′)
(4.13)

≡ ϑABg (a, a′|b, b′) (4.14)

for all composable morphisms

g
a−→
b
, a−1gb

a′−−→
b′
∈ GAB , (4.15)
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where we are using the shorthand notation introduced in (4.11). It follows from α−1|A = d(2)ψ and

α−1|B = d(2)φ, as well as the cocycle conditions

d(3)α(a, a′, a′′, a′′−1a′−1a−1gbb′b′′) = 1 d(3)α(a, a−1gb, b′, b′′) = 1

d(3)α(a, a′, a′−1a−1gbb′, b′′) = 1 d(3)α(g, b, b′, b′′) = 1

that ϑAB satisfies the 2-cocycle relation

d(2)ϑABg (a, a′, a′′|b, b′, b′′) :=
ϑABa−1gb(a′, a′′|b′, b′′)ϑABg (a, a′a′′|b, b′b′′)
ϑABg (aa′, a′′|bb′, b′′)ϑABg (a, a′|b, b′)

= 1 . (4.16)

Unsurprisingly, this equation mimics (3.8). Furthermore, given that α is a normalized cocycle, we

have the normalisation conditions:

ϑABg (ids(a′), a
′|ids(b′), b

′) = ϑABg (a, idt(a)|b, idt(b)) = 1

ϑABg (ids(a′), a
′|b, idt(b)) = ϑABg (a, idt(a)|ids(b′), b

′) = 1 ,

which further imply

ϑABa−1gb(a−1, a|b−1, b) = ϑABg (a, a−1|b, b−1) . (4.17)

Let G be a finite group and π ∈ Z4(G,U(1)). We consider two subgroups A,B ⊂ G and λ ∈
C3(A,U(1)), µ ∈ C3(B,U(1)) such that d(3)λ = π−1|A and d(3)µ = π−1|B . It follows from the

computations in sec. 4 that (ΛA,T(λ)) and (ΛB,T(µ)) are (ΛG,T(π))-subgroupoids. We define ϑΛAΛB

by applying the formula (4.13) for α ≡ T(π), φ ≡ T(λ) and ψ ≡ T(µ). Putting everything together, we

obtain the twisted relative groupoid algebra C[ΛGΛAΛB ]ϑ
ΛAΛB

. We can show that this twisted relative

groupoid algebra is isomorphic to the (3+1)d tube algebra by identifying

(g, a2, b2)
a1−−→
b1
≡ g

a1−−→
b1

, (4.18)

such that a2
g−→ b2 ≡ g ∈ Ob(ΛGΛAΛB), a2

a1−→ aa1
2 ≡ a1 ∈ HomΛA(s(g),−) and b2

b1−→ bb12 ≡ b1 ∈
HomΛB(t(g),−), as well as ϑΛAΛB ≡ %AB , which was defined in (4.5).

Thereafter, we make use of the shorthand notations Λ(GAB) ≡ ΛGΛAΛB and C[Λ(GAB)]ϑ
Λ(AB) ≡

C[Λ(GAB)]αφψ ≡ C[ΛGΛAΛB ]ϑ
ΛAΛB

to refer to this relative groupoid algebra. We purposefully choose a

notation very similar to describe the (2+1)d and (3+1)d tube algebras in order to emphasize the fact

that the framework presented in this section unifies both. As a matter of fact, we can obtain the (2+1)d

algebra from the (3+1)d one by restricting the loop groupoid ΛG to morphisms whose source and target

objects are the identity in G and by replacing the loop groupoid 3-cocycle α ≡ T(π) ∈ Z3(ΛG,U(1)),

where π ∈ Z4(G,U(1)), by a group 3-cocycle α ∈ Z3(G,U(1)). In virtue of this last remark, we

may now focus on the algebra relevant to the (3+1)d scenario, namely C[Λ(GAB)]αφψ, and deduce the

results for the (2+1)d gapped boundary excitations as a limiting case.

We conclude this section with a remark regarding the notation. Since the morphisms a1 ∈
HomΛA(s(g),−) and b1 ∈ HomΛB(t(g),−) in (4.18) are specified by a choice of group variables in

the finite groups A and B, respectively, we shall often loosely identify both in the following for nota-

tional convenience.
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SECTION 5

Representation theory and elementary gapped boundary excitations

In this section, we derive the irreducible representations of the algebra C[Λ(GAB)]αφψ, and elucidate

their physical interpretation as a classifier for the elementary string-like excitations in (3+1)d. As

mentioned earlier, due to the topology of the problem, and the common description as relative groupoid

algebras, this study can be straightforwardly applied to describe elementary boundary excitations in

(2+1)d.

5.1 Simple modules

Given a finite group G, two subgroups A,B ⊂ G and cocycle data π ∈ Z4(G,U(1)), λ ∈ C3(A,U(1)),

µ ∈ C3(B,U(1)) satisfying d(4)π = 1, d(3)λ = π−1|A, d(3)µ = π−1|B , respectively, we define α ≡
T(π) ∈ Z3(ΛG,U(1)), φ ≡ T(λ) ∈ C2(ΛA,U(1)) and ψ ≡ T(µ) ∈ C2(ΛB,U(1)). We explained above

that the simple modules of the groupoid algebra C[Λ(GAB)]αφψ ≡ C[Λ(GAB)]ϑ
Λ(AB)

classify elementary

string-like excitations terminating at gapped boundaries. Let us now derive these simple modules.

We shall find that they are labelled by a pair (O, R), where O is an equivalence class of boundary

colourings with respect to the action of the tube algebra, and R is a projective group representation

that decomposes the symmetry action of the tube algebra on a given boundary colouring.

We begin by first decomposing the algebra C[Λ(GAB)]αφψ into a direct sum of subalgebras. To this

end, we notice that the tube algebra defines an action on the set of boundary colourings yielding an

equivalence relation on Ob(Λ(GAB)) given by

g ∼ g′ , if ∃ g a−→
b
∈ Hom(Λ(GAB)) such that g′ = t

(
g

a−→
b

)
.

The subsets of Ob(Λ(GAB)), i.e. boundary colourings of the tube, that are in the same equivalence

class form a partition of Ob(Λ(GAB)) into disjoint sets. Let us denote by OAB ,O′AB ⊆ Ob(Λ(GAB))

two such equivalence classes. Considering two basis elements of the form∣∣g a−→
b

〉
,
∣∣g′ a′−−→

b′

〉
(5.1)

such that g ∈ OAB and g′ ∈ O′AB , it follows from the definition of the algebra that the product of

these two states necessarily vanishes. Consequently, each equivalence class of Ob(Λ(GAB)) defines a

subalgebra (C[Λ(GAB)]αφψ)OAB ⊂ C[Λ(GAB)]αφψ whose defining vector space is

SpanC
{∣∣g a−→

b

〉}
∀ g

a−→
b
∈Hom(Λ(GAB))

s.t. g∈OAB

. (5.2)

Since orbits OAB form a partition of Ob(Λ(GAB)), we have the following decomposition

C[Λ(GAB)]αφψ =
⊕
OAB⊂G

(C[Λ(GAB)]αφψ)OAB . (5.3)

Given an equivalence classOAB , we notate its elements by {oi}i=1,...,|OAB | and call o1 the representative

element of OAB . We further consider the set {pi, qi}i=1,...,|OAB | ⊆ Hom(ΛA) × Hom(ΛB) defined by

a choice of morphism

oi
pi−→
qi

o1 ∈ Hom(Λ(GAB)) , ∀ oi ∈ OAB
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and the requirement (p1, q1) = (ids(o1), idt(o1)). The stabiliser group of OAB is then defined as

ZOAB := {(a, b) ∈ Hom(ΛA)×Hom(ΛB) | o1 = a−1o1b} . (5.4)

Remark that the orbit-stabiliser theorem implies |ZOAB | · |OAB | = |A||B|. Finally, we construct the

twisted group algebra C[ZOAB ] as the algebra with defining vector space

SpanC
{∣∣ a−→

b

〉}
∀ (a,b)∈ZOAB

(5.5)

and product rule ∣∣ a−→
b

〉
?
∣∣ a′−−→

b′

〉
= ϑ

Λ(AB)
o1 (a, a′|b, b′)

∣∣ aa′−−−→
bb′

〉
. (5.6)

Given that α is normalized, it follows from definition (4.13) that ϑ
Λ(AB)
o1 is a representative normalised

group 2-cocycle inH2(ZOAB ,U(1)). For each simple unitary ϑ
Λ(AB)
o1 -projective representation (DR, VR)

of ZOAB , we can define a simple representation of the relative groupoid algebra C[Λ(GAB)]αφψ via a

homomorphism DOAB ,R : C[Λ(GAB)]αφψ → End(VOAB ,R) where

VOAB ,R := SpanC{|oi, vm〉}∀ i=1,...,|OAB |
∀m=1,...,dim(VR)

. (5.7)

For i, j ∈ {1, . . . , |OAB |}, m,n ∈ {1, . . . ,dim(VR)} the matrix elements are defined to be

DOAB ,R[im][jn]

(∣∣g a−→
b

〉)
= δg,oi δa−1gb,oj

ϑ
Λ(AB)
o1 (p−1

i , a|q−1
i , b)

ϑ
Λ(AB)
o1 (p−1

i apj , p
−1
j |q

−1
i bqj , q

−1
j )
DRmn

(∣∣ p−1
i apj−−−−−→

q−1
i bqj

〉)
(5.8)

such that

|oi, vm〉 .DOAB ,R
(∣∣g a−→

b

〉)
=

|OAB |∑
i,j=1

dim(VR)∑
m,n=1

DOAB ,R[im][jn]

(∣∣g a−→
b

〉)
|oj , vn〉 . (5.9)

Henceforth, we make use of the shorthand notation ρAB ≡ (OAB , R), I ≡ [im], J ≡ [jn] and dρAB ≡
dOAB ,R = |OAB | ·dim(VR). It follows immediately from the definition and the linearity of the ϑ

Λ(AB)
o1 -

projective representations of ZOAB that these matrices define an algebra homomorphism, i.e.∑
K

DρABIK

(∣∣g a−→
b

〉)
DρABKJ

(∣∣g′ a′−−→
b′

〉)
= δg′,a−1gb ϑ

Λ(AB)
g (a, a′|b, b′)DρABIJ

(∣∣g aa′−−−→
bb′

〉)
. (5.10)

Furthermore, the matrix elements satisfy the conjugation relation

DρABIJ

(∣∣g a−→
b

〉)
=

1

ϑ
Λ(AB)
g (a, a−1|b, b−1)

DρABJI

(∣∣a−1gb a−1

−−−→
b−1

〉)
, (5.11)

which follows from the unitarity of the projective representation DR of the stabilizer subgroup ZOAB ,

inducing a unitary representation of C[Λ(GAB)]αφψ. This endows C[Λ(GAB)]αφψ with the structure of

a *-algebra which in turn implies its semi-simplicity due to finiteness. Finally, the representations

matrices satisfy the following orthogonality and completeness conditions

1

|A||B|
∑

g
a−→
b
∈Λ(GAB)

DρABIJ

(∣∣g a−→
b

〉)
Dρ
′
AB

I′J′

(∣∣g a−→
b

〉)
=
δρAB ,ρ′AB
dρAB

δI,I′ δJ,J ′ (5.12)

1

|A||B|
∑
ρAB

∑
I,J

dρABD
ρAB
IJ

(∣∣g a−→
b

〉)
DρABIJ

(∣∣g′ a′−−→
b′

〉)
= δg,g′ δa,a′ δb,b′ . (5.13)

A proof of the orthogonality relation can be found in app. A.1, the completeness following from similar

arguments.
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5.2 Comultiplication map and concatenation of string-like excitations

The simple modules of the relative groupoid algebra C[Λ(GAB)]αφψ classify string-like bulk excitations

terminating at gapped boundaries labelled by Aλ and Bµ, such that φ ≡ T(λ) and ψ ≡ T(µ). Let us

now delve deeper into the exploration of the properties of this algebra, in relation to the concatenation

of the corresponding excitations. We consider the following system of three gapped boundaries and

string-like excitations terminating at these gapped boundaries:

Aλ Bµ Cν

. (5.14)

The two string-like excitations depicted above are characterized by the relative groupoid algebras

C[Λ(GAB)]αφψ and C[Λ(GBC)]αψϕ, respectively, where ϕ ≡ T(ν). We will show that these string-

like excitations can be concatenated, and the result of this concatenation is a string-like excitation

terminating at the gapped boundaries labelled by Aλ and Cν .7 More specifically, we will demonstrate

that a pair of modules for the relative groupoid algebras C[Λ(GAB)]αφψ and C[Λ(GBC)]αψϕ can be

composed to form a module for the relative groupoid algebra C[Λ(GAC)]αφϕ.

Let us consider a pair of elementary string-like excitations with internal Hilbert spaces VρAB
and VρBC , respectively. In the absence of external constraints, the corresponding join Hilbert space

is provided by the tensor product VρAB ⊗ VρBC . It remains to understand how the tube algebra

acts on this join Hilbert space. We introduce an algebra homomorphism ∆B : C[Λ(GAC)]αφϕ →
C[Λ(GAB)]αφψ ⊗ C[Λ(GBC)]αψϕ defined by

∆B

(∣∣g a−→
c

〉)
:=

1

|B|
∑

g1∈Ob(Λ(GAB))
g2∈Ob(Λ(GBC))

g1g2=g
b∈HomΛB(t(g1),s(g2))

ζ
Λ(ABC)
a,b,c (g1, g2)

∣∣g1
a−→
b

〉
⊗
∣∣g2

b−→
c

〉
(5.15)

where

ζ
Λ(ABC)
a,b,c (g1, g2) :=

α(g1, g2, c)α(a, a−1g1b, b
−1g2c)

α(g1, b, b−1g2c)
. (5.16)

As mentioned earlier, when no confusion is possible, we shall loosely identify b ∈ HomΛB(t(g1), s(g2))

and the group variable b ∈ B it evaluates to in order to make the notation lighter. By analogy with

the theory of Hopf algebras, we refer in the following to ∆B as the B-comultiplication map of the

twisted groupoid algebra C[Λ(GAC)]αφϕ. It follows from the cocycle conditions

d(3)α(a, a′, a′−1a−1g1bb
′, b′−1b−1g2cc

′) = 1 d(3)α(a, a−1g1b, b
−1g2c, c

′) = 1

d(3)α(a, a−1b, b′, b′−1b−1g2cc
′) = 1 d(3)α(g1, b, b

−1g2c, c
′) = 1

d(3)α(g1, b, b
′, b′−1b−1g2cc

′) = 1 d(3)α(g1, g2, c, c
′) = 1

7Because of the geometry of the operation under consideration, we refrain from referring to this process as the

‘fusion’ of the corresponding string-like excitations. That being said, in (2+1)d, the same map defines the usual fusion

of point-like excitations.
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that ζ
Λ(ABC)
a,b,c satisfies the relation

ϑ
Λ(AB)
g1 (a, a′|b, b′)ϑΛ(BC)

g2 (b, b′|c, c′)
ϑ

Λ(AC)
g1g2 (a, a′|c, c′)

=
ζ

Λ(ABC)
aa′,bb′,cc′(g1, g2)

ζ
Λ(ABC)
a,b,c (g1, g2) ζ

Λ(ABC)
a′,b′,c′ (a−1g1b, b−1g2c)

(5.17)

ensuring that the map ∆B is an algebra homomorphism, i.e.

∆B

(∣∣g a−→
c

〉)
◦∆B

(∣∣g′ a′−−→
c′

〉)
= ∆B

(∣∣g a−→
c

〉
?
∣∣g′ a′−−→

c′

〉)
. (5.18)

Putting everything together, given the relative groupoid algebras C[Λ(GAB)]αφψ, C[Λ(GBC)]αψϕ and a

pair of representations (DρAB , VρAB ) and (DρBC , VρBC ), the comultiplication ∆B allows us to define

the tensor product representation ((DρAB ⊗DρBC ) ◦∆B , VρAB ⊗ VρBC ), where

(DρAB ⊗DρBC ) ◦∆B : C[Λ(GAB)]αφψ ⊗ C[Λ(GBC)]αψϕ → End(VρAB ⊗ VρBC ) (5.19)

such that

(DρAB ⊗DρBC )
(
∆B

(∣∣g a−→
c

〉))
=

1

|B|
∑

g1∈Ob(Λ(GAB))
g2∈Ob(Λ(GBC))

g1g2=g
b∈B

ζ
Λ(ABC)
a,b,c (g1, g2)DρAB

(∣∣g1
a−→
b

〉)
⊗DρBC

(∣∣g2
b−→
c

〉)
,

where we loosely identified b ∈ HomΛB(t(g1), s(g2)) and the corresponding group variable for nota-

tional convenience. In the following, it will be often useful to write the so-called truncated tensor

product ⊗B of representation matrices defined as

DρAB ⊗B DρBC := (DρAB ⊗DρBC ) ◦∆B . (5.20)

Using the semisimplicity of relative groupoid algebras, the tensor product representations defined above

are generically not simple and as such admit a decomposition into direct sum of simple representations,

i.e.

DρAB ⊗B DρBC ∼=
⊕
ρAC

NρAC
ρAB ,ρBCD

ρAC , (5.21)

where the number NρAC
ρAB ,ρBC ∈ Z+

0 is referred to as the multiplicity of the simple C[Λ(GAC)]αφϕ rep-

resentation (DρAC , VρAC ) appearing in the tensor product of the representations (DρAB , VρAB ) and

(DρBC , VρBC ). Henceforth, we assume multiplicity-freeness of the multifusion category of representa-

tions, i.e. NρAC
ρAB ,ρBC ∈ {0, 1} in order to simplify the notations. Note however that it is straightforward

to lift this assumption. Using the orthogonality relations of the irreducible representations, we find a

useful expression to compute explicitly this number, namely

NρAC
ρAB ,ρBC =

1

|A||C|
∑

g
a−→
c
∈Λ(GAC)

tr
[

(DρAB ⊗B DρBC )
(∣∣g a−→

c

〉)
DρAC

(∣∣g a−→
c

〉) ]
. (5.22)

Note finally that given the algebras C[Λ(GAA)]αφφ and C[Λ(GBB)]αψψ, the regular modules8 C[Λ(GAA)]αφφ
C[Λ(GBB)]αψψ satisfy the unit module properties

C[Λ(GAA)]αφφ ⊗A ρAB ∼= ρAB ∼= ρAB ⊗B C[Λ(GBB)]αψψ (5.23)

8The regular module of an algebra is defined as the algebra viewed as a module over itself.
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as C[Λ(GAB)]αφψ modules.

As explained above, thanks to our formulation in terms of relative groupoid algebras, we can easily

extract all the relevant structures for the (2+1)d algebra as a limiting case. This is done in the next

section, where we define a canonical basis of excited states. In this scenario, the comultiplication map

yields the fusion of the corresponding point-like excitations.

5.3 Clebsch-Gordan series

In preparation for the later discussion, let us study further the properties of the comultiplication

map introduced earlier. Since the comultiplication map ∆B is an algebra homomorphism, there exist

intertwining unitary maps

UρAB ,ρBC :
⊕
ρAC

VρAC → VρAB ⊗B VρBC , (5.24)

where the sum is over labels ρAC such that DρAC ∈ DρAB ⊗B DρBC , that satisfy the defining relation

(DρABIABJAB
⊗B DρBCIBCJBC

)
(∣∣g a−→

c

〉)
=
∑
ρAC

IAC ,JAC

UρAB ,ρBC[IABIBC ][ρACIAC ]D
ρAC
IACJAC

(∣∣g a−→
c

〉)
UρAB ,ρBC[JABJBC ][ρACJAC ] .

Henceforth, we will denote the matrix elements of this unitary map as[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

]
:= UρAB ,ρBC[IABIBC ][ρACIAC ] ,

and refer to them as Clebsch-Gordan coefficients. Using the orthogonality of the representation ma-

trices, we obtain the equivalent defining relation

dρAC
|A||C|

∑
g

a−→
c
∈Λ(GAC)

(DρABIABJAB
⊗B DρBCIBCJBC

)
(∣∣g a−→

c

〉)
DρACIACJAC

(∣∣g a−→
c

〉)
=
[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
.

The unitarity of UρAB ,ρBC imposes the following orthogonality and completeness relations:

∑
IAB ,IBC

[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAB
IAB

ρBC
IBC

∣∣∣ρ′ACI′AC

]
= δIAC ,I′AC δρAC ,ρ′AC (5.25)

∑
ρAC ,IAC

[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAB
I′AB

ρBC
I′BC

∣∣∣ρACIAC

]
= δIAB ,I′ABδIBC ,I′BC . (5.26)

Furthermore, the Clebsch-Gordan coefficients satisfy the following crucial property∑
g∈Hom(s(a),s(c))

∑
{J}

(DρABIABJAB
⊗B DρBCIBCJBC

)
(∣∣g a−→

c

〉)
DρACIACJAC

(∣∣g a−→
c

〉)[ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
=
[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

]
(5.27)

referred to as the gauge invariance of the coefficients. This property can be checked as follows: Firstly,

utilise the unitarity of the intertwining maps to rewrite the defining equation as the intertwining

property∑
JAB ,JBC

(DρABIABJAB
⊗B DρBCIBCJBC

)
(∣∣g a−→

c

〉)[ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
=
∑
IAC

[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

]
DρACIACJAC

(∣∣g a−→
c

〉)
.
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Secondly, multiply this equation on both side by DρACKACJAC

(∣∣g a−→
c

〉)
and use the identity∑

g∈Hom(s(a),s(c))

∑
JAC

DρACIACJAC

(∣∣g a−→
c

〉)
DρACKACJAC

(∣∣g a−→
c

〉)
=

∑
g∈Hom(s(a),s(c))

∑
JAC

1

ϑ
Λ(AC)
g (a, a−1|c, c−1)

DρACIACJAC

(∣∣g a−→
c

〉)
DρACJACKAC

(∣∣a−1gc a−1

−−−→
c−1

〉)
=

∑
g∈Hom(s(a),s(c))

DρACIACKAC

(∣∣g 1A−−−→
1C

〉)
= δIAC ,KAC ,

where we used (5.11). Note that we use the notation 1A to refer to the morphism in Hom(s(a),−)

characterized by the group variable 1A ∈ A, and similarly for 1C . Summing over JAC = 1, . . . , dρAC
finally yields the gauge invariance. This invariance of the Clebsch-Gordan coefficients further implies∑
{J}

DρABIABJAB

(∣∣g1
a−→
b

〉)
DρBCIBCJBC

(∣∣g2
b′−−→
c

〉)[ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACJACIAC

(∣∣g3
a′−−→
c′

〉)
(5.28)

=
1

|B|
∑
b̃∈B

ϑ
Λ(AB)
g1 (a, ã|b, b̃)ϑ

Λ(BC)
g2 (b′, b̃|c, c̃) ζΛ(ABC)

ã,b̃,c̃
(a−1g1b, b

′−1g2c)

ϑ
Λ(AC)
g3 (ã, ã−1a′ |̃c, c̃−1c′)

δg3,a−1g1bb′−1g2c

×
∑
{K}

DρABIABKAB

(∣∣g1
aã−−→
bb̃

〉)
DρBCIBCKBC

(∣∣g2
b′b̃−−−→
cc̃

〉)[ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]
DρACKACIAC

(∣∣ã−1g3c̃
ã−1a′−−−−→
c̃−1c′

〉)
,

which is true for all composable morphisms a, ã in ΛA and c, c̃ in ΛC. A proof of this identity can be

found in app. A.2. It is straightforward to check that this last relation induces another one, namely∑
{J}

DρABJABIAB

(∣∣g1
a−→
b

〉)
DρBCJBCIBC

(∣∣g2
b′−−→
c

〉)[ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACIACJAC

(∣∣g3
a′−−→
c′

〉)
(5.29)

=
1

|B|
∑
b̃∈B

ϑ
Λ(AB)
g1 (ã, ã−1a|b̃, b̃−1b)ϑ

Λ(BC)
g2 (b̃, b̃−1b′ |̃c, c̃−1c) ζΛ(ABC)

ã,b̃,c̃
(g1, g2)ϑ

Λ(AC)
g3 (a′, ã|c′, c̃)−1

×
∑
{K}

δa′−1g3c′,g1g2
DρABKABIAB

(∣∣ã−1g1b̃
ã−1a−−−−→
b̃−1b

〉)
DρBCKBCIBC

(∣∣b̃−1g2c̃
b̃−1b′−−−−→
c̃−1c′

〉)
×
[
ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]
DρACIACKAC

(∣∣g3
a′ã−−−→
c′c̃

〉)
.

5.4 Associativity and 6j-symbols

Given two relative groupoid algebras C[Λ(GAB)]αφψ, C[Λ(GBC)]αψϕ and a pair of representations defined

by (DρAB , VρAB ), (DρBC , VρBC ), we constructed earlier the tensor product representation ((DρAB ⊗
DρBC ) ◦∆B , VρAB ⊗ VρBC ) of C[Λ(GAC)]αφϕ. Let us now consider the quasi-invertible algebra element

ΦABCD ∈ C[Λ(GAB)]αφψ ⊗ C[Λ(GBC)]αψϕ ⊗ C[Λ(GCD)]αϕχ defined as

ΦABCD :=
∑

g1∈Ob(Λ(GAB))
g2∈Ob(Λ(GBC))
g3∈Ob(Λ(GCD))

α−1(g1, g2, g3)
∣∣g1

1A−−−→
1B

〉
⊗
∣∣g2

1B−−−→
1C

〉
⊗
∣∣g3

1C−−−→
1D

〉
, (5.30)

such that g1, g2 and g3 are composable morphisms in ΛG. The cocycle conditions

d(3)α(a, a−1g1b, b
−1g2c, c

−1g3d) = 1 d(3)α(g1, g2, c, c
−1g3d) = 1

d(3)α(g1, b, b
−1g2c, c

−1g3d) = 1 d(3)α(g1, g2, g3, d) = 1

∼ 31 ∼



imply the identity

ζ
Λ(BCD)
b,c,d (g2, g3) ζ

Λ(ABD)
a,b,d (g1, g2g3)

ζ
Λ(ACD)
a,c,d (g1g2, g3) ζ

Λ(ABC)
a,b,c (g1, g2)

=
α(g1, g2, g3)

α(a−1g1b, b−1g2c, c−1g3d)
, (5.31)

which in turn ensures that the comultiplication is quasi-coassociative, i.e

(∆B ⊗ id)∆C

(∣∣g a−→
d

〉)
= ΦABCD ?

[
(id⊗∆C)∆B

(∣∣g a−→
d

〉)]
? Φ−1

ABCD , ∀
∣∣g a−→

d

〉
∈ C[Λ(GAB)]αφχ .

(5.32)

This signifies that the truncated tensor product of representations (DρAB ⊗B DρBC ) ⊗C DρCD and

DρAB ⊗B (DρBC ⊗C DρCD ) defined as

(DρAB ⊗B DρBC )⊗C DρCD := (DρAB ⊗DρBC ⊗DρCD ) ◦ (∆B ⊗ id)∆C (5.33)

DρAB ⊗B (DρBC ⊗C DρCD ) := (DρAB ⊗DρBC ⊗DρCD ) ◦ (id⊗∆C)∆B (5.34)

must be isomorphic as C[Λ(GAD)]αφχ-modules. More specifically, it follows immediately from the

quasi-coassociativity condition that the maps

ΦρAB ,ρBC ,ρCD := (DρAB ⊗DρAB ⊗DρAB )(ΦABCD) ∈ End(VρAB ⊗ VρBC ⊗ VρCD ) (5.35)

define intertwiners between the tensor product of representations above such that

ΦρAB ,ρBC ,ρCD [DρAB ⊗B (DρBC ⊗C DρCD )] = [(DρAB ⊗B DρBC )⊗C DρCD ]ΦρAB ,ρBC ,ρCD . (5.36)

Let us consider two vector spaces VρAB and VρBC . These are spanned by vectors |ρABIAB〉 and

|ρBCIBC〉, respectively, such that the corresponding groupoid algebras act on these basis vectors from

the right. We define the truncated tensor product of two such vectors as

|ρABIAB〉 ⊗B |ρBCIBC〉 :=
(
|ρABIAB〉 ⊗ |ρBCIBC〉

)
.∆B(1AC) , (5.37)

which span the vector space VρAB ⊗B VρBC ⊂ VρAB ⊗ VρBC . More specifically. we have

|ρABIAB〉 ⊗B |ρBCIBC〉 =
∑
ρAC
IAC

|ρAB ⊗B ρBC ; ρAC , IAC〉
[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

]
, (5.38)

where we define

|ρAB ⊗B ρBC , ρACIAC〉 :=
∑

IAB ,IBC

[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

](
|ρABIAB〉 ⊗ |ρBCIBC〉

)
. (5.39)

Noting that

|ρAB ⊗B ρBC , ρACIAC〉(DρAB ⊗B DρBC )
(∣∣g a−→

c

〉)
= |ρAB ⊗B ρBC , ρACIAC〉DρAC

(∣∣g a−→
c

〉)
, (5.40)

we realize that SpanC{|ρAB ⊗B ρBC , ρACIAC〉}∀ IAC ∼= VρAC as C[Λ(GAC)]αφϕ representations through

the map |ρAB ⊗B ρBC , ρACIAC〉 7→ |ρACIAC〉. Similarly, we can define the following truncated tensor

product of vectors(
|ρABIAB〉 ⊗B |ρBCIBC〉

)
⊗C |ρCDICD〉

:=
(
|ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉

)
. [(∆B ⊗ id)∆C ](1AD)

|ρABIAB〉 ⊗B
(
|ρBCIBC〉 ⊗C |ρCDICD〉

)
:=
(
|ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉

)
. [(id⊗∆C)∆B ](1AD) ,

∼ 32 ∼



which define basis vectors in (VρAB ⊗B VρBC )⊗C VρBC and VρAB ⊗B (VρBC ⊗C VρBC ), respectively. We

then find that ΦABCD induces the following isomorphism:

(VρAB ⊗B VρBC )⊗C VρBC ∼= VρAB ⊗B (VρBC ⊗C VρBC ) . (5.41)

Vectors
(
|ρABIAB〉⊗B |ρBCIBC〉

)
⊗C |ρCDICD〉 are typically not linearly independent, however a basis

for the vector space (VρAB ⊗B VρBC )⊗C VρBC is provided by the vectors

∑
{I}

[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADKAD

]
|ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉 . (5.42)

We obtain that ΦABCD acts on such basis vectors as

∑
ρAC

∑
{I}

{
ρAB
ρAD

ρBC
ρAC

ρCD
ρBD

}[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADKAD

]
|ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉 . ΦABCD

=
∑
{I}

[
ρAB
IAB

ρBD
IBD

∣∣∣ρADKAD

][
ρBC
IBC

ρCD
ICD

∣∣∣ρBDIBD

]
|ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉 (5.43)

such that the so-called 6j-symbols are defined as{
ρAB
ρAD

ρBC
ρAC

ρCD
ρBD

}
:=

1

dρAD

∑
{I}

α(oiAB , oiBC , oiCD )
[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADIAC

][
ρAB
IAB

ρBD
IBD

∣∣∣ρADIAD

][
ρBC
IBC

ρCD
ICD

∣∣∣ρBDIBD

]
,

where the notation is the one of definition (5.8) of the representation matrices. This establishes the

isomorphism (5.41). A detailed proof of the defining relation (5.43) can be found in app. A.3.

Furthermore, given the vector space ((VρAB ⊗B VρBC )⊗C VρCD )⊗D VρDE , we find that

[(id⊗ id⊗∆Dχ)(ΦABCE)] ? [(∆B ⊗ id⊗ id)(ΦACDE)]

and

(1AB ⊗ ΦBCDE) ? [(id⊗∆C ⊗ id)(ΦABDE)] ? (ΦABCD ⊗ 1DE) (5.44)

induce the same isomorphism. This is referred to as the so-called pentagon identity and ensures the

self-consistency of the quasi-coassociativity. A proof of the pentagon identity can be found in app. A.4.

In a similar vein, it can be shown that the regular C[Λ(GBB)]αψψ-module satisfies the so-called

triangle identity such that the following diagram commutes

(ρAB ⊗B C[Λ(GBB)]αψψ)⊗B ρBC ρAB ⊗B (C[Λ(GBB)]αψψ ⊗B ρBC)

ρAB ⊗B ρBC

ΦABBC

∼=∼=

(5.45)

as C[Λ(GAB)]αφϕ-modules for all C[Λ(GAB)]αφψ-modules ρAB and C[Λ(GBC)]αψϕ-modules ρBC .
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5.5 Canonical basis for (2+1)d boundary excited states

So far we have been dealing with the groupoid algebra C[Λ(GAB)]αφψ, which is isomorphic to the (3+1)d

tube algebra derived in (4). We have defined its simple modules, which classify elementary string-like

excitations terminating at gapped boundaries, and introduced a comultiplication map that defines a

notion of concatenation for these string-like excitations. Furthermore, we constructed the Clebsch-

Gordan series and 6j-symbols associated with this comultiplication map. As mentioned earlier, we

have been using the language of relative groupoid algebras, since it unifies both the tube algebras

in (2+1)d and in (3+1)d. More specifically, we explained earlier how to obtain the (2+1)d algebra

from the (3+1)d one by restricting the object in Λ(GAB) to group variables in G and by replacing

the loop groupoid 3-cocycle α ≡ T(π) ∈ Z3(ΛG,U(1)), where π ∈ Z4(G,U(1)), by a group 3-cocycle

α ∈ Z3(G,U(1)). We shall now use this mechanism to adapt all the notions derived so far to the

study of elementary point-like excitations at the interface between two gapped boundaries in (2+1)d.

Thanks to our formulation, the notations remain almost identical. Concretely, it simply amounts

to replacing g ∈ Ob(Λ(GAB)) by g ∈ G, and (a, b) ∈ ΛA × ΛB by (a, b) ∈ A × B, and to picking

α in H3(G,U(1)), the other cocycle data descending from it. Note that replacing (a, b) by (a, b) is

merely formal as we have often identified the morphisms a and b with the group variables they are

characterized by for notational convenience.

Using the definition of the representation matrices together with the Clebsch-Gordan series, we

shall now illustrate the mathematical structures introduced earlier by defining a complete and or-

thonormal basis of excited states for any pattern of elementary point-like excitations in (2+1)d. The

same basis can also be used to define ground state subspaces in the absence of excitations. Naturally,

the same construction could be carried out in (3+1)d since we have derived all the relevant notions

in this case, which encompasses the (2+1)d one. However, we choose to focus in (2+1)d where it is

easier to visualise the construction.

First, let us derive the canonical basis for a pair of dual elementary point-like excitations living

at the interfaces of two gapped boundaries labelled by the data (A, φ) and (B,ψ). This corresponds

to the situation depicted in (3.3) so that we are merely looking for a canonical basis for the vector

space C[GAB ]αφψ. For each simple module labelled by ρAB , this basis is defined by the set of elements

|ρABIJ〉 ∈ C[GAB ]αφψ, with I, J ∈ {1, . . . , dρAB}, such that

|ρABIJ〉 =
( dρAB
|A||B|

) 1
2

∑
g∈G

(a,b)∈A×B

DρABIJ

(∣∣g a−→
b

〉) ∣∣g a−→
b

〉
. (5.46)

This transformation defines an isomorphism such that the inverse is provided by the formula∣∣g a−→
b

〉
=
( 1

|A||B|

) 1
2
∑
ρ

d
1
2
ρAB

∑
I,J

DρABIJ

(∣∣g a−→
b

〉)
|ρABIJ〉 . (5.47)

The latter formula expresses the fact that a given state describing such point-like boundary excitations

can be written as a sum of states describing elementary excitations. It follows immediately from the

orthonormality (5.12) of the representation matrices that this basis is orthonormal:

〈
ρ′ABI

′J ′
∣∣ρABIJ〉 =

d
1
2
ρABd

1
2

ρ′AB

|A||B|
∑
g,g′∈G

(a,b),(a′,b′)∈A×B

Dρ
′
AB

I′J′

(∣∣g′ a′−−→
b′

〉
DρABIJ

(∣∣g a−→
b

〉) 〈
g′

a′−−→
b′

∣∣g a−→
b

〉
= δρ′AB ,ρAB δI′,I δJ′,J (5.48)
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and complete:∑
ρAB ,I,J

〈
ρABIJ

∣∣ρABIJ〉 =
∑

ρAB ,I,J

dρAB
|A||B|

∑
g∈G

(a,b)∈A×B

DρABIJ

(∣∣g a−→
b

〉
DρABIJ

(∣∣g a−→
b

〉)
=

∑
g∈G

(a,b)∈A×B

1 = |G| · |A| · |B| =
∣∣C[GAB ]αφψ

∣∣ . (5.49)

Crucially, the canonical basis diagonalizes the ?-product (see proof in app. B.1):

|ρABIJ〉 ? |ρ′ABI ′J ′〉 = |A| 12 |B| 12
δρAB ,ρ′AB δJ,I′

d
1
2
ρAB

|ρIJ ′〉 . (5.50)

As a useful corollary, we have that∣∣g a−→
b

〉
? |ρABIJ〉 =

∑
I′

DρABII′

(∣∣g a−→
b

〉)
|ρI ′J〉 (5.51)

|ρABIJ〉 ?
∣∣g a−→

b

〉
=
∑
I′

DρABJ′J

(∣∣g a−→
b

〉)
|ρIJ ′〉 . (5.52)

Let ZC[GAB ]αφψ
be the centre of C[GAB ]αφψ consisting of all elements |ψ〉 ∈ C[GAB ]αφψ that satisfy

|ψ〉 ?
∣∣g a−→

b

〉
=
∣∣g a−→

b

〉
? |ψ〉 , ∀

∣∣g a−→
b

〉
∈ C[GAB ]αφψ . (5.53)

Let us consider the states

|ρAB〉 :=
1

d
1
2
ρAB

∑
I

|ρABII〉 . (5.54)

It follows immediately from corollaries (5.51) and (5.52) that these states are central, i.e.

|ρAB〉 ?
∣∣g a−→

b

〉
=
∣∣g a−→

b

〉
? |ρAB〉 , ∀

∣∣g a−→
b

〉
∈ C[GAB ]αφψ , (5.55)

from which we can easily deduce that |ρAB〉 form a complete and orthonormal basis for the centre:

ZC[GAB ]αφψ
= SpanC

{
|ρAB〉

}
∀ ρAB

. (5.56)

We now would like to show that this centre describes the ground state subspace of our model for the

annulus O depicted below:

. (5.57)

A triangulation O4 for O can be inferred from T[I] defined in (3.5) by imposing the identifications

(0) ≡ (1), (0′) ≡ (1′) and (00′) ≡ (11′). It further follows that we can identify the space of coloured

graph-states on O4 as the subspace of coloured graph-states on T[I] that satisfy g = a−1gb. The ground

state subspace can be finally obtained by enforcing the twisted gauge invariance at the two vertices

∼ 35 ∼



via the Hamiltonian projector PO4 . This operator can be easily deduced from the one appearing in

the definition of the (2+1)d open tube algebra:

PO4 =
1

|A||B|
∑
g∈G

(a,b)∈A×B

∑
(ã,b̃)∈A×B

δg,a−1gb

ϑABg (a, ã|b, b̃)
ϑABg (ã, ã−1aã|b̃, b̃−1bb̃)

∣∣ ã−1gb̃
ã−1aã−−−−−→
b̃−1bb̃

〉〈
g

a−→
b

∣∣ . (5.58)

Crucially, this operator can be identically expressed in terms of algebra elements in C[GAB ]αφψ as

follows (cf. proof in app. B.2)

PO4 =
1

|A||B|
∑
g∈G

(a,b)∈A×B

∑
g̃∈G

(ã,b̃)∈A×B

(∣∣g̃ ã−→̃
b

〉−1
?
∣∣g a−→

b

〉
?
∣∣g̃ ã−→̃

b

〉)〈
g

a−→
b

∣∣ , (5.59)

where ∣∣g̃ ã−→̃
b

〉−1
=

1

ϑABg̃ (ã, ã−1|b̃, b̃−1)

∣∣ã−1g̃b̃
ã−1

−−−→
b̃−1

〉
. (5.60)

Note furthermore that we can express the identity algebra element in C[GAB ]αφψ as∣∣1AB〉 =
∑
g̃∈G

(ã,b̃)∈A×B

∣∣g̃ ã−→̃
b

〉−1
?
∣∣g̃ ã−→̃

b

〉
(5.61)

such that ∣∣1AB〉 ? ∣∣g a−→
b

〉
=
∣∣g a−→

b

〉
=
∣∣g a−→

b

〉
?
∣∣1AB〉 , ∀

∣∣g a−→
b

〉
∈ C[GAB ]αφψ . (5.62)

It implies that the image of the Hamiltonian projector PO4 is spanned by states |ψ〉 ∈ C[GAB ]αφψ
satisfying

|ψ〉 ?
∣∣g a−→

b

〉
=
∣∣g a−→

b

〉
? |ψ〉 , ∀

∣∣g a−→
b

〉
∈ C[GAB ]αφψ , (5.63)

which is precisely the definition of the centre of |ψ〉 ∈ C[GAB ]αφψ. We deduce that the ground state

subspace on O4 is spanned by the states |ρAB〉:

VG,A,Bα,φ,ψ [O4] = ImPO4 = ZC[GAB ]αφψ
= SpanC

{
|ρAB〉

}
∀ ρAB

. (5.64)

As an immediate consequence of this statement is the fact that the ground state degeneracy of the

annulus equals the number of elementary boundary point-like excitations at the interface of two gapped

boundaries. This mimics the well-know result that the number of bulk point-like excitations equals

the ground state degeneracy on the torus.

Let us pursue our construction by defining the canonical basis associated with the following configu-

ration:
Aφ

Bψ Cϕ

→ ' , (5.65)

i.e. the two-disk D2 from which local neighbourhoods at the interface of the three gapped boundaries

have been removed. This manifold is referred to as the thrice-punctured two-disk and is denoted
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by Y. We choose a triangulation Y4 for this manifold and consider the following space of coloured

graph-states:

SpanC

{∣∣∣∣∣g
[

2

2′

1′

3′

3′′

0 0′′

1 1′′

]〉}
∀g∈Col(Y4,G,A,B,C)

≡ SpanC

{∣∣∣∣∣
a′g1g2c

′−1

a
−

1 g
1
b

b ′−
1
g
2 c

a

a′ c′

c

b b′

2

2′

1′

3′

3′′

0 0′′

1 1′′

〉}
∀ g1,g2∈G
∀ a,a′∈A
∀ b,b′∈B
∀ c,c′∈C

≡ |g1, a, b, g2, b
′, c, a′, c′〉Y4 .

We are interested in the ground state subspace VG,A,B,Cα,φ,ψ,ϕ [Y4] on this manifold. In order to obtain this

Hilbert space, we need to apply the Hamiltonian projector PY4 simultaneously at all three physical

boundary vertices. This operator is obtained by evaluating the partition function (2.15) on the relative

pinched interval cobordism

0 0′′

1

2

2′

3′′

1̃′

1̃′′

1′′

1′

1̃

3′

(5.66)

and its action explicitly reads

PY4
(
|g1, a, b, g2, b

′, c, g3, a
′, c′〉Y4

)
(5.67)

=
1

|A||B||C|
∑
ã∈A
b̃∈B
c̃∈C

ϑACa′g1g2c′−1(a′, ã|c′, c̃)
ϑABg1

(ã, ã−1a|b̃, b̃−1b)ϑBCg2
(b̃, b̃−1b′|c̃, c̃−1c) ζABC

ã,b̃,c̃
(g1, g2)

× |ã−1g1b̃, ã
−1a, b̃−1b, b̃−1g2c̃, b̃

−1b′, c̃−1c, a′ã, c′c̃〉Y4 . (5.68)

Let us now define the following basis states

|ρABIAB , ρBCIBC , ρACIAC〉Y4

:=
∑
{g∈G}

∑
a,a′∈A
b,b′∈B
c,c′∈C

∑
{J}

DρABJABIAB

(∣∣g1
a−→
b

〉)
DρBCJBCIBC

(∣∣g2
b′−−→
c

〉)[ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACIACJAC

(∣∣a′g1g2c′−1 a′−−→
c′

〉)
× |g1, a, b, g2, b

′, c, a′, c′〉Y4 .

We can show using the invariance property (5.29) of the Clebsch-Gordan coefficients that these basis

states diagonalise the action of the Hamiltonian projector, i.e. for every {ρxIx}x=AB,BC,AC we have

PY4
(
|ρABIAB , ρBCIBC , ρACIAC〉Y4

)
= |ρABIAB , ρBCIBC , ρACIAC〉Y4 . (5.69)

A proof of this crucial relation can be found in app. B.3. We refer to these states as the canonical basis

states for Y4. It follows from the orthogonality and the completeness of the representation matrices

as well as the Clebsch-Gordan series, that this basis is orthogonal and complete.
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It is now possible to use the canonical basis states we have derived so far in order to define

excited states associated with more complicated boundary patterns. For instance, the case of D2 with

four different gapped boundaries can be treated easily by noticing that the manifold resulting from

removing local neighbourhoods at every interface can be realised as the gluing of two copies of Y4.

Similarly, canonical basis states for this manifold are obtained via the ?-product by contracting two

states of Y4 along one magnetic index. Interestingly, two different bases can be defined following this

scheme, but they are equivalent. This is ensured by the quasi-coassociativity, and more specifically

the isomorphism (5.41). As a matter of fact, the two bases can be explicitly related to each other via

the 6j-symbols as defined in (5.43), which was the motivation for introducing them. More generally,

any number of gapped boundaries can be treated in a similar fashion by gluing several copies Y4
according to a fusion binary tree. Thanks to the quasi-coassociativity, the choice of tree is not relevant

as the corresponding bases are all equivalent.

SECTION 6

Gapped boundaries and higher algebras

In this section, we describe a higher categorical construction capturing the salient features of the

gapped boundary excitations considered in the previous sections. We begin by reviewing the definitions

of monoidal categories and bicategories before introducing the theory of module categories. For more

details on such constructions, see for example [30, 57, 60, 61]. Building upon such notions, we then

demonstrate the relation between gapped boundary excitations and bicategories of module categories.

In particular we review that the bicategory MOD(VecαG) provides a convenient description of gapped

boundary excitations in (2+1)d Dijkgraaf-Witten theory [10], and show that MOD(Vec
T(π)
ΛG ) describes

string-like bulk excitations terminating at the boundary in (3+1)d Dijkgraaf-Witten theory.

6.1 Higher category theory

We begin this section by first introducing higher category theory. In order to motivate the ethos of

higher category theory, it is illuminating to first consider the notion of categorification. Generally,

categorification refers to a collection of techniques in which statements about sets are translated into

statements about categories. Let us consider a simple example. Given a pair of sets X,Y and a

triple of functions f, g, h : X → Y , it is natural to pose relations between such functions in terms of

equations. For instance, we may have f = g and g = h as functions from X to Y , from which we can

infer the relation f = h by transitivity. In this setting, categorification is the process whereby each set

X is replaced by a category CX , and each function f : X → Y is sent to a functor Ff : CX → CY . Using

the additional structure proper to categories, we have a choice about the way we lift the equations

f = g and g = h. We could either require the corresponding functors to be equal, i.e. Ff = Fg and

Fg = Fh implying Ff = Fh, or alternatively, we could instead require only the existence of natural

isomorphisms, i.e. ηfg : Ff
∼−→ Fg and ηgh : Fg

∼−→ Fh. In the latter case, we use equations on the

natural transformations in order to prescribe a natural transformation ηfh = ηfg ◦ ηgh : Ff → Fh
replacing transitivity.

Building upon the idea of categorification, let us now introduce bicategories, which will form the

model of higher category theory utilised in the following discussion. Given a (small) category C, recall

that we denote by HomC(X,Y ) the set of (1-)morphisms (hom-set) between the objects X,Y ∈ Ob(C).
Roughly speaking, a bicategory is obtained by applying the categorification mechanism spelt out above

to such sets of morphisms. More specifically, we replace HomC(X,Y ) with a category that we denote

by HomC(X,Y ). The composition function ◦ : HomC(X,Y ) × HomC(Y,X) → HomC(X,Z) is then
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replaced with a composition bifunctor ⊗ : HomC(X,Y ) × HomC(Y,Z) → HomC(X,Z). Moreover,

equations between morphisms are replaced with natural transformations between functors together

with equations defined for such natural transformations. With this idea in mind, we now define our

notion of bicategory:

Definition 6.1 (Bicategory). A bicategory Bi consists of:

• A set of objects Ob(Bi).

• For each pair of objects X,Y ∈ Ob(Bi), a category HomBi (X,Y ), whose objects and morphisms

are referred to as 1- and 2-morphisms, respectively. Given a 1-morphism f ∈ HomBi (X,Y ),

X =: s(f) and Y =: t(f) are referred to as the ‘source’ and the ‘target’ objects of f , respectively.

The composition of 2-morphisms in HomBi (X,Y ) is designated as the ‘vertical’ composition.

• For each triple of objects X,Y, Z ∈ Ob(Bi), a binary functor ⊗ : HomBi (X,Y )×HomBi (Y,Z)→
HomBi (X,Z) designated as the ‘horizontal’ composition.

• For each object X ∈ Ob(Bi), a 1-morphism 1X ∈ Ob(HomBi (X,X)), and for each morphism

f : X → Y , a pair of natural isomorphism `f : 1X ⊗ f → f and rY : f ⊗ 1Y → f called the

‘left’ and ‘right’ unitors, respectively.

• For each triple of composable 1-morphisms f, g, h, a natural isomorphism αf,g,h : (f ⊗g)⊗h→
f ⊗ (g ⊗ h) called the 1-associator.

This data is subject to coherence relations encoded in the commutativity of the diagrams

((f ⊗ g)⊗ h)⊗ k

(f ⊗ (g ⊗ h))⊗ k (f ⊗ g)⊗ (h⊗ k)

f ⊗ ((g ⊗ h)⊗ k) f ⊗ (g ⊗ (h⊗ k))

α
f⊗g,h,k

αf,g,h⊗k

αf,g
,h
⊗idk

αf,g⊗h,k

idf⊗αg,h,k

and

(f ⊗ 1t(f))⊗ g f ⊗ (1t(f) ⊗ g)

f ⊗ g

αf,1t(f),g

idf⊗`grf⊗idg

(6.1)

for all composable 1-morphisms f, g, h, k, referred to as the pentagon and the triangle relations,

respectively.

As in conventional category theory, it is customary to depict relations in a bicategory using diagram-

matic calculus. Unlike the directed graph structure utilised in category theory, the diagrammatic

presentation of bicategories is given in terms of so-called pasting diagrams of the form

X Y

f

g

F (6.2)
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whereX,Y ∈ Ob(Bi) are objects, f, g ∈ Ob(HomBi (X,Y )) are 1-morphisms and F ∈ HomHomBi (X,Y )(f, g)

is a 2-morphism. In this notation, horizontal and vertical compositions are depicted as

X Y Z

f

g

F

f ′

g′

F ′ = X Z

f⊗f ′

g⊗g′

F⊗F ′ and X Y

f

f ′′

F

G

= X Y

f

f ′′

FG ,

respectively. Explicit examples of bicategories will be provided in sec. 6.5 and 6.6

6.2 Higher groupoid algebra VecαG

We shall now apply the idea of categorification to groupoid algebras, yielding a notion of ‘higher

groupoid algebra’. First, let us review the relation between monoids and categories. A monoid is

defined by a set X equipped with a function · : X ×X → X called the product, and a distinguished

element 1 ∈ X called the unit, satisfying the relations 1 · x = x = x · 1, ∀x ∈ X. Alternatively,

a monoid can be defined as a (small) category C with a single object • and Hom(C) = HomC(•, •)

such that the composition function ◦ : HomC(•, •) × HomC(•, •) → HomC(•, •) provides the monoid

product on HomC(•, •), and the identity morphism id• provides the corresponding monoid unit. Using

this presentation of a monoid as a one-object category, we recover upon categorification the notion of

monoidal category as a one-object bicategory: given a bicategory Bi with a single object Ob(Bi) = {•},
the category of homorphisms HomBi (•, •) defines a monoidal category equipped with a tensor product

structure provided by the bifunctor ⊗ : HomBi (•, •) × HomBi (•, •) → HomB(•, •). In particular, the

1-associator in Bi induces the (0-)associator in the monoidal category HomBi (•, •).

Akin to the categorification of a monoid to a monoidal category, one can consider a categorification

of an algebra over a field. Instead of presenting the general case, we shall restrict ourselves to the

categorification of groupoid algebras. Recall that given a finite groupoid G, the (complex) groupoid

algebra C[G] is the algebra defined over the vector space SpanC{|g〉 | ∀ g ∈ Hom(G)} with algebra

product |g〉 ? |g′〉 := δt(g),s(g′) |gg′〉. One natural categorification of C[G] is given by replacing the

complex field with the (symmetric) monoidal category Vec of finite dimensional complex-vector spaces,

which yields the monoidal category of groupoid-graded vector spaces:

Definition 6.2 (Category of G-graded vector spaces). Let G be a finite groupoid. A G-graded

vector space is a vector space of the form V =
⊕

g∈Hom(G) Vg. We call a G-graded vector space V

‘homogeneous’ of degree g ∈ Hom(G) if Vg′ is the zero vector space 0 for all g′ 6= g. The monoidal

category VecG is then defined as the category whose objects are G-graded complex-vector spaces,

and morphisms are grading preserving linear maps. The tensor product is defined on homogeneous

components Vg and Wg′ according to

Vg ⊗Wg′ =

{
(V ⊗W )gg′ if t(g) = s(g′)

0 otherwise
(6.3)

with unit object 1 =
⊕

g∈Hom(G) δidg
. There are |Hom(G)| simple objects denoted by Cg,∀ g ∈

Hom(G). Every object is isomorphic to a direct sum of simple objects, making VecG semi-simple.

Finally, the associator is given by the canonical map

idCgg′g′′ : (Ug ⊗ Vg′)⊗Wg′′
∼−→ Ug ⊗ (Vg′ ⊗Wg′′) . (6.4)
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Note that by choosing the groupoid to be the delooping of a finite group, we recover the more familiar

fact that the category of G-graded vector spaces is a categorification of the notion of group algebra.

Analogously to the twisting of a groupoid algebra by a groupoid 2-cocycle, we can twist the associator

of VecG by a normalised groupoid 3-cocycle α ∈ Z3(G,U(1)) so as to define the monoidal category

VecαG , whereby the associator on simple objects is provided by

αCg,Cg′ ,Cg′′ = α(g, g′, g′′) · idCgg′g′′ : (Cg ⊗ Cg′)⊗ Cg′′
∼−→ Cg ⊗ (Cg′ ⊗ Cg′′) . (6.5)

The monoidal category VecαG has the additional property of being a multi-fusion category :

Definition 6.3 (Multifusion category). A category C is called multi-fusion if C is a finite semi-

simple, C-linear, abelian, rigid monoidal category such that tensor product ⊗ : C × C → C is

bilinear on morphisms. If additionally HomC(1,1) ∼= C then we call C a fusion category.

We shall not expand on this definition here, but instead refer the reader to the chapter 4 of [57].

Conceptually, the observation that VecαG is a multi-fusion category plays a similar role to semi-simplicity

in the theory of algebras. Recall that given a semi-simple algebra A, every module is isomorphic to

a direct sum of simple modules. These simple modules can be found via the notion of primitive

orthogonal idempotents. An idempotent in an algebra A is an element e ∈ A such that e · e = e, and

a pair of idempotents e, e′ ∈ A are orthogonal if e · e′ = δe,e′ e. Such an idempotent is called primitive

if it cannot be written as sum of non-trivial idempotents. Specifying a complete set of primitive

orthogonal idempotents {e1, . . . , en} for A, we can define a simple right A-module Mi = ei · A, for

each i ∈ 1, . . . , n. In the following, we will review the notion of module category over a multi-fusion

category, categorifying the notion of module over a semi-simple algebra. In this setting the analogue

of idempotent will be given by so called separable algebra objects.

6.3 Module categories

In this part, we introduce the notions of module category over multi-fusion category C, and module

category functors following closely [57]. These happen to be relevant notions to describe gapped

boudaries and their excitations [10]. However, as we explain below, we use in practice an equivalent

description in terms of separable algebra objects. First, let us define a module category:

Definition 6.4 (C-Module category). Given a multi-fusion category C ≡ (C,⊗,1, `, r, α), a (left)

C-module category is defined by a triple (M,�, α̇) consisting of a categoryM, an action bifunctor

� : C ×M→M and a natural isomorphism

α̇X,Y,M : (X ⊗ Y )�M ∼−→ X � (Y �M) , ∀X,Y ∈ Ob(C) and M ∈ Ob(M) , (6.6)

referred to as the module associator, such that the diagram

((X ⊗ Y )⊗ Z)�M

(X ⊗ (Y ⊗ Z))�M (X ⊗ Y )� (Z �M)

X � ((Y ⊗ Z)�M) X � (Y � (Z �M))

α̇
X⊗Y,Z,M

α̇X,Y,Z�M

αX,Y
,Z
⊗idM

α̇X,Y⊗Z,M

idX⊗α̇Y,Z,M

(6.7)
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commutes for every X,Y, Z ∈ Ob(C) and M ∈ Ob(M). Additionally there is a unit isomorphism

`M : 1�M ∼−→M , where 1 is the tensor unit of C, such that the following diagram commutes:

(X ⊗ 1)�M X ⊗ (1�M)

X �M

α̇X,1,M

idX⊗`MrX⊗idM

, (6.8)

for all X ∈ Ob(C), M ∈ Ob(M).

Every module category can be decomposed into so-called indecomposable module categories [56]:

Definition 6.5 (Indecomposable module category). A C-module category M is said to be ‘inde-

composable’ when M is not equivalent to a direct sum of non-zero C-module categories.

Indecomposable module categories will turn out to be the relevant data to label gapped boundaries.

To describe excitations, we further require the notion module category functors:

Definition 6.6 (Module category functor). Given a multi-fusion category C and a pair (M1,M2)

of C-module categories with module associators α̇ and α̈, respectively, a C-module functor is a pair

(F, s) where F :M1 →M2 is a functor, and s is natural isomorphism given by

sX,M : F (X �M)→ X � F (M) , ∀X ∈ Ob(C) and M ∈ Ob(M1) , (6.9)

such that the diagram

F (X � (Y �M)) F ((X ⊗ Y )�M) (X ⊗ Y )� F (M)

X � F (Y �M) X � (Y � F (M))

F (α̇X,Y,M )

sX,Y⊗M

idX�sY,M

sX⊗Y,M

α̈X,Y,F (M) (6.10)

commutes for every X,Y ∈ Ob(C) and M ∈ Ob(M).

We are almost ready to define a bicategory, the remaining ingredient is a notion of morphism for

module functors:

Definition 6.7 (Morphism of module functors). Given a multi-fusion category C and two C-

module functors (F, s) and (F ′, s′), a morphism of module functors between F and F ’ is a natural

transformation η : F → F ′ such that the diagram

F (X �M) X � F (M)

F ′(X �M) X � F ′(M)

sX,M

idX�ηMηX�M

s′X,M

(6.11)

commutes for every X ∈ Ob(C) and M ∈ Ob(M).

Putting everything together, we obtain the following definition of a bicategory of module categories
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Definition 6.8 (Bicategory of module categories). Given a multi-fusion category C, we denote by

MOD(C) the bicategory with objects, C-module categories, 1-morphisms, C-module functors, and

2-morphisms, C-module natural transformations.

The remainder of this section is dedicated to providing a more practical formulation of this bicategory

using the fact that for a multi-fusion category C, every indecomposable C-module category is equivalent

to the category of module objects for a separable algebra object in C [57]. Using this latter formulation,

we shall then explain how the bicategory of module categories is indeed the relevant notion to describe

gapped boundaries and their excitations in gauge models of topological phases.

6.4 Algebra objects in VecαG

Let us now present the notion of algebra objects in the multi-fusion category VecαG thought as a

categorification of the groupoid algebra over G. In the subsequent discussion, we will build upon

this notion in order to define module categories over higher groupoid algebras as a categorification of

modules over semi-simple algebras.

Definition 6.9 (Algebra object). Given a multi-fusion category C ≡ (C,⊗,1, `, r, α), an (asso-

ciative) algebra object in C is defined by a triple (A,m, u) consisting of an object A as well as

morphisms m : A⊗A→ A and u : 1→ A in C referred to as multiplication and unit, respectively,

such that the diagrams below commute:

• Associativity:

(A⊗A)⊗A A⊗ (A⊗A) A⊗A

A⊗A A

α idA⊗m

m

m⊗idA m , (6.12)

• Unit:

A A⊗ 1 A⊗A

1⊗A A⊗A A

r−1 idA⊗u

m`−1

u⊗idA m

idA , (6.13)

where α, `, r refer to the associator, left unitor and right unitor for the monoidal structure of C,

respectively.

Given the above definition, an important observation is that algebra objects in the fusion category Vec

correspond to associative, unital, finite-dimensional, complex algebras. Let us now consider algebra

objects in VecαG . For each (G, α)-subgroupoid (A, φ), as defined in sec. 4.3, we construct an algebra

object Aφ ≡ (
⊕

a∈Hom(A) Ca,m, u) with multiplication and unit defined according to

m : Aφ ⊗Aφ → Aφ

: a⊗ a′ 7→ δt(a),s(a′) φ(a, a′) aa′
and u(1VecαG

) :=
∑

X∈Ob(Aφ)

idX ,

respectively. In particular, we remark that the algebra object Aφ in VecαG corresponds to a generali-

sation of a twisted groupoid algebra over A, where the twisting by a 2-cocycle is instead given by the
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2-cochain φ. Since φ is not a groupoid 2-cocycle, algebra objects are not associative as conventional

algebras, but instead are only associative within VecαG due to the condition d(2)φ = α−1|A. We leave

it to the reader to check that every algebra object in VecαG is in one-to-one correspondence with a

(G, α)-subgroupoid and VecαG algebra objects.

Given an algebra object A in a multi-fusion category C, we are interested in modules over A

referred to as A-module objects:

Definition 6.10 (Right module object). Let C be a multi-fusion category and A ≡ (A,m, u) an

algebra object in C. A right module object over A (or right A-module) consists of a pair (M,p),

with M ∈ Ob(C) and p : M ⊗A→M ∈ Hom(C) such that the diagrams below commute:

• Compatibility:

(M ⊗A)⊗A M ⊗A

M ⊗ (A⊗A) M ⊗A M

p⊗idA

pα

idM⊗m p

, (6.14)

• Unit:

M M

M ⊗ 1 M ⊗A

idM

pr−1

u

. (6.15)

Homorphisms between modules over a given algebra object are then defined in an obvious way:

Definition 6.11 (Module object homomorphism). Given an algebra object A in a multifusion

category C, let (M1, p1) and (M2, p2) be two right A-modules. An A-homomorphism between these

A-modules is a morphism f ∈ HomC(M1,M2) such that the diagram

M1 ⊗A M2 ⊗A

M1 M2

f⊗idA

p2p1

f

(6.16)

commutes.

It follows from the definition above that A-homomorphisms between a pair of A-module objects

(M1, p1) and (M1, p1) in C define a subspace of HomC(M1,M2), which is notated via HomA(M1,M2)

in the following. Moreover, composing A-homomorphisms yields another A-homomorphism so that

we can define a category of A-modules as follows:

Definition 6.12 (Category of module objects). Given a multi-fusion category C and an algebra

object A = (A,m, u), we define the category ModC(A) as the category with objects A-module

objects in C and morphisms A-module homomorphisms.

In a similar vein, we can define a left A-module objects and left A-module homomorphisms. We leave

it to the reader to derive the corresponding axioms. Combining both left and right modules over an

algebra object yields the notion bimodule object :
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Definition 6.13 (Bimodule object). Let C be a multi-fusion category and (A,B) a pair of algebra

objects in C. We define an (A,B)-bimodule object in C as a triple (M,p, q) such that (M,p) is a

right B-module object, (M, q) is a left A-module object and the diagram

(A⊗M)⊗B M ⊗B

A⊗ (M ⊗B) A⊗M M

q⊗idB

pα

idA⊗p q

. (6.17)

commutes.

Noticing that the monoidal identity of any multi-fusion category C naturally defines an algebra object,

we can identify the (1, A)-bimodule (M, `M , p), for a given algebra object A, with the right A-module

(M,p), and similarly the (A,1)-bimodule (M, rM , q) with the left A-module (M, q).

Definition 6.14 (Bimodule object homomorphism). Let (M1, p1, q1) and (M2, p2, q2) be a pair

of (A,B)-bimodule objects in a multi-fusion category C. An (A,B)-homomorphism between these

(A,B)-bimodules is a morphism f ∈ HomC(M1,M2) such that f : (M1, p1)→ (M2, p2) is a right

B-module homomorphism, f : (M1, q1) → (M2, q2) is a left A-module homomorphism, and the

following diagram commutes:

(A⊗M1)⊗B M1 ⊗B

(A⊗M2)⊗B M2 ⊗B

A⊗ (M2 ⊗B) A⊗M2 M2

A⊗ (M1 ⊗B) A⊗M1 M1

q2⊗idB

p2α

idA⊗p2
q2

q1⊗idB

p1α

idA⊗p1
q1

(id
A⊗f)⊗id

B

idA
⊗(f⊗

idB
)

idA⊗f

f⊗
idB

f

.

It follows from the definition that (A,B)-homomorphisms between a pair of (A,B)-bimodule ob-

ject (M1, p1, q1) and (M2, p2, q2) in C define a subspace of HomC(M1,M2), which will be denoted by

HomA,B(M1,M2) in the following. Moreover, composing two (A,B)-homomorphisms yields another

(A,B)-homomorphism so that we can define the following category of (A,B)-bimodules:

Definition 6.15 (Category of bimodule objects). Given a multi-fusion category C and a pair

of algebra objects A and B, we define the category BimodC(A,B) as the category with objects

(A,B)-bimodules and morphisms (A,B)-bimodule homomorphisms.

Let us now go back to our example of interest, namely the higher groupoid algebras VecαG , and describe

the corresponding bimodule objects. We consider a pair (A, φ), (B, ψ) of (G, α)-subgroupoids, and the

corresponding algebra objects Aφ ≡ (
⊕

a∈Hom(A) Ca,mA, uA), and Bψ ≡ (
⊕

b∈Hom(B) Cb,mB, uB).

Let (M,p, q) be an (Aφ,Bψ)-bimodule in VecαG such that M =
⊕

g∈Hom(G)Mg, p : M ⊗ Bψ →M and
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q : Aφ ⊗M →M . Let us consider the VecαG morphism pq ≡ q ◦ (idA ⊗ p) such that

pq : Aφ ⊗ (M ⊗ Bψ) → M

: Ca ⊗ (Mg ⊗ Cb) 7→ δt(a),s(g) δs(b),t(g) [Mg . pq (Mg,Ca,Cb)] ∈Magb

where pq (Mg,Ca,Cb) : Mg → Magb is a linear map which includes a G-grading shift. In virtue of the

compatibility conditions satisfied by p and q, the diagram

Aφ ⊗ ((Aφ ⊗ (M ⊗ Bψ))⊗ Bψ) Aφ ⊗ (M ⊗ Bψ)

Aφ ⊗ (M ⊗ Bψ) M

idA⊗( pq ⊗idB)

pqAmB

pq

, (6.18)

commutes, where AmB decomposes as

AmB : Aφ ⊗ ((Aφ ⊗ (M ⊗ Bψ))⊗ Bψ)
idA⊗αA,M⊗B,B−−−−−−−−−−→ Aφ ⊗ (Aφ ⊗ ((M ⊗ Bψ)⊗ Bψ))

idA⊗(idA⊗αM,B,B)−−−−−−−−−−−−→ Aφ ⊗ (Aφ ⊗ (M ⊗ (Bψ ⊗ Bψ)))

idA⊗(idA⊗(idM⊗mB))−−−−−−−−−−−−−−−→ Aφ ⊗ (Aφ ⊗ (M ⊗ Bψ))

α−1
A,A,M⊗B−−−−−−−→ (Aφ ⊗Aφ)⊗ (M ⊗ Bψ)

mA⊗idM⊗B−−−−−−−−→ Aφ ⊗ (M ⊗ Bψ) . (6.19)

Furthermore, it acts on non-zero basis vectors (a, a′, b, b′) ∈ Ca × Ca′ × Cb × Cb′ and vg ∈Mg as

AmB : a′ ⊗ ((a⊗ (vg ⊗ b))⊗ b′) 7→ δt(a′),s(a) δt(b),s(b′)$
AB
g (a, a′|b, b′) [a′a⊗ (vg ⊗ bb′)] (6.20)

for any set of a′, a, g, b, b′ composable morphisms in G, where we introduced the cocycle data

$ABg (a, a′|b, b′) :=
α(a, gb, b′)α(g, b, b′)

α(a′, a, gbb′)
φ(a′, a)ψ(b, b′) . (6.21)

Writing

pq : Aφ ⊗ (M ⊗ Bψ) → M

: a⊗ (vg ⊗ b) 7→ vg . pq (vg, a, b) ∈Magb

,

it follows from equation (6.20) that pq (vg, a, b) ∈ End(M) satisfies the algebra

pq (vg, a, b) . pq (vg′ , a
′, b′) = δt(a′),s(a) δt(b),s(b′) δg′,agb$

AB
g (a, a′|b, b′) pq (vg, a

′a, bb′) (6.22)

for all g, g′ ∈ HomG(Ob(A),Ob(B))), a ∈ HomA(−, s(g)), a′ ∈ HomA(−, s(g′)), b ∈ HomB(t(g),−)

and b′ ∈ HomB(t(g′),−). Such data can be concisely described by introducing the groupoid G̃AB with

object set HomG(Ob(A),Ob(B)) and morphism set given by

g−−−→
a,b

agb ≡ g−−−→
a,b

, (6.23)

for all g ∈ Ob(G̃AB), a ∈ HomA(−, s(g)) and b ∈ HomB(t(g),−). Composition is defined by

g−−−→
a,b

agb−−−−→
a′,b′

a′agbb′ = g−−−−−→
a′a,bb′

a′agbb′ , (6.24)
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for all composable pairs (a′, a) ∈ A2
comp. and (b, b′) ∈ B2

comp.. Noting that [$AB] ∈ H2(G̃AB,U(1))

defines a G̃AB 2-cocycle, pq can then be described via a weak functor

F pqM : G̃AB → Vec

: g ∈ Ob(G̃AB) 7→ Mg ⊂M

: g−−−→
a,b
∈ Hom(G̃AB) 7→ pq (vg, a, b) : Mg →Magb

,

such that every isomorphism pq (vg, a, b) satisfies the composition relation (6.22). Using the equivalence

between representations and modules of algebraic structures, we can thus view the pair (M,F pqM ) as

a module over the twisted groupoid algebra C[G̃AB]$
AB

. Considering the diagram

Aφ ⊗ (M1 ⊗ Bψ) Aφ ⊗ (M2 ⊗ Bψ)

M1 M2

idA⊗(f⊗idB)

pq 2pq 1

f

, (6.25)

for a pair of (Aφ,Bψ)-bimodules (M1, pq 1(−)) and (M2, pq 2(−)), we conclude that an (Aφ,Bψ)-bimodule

homomorphism is defined via a natural transformation f : pq 1 → pq 2, or equivalently, as an inter-

twiner for representations of C[G̃AB]$
AB

. Putting everything together, we obtain the equivalence

BimodVecαG (Aφ,Bψ) ' Mod(C[G̃AB]$
AB

).

6.5 Bicategory of separable algebra objects in VecαG

Pursuing our construction, we shall now introduce a special class of algebra objects known as separable

algebra objects. We will then construct a bicategory whose objects are separable objects, and mor-

phisms are bimodule objects between them. First, let us define what it means for an algebra object

to be separable:

Definition 6.16 (Separable algebra object). Let C be a multi-fusion category and A ≡ (A,m, u)

an algebra object in C. The algebra object A is said to be ‘separable’ if the multiplication map

m : A⊗A→ A admits a ‘section’ map ∆ : A→ A⊗A such that

A
∆−→ A⊗A m−→ A = A

idA−−→ A ,

as an (A,A)-bimodule homomorphism.

Let us now define a binary functor. Let A,B,C be three separable algebra objects in a multi-fusion

category C, MAB ≡ (MAB , qA, pB) ≡ (MAB , pqMAB
) an (A,B)-bimodule, and MBC ≡ (MBC , qB , pC) ≡

(MBC , pqMBC
) a (B,C)-bimodule. Using this data, we want to construct an (A,C)-bimodule, which

we shall notate via (MAB ⊗BMBC , pqMAB
⊗B pqMBC

). First, let us define the morphism pqMAB⊗MBC
:
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A⊗ ((MAB ⊗MBC)⊗ C)→MAB ⊗MBC that decomposes as

A⊗ ((MAB ⊗MBC)⊗ C)
idA⊗αMAB,MBC,C−−−−−−−−−−−−→ A⊗ (MAB ⊗ (MBC ⊗ C)) (6.26)

α−1
A,MAB,MBC⊗C−−−−−−−−−−−→ (A⊗MAB)⊗ (MBC ⊗ C)

(`−1
A⊗MAB

)⊗idMBC⊗C−−−−−−−−−−−−−−→ ((A⊗MAB)⊗ 1)⊗ (MBC ⊗ C)

(idA⊗MAB⊗uB)⊗idMBC⊗C−−−−−−−−−−−−−−−−−−→ ((A⊗MAB)⊗B)⊗ (MBC ⊗ C)

(idA⊗MAB⊗∆B)⊗idMBC⊗C−−−−−−−−−−−−−−−−−−→ ((A⊗MAB)⊗ (B ⊗B))⊗ (MBC ⊗ C)

α−1
A⊗MAB,B,B

⊗idMBC⊗C−−−−−−−−−−−−−−−−→ (((A⊗MAB)⊗B)⊗B)⊗ (MBC ⊗ C)

(αA,MAB,B⊗idB)⊗idMBC⊗C−−−−−−−−−−−−−−−−−−−→ ((A⊗ (MAB ⊗B))⊗B)⊗ (MBC ⊗ C)

αA⊗(MAB⊗B),B,MBC⊗C−−−−−−−−−−−−−−−−→ (A⊗ (MAB ⊗B))⊗ (B ⊗ (MBC ⊗ C))
pq MAB⊗ pq MBC−−−−−−−−−−→MAB ⊗MBC .

Using this morphism, let us further define the endomorphism eMAB⊗MBC
: MAB⊗MBC →MAB⊗MBC

that decomposes as

MAB ⊗MBC

r−1
MAB⊗MBC−−−−−−−−→ (MAB ⊗MBC)⊗ 1

`−1
(MAB⊗MBC )⊗1−−−−−−−−−−−→ 1⊗ ((MAB ⊗MBC)⊗ 1) (6.27)

uA⊗(idMAB⊗MBC⊗uC)
−−−−−−−−−−−−−−−−→ A⊗ ((MAB ⊗MBC)⊗ C)

pq MAB⊗MBC−−−−−−−−→MAB ⊗MBC .

By the requirement that ∆ : B → B ⊗ B is a (B,B)-bimodule section to the (B,B)-bimodule

homomorphism m : B ⊗ B → B, together with the compatibility conditions spelt out above and the

naturalness of the associator α, we can show that eMAB⊗MBC
is an idempotent endomorphism in C, i.e.

eMAB⊗MBC
◦ eMAB⊗MBC

= eMAB⊗MBC
. The requirement that the multi-fusion category C is abelian

ensures that every idempotent is a split idempotent :

Definition 6.17 (Split idempotent). An idempotent a
e−→ a is called split when there exists an

object b and morphisms a
s−→ b, b

r−→ a such that b
r◦s−−→ b = b

idb−−→ b and a
s◦r−−→ a = a

e−→ a.

We define the object MAB ⊗BMBC ∈ C as a choice of splitting object for the idempotent eMAB⊗MBC

such that MAB ⊗MBC

sMAB,MBC−−−−−−−→MAB ⊗BMBC and MAB ⊗BMBC

rMAB,MBC−−−−−−−→MAB ⊗MBC , where

sMAB ,MBC
◦ rMAB ,MBC

= eMAB⊗MBC
and rMAB ,MBC

◦ sMAB ,MBC
= idMAB⊗MBC

. Crucially, a choice of

splitting object is unique up to isomorphism, and independent of a choice of section up to isomorphism.

Using this data, let us further define the following morphism:

pqMAB
⊗B pqMBC

:= rMAB ,MBC
◦ ( pqMAB⊗MBC

) ◦ sMAB ,MBC
. (6.28)

Putting everything together, we obtain that (MAB ⊗B MBC , pqMAB
⊗B pqMBC

) defines an (A,C)-

bimodule in C. So we have obtained a way to define an (A,C)-bimodule out of an (A,B)- and a

(B,C)-bimodule given three separable algebra objects A,B,C. This can expressed in terms of the

bifunctor

⊗B : BimodC(A,B)× BimodC(B,C)→ BimodC(A,C) , (6.29)

where objects MAB ∈ Ob(BimodC(A,B)) and MBC ∈ Ob(BimodC(B,C)) are mapped via

⊗B : MAB ×MBC 7→MAB ⊗B MBC , (6.30)
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and bimodule homomorphisms fAB ∈ Hom(BimodC(A,B)), fBC ∈ Hom(BimodC(B,C)) are sent to

⊗B : fAB × fBC 7→ fAB ⊗B fBC := sMAB ,MBC
◦ (fAB ⊗ fBC) ◦ rMAB ,MBC

. (6.31)

In order to obtain a bicategory, we are left to define a left unitor, a right unitor and an associator.

Considering A and B as (A,A)- and (B,B)-bimodules, respectively, one can verify that for any (A,B)-

bimodule MAB

A⊗AMAB
∼= MAB

∼= MAB ⊗B B , (6.32)

as (A,B)-bimodule in C. This property demonstrates that an algebra A seen as an (A,A)-bimodule

defines a notion a unit morphism for an algebra object A. The corresponding left unitor isomorphism,

which is an (A,B)-bimodule, is defined via the maps

A⊗AMAB

rA,MAB−−−−−→ A⊗MAB
qA−−→MAB

and

MAB

`−1
MAB−−−−→ 1⊗MAB

∆⊗idMAB−−−−−−−→ (A⊗A)⊗MAB

αA,A,MAB−−−−−−−→ A⊗ (A⊗MAB)

idA⊗qA−−−−−→ A⊗MAB

sA,MAB−−−−−→ A⊗AMAB ,

which can be shown to satisfy the triangle relations. The right unitor can be defined in a similar

fashion. Finally, for any quadruple of algebra objects A,B,C,D and (A,B)-bimodule MAB , (B,C)-

bimodule MBC and (C,D)-bimodule MCD, the morphism

(MAB ⊗B MBC)⊗C MCD

rMAB⊗MBC,MCD−−−−−−−−−−−→ (MAB ⊗B MBC)⊗MCD

rMAB,MBC⊗idMCD−−−−−−−−−−−−−→ (MAB ⊗MBC)⊗MCD

αMAB,MBC,MBC−−−−−−−−−−−→MAB ⊗ (MBC ⊗MCD)

idMAB⊗sMBC,MCD−−−−−−−−−−−−−→MAB ⊗ (MBC ⊗C MCD)
idMAB⊗sMBC,MCD−−−−−−−−−−−−−→MAB ⊗B (MBC ⊗C MCD)

defines an isomorphism of (A,D)-bimodules in C satisfying the pentagon relation. Putting everything

together, we obtain the following bicategory:

Definition 6.18 (Bicategory of separable algebra objects). Given a multi-fusion C, we no-

tate via sAlg(C) the bicategory with objects, separable algebras objects in C, and hom-category

HomsAlg(C)(A,B) := BimodC(A,B) for all separable algebra objects A,B in C. The composition

bifunctor is provided by ⊗B : BimodC(A,B) × BimodC(B,C) → BimodC(A,C) as defined in this

section.

Let us now apply the definition above to the multi-fusion category VecαG . First of all, every algebra

object in VecαG can be shown to be separable. Indeed, given an algebra object Aφ in VecαG , a choice of

section ∆ : Aφ → Aφ ⊗Aφ is provided by the following map on basis elements:

∆ : a 7→ 1

|HomA(s(a),−)|
∑

a1,a2∈Hom(A)
a1a2=a

1

φ(a1, a2)
a1 ⊗ a2 . (6.33)

Algebra objects equipped with the section defined above form the objects of the bicategory sAlg(VecαG).

Let Aφ, Bψ, Cϕ be three objects in sAlg(VecαG), we consider the 1-morphisms MAB ≡ (MAB, pqMAB) ∈
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Ob(BimodVecαG (Aφ,Bψ)) and MBC ≡ (MBC , pqMBC ) ∈ Ob(BimodVecαG (Bψ, Cϕ)). Following (6.26), the

map pqMAB⊗MBC acts on basis elements of Ca ⊗ (([MAB]g1
⊗ [MBC ]g2

)⊗ Cc) as

pqMAB⊗MBC : a⊗ ((vABg1
⊗ vBCg2

)⊗ c) 7→ 1

|Hom(B)|
∑

b∈Hom(B)

α(g1, g2, c)α(a, g1, b)α(ag1b, b
−1, g2c)

ψ(b, b−1)α(a, g1, g2c)α(ag1, b, b
−1)

vABg1
. pq (vABg1

, a, b)⊗ vBCg2
. pq (vBCg2

, b−1, c) .

Applying the formula above to a = ids(g1) and c = idt(g2), we obtain that the map sMAB,MBC :

MAB ⊗MBC →MAB ⊗BMBC acts on basis elements as

sMAB,MBC : vABg1
⊗ vBCg2

7→ 1

|Hom(B)|
∑

b∈Hom(B)

1

ψ(b, b−1)

α(g1b, b
−1, g2)

α(g1, b, b−1)

vABg1
. pq (vABg1

, ids(g1), b)⊗ vBCg2
. pq (vBCg2

, b−1, idt(g2)) ,

whereas rMAB,MBC : MAB ⊗BMBC →MAB ⊗MBC is given by the inclusion. We can finally check that

the binary functor simplifies such that

pqMAB ⊗B pqMBC = pqMAB⊗MBC . (6.34)

Left unitor, right unitor and associator can now be readily obtained. Finally, let us remark that

the above bifunctor can be conveniently rephrased as a comultiplication map ∆̃B : C[G̃AC ]$
AC →

C[G̃AB]$
AB ⊗ C[G̃BC ]$

BC
defined by

∆̃B

(∣∣g−−→
a,c

〉)
:=

1

|Hom(B)|
∑

g1∈Ob(G̃AB)

g2∈Ob(G̃BC)
g1g2=g

b∈HomB(t(g1),t(g2))

α(g1, g2, c)α(a, g1, b)α(ag1b, b
−1, g2c)

ψ(b, b−1)α(g, g1, g2g)α(gg1, g, g−1)

∣∣g1−−−→
a,b

〉
⊗ |g2−−−−→

b−1,c

〉
.

(6.35)

6.6 Bicategory of VecαG-module categories

We are now ready to describe the bicategory MOD(VecαG) by spelling out equivalence with the bicate-

gory sAlg(C) described above. In the following, we will describe how this is the relevant structure to

describe boundary excitations in gauge models of topological phases.

Letting Aφ be a (separable) algebra object in VecαG , the category ModVecαG (Aφ) of right Aφ-modules

is a left module category for VecαG . Let us spell out this correspondence. The module functor

� :VecαG ×ModVecαG (Aφ)→ ModVecαG (Aφ) (6.36)

is defined on objects V ∈ Ob(VecαG) and (MA, pA) ∈ Ob(ModVecαG (Aφ) by

� : V ×MA 7→ V ⊗MA , (6.37)

where V ⊗MA ∈ Ob(ModVecαG (Aφ)) is the Aφ-module with action defined by the following composition

of morphisms in VecαG :

(V ⊗MA)⊗Aφ
αV,MA,A−−−−−−→ V ⊗ (MA ⊗Aφ)

idV ⊗pA−−−−−→ V ⊗MA . (6.38)
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The functor takes morphisms to their tensor product over the field C. The module associator α̇V,W,M
reduces to the associator in Homα

G such that for V,W ∈ Ob(VecαG) one has

(V ⊗W )⊗MA
αV,W,MA−−−−−−→ V ⊗ (W ⊗MA) . (6.39)

A VecαG-module category ModVecαG (Aφ) is then indecomposable if and only if the algebra object Aφ is

not isomorphic a direct sum of two non-trivial algebra objects [57].

Let us now describe VecαG-module functors. Let Aφ and Bψ be any pair of algebra objects in

VecαG , with ModVecαG (Aφ) and ModVecαG (Bψ) the corresponding category of module objects. To each

(Aφ,Bψ)-bimodule object MAB, we can define a VecαG-module functor

−⊗AMAB : ModVecαG (Aφ)→ ModVecαG (Bψ) , (6.40)

which acts on objects MA ∈ Ob(ModVecαG (Aφ)) via the map

−⊗AMAB : MA 7→MA ⊗AMAB , (6.41)

and sends morphisms f ∈ Hom(ModVecαG (Aφ)) to f ⊗ idMAB . The natural isomorphism

s : (VecαG ⊗ModVecαG (Aφ))⊗A Bimod(Aφ,Bψ)→ VecαG ⊗ (ModVecαG (Aφ)⊗A Bimod(Aφ,Bψ)) (6.42)

is given on objects V ∈ Ob(VecαG) and MA ∈ ModVecαG (Aφ) via the associator α in VecαG such that:

sV,MA : (V ⊗MA)⊗AMAB
rV⊗MA,MAB−−−−−−−−→ (V ⊗MA)⊗MAB
αV,MA,MAB−−−−−−−−→ V ⊗ (MA ⊗MAB)

idV ⊗sMA,MAB−−−−−−−−−−→ V ⊗ (MA ⊗AMAB) . (6.43)

In a similar vein, morphisms of VecαG-module functors are induced by natural transformations between

bimodules. Together, this yields the desired equivalence:

Proposition 6.1. There exists an equivalence of bicategories between sAlg(VecαG) and MOD(VecαG)

by sending separable algebra objects in VecαG to their category of (right) modules in VecαG, bi-

module objects MAB ∈ HomsAlg(VecαG)(Aφ,Bψ) are sent to the VecαG-module functor − ⊗A MAB :

ModVecαG (A)→ ModVecαG (B) and bimodule natural transformations are sent to morphisms of VecαG-

module functors.

6.7 Bicategory of boundary excitations in (2+1)d gauge models

Using the technology developed in this section, we are now ready to describe gapped boundaries and

their excitations in (2+1)d gauge models of topological phases within the language of bicategories.

More specifically, we shall define a bicategory BdryαG whose objects are given by gapped boundary con-

ditions, 1-morphisms provide gapped boundary excitations, and 2-morphisms define fusion processes

of gapped boundary excitations. We shall then demonstrate that BdryαG is equivalent, as a bicategory,

to MOD(VecαG).

Let us begin with a brief review of the results obtained in the first part of this manuscript within

the tube algebra approach. Hamiltonian realisations of (2+1)d Dijkgraf-Witten theory are defined

in terms of pairs (G,α), where G is a finite group and α is a normalised 3-cocycle in H3(G,U(1)).

In sec. 2, it was argued that gapped boundaries can be indexed by pairs (A, φ), where A ⊂ G is a
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subgroup of G and φ ∈ C2(A,U(1)) is a 2-cochain satisfying the condition d(2)φ = α−1|A. In sec. 3, we

showed that boundary excitations at the interface of two one-dimensional gapped boundaries labelled

by (A, φ) and (B,ψ), respectively, were classified via representations of the boundary tube algebra

that is isomorphic to the twisted groupoid algebra C[GAB ]αφψ.

We now collect the previous results into a bicategory BdryαG. The objects of BdryαG are given by

the set of all gapped boundary conditions {(A, φ)}. For each pair (A, φ), (B,ψ) of gapped boundary

conditions, we assign the hom-category

HomBdryαG
((A, φ), (B,ψ)) := Mod(C[GAB ]αφψ) , (6.44)

where Mod(C[GAB ]αφψ) denotes the category of C[GAB ]αφψ-modules and intertwiners. In this way, the

1-morphisms ρAB ∈ Ob(HomBdryαG
((A, φ), (B,ψ))) correspond to boundary excitations incident at the

interface between gapped boudaries labelled by (A, φ) and (B,ψ). The composition bifunctor

⊗ : Mod(C[GAB ]αφψ)×Mod(C[GBC ]αψϕ)→ Mod(C[GAC ]αφϕ) (6.45)

is defined on 1-morphisms ρAB ∈ Ob(Mod(C[GAB ]αφψ)) and ρBC ∈ Ob(Mod(C[GBC ]αψϕ)) via

⊗ : ρAB × ρBC 7→ ρAB ⊗B ρBC := (ρAB ⊗ ρBC) .∆B(1AC) , (6.46)

as described in sec. 5.2, and on 2-morphisms fAB : ρAB → ρ′AB ∈ Hom(Mod(C[GAB ]αφψ)), fBC :

ρBC → ρ′BC ∈ Hom(Mod(C[GBC ]αψϕ)) via

⊗ : fAB × fBC 7→ (fAB ⊗B fBC : ρAB ⊗B ρBC → ρ′AB ⊗B ρ′BC) , (6.47)

where the morphism on the r.h.s decomposes as

fAB ⊗B fBC : ρAB ⊗B ρBC ↪−→ ρAB ⊗ ρBC
fAB⊗fBC−−−−−−→ ρ′AB ⊗ ρ′BC → ρ′AB ⊗B ρ′BC . (6.48)

In the sequence of linear maps above, the first arrow notates the injection of ρAB⊗BρBC into ρAB⊗ρBC ,

and the last arrow notates the projection map

ρ′AB ⊗ ρ′BC 7→ (ρ′AB ⊗ ρ′BC) .∆B(1AC) = ρ′AB ⊗B ρ′BC . (6.49)

Furthermore, a 2-morphism of the form ζ : ρAB ⊗B ρBC → ρAC ∈ Hom(Mod(C[GAC ]αφϕ)) is an inter-

twiner interpreted as describing the process of fusing a pair of boundary excitations at the interfaces

of gapped boundaries labelled by (A, φ), (B,ψ) and (B,ψ), (C,ϕ), respectively:

Aφ Bψ Cϕ

. (6.50)

The identity morphism associated with the object (A, φ) is given by the regular module C[GAA]αφφ ∈
Ob(Mod(C[GAA]αφφ)) with left and right unitors the intertwiner isomorphisms

` : C[GAA]αφφ ⊗A ρAB
∼−→ ρAB , r : ρAB ⊗B C[GBB ]αψψ

∼−→ ρAB , (6.51)

as described in sec. 5.2. Finally, the 1-associator for a triple of 1-morphisms ρAB ∈ Ob(Mod(C[GAB ]αφψ)),

ρBC ∈ Ob(Mod(C[GBC ]αψϕ)), ρCD ∈ Ob(Mod(C[GCD]αϕχ)) is given by the intertwiner isomorphism in

Hom(Mod(C[GAD]αφχ))

ΦρABρBCρCD : (ρAB ⊗B ρBC)⊗C ρCD → ρAB ⊗B (ρBC ⊗C ρCD) , (6.52)
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as described explicitly in sec. 5.2.9 It follows from the results of the first part of this manuscript that

such data satisfy the pentagon and triangle relations ensuring we do obtain a bicategory.

So we have recast our results obtained in the first part of this manuscript in terms of the boundary tube

algebra and its representation theory as the bicategory BdryαG. We shall now establish the following

equivalence of bicategories:

BdryαG ' MOD(VecαG) . (6.53)

More precisely, we shall establish the equivalence of the bicategories BdryαG ' sAlg(VecαG), from which

we can induce the equivalence above through prop. 6.1, by noting equivalence of bicategories is tran-

sitive. First, we need to introduce a notion of homomorphism between bicategories:

Definition 6.19 (Strict homomorphism of bicategories). Given a pair of bicategories Bi and Bi ′,
a strict homomorphism F : Bi → Bi ′ of bicategories consists of

• a function F : Ob(Bi)→ Ob(Bi′),

• a family of functors FXY : HomBi (X,Y )→ HomBi ′(F(X),F(Y )) referred to as hom-functors,

for each pair of objects X,Y ∈ Ob(Bi),

such that

FX,Y (f)⊗FY,Z(g) = FX,Z(f ⊗ g) 1
Bi ′
F(X) = FX,X(1Bi

X )

F(αBi
f,g,h) = αBi ′

FX,Y (f),FY,Z(g),FZ,W (h) F(rBi
X ) = rBi ′

F(X) , F(`Bi
X ) = `Bi ′

F(X) ,

for all objects W,X, Y, Z ∈ Ob(Bi) and morphisms f ∈ Ob(HomBi (X,Y )), g ∈ Ob(HomBi (Y, Z)),

h ∈ Ob(HomBi (Z,W )).

Recall that a functor between categories defines an equivalence if and only if it is full, faithful and

essentially surjective. In a similar vein, a sufficient condition for a strict homomorphism of bicategories

F to define an equivalence of bicategories is that the map is surjective on objects, and the functors

FX,Y for all X,Y ∈ Ob(Bi) define equivalences of the categories HomBi (X,Y ) ' HomBi ′(F(X),F(Y )).

Using this sufficient condition, let us now establish the equivalence of bicategories F : BdryαG
'−→

sAlg(VecαG). We begin by defining the function F : Ob(BdryαG) → Ob(sAlg(VecαG)). It is given by

sending each boundary condition (A, φ) to the corresponding separable algebra object Aφ in VecαG.

From the previous discussion, we know that both boundary conditions and separable algebra objects

are indexed by subgroups of G and 2-cochains satisfying the compatibility conditions with α. It follows

that the function F is a bijection, and thus surjective. The hom-functors are required to define the

following equivalence of categories:

HomBdryαG
((A, φ), (B,ψ)) := Mod(C[GAB ]αφψ) ' Mod(C[G̃AB ]$

AB

) =: HomsAlg(VecαG)(Aφ, Bψ) ,

where the groupoid G̃AB and its 2-cocycle $AB is obtained by applying the definition at the end of

sec. 6.4 to the delooping of G. In order to establish this equivalence, it suffices to demonstrate the

isomorphism of twisted groupoid algebras C[G̃AB ]$
AB ' C[GAB ]αφψ ≡ C[GAB ]ϑ

AB

, for all boundary

9Recall that the derivations in sec. 5.2, and more generally in sec. 5, were carried out explicitly for the boundary

tube algebra in (3+1)d. However, we explained that the (2+1)d boundary tube algebra, which is the one relevant here,

is obtained as a limiting case.
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conditions (A, φ) and (B,ψ). The equivalence Mod(C[GAB ]αφψ) ' Mod(C[G̃AB ]$
AB

) of their module

categories then follows by pre-composition. Noting from the definition that both groupoids have the

same dimension, the isomorphism is provided by the following map on basis elements:∣∣g−−−→
a,b

〉
7→ φ(a−1, a)

α(a−1, a, gb)

∣∣g a−1

−−−→
b

〉
, ∀

∣∣g−−−→
a,b

〉
∈ C[G̃AB ]$

AB

. (6.54)

Furthermore, one can check that such an isomorphism is compatible with the respective comultiplica-

tion maps through the following commuting diagram

C[GAC ]αφϕ C[GAB ]αφψ ⊗ C[GBC ]αψϕ

C[G̃AC ]$
AC C[G̃AB ]$

AB ⊗ C[G̃BC ]$
BC

∆B

''

∆̃B

. (6.55)

Commutativity is ensured by the relation

φ(a−1, a)

α(a−1, a, g1b)

ψ(b, b−1)

α(b, b−1, g2c)

α(g1, g2, c)α(a, g1, b)α(ag1b, b
−1, g2c)

ψ(b, b−1)α(a, g1, g2c)α(ag1, b, b−1)

=
φ(a−1, a)

α(a−1, a, g1g2c)

α(g1, g2, c)α(a−1, ag1b, b
−1g2c)

α(g1, b, b−1g2c)
,

which follows from the cocycle relation

d(3)α(a−1, a, g1b, b
−1g2c) = 1 , d(3)α(a−1, a, g1g2c) = 1 , d(3)α(ag1, b, b

−1, g2c) = 1 .

Since the composition functors in both bicategories are induced from the respective comultiplication

maps, it can be verified that such hom-functors satisfy the conditions of a strict homomorphism of

bicategories, hence establishing the required equivalence of bicategories.

6.8 Pseudo-algebra objects and gapped boundaries in (3+1)d gauge models

In the previous discussion, we argued that, given a lattice Hamiltonian realisation of (2+1)d Dijkgraaf-

Witten theory with input data (G,α), gapped boundary conditions are in bijection with algebra objects

in the fusion category VecαG. We shall now outline the analogue of this statement for lattice Hamiltonian

realisations of (3+1)d Dijkgraaf-Witten theory.

Given a fixed input data (G, π), where G is a finite group and π is normalized group 4-cocycle

in H4(G,U(1)), it has been argued that the relevant category theoretical structure is provided by

the monoidal bicategory 2VecπG of G-graded 2-vector spaces [30, 33, 34, 54, 62, 63]. Let us begin by

describing the salient features of the monoidal bicategory 2Vec as a categorification of Vec. There

exist several definitions of this bicategory, see e.g. [64–66], in the following we shall consider 2Vec

as the bicategory of finite dimensional, semi-simple Vec-module categories, Vec-module functors and

Vec-module functor homomorphisms. As customary, objects of 2Vec will be referred to as 2-vector

spaces. There is a single simple object provided by the Vec-module category Vec, which implies that

for all objects X ∈ Ob(2Vec), there exists a Vec-module equivalence X ' �i Vec. The monoidal

structure of 2Vec is defined on objects via the weak 2-functor

� : 2Vec× 2Vec → 2Vec

: X × Y 7→ X � Y
,
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for all X,Y ∈ Ob(2Vec), where � denotes the Deligne tensor product of abelian categories [67]. In

particular, for a pair of 2-vector spaces X and Y , the Deligne tensor product yields the category X � Y ,

whose set of objects is Ob(X � Y ) := Ob(X)×Ob(Y ) and set of morphisms given by Hom(X � Y ) :=

Hom(X) ⊗C Hom(Y ). The composition in Hom(X � Y ) is induced from the ones in Hom(X) and

Hom(Y ), accordingly. This monoidal structure is equipped with a pseudo-natural adjoint equivalence

of Vec-module categories10

(X � Y ) � Z
αX,Y,Z−−−−→ X � (Y � Z) , (6.56)

together with a Vec-module functor isomorphism π known as the pentagonator :

((X � Y ) � Z) �W

(X � (Y � Z)) �W (X � Y ) � (Z �W )

X � ((Y � Z) �W ) X � (Y � ((Z �W ))

α
X�Y,Z,W

ααX,Y,Z�W

αX,Y
,Z

� idW

αX,Y�Z,W

idX �αY,Z,W

πX,Y,Z,W
. (6.57)

Both α and π can be shown to evaluate to the identity 1- and 2-morphisms, respectively. Note that the

pseudo-naturality of α specifies that for any triple of 2-vector spaces X,Y, Z and Vec-module functors

fX : X → X ′, fY : Y → Y ′ and fZ : Z → Z ′ there exists a 2-isomorphism

(X � Y ) � Z X � (Y � Z)

(X ′ � Y ′) � Z ′ X ′ � (Y ′ � Z ′)

αX,Y,Z

fX � (fY � fZ)(fX � fY )� fZ

αX,Y,Z

' . (6.58)

Henceforth, we shall not draw arrows for such 2-isomorphisms but instead notate the 2-cell with the

' symbol.

Akin to a monoidal category, the monoidal bicategory 2Vec admits a monoidal unit 1 ∈ Ob(2Vec),

which is equipped with the Vec-module category pseudo-natural adjoint equivalences

X � 1
rX−−→ X and 1 � X

`X−−→ X , (6.59)

for all X ∈ Ob(2Vec), together with Vec-module functor isomorphisms τ1, τ2, τ3 referred to as trian-

gulators:

(1 � X) � Y 1 � (X � Y )

X � Y

α1,X,Y

`X�Y
`X � idY

τ1 ,

(X � 1) � Y X � (1 � Y )

X � Y

αX,11,Y

idX � `Y
rX � idY

τ2 , (6.60)

(X � Y ) � 1 X � (Y � 1)

X � Y

αX,Y,1

idX � rYrX�Y

τ3 . (6.61)

10Although we use a similar notation, the associator of the monoidal structure is not to be confused with the 1-

associator natural isomorphism of the underlying bicategory.
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These isomorphisms can be all be shown to evaluate to the identity 1- and 2-morphisms, respectively.

More generally, for an arbitrary monoidal bicategory, such data is subject to a series of coherence data

which we shall not provide here, instead pointing the reader to e.g. [61, 64, 68].

Having described the most notable features of 2Vec, we now describe the monoidal bicategory

2VecπG, which is obtained following a process analogous to the lift of Vec to VecαG. Let G be a finite

group and π a normalised group 4-cocycle in H4(G,U(1)). A G-graded 2-vector space is a 2-vector

space of the form X = �g∈GXg. We call a G-graded 2-vector space homogeneous of degree g ∈ G
if X = Xg. The monoidal bicategory 2VecπG is then defined as the bicategory whose objects are

given by G-graded 2-vector spaces, 1-morphisms are G-grading preserving Vec-module functors, and

2-morphisms are Vec-module functor homomorphisms. The simple objects of 2VecπG are given by the

categories Vecg, for all g ∈ G, and every object is equivalent to a direct sum of simple objects. The

monoidal structure of 2VecπG is given on homogeneous components via the weak 2-functor

� : Vecg × Vecg′ → Vecgg′ , (6.62)

for all g, g′ ∈ G. Since π is a normalised representative of [π] ∈ H4(G,U(1)), the adjoint equivalences

(Vecg � Vecg′) � Vecg′′
αVecg,Vecg′ ,Vecg′′−−−−−−−−−−→ Vecg � (Vecg′ � Vecg′′) , (6.63)

Vecg � Vec1G
rVecg−−−→ Vecg, , Vec1G � Vecg

`Vecg−−−→ Vecg (6.64)

are the identity 1-morphisms, the triangulators τ1, τ2, τ3 are the identity 2-morphisms, whereas the

pentagonator 2-isomorphism is given by πVecg,Vecg′ ,Vecg′′ ,Vecg′′′ := π(g, g′, g′′, g′′′) · idVecgg′g′′g′′′ for all

g, g′, g′′, g′′′ ∈ G. It is straightforward to verify that the requirement that π is a 4-cocycle ensures the

coherence relations for the pentagonator are satisfied.

Having defined the monoidal bicategory 2VecπG, we shall now argue that gapped boundary condi-

tions in (3+1)d gauge models of topological phases correspond to pseudo-algebra objects [69] in 2VecπG,

categorifying the relation between algebra objects in VecαG and gapped boundaries in (2+1)d gauge

models:

Definition 6.20 (Pseudo-algebra object). Let Bi ≡ (Bi , � ,1, α, r, `, π, τ1, τ2, τ3) be a monoidal

bicategory. A pseudo-algebra object in Bi is a sextuple (A,m, u, ςm, ςr, ς`) consisting of an object

A ∈ Ob(Bi), a pair of 1-morphisms m : A � A → A, u : 1 → A, and a triple of 2-isomorphisms

ςm, ςr, ς` defined according to

(A � A) � A A � (A � A) A � A

A � A A

α idA�m

m

m� idA m
ςm

,

A A � 1 A � A Ar−1 idA�u m

idA

ςr

, A 1 � A A � A A`−1 u� idA m

idA

ς`

,
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and subject to the following coherence relations:

((A � A) � A) � A (A � A) � A A � A

(A � (A � A)) � A (A � A) � A

A

A � ((A � A) � A) A � (A � A)

A � (A � (A � A)) A � (A � A) A � A

(m� idA)� idA m� idA

m
αA,A,A� idA

αA,A�A,A

idA�αA,A,A

(idA� idA)�m

idA�m

m

(A�m)� idA

idA� (m� idA)

αA,A,A

m� idA

id
A �m

'

ςm

ςm
� idA

idA
� ςm

is equal to

((A � A) � A) � A (A � A) � A A � A

(A � (A � A)) � A A � (A � A)

(A � A) � (A � A) A � A A

A � ((A � A) � A) (A � A) � A

A � (A � (A � A)) A � (A � A) A � A

(m� idA)� idA m� idA

m
αA,A,A� idA

αA,A�A,A

idA�αA,A,A

idA�m

m

idA� (m� idA)

α
A
�
A
,A
,A

αA
,A
,A

�
A

m� (idA� idA)
idA �m

(idA � idA)�m m� idA

m

αA,A,A

αA,A,A

'π

'

' ςm

ςm

and

(A � 1) � A (A � A) � A A � A

A � A A

A � (1 � A) A � (A � A) A � A

r−1 � idA

(A�u)� idA m� idA

m

idA� `−1

idA� (u� idA) idA�m

m

idA� idA

m

idA � idA

ςr � idA
'

'

idA
� ς
−1

`
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is equal to

(A � 1) � A (A � A) � A A � A

A � A A

A � (1 � A) A � (A � A) A � A

r
−1 �

idA

(idA�u)� idA m� idA

m

id
A �

` −1

idA� (u� idA) idA�m

m

αA,1,A αA,A,A

τ2

' ςm .

Given the above definition, a first observation is that a pseudo-algebra object in 2Vec corresponds to

a finite-dimensional, semi-simple monoidal category. This relies in particular on the fact that semi-

simple abelian categories always have a unique structure of semi-simple Vec-module category [70].

Let us now apply this definition to 2VecπG. For each pair (A, λ), where A ⊂ G is a subgroup and

λ ∈ C3(A,U(1)) is a 3-cochain satisfying the condition d(3)λ = π−1|A, we construct a pseudo-algebra

object VecA,λ ≡ (�a∈A Veca,m, u, ςm, ςr, ς`) such that: the multiplication m : VecA,λ � VecA,λ →
VecA,λ is given on homogeneous components via the functor mVeca,Veca′ : Veca � Veca′ 7→ Vecaa′ for

all a, a′ ∈ A, the unit map u is defined in an obvious way, the 2-isomorphisms ςr and ς` are trivial,

and the 2-isomorphism

ςm : αVecA,λ,VecA,λ,VecA,λ ◦ (idVecA,λ ◦m �m)⇒ (m � idVecA,λ) ◦m (6.65)

defines an associator for the product map m that is determined by λ. This associator acts on homoge-

nous components labelled by a, a′, a′′ ∈ A as

λa,a′,a′′ : αVeca,Veca′ ,Veca′′◦ (idVeca�mVeca′ ,Veca′′ )◦mVeca,Veca′a′′⇒ (mVeca,Veca′ � idVeca′′ )◦mVecaa′ ,Veca′′ .

The condition d(3)λ = π−1|A demonstrates that VecA,λ is not a monoidal category in the conventional

sense since the associator λ fails to satisfy the pentagon equation (6.1). Instead, the associator satisfies

the following equation on homogeneous components labelled by a, a′, a′′, a′′′ ∈ A:

(λa,a′,a′′ � idVeca′′′ ) ◦ λa,a′a′′,a′′′ ◦ (idVeca � λa′,a′′,a′′′) ◦ πa,a′,a′′,a′′′ = λaa′,a′′,a′′′ ◦ λa,a′,a′′a′′′ . (6.66)

In this way, we see that VecA,λ defines a monoidal category which is associative inside 2VecπG but not

as a conventional monoidal category. This result provides a categorification of the observation that

an algebra object Aφ in VecαG defines a twisted groupoid algebra, which is associative inside VecαG but

not as a conventional algebra.

6.9 Bicategory of gapped boundary excitations in (3+1)d gauge models

Mimicking the analysis carried out in sec. 6.7, we shall now introduce a category theoretical formula-

tion of gapped boundaries in (3+1)d gauge models and string-like excitations terminating at gapped

boundaries, which we studied from a tube algebra point of view in sec. 4. In particular, we shall define

a bicategory 2BdryπG that is analogous to BdryαG. We shall then relate this construction to the work

of Kong et al. in [54] arguing that 2BdryπG forms a full sub-bicategory of Z(2VecπG), i.e. the centre of

2VecπG.

Let us begin with a brief review of the results obtained in the first part of this manuscript within

the tube algebra approach. Hamiltonian realisations of (3+1)d Dijkgraaf-Witten theory are defined in
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terms of pairs (G, π), where G is a finite group and π a normalised 4-cocycle in H4(G,U(1)). In sec. 2.4,

it was argued that gapped boundaries can be indexed by pairs (A, λ), where A ⊂ G is a subgroup of

G and λ ∈ C3(A,U(1)) is a 3-cochain satisfying the condition d(3)λ = π−1|A. In the previous section,

we explained that such data is in bijection with pseudo-algebra objects VecA,λ in 2VecπG. Moreover,

we showed in sec. 4 within the tube algebra approach that given a pair of two-dimensional gapped

boundaries labelled by (A, λ) and (B,µ), respectively, string-like excitations threading through the

bulk from the former boundary to the latter were defined as modules of the twisted relative groupoid

algebra C[Λ(GAB)]
T(π)
T(λ)T(µ), where Λ(GAB) ≡ ΛGΛAΛB and T : Z•(G,U(1))→ Z•−1(ΛG,U(1)).11 Via

the introduction of a comultiplication map, we further described the concatenation of such string-like

excitations in sec. 5.

Let us now collect these results into a bicategory 2BdryπG, in a way akin to the definition of BdryαG.

The objects of 2BdryπG are given by pairs (ΛA,T(λ)) for every gapped boundary condition labelled by

(A, λ). Given a pair of objects (ΛA,T(λ)), (ΛB,T(µ)), we define the hom-category

Hom2BdryπG

(
(ΛA,T(λ)), (ΛB,T(µ))

)
:= Mod

(
C[Λ(GAB)]

T(π)
T(λ)T(µ)

)
, (6.67)

where Mod(C[Λ(GAB)]
T(π)
T(λ)T(µ)) denotes the category of C[Λ(GAB)]

T(π)
T(λ)T(µ)-modules and intertwiners.

The composition functors, associator and unitors are given analogously to the construction of BdryαG.

From this definition, we interpret the objects (ΛA,T(λ)) of 2BdryπG as defining boundary conditions

for the endpoints of a string-like excitation that terminates on a gapped boundary labelled by (A, λ).

An isomorphism class of objects in ΛA specifies possible fluxes for a string-like excitation terminating

on the boundary (A, λ). This flux corresponds to the closed holonomy going along the non-contractible

cycle perpendicular to the length of the string. Given a pair of objects (ΛA,T(λ)), (ΛB,T(µ)) a 1-

morphism ρAB ∈ Ob(Hom2BdryπG
((A, λ), (B,µ))) specifies a magnetic quantum number describing the

gauge orbit of parallel transports along the length of the string—generically, such a parallel transport

must be compatible with the possible boundary conditions for the endpoints of the string—as well

as a charge quantum number decomposing the symmetries of the gauge action on the string. In this

way, we view such strings as dyonic excitations. The bifunctor on 1-morphisms provides a notion

of concatenation for a pair of string-like excitations that share a boundary endpoint, as described

in sec. 5.2. The 2-morphisms correspond to intertwiners, so that a 2-morphism of the form ζ :

ρAB⊗B ρBC → ρAC can be interpreted as implementing the renormalization of a pair of concatenated

string-like excitations. Identity 1-morphisms and unitors are defined analoguously to BdryαG. Similarly,

the 1-associator for a triple of 1-morphisms ρAB , ρBC , ρCD in the appropriate hom-categories is given

by the intertwiner isomorphism ΦρABρBCρCD : (ρAB ⊗B ρBC) ⊗C ρCD → ρAB ⊗B (ρBC ⊗C ρCD), as

described explicitly in sec. 5.2.

It is well-known that, given a lattice Hamiltonian realisation of (2+1)d Dijkgraaf-Witten theory with

input data (G,α), algebraic properties of the (bulk) anyonic excitations can be encoded into the centre

Z(VecαG) of the fusion category VecαG, this centre being in particular a braided monoidal category.

The objects of Z(VecαG) are interpreted as the elementary excitations of the model, or anyons, and

the morphisms implement space-time processes of such anyons. The monoidal structure describes

the fusion and splitting processes of the excitations, whereas the braiding structure encodes their

exchange statistics. Recently, Kong et al. studied in [54] the analogue of this result in (3+1)d.

The relevant category theoretical structure in (3+1)d being the monoidal bicategory 2VecπG, they

computed the braided monoidal bicategory Z(2VecπG) obtained as the categorified centre of 2VecπG,

11Recall that ΛG refers to the loop groupoid of the group G treated as a one-object groupoid (see sec. 4).
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arguing that such a bicategory should describe string-like excitations and their statistics in (3+1)d

gauge models. More specifically, they demonstrated that as a bicategory Z(2VecπG) is equivalent to the

bicategory MOD(Vec
T(π)
ΛG ). Using this equivalence, they suggested that objects of Z(2VecπG) could be

interpreted as string-like topological excitations, 1-morphisms as particle-like topological excitations,

and 2-morphisms as instantons. Relating this bicategory to the boundary tube algebra in (3+1)d, we

shall argue that objects of Z(2VecπG) should be interpreted as boundary conditions for the endpoints

of a string-like excitation—such a boundary condition specifying in particular allowed fluxes for the

excitation—the 1-morphisms as quantum numbers associated with string-like topological excitations

that are constrained by a choice of endpoints boundary conditions, and 2-morphisms as implementing

the renormalisation of concatenated string-like excitations.

In order to establish the interpretation spelt out above, we begin by showing that 2BdryπG is

equivalent as a bicategory to a full sub-bicategory 6MOD(Vec
T(π)
ΛG ) of MOD(Vec

T(π)
ΛG ). Our argument

mirrors the equivalence of bicategories BdryαG ' MOD(VecαG) established in sec. 6.7. Utilising prop. 6.1,

we know that, up to equivalence, all Vec
T(π)
ΛG -module categories can be expressed as the category of

module objects for an algebra object in Vec
T(π)
ΛG . Moreover, we established in sec. 6.4 that all such

algebra objects were indexed by (ΛG,T(π))-subgroupoids, as defined in sec. 4.3. Given the data

(A, λ) of gapped boundary condition in (3+1)d, we explained in sec. 4 that the loop groupoid ΛA

together with the groupoid 2-cochain T(λ) defines such a (ΛG,T(π))-subgroupoid. Henceforth, we

shall refer to groupoids of this form as 6(ΛG,T(π))-subgroupoids. In this vein, we define the bicat-

egory 6MOD(Vec
T(π)
ΛG ) as the full sub-bicategory of MOD(Vec

T(π)
ΛG ) whose objects are Vec

T(π)
ΛG -module

categories induced from 6(ΛG,T(π))-subgroupoids, and hom-categories are the corresponding ones in

MOD(Vec
T(π)
ΛG ). Similarly, we define 6sAlg(Vec

T(π)
ΛG ) as the full sub-bicategory of sAlg(Vec

T(π)
ΛG ), whose

objects are algebra objects in Vec
T(π)
ΛG of the form ΛAT(λ), and hom-categories are the corresponding

categories of bimodule objects in Vec
T(π)
ΛG . Mimicking our proof of the equivalence BdryαG ' sAlg(VecαG),

we can show the equivalence between 2BdryπG and 6sAlg(Vec
T(π)
ΛG ). This equivalence relies in particular

on the isomorphism C[Λ(GAB)]
T(π)
T(λ)T(µ) ≡ C[ΛGΛAΛB ]ϑ

ΛAΛB ' C[Λ̃GΛAΛB ]$
ΛAΛB

of twisted relative

groupoid algebras, which is realised by an obvious generalisation of (6.54). Utilising the proof of

prop. 6.1, it follows that ∂sAlg(VecαG) ' ∂MOD(Vec
T(π)
ΛG ), hence establishing the equivalence

2BdryπG ' 6MOD(Vec
T(π)
ΛG ) . (6.68)

Let us now explain how we can generalise our approach so as to obtain the bicategory MOD(Vec
T(π)
ΛG ),

which we recall was shown to be equivalent to Z(2VecπG). When considering the boundary tube algebra

for the (3+1)d gauge models in sec. 4, we could have allowed for a larger spectrum of boundary

colourings beyond the ones inherited from the gapped boundary conditions. More specifically, we

could have considered G-colourings that are provided by morphisms in any (ΛG,T(π))-subgroupoid

(X , φ) such that d(2)φ = T(π)|−1
X . Given a pair of (ΛG,T(π))-subgroupoids (X , φ) and (Y, ψ), we

could have then considered G-coloured graph-states of the form

∣∣g x−→
y

〉
≡

∣∣∣∣∣

x1

g

x2

y2

y10′ 1′

10

0̃′
1̃′

1̃0̃

〉
≡

∣∣∣∣∣
g

x1
x−1

1 gy1 y1

y
y1
2x

x1
2

y2x2

〉
(6.69)
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where we borrowed the notation from sec. 4 and

x = x2
x1−→ xx1

2 ∈ Hom(X ) , y = y2
y1−→ yy1

2 ∈ Hom(Y) , g
x−→
y
,∈ Hom(ΛGXY) ,

such that ΛGXY denotes the relative groupoid over ΛG defined by X and Y. In this setting, there

exists a natural multiplication of such boundary tubes defining an algebra isomorphic to the twisted

groupoid algebra C[ΛGXY ]
T(π)
φψ . Letting StringπG denote the bicategory defined in the same manner as

2BdryπG with objects all (ΛG,T(π))-subgroupoids and hom-categories

HomStringπG
((X , φ), (Y, ψ)) := Mod(C[ΛGXY ]

T(π)
φψ ) , (6.70)

we obtain the following equivalence of bicategories:

StringπG ' MOD(Vec
T(π)
ΛG ) . (6.71)

Utilising this equivalence of bicategories, together with the physical interpretation inherited from the

tube algebra approach, we interpret the Vec
T(π)
ΛG -module category Mod

Vec
T(π)
ΛG

(Xφ) for a (ΛG,T(π))-

subgroupoid (X , φ) as the 2-Hilbert space [71] of boundary conditions that appear at the endpoint

of a string-like (bulk) excitation. As before, 1-morphisms are naturally interpreted as the quantum

numbers of string-like excitations.

The motivation for calling Vec
T(π)
ΛG -module categories Mod

Vec
T(π)
ΛG

(Xφ) 2-Hilbert spaces is as follows.

In finite-dimensional quantum mechanics, given a finite set X of classical field configurations, the cor-

responding Hilbert space H[X] is given by the free vector space of functions f : X → C. Categorifying

the set of classical field configurations to a groupoid G, whose objects correspond to classical field

configurations and morphisms, the symmetries of the field configurations. The category [G,Vec]β of

(weak) functors F : G → Vec for [β] ∈ H2(G,U(1)) provides a natural categorification of H[X] which

defines a finite 2-vector space (see sec. 6.8). The category [G,Vec]β can then be shown to admit a

categorification of the inner-product of finite Hilbert spaces given by the hom-functor

〈−,−〉 : ([G,Vec]β)op � [G,Vec]β → Vec . (6.72)

Recalling that Mod
Vec

T(π)
ΛG

(Xφ) is defined by a category of weak functors from a groupoid to Vec, the

term 2-Hilbert space seems most appropriate.

We conclude this section by showing that, in general, objects in 6MOD(Vec
T(π)
ΛG ) are not indecomposable

as Vec
T(π)
ΛG -module categories. For convenience, we shall focus on the limiting case where the group G is

abelian, but our analysis can be extended to the non-abelian scenario. Analogously to indecomposable

modules over an algebra, an indecomposable module category is a module category which is not

equivalent to the direct sum of non-zero module categories. Using the equivalence between Vec
T(π)
ΛG -

module categories and the categories of module objects for a separable algebra object in Vec
T(π)
ΛG , we

have that a Vec
T(π)
ΛG -module category is indecomposable if only if the corresponding algebra object is

not Morita equivalent to a direct sum of non-zero algebra objects. Given a (3+1)d gauge model with

input data (G, π), and a choice of gapped boundary condition (A, λ), an algebra object ΛAT(λ) in

Vec
T(π)
ΛG naturally decomposes as a direct sum via

ΛAT(λ) =
⊕
a∈A

(ΛAa)Ta(λ) , (6.73)
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where ΛAa denotes the groupoid with unique object a ∈ A and set of morphisms {a a′−→ a}∀ a′∈A. The

2-cochain Ta(λ) ∈ C2(ΛAa,U(1)) is then given by the restriction of T(λ) ∈ C2(ΛA,U(1)) to ΛAa.

This decomposition yields

Mod
Vec

T(π)
ΛG

(ΛAT(λ)) '
⊕
a∈A

Mod
Vec

T(π)
ΛG

((ΛAa)Ta(λ)) (6.74)

as Vec
T(π)
ΛG -module categories, so that the category of module objects is not indecomposable as a

module category unless A = 1G is the trivial subgroup of G. Generically, for possibly non-abelian G

an indecomposable Vec
T(π)
ΛG -module category can be specified by a triple (O, H, φ) , where O denotes

a conjugacy class of G, H is a subgroup of the centralizer Zo1
⊆ G for a representative o1 ∈ O, and

φ ∈ C2(H,U(1)) is 2-cochain satisfying d(2)φ = T(π)|H [54]. The corresponding algebra object is then

given by (Ho1)φo1 , where Ho1
denotes the groupoid with unique object o1 ∈ O and hom-set {h : o1 →

o1}∀h∈H with composition given by multiplication in H, and the 2-cochain φo1 ∈ C2(Ho1 ,U(1)) is

defined by the relation φo1
(h : o1 → o1, h

′ : o1 → o1) := φ(h, h′) for all h, h′ ∈ H.

SECTION 7

Discussion

Gapped boundaries of topological models have been under scrutiny in the past years. Focusing on

lattice Hamiltonian realisations of Dijkgraaf-Witten theory, a.k.a gauge models of topological phases,

we studied gapped boundaries and their excitations in (2+1)d and (3+1)d. More specifically, the goal

of this paper was two-fold: Apply the tube algebra approach to classify gapped boundary excitations

and, using these results, elucidate the higher-category theoretical formalism relevant to describe gapped

boundaries in (3+1)d.

As explained in detail in [33], local operators of lattice Hamiltonian realisations of Dijkgraaf-Witten

theory can be conveniently expressed in terms of the partition function of the theory applied to so-

called pinched interval cobordisms. We introduced a generalisation of the Dijkgraaf-Witten partition

function, from which the gapped boundary Hamiltonian operators could be defined in analogy with the

bulk Hamiltonian operators using the language of relative pinched interval cobordisms. Given gapped

boundaries labelled by subgroups of the input group and cochains compatible with the input cocycle,

we applied the tube algebra approach in order to reveal the algebraic structure underlying two types of

excitations: (i) Point-like excitations at the interface of two gapped boundaries in (2+1)d, where the

‘tube’ has the topology of I× I, and (ii) string-like (bulk) excitations terminating at point-like gapped

boundary excitations, where the ‘tube’ has the topology of (S1 × I)× I. Crucially, both tube algebras

can be related via a lifting (or dimensional reduction) argument, and as such can be studied in parallel.

This statement was formalised using the notion of relative groupoid algebra. When applied to the

input group treated as a one-object groupoid, this notion yields the (2+1)d tube algebra, whereas

it yields the (3+1)d tube algebra when applied to the loop groupoid of the group. We subsequently

studied the representation theory of the (3+1)d tube algebra in full detail, which encompasses the

(2+1)d one as a limiting case, deriving the irreducible representations as well as the corresponding

recoupling theory.

In the second part of this manuscript, we reformulated the previous statements in category theo-

retical terms. In (2+1)d, the relevant notion to describe gapped boundaries and their excitations is the

bicategory MOD(VecαG) of module categories over the category VecαG of group-graded vector spaces.

In practice, a module category can be obtained as a category of modules over an algebra object in

the input category. The bicategory of module categories above can then be shown to be equivalent
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to a bicategory of separable algebra objects, such that objects correspond to the gapped boundary

conditions and morphisms to representations of a groupoid algebra isomorphic to the (2+1)d tube

algebra. The identification with the tube algebra allowed us to elucidate the physical interpretation

of the category theoretical notions at play. Mimicking this (2+1)d construction, we further defined

a bicategory that encodes the string-like excitations terminating at point-like excitations on gapped

boundaries and found that is was equivalent to a sub-bicategory of the bicategory MOD(Vec
T(π)
ΛG ) of

modules categories over the category Vec
T(π)
ΛG of loop-groupoid-graded vector spaces. Comparing with

the work of Kong et al. [54], MOD(Vec
T(π)
ΛG ) is equivalent to the higher categorical centre Z(2VecπG) of

the category 2VecπG of G-graded 2-vector spaces, which is the input category of (3+1)d gauge models.

In virtue of the physical interpretation inherited from the tube algebra approach, we thus suggested

that Z(2VecπG) describes dyonic bulk string-like excitations whose end-points are pinned to the bound-

ary of the spatial manifold. This is the higher-dimensional analogue of the well-known statement that

bulk point-like excitations in (2+1)d are described by the centre Z(VecαG) of the input category.

The distinction between the gapped boundary string-like excitations we focused on, and the more

general ones encoded in the centre Z(2VecπG) can be appreciated from an extended TQFT point of

view. We should think of Z(2VecπG) as describing the object the extended 4-3-2-1 Dijkgraaf-Witten

TQFT assigns to the circle. It follows from our analysis that such extended TQFT is more general

than what gapped boundary conditions provide. Working out the details of this more general scenario

will be the purpose of another paper.

The study carried out in this manuscript can be generalized in several ways. First of all, we could

study gapped domains walls instead of gapped boundaries and consider string-like excitations that

terminate at gapped domains walls point-like excitations. In (2+1)d, the so-called folding trick can be

used in order to map a gapped domain wall configuration to a gapped boundary one. It would certainly

be interesting to consider how this generalizes in higher dimensions. Once this more general scenario

is well-understood, we could then apply our results to so-called fracton models, which were recently

suggested in [72–74] to have an interpretation in terms of defect TQFTs. A related question would

be to study invertible domain walls such as duality defects and derive the underlying mathematical

structure in category theoretical terms.

Another follow-up work pertains to the relation between the string-like excitations as described

by Z(2VecπG) and the loop-like excitations of the model. In a recent paper [33], the authors showed

that loop-like excitations and their statistics were captured by the category of modules over the so-

called twisted quantum triple algebra. This algebra can be expressed as the twisted groupoid algebra

C[Λ2G]T
2(π) of the loop groupoid of the loop groupoid of G. In comparison, recall that the twisted

quantum double is isomorphic to C[ΛG]T(α) in this language. This groupoid algebra was shown

by the authors to be isomorphic to the tube algebra associated with the manifold T2 × I, a local

neighbourhood of a loop-like object being a solid torus. Intuitively, we may expect loop-like excitations

to descend from the string-like ones via a tracing mechanism. This can be formalized using the notion

of categorical trace, building upon the fact that it maps a module category over VecG to a module over

C[ΛG] [60, 75]. Another way to establish the connection between string-like and loop-like excitations

consists in first realising that, as braided monoidal categories, we have the equivalences Z(Vec
T(π)
ΛG ) '

Mod(C[Λ2G]T
2(π)) and Z(Vec

T(π)
ΛG ) ' Dim(MOD(Vec

T(π)
ΛG )), where Dim denotes the dimension of a

bicategory [60, 76] obtained via an appropriate categorification of the dimension of a vector space.

The details of this correspondence will be presented in a forthcoming paper [77].
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APPENDIX A

Representation theory of the relative groupoid algebra

In this appendix, we collect the proofs of several important results of the representation theory of the

relative groupoid algebra C[Λ(GAB)]αφψ.

A.1 Proof of the orthogonality relations (5.12)

Let us confirm that the representation matrices as defined in (5.8) satisfy the orthogonality relation

(5.12):

1

|A||B|
∑

g
a−→
b
∈Λ(GAB)

DρABIJ

(∣∣g a−→
b

〉)
Dρ
′
AB

I′J′

(∣∣g a−→
b

〉)

=
1

|A||B|
∑

g
a−→
b
∈Λ(GAB)

δg,oi δa−1gb,oj

ϑ
Λ(AB)
o1 (p−1

i apj , p
−1
j |q

−1
i bqj , q

−1
j )

ϑ
Λ(AB)
o1 (p−1

i , a|q−1
i , b)

DRmn
(∣∣ p−1

i apj−−−−−→
q−1
i bqj

〉)
× δg,o′i δa−1gb,o′j

ϑ
Λ(AB)
o1 (p′−1

i , a|q′−1
i , b)

ϑ
Λ(AB)
o1 (p′−1

i ap′j , p
′−1
j |q

′−1
i bq′j , q

′−1
j )
DR

′

m′n′
(∣∣ p′−1

i ap′j−−−−−−→
q′−1
i bq′j

〉)
=

1

|A||B|
∑

oi
a−→
b
∈Hom(Λ(GAB))

δOAB ,O′AB δi,i′ δj,j′ δa−1oib,oj DRmn
(∣∣ p−1

i apj−−−−−→
q−1
i bqj

〉)
DR

′

m′n′
(∣∣ p−1

i apj−−−−−→
q−1
i bqj

〉)

=
1

|ZOAB |
∑

(a,b)∈ZOAB

δOAB ,O′AB δi,i′ δj,j′ D
R
mn

(∣∣ a−→
b

〉)
DR

′

m′n′
(∣∣ a−→

b

〉)
=
δρAB ,ρ′AB δI,I′ δJ,J ′

dρAB
,

where we first expanded the representation matrices according to definition (5.8) and then used the

orthogonality of the irreducible representation in ZOAB together with the relation |ZOAB | · |OAB | =

|A||B|.

A.2 Proof of the invariance property (5.28)

Let us prove the invariance property (5.28), which we reproduce below for convenience

∑
{J}

DρABIABJAB

(∣∣g1
a−→
b

〉)
DρBCIBCJBC

(∣∣g2
b′−−→
c

〉)[ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACJACIAC

(∣∣g3
a′−−→
c′

〉)
(A.1)

=
1

|B|
∑
b̃∈B

ϑ
Λ(AB)
g1 (a, ã|b, b̃)ϑ

Λ(BC)
g2 (b′, b̃|c, c̃) ζΛ(ABC)

ã,b̃,c̃
(a−1g1b, b

′−1g2c)

ϑ
Λ(AC)
g3 (ã, ã−1a′ |̃c, c̃−1c′)

δg3,a−1g1bb′−1g2c

×
∑
{K}

DρABIABKAB

(∣∣g1
aã−−→
bb̃

〉)
DρBCIBCKBC

(∣∣g2
b′b̃−−−→
cc̃

〉)[ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]
DρACKACIAC

(∣∣ã−1g3c̃
ã−1a′−−−−→
c̃−1c′

〉)
,
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Let us consider the left-hand side of (A.1). In virtue of the gauge invariance (5.27) of the Clebsch-

Gordan coefficients, this is equal to

l.h.s(A.1) =
∑

g∈Hom(s(ã),s(c̃))

∑
{J,K}

DρABIABJAB

(∣∣g1
a−→
b

〉)
DρBCIBCJBC

(∣∣g2
b′−−→
c

〉)
DρACJACIAC

(∣∣g3
a′−−→
c′

〉)
× (DρABJABKAB

⊗B DρBCJBCKBC
)
(∣∣g ã−→̃

c

〉)
DρACJACKAC

(∣∣g ã−→̃
c

〉)[ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]
=

1

|B|
∑

g′1∈Ob(Λ(GAB))

g′2∈Ob(Λ(GBC))

b̃∈B

∑
{J,K}

DρABIABJAB

(∣∣g1
a−→
b

〉)
DρBCIBCJBC

(∣∣g2
b′−−→
c

〉)
DρACJACIAC

(∣∣g3
a′−−→
c′

〉)
×DρABJABKAB

(∣∣g′1 ã−→̃
b

〉)
DρBCJBCKBC

(∣∣g′2 b̃−→̃
c

〉)
DρACJACKAC

(∣∣g′1g′2 ã−→̃
c

〉)
× ζΛ(ABC)

ã,b̃,c̃
(g′1, g

′
2)
[
ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]
,

where we applied the definitions of the truncated tensor product ⊗B and the comultiplication map

∆B . Using

DρACJACKAC

(∣∣g′1g′2 ã−→̃
c

〉)
=

1

ϑ
Λ(AC)
g′1g
′
2

(ã, ã−1 |̃c, c̃−1)
DρACKACJAC

(∣∣ã−1g′1g
′
2c̃

ã−1

−−−→
c̃−1

〉)
,

together with the fact that the representation matrices define algebra homomorphisms yields

l.h.s(A.1) =
1

|B|
∑
g′1,g

′
2

b̃∈B

∑
{K}

ϑ
Λ(AB)
g1 (a, ã|b, b̃)ϑ

Λ(BC)
g2 (b′, b̃|c, c̃)ϑΛ(AC)

ã−1g′1g
′
2c̃

(ã−1, a′ |̃c−1, c′)

ϑ
Λ(AC)
g′1g
′
2

(ã, ã−1 |̃c, c̃−1)

×DρABIABKAB

(∣∣g1
aã−−→
bb̃

〉)
DρBCIBCKBC

(∣∣g2
b′b̃−−−→
cc̃

〉)
DρACKACIAC

(∣∣ã−1g′1g
′
2c̃

ã−1a′−−−−→
c̃−1c′

〉)
× δg′1,a−1g1b δg′2,b′−1g2c δg3,g′1g

′
2
ζ

Λ(ABC)

ã,b̃,c̃
(g′1, g

′
2)
[
ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]
=

1

|B|
∑
b̃∈B

∑
{K}

ϑ
Λ(AB)
g1 (a, ã|b, b̃)ϑ

Λ(BC)
g2 (b′, b̃|c, c̃)ϑΛ(AC)

ã−1g3c̃
(ã−1, a′ |̃c−1, c′)

ϑ
Λ(AC)
g3 (ã, ã−1 |̃c, c̃−1)

×DρABIABKAB

(∣∣g1
aã−−→
bb̃

〉)
DρBCIBCKBC

(∣∣g2
b′b̃−−−→
cc̃

〉)
DρACKACIAC

(∣∣ã−1g3c̃
ã−1a′−−−−→
c̃−1c′

〉)
× δg3,a−1g1bb′−1g2c ζ

Λ(ABC)

ã,b̃,c̃
(a−1g1b, b

′−1g2c)
[
ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]
.

Finally, using d(2)ϑ
Λ(AC)
g3 (ã, ã−1, a′ |̃c, c̃−1, c′) = 1, we obtain

l.h.s(A.1) =
1

|B|
∑
b̃∈B

∑
{K}

ϑ
Λ(AB)
g1 (a, ã|b, b̃)ϑ

Λ(BC)
g2 (b′, b̃|c, c̃) ζΛ(ABC)

ã,b̃,c̃
(a−1g1b, b

′−1g2c)

ϑ
Λ(AC)
g3 (ã, ã−1a′ |̃c, c̃−1c′)

×DρABIABKAB

(∣∣g1
aã−−→
bb̃

〉)
DρBCIBCKBC

(∣∣g2
b′b̃−−−→
cc̃

〉)
DρACKACIAC

(∣∣ã−1g3c̃
ã−1a′−−−−→
c̃−1c′

〉)
× δg3,a−1g1bb′−1g2c

[
ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]
,

which is the right-hand side of (A.1), as expected. Note that the above is true for every morphism

ã, c̃.
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A.3 Proof of the defining relation of the 6j-symbols

In this appendix, we confirm the definition of the 6j-symbols{
ρAB
ρAD

ρBC
ρAC

ρCD
ρBD

}
:=

1

dρAD

∑
{I}

α(oiAB , oiBC , oiCD )
[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADIAC

][
ρAB
IAB

ρBD
IBD

∣∣∣ρADIAD

][
ρBC
IBC

ρCD
ICD

∣∣∣ρBDIBD

]
,

such that they satisfy the relation

∑
ρAC

∑
{I}

{
ρAB
ρAD

ρBC
ρAC

ρCD
ρBD

}[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADKAD

]
|ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉 . ΦABCD

=
∑
{I}

[
ρAB
IAB

ρBD
IBD

∣∣∣ρADKAD

][
ρBC
IBC

ρCD
ICD

∣∣∣ρBDIBD

]
|ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉 . (A.2)

Inserting the definition of the 6j-symbols into equation (A.2) and writing down explicitly the action

of ΦABCD using (5.8), we find that the left-hand side is equal to

l.h.s(A.2) =
1

dρAD

∑
ρAC

∑
{I,J}

α(ojAB , ojBC , ojCD )

α(oiAB , oiBC , oiCD )

×
[
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

][
ρAC
JAC

ρCD
JCD

∣∣∣ρADJAD

][
ρAB
JAB

ρBD
JBD

∣∣∣ρADJAD

][
ρBC
JBC

ρCD
JCD

∣∣∣ρBDJBD

]
×
[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADKAD

]
|ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉

The defining relation of the Clebsch-Gordan coefficients yields[
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

][
ρAC
JAC

ρCD
JCD

∣∣∣ρADJAD

][
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADKAD

]
=

dρACdρAD
|A|2|C||D|

∑
g

a−→
c
∈Λ(GAC)

g′
a′−→
d
∈Λ(GAD)

(DρABJABIAB
⊗B DρBCJBCIBC

)
(∣∣g a−→

c

〉)
DρACJACIAC

(∣∣g a−→
c

〉)
× (DρACJACIAC

⊗C DρCDJCDICD
)
(∣∣g′ a′−−→

d

〉)
DρADJADKAD

(∣∣g′ a′−−→
d

〉)
=

dρACdρAD
|A|2|B||C|2|D|

∑
g1,g2,g

′
1,g
′
2

(a,c)∈A×C
(a′,d)∈A×D
(b,c′)∈B×C

DρABJABIAB

(∣∣g1
a−→
b

〉)
DρBCJBCIBC

(∣∣g2
b−→
c

〉)
DρACJACIAC

(∣∣g1g2
a−→
c

〉)
×DρACJACIAC

(∣∣g′1 a′−−→
c′

〉)
DρCDJCDICD

(∣∣g′2 c′−−→
d

〉)
DρADJADKAD

(∣∣g′1g′2 a′−−→
d

〉)
× ζΛ(ABC)

a,b,c (g1, g2) ζ
Λ(ACD)
a′,c′,d (g′1, g

′
2) ,

where the second sum is over g1 ∈ Ob(Λ(GAB)), g2 ∈ Ob(Λ(GBC)), g′1 ∈ Ob(Λ(GAC)), g′2 ∈
Ob(Λ(GCD)) and the corresponding morphisms, which we loosely identify with the group variables

they are characterized by. Furthermore, we have that

1

|A||C|
∑
ρAC

IAC ,JAC

dρACD
ρAC
JACIAC

(
|g′1

a′−−→
c′

〉)
DρACJACIAC

(∣∣g1g2
a−→
c

〉)
(A.3)

= δa−1g1g2c,a′−1g′1c
′

1

|A||C|
∑
ρAC

dρAC tr
[
DρAC

(
|g′1

a′a−1

−−−−→
c′c−1

〉)]
= δg1g2,g′1

δa,a′ δc,c′ , (A.4)
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where we made use of the orthogonality relation (5.12) so that[
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

][
ρAC
JAC

ρCD
JCD

∣∣∣ρADJAD

][
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADKAD

]
=

dρAD
|A||B||C||D|

∑
g1,g2,g

′
2

(a,c)∈A×C
d∈D
b∈B

DρABJABIAB

(∣∣g1
a−→
b

〉)
DρBCJBCIBC

(∣∣g2
b−→
c

〉)
×DρCDJCDICD

(∣∣g′2 c−→
d

〉)
DρADJADKAD

(∣∣g1g2g′2
a−→
d

〉)
× ζΛ(ABC)

a,b,c (g1, g2) ζ
Λ(ACD)
a,c,d (g1g2, g

′
2) .

Putting everything together so far, we obtain

l.h.s(A.2) =
1

|A||B||C||D|
∑

g1,g2,g
′
2

(a,c)∈A×C
(b,d)∈B×D

∑
{I,J}

α(ojAB , ojBC , ojCD )

α(oiAB , oiBC , oiCD )
ζ

Λ(ABC)
a,b,c (g1, g2) ζ

Λ(ACD)
a,c,d (g1g2, g

′
2)

×DρBCJBCIBC

(∣∣g2
b−→
c

〉)
DρCDJCDICD

(∣∣g′2 c−→
d

〉)[ρBC
JBC

ρCD
JCD

∣∣∣ρBDJBD

]
×DρABJABIAB

(∣∣g1
a−→
b

〉)
DρADJADKAD

(∣∣g1g2g′2
a−→
d

〉)[ρAB
JAB

ρBD
JBD

∣∣∣ρADJAD

]
× |ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉 .

In virtue of the definition of the representation matrices, we observe that we must have oiAB = a−1g1b,

oiBC = b−1g2c, oiCD = c−1g′2d, ojAB = g1, ojBC = g2 and ojCD = g′2 in order for the whole expression

not to vanish. Applying the quasi-coassociativity condition

ζ
Λ(BCD)
b,c,d (g2, g

′
2) ζ

Λ(ABD)
a,b,d (g1, g2g

′
2)

ζ
Λ(ACD)
a,c,d (g1g2, g′2) ζ

Λ(ABC)
a,b,c (g1, g2)

=
α(g1, g2, g

′
2)

α(a−1g1b, b−1g2c, c−1g′2d)
, (A.5)

we obtain

l.h.s(A.2) =
1

|A||B||C||D|
∑

g1,g2,g
′
2

(a,c)∈A×C
(b,d)∈B×D

∑
{I,J}

ζ
Λ(BCD)
b,c,d (g2, g

′
2) ζ

Λ(ABD)
a,b,d (g1, g2g

′
2)

×DρBCJBCIBC

(∣∣g2
b−→
c

〉)
DρCDJCDICD

(∣∣g′2 c−→
d

〉)[ρBC
JBC

ρCD
JCD

∣∣∣ρBDJBD

]
×DρABJABIAB

(∣∣g1
a−→
b

〉)
DρADJADKAD

(∣∣g1g2g′2
a−→
d

〉)[ρAB
JAB

ρBD
JBD

∣∣∣ρADJAD

]
× |ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉 .

Let us now insert the resolution of the identity

δJBD,JBD =
∑

h,h′∈Ob(Λ(GBD))

∑
IBD

DρBDJBDIBD

(∣∣h′ b−→
d

〉)
DρBDJBDIBD

(∣∣h b−→
d

〉)
, (A.6)

where h and h′ are implicitly identified via the algebra product. As a special case of (5.28), we have∑
{J}

∑
c∈C
DρBCJBCIBC

(∣∣g2
b−→
c

〉)
DρCDJCDICD

(∣∣g′2 c−→
d

〉)
DρBDJBDIBD

(∣∣h b−→
d

〉)[ρBC
JBC

ρCD
JCD

∣∣∣ρBDJBD

]
=
∑
{J}

∑
c∈C
DρBCJBCIBC

(∣∣g2
b−→
c

〉)
DρCDJCDICD

(∣∣g′2 c−→
d

〉)
DρBDJBDIBD

(∣∣g2g′2
b−→
d

〉) [ρBC
JBC

ρCD
JCD

∣∣∣ρBDJBD

]
δh,g2g′2

.
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We can finally use the gauge invariance of the Clebsch-Gordan coefficients

1

|B|
∑
{J}

∑
h′,g1

ζ
Λ(ABD)
a,b,d (g1, h

′)DρABJABIAB

(∣∣g1
a−→
b

〉)
DρBDJBDIBD

(∣∣h′ b−→
d

〉)
DρADJADKAD

(∣∣g1h′
a−→
d

〉) [ρAB
JAB

ρBD
JBD

∣∣∣ρADJAD

]
=
[
ρAB
IAB

ρBD
IBD

∣∣∣ρADKAD

]
and

1

|C|
∑
{J}

∑
g2,g

′
2

ζ
Λ(BCD)
b,c,d (g2, g

′
2)DρBCJBCIBC

(∣∣g2
b−→
c

〉)
DρCDJCDICD

(∣∣g′2 c−→
d

〉)
DρBDJBDIBD

(∣∣g2g′2
b−→
d

〉) [ρBC
JBC

ρCD
JCD

∣∣∣ρBDJBD

]
=
[
ρBC
IBC

ρCD
ICD

∣∣∣ρBDIBD

]
,

so as to yield (A.2) as expected.

A.4 Proof of the pentagon identity

As explained in the main text, the pentagon identity is the statement that the algebra elements

[(id⊗ id⊗∆D)(ΦABCE)] ? [(∆B ⊗ id⊗ id)(ΦACDE)]

and

(1AB ⊗ ΦBCDE) ? [(id⊗∆C ⊗ id)(ΦABDE)] ? (ΦABCD ⊗ 1DE)

induce the same isomorphism on the four-particle vector space ((VρAB ⊗B VρBC )⊗C VρCD )⊗D VρDE .

In light of the definition of the truncated tensor product of vector spaces, this can be demonstrated

explicitly by showing the equality:

(1AB ⊗ ΦBCDE) ? [(id⊗∆C ⊗ id)(ΦABDE)] ? (ΦABCD ⊗ 1DE) ? 1(((AB)C)D)E

= [(id⊗ id⊗∆D)(ΦABCE)] ? [(∆B ⊗ id⊗ id)(ΦACDE)] ? 1(((AB)C)D)E , (A.7)

where we defined

1(((AB)C)D)E := [(∆B ⊗ id) ◦ (∆C ⊗ id) ◦∆D](1AE) .

Writing down explicitly the definition of the comultiplication maps, we have

[(id⊗∆C ⊗ id)(ΦABDE)] =
1

|C|
∑
{g}
c∈C

ζ
Λ(BCD)
1B ,c,1D

(g2, g3)

α(g1, g2g3, g4)

∣∣g1
1A−−−→
1B

〉
⊗
∣∣g2

1B−−−→
c

〉
⊗
∣∣g3

c−−−→
1D

〉
⊗
∣∣g4

1D−−−→
1E

〉
,

[(id⊗ id⊗∆D)(ΦABCE)] =
1

|D|
∑
{g}
d∈D

ζ
Λ(CDE)
1C ,d,1E

(g3, g4)

α(g1, g2, g3g4)

∣∣g1
1A−−−→
1B

〉
⊗
∣∣g2

1B−−−→
1C

〉
⊗
∣∣g3

1C−−−→
d

〉
⊗
∣∣g4

d−−−→
1E

〉
,

[(∆B ⊗ id⊗ id)(ΦACDE)] =
1

|B|
∑
{g}
b∈B

ζ
Λ(ABC)
1A,b,1C

(g1, g2)

α(g1g2, g3, g4)

∣∣g1
1A−−−→
b

〉
⊗
∣∣g2

b−−−→
1C

〉
⊗
∣∣g3

1C−−−→
1D

〉
⊗
∣∣g4

1D−−−→
1E

〉
,
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and

1(((AB)C)D)E =
1

|B||C||D|
∑
{g}

(b,c,d)∈B×C×D

ζ
Λ(ADE)
1A,d,1E

(g1g2g3, g4) ζ
Λ(ACD)
1A,c,d

(g1g2, g3) ζ
Λ(ABC)
1A,b,c

(g1, g2)

×
∣∣g1

1A−−−→
b

〉
⊗
∣∣g2

b−→
c

〉
⊗
∣∣g3

c−→
d

〉
⊗
∣∣g4

d−−−→
1E

〉
.

Applying the definition of the algebra product, we then obtain

[(id⊗ id⊗∆D)(ΦABCE)] ? [(∆B ⊗ id⊗ id)(ΦACDE)]

=
1

|B||D|
∑
{g}

(b,d)∈B×D

ζ
Λ(CDE)
1C ,d,1E

(g3, g4) ζ
Λ(ABC)
1A,b,1C

(g1, g2)

α(g1, g2, g3g4)α(g1g2, g3d, d−1g4)

×
∣∣g1

1A−−−→
b

〉
⊗
∣∣g2

b−−−→
1C

〉
⊗
∣∣g3

1C−−−→
d

〉
⊗
∣∣g4

d−−−→
1E

〉
and

(1AB ⊗ ΦBCDE) ? [(id⊗∆C ⊗ id)(ΦABDE)] ? (ΦABCD ⊗ 1DE)

=
1

|C|
∑
{g}
c∈C

ζ
Λ(BCD)
1B ,c,1D

(g2, g3)

α(g2, g3, g4)α(g1, g2g3, g4)α(g2, g2c, c−1g3)

×
∣∣g1

1A−−−→
1B

〉
⊗
∣∣g2

1B−−−→
c

〉
⊗
∣∣g3

c−−−→
1D

〉
⊗
∣∣g4

1D−−−→
1E

〉
.

It remains to multiply both expression from the right by 1(((AB)C)D)E . First, we compute the right-and

side of (A.7):

r.h.s(A.7) =
1

|B|2|C||D|2
∑
{g}

b,b′,c,d,d′

ζ
Λ(CDE)
1C ,d,1E

(g3, g4) ζ
Λ(ABC)
1A,b,1C

(g1, g2)

α(g1, g2, g3g4)α(g1g2, g3d, d−1g4)

× ζΛ(ADE)
1A,d′,1E

(g1g2g3d, d
−1g4) ζ

Λ(ACD)
1A,c,d′

(g1g2, g3d) ζ
Λ(ABC)
1A,b′,c

(g1b, b
−1g2)

× ϑΛ(AB)
g1 (1A,1A|b, b′)ϑΛ(BC)

g2 (b, b′|1C , c)ϑΛ(CD)
g3 (1C , c|d, d′)

× ϑΛ(DE)
g4 (d, d′|1E ,1E)

∣∣g1
1A−−−→
b

〉
⊗
∣∣g2

b−−−→
1C

〉
⊗
∣∣g3

1C−−−→
d

〉
⊗
∣∣g4

d−−−→
1E

〉
.

Using the cocycle relations

ϑ
Λ(AB)
g1 (1A,1A|b, b′)ϑΛ(BC)

g2 (b, b′|1C , c)
ϑ

Λ(AC)
g1g2 (1A,1A|1C , c)

=
ζ

Λ(ABC)
1A,bb′,c

(g1, g2)

ζ
Λ(ABC)
1A,b,1C

(g1, g2) ζ
Λ(ABC)
1A,b′,c

(g1b, b−1g2c)

and

ϑ
Λ(CD)
g3 (1C , c|d, d′)ϑΛ(DE)

g4 (d, d′|1E ,1E)

ϑ
Λ(CE)
g3g4 (1C , c|1E ,1E)

=
ζ

Λ(CDE)
c,dd′,1E

(g3, g4)

ζ
Λ(CDE)
1C ,d,1E

(g3, g4) ζ
Λ(CDE)
c,d′,1E

(g3d, d−1g4)

as well as the quasi-coassociativity conditions

ζ
Λ(CDE)
c,d′,1E

(g3d, d
−1g4) ζ

Λ(BCE)
1B ,c,1E

(g1g2, g3g4)

ζ
Λ(BDE)
1B ,d,1E

(g1g2g3d, d−1g4) ζ
Λ(BCD)
1B ,c,d′

(g1g2, g3d)
=

α(g1g2, g3d, d
−1g4)

α(g1g2c, c−1g3dd′, d′−1d−1g4)
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and

ζ
Λ(CDE)
c,dd′,1E

(g3, g4) ζ
Λ(BCE)
1B ,c,1E

(g1g2, g3g4)

ζ
Λ(BDE)
1B ,dd′,1E

(g1g2g3, g4) ζ
Λ(BCD)
1B ,c,dd′

(g1g2, g3)
=

α(g1g2, g3, g4)

α(g1g2c, c−1g3dd′, d′−1d−1g4)

yields

r.h.s(A.7) =
1

|B||C||D|
∑
{g}
b,c,d

ζ
Λ(CDE)
1C ,d,1E

(g1g2g3, g4) ζ
Λ(BCD)
1B ,c,d

(g1g2, g3) ζ
Λ(ABC)
1A,b,c

(g1, g2)

α(g1, g2, g3g4)α(g1g2, g3, g4)

×
∣∣g1

1A−−−→
b

〉
⊗
∣∣g2

b−→
c

〉
⊗
∣∣g3

c−→
d

〉
⊗
∣∣g4

d−−−→
1E

〉
.

Let us repeat the same procedure in order to compute the left-hand side of (A.7):

l.h.s(A.7) =
1

|B||C|2|D|
∑
{g}

b,c,c′,d

ζ
Λ(BCD)
1B ,c,1D

(g2, g3)

α(g2, g3, g4)α(g1, g2g3, g4)α(g2, g2c, c−1g3)

× ζΛ(ADE)
1A,d,1E

(g1g2g3, g4) ζ
Λ(ACD)
1A,c′,d

(g1g2c, c
−1g3) ζ

Λ(ABC)
1A,b,c′

(g1, g2c)

× ϑΛ(AB)
g1 (1A,1A|1B , b)ϑ

Λ(BC)
g2 (1B , b|c, c′)ϑΛ(CD)

g3 (c, c′|1D, d)

× ϑΛ(DE)
g4 (1D, d|1E ,1E)

∣∣g1
1A−−−→
1B

〉
⊗
∣∣g2

1B−−−→
c

〉
⊗
∣∣g3

c−−−→
1D

〉
⊗
∣∣g4

1D−−−→
1E

〉
.

Using the cocycle relation

ϑ
Λ(BC)
g2 (1B , b|c, c′)ϑΛ(CD)

g3 (c, c′|1D, d)

ϑ
Λ(BD)
g2g3 (1B , b|1D, d)

=
ζ

Λ(BCD)
b,cc′,d (g2, g3)

ζ
Λ(BCD)
1B ,c,1D

(g2, g3) ζ
Λ(BCD)
b,c′,d (g2c, c−1g3)

as well as the quasi-coassociativity conditions

ζ
Λ(BCD)
b,c′,d (g2c, c

−1g3) ζ
Λ(ABD)
1A,b,d

(g1, g2g3)

ζ
Λ(ACD)
1A,c′,d

(g1g2c, c−1g3) ζ
Λ(ABC)
1A,b,c′

(g1, g2c)
=

α(g1, g2c, c
−1g3)

α(g1b, b−1g2cc′, c′−1c−1g3d)

and

ζ
Λ(BCD)
b,cc′,d (g2, g3) ζ

Λ(ABD)
1A,b,d

(g1, g2g3)

ζ
Λ(ACD)
1A,cc′,d

(g1g2, g3) ζ
Λ(ABC)
1A,b,cc′

(g1, g2)
=

α(g1, g2, g3)

α(g1b, b−1g2cc′, c′−1c−1g3d)

yields

l.h.s(A.7) =
1

|B||C||D|
∑
{g}
b,c,d

ζ
Λ(ADE)
1A,d,1E

(g1g2g3, g4) ζ
Λ(ACD)
1A,c,d

(g1g2, g3) ζ
Λ(ABC)
1A,b,c

(g1, g2)

α(g1, g2, g3)α(g1, g2g3, g4)α(g2, g3, g4)

×
∣∣g1

1A−−−→
b

〉
⊗
∣∣g2

b−→
c

〉
⊗
∣∣g3

c−→
d

〉
⊗
∣∣g4

d−−−→
1E

〉
.

The equality between l.h.s(A.7) and r.h.s(A.7) finally follows from the groupoid 3-cocycle condition

d(3)α = 1, hence the pentagon identity.
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APPENDIX B

Canonical basis for boundary excitations in (2+1)d

In this appendix, we collect the proofs of some properties crucial to the definition of the canonical basis

presented in sec. 5.5.

B.1 Proof of the canonical algebra product (5.50)

Using transformations (5.46) and (5.47), as well as the definition of the ?-product, we have

|ρABIJ〉 ? |ρ′ABI ′J ′〉

=
(dρABdρ′AB )

1
2

|A||B|
∑
g,g′∈G

(a,b),(a′,b′)∈A×B

DρABIJ

(∣∣g a−→
b

〉)
Dρ
′
AB

I′J′

(∣∣g′ a′−−→
b′

〉) ∣∣g a−→
b

〉
?
∣∣g′ a′−−→

b′

〉

=
(dρABdρ′AB )

1
2

|A||B|
∑
g,g′∈G

(a,b),(a′,b′)∈A×B

DρABIJ

(∣∣g a−→
b

〉)
Dρ
′
AB

I′J′

(∣∣g′ a′−−→
b′

〉)
δg′,a−1gb ϑ

AB
g (a, a′|b, b′)

∣∣g aa′−−−→
ab′

〉

=
(dρABdρ′AB )

1
2

|A||B|
∑
g,g′∈G

(a,b),(a′,b′)∈A×B

DρABIJ

(∣∣g a−→
b

〉)
Dρ
′
AB

I′J′

(∣∣g′ a′−−→
b′

〉)
δg′,a−1xb ϑg(a, a

′|b, b′)

×
( 1

|A||B|

) 1
2
∑
ρ′′AB

d
1
2

ρ′′AB

∑
I′′,J′′

Dρ
′′
AB

I′′J′′

(∣∣g aa′−−−→
bb′

〉)
|ρ′′ABI ′′J ′′〉 .

But by linearity of the representation matrices, we have

δg′,a−1gb ϑ
AB
g (a, a′|b, b′)Dρ

′′
AB

I′′J′′

(∣∣g aa′−−−→
bb′

〉)
=
∑
K

Dρ
′′
AB

I′′K

(∣∣g a−→
b

〉)
Dρ
′′
AB

KJ′′

(∣∣g′ a′−−→
b′

〉)
. (B.1)

Orthogonality of the representation matrices finally yields the desired expression

|ρABIJ〉 ? |ρ′ABI ′J ′〉 = |A| 12 |B| 12
δρAB ,ρ′AB δJ,I′

d
1
2
ρAB

|ρABIJ ′〉 . (B.2)

B.2 Ground state projector on the annulus

Let us evaluate the quantity

1

|A||B|
∑
g∈G

(a,b)∈A×B

∑
g̃∈G

(ã,b̃)∈A×B

(∣∣g̃ ã−→̃
b

〉−1
?
∣∣g a−→

b

〉
?
∣∣g̃ ã−→̃

b

〉)〈
g

a−→
b

∣∣ , (B.3)

and confirm that it is equal to PO4 as defined in (5.58). By direct computation, we have∣∣g a−→
b

〉
?
∣∣g̃ ã−→̃

b

〉
= δg̃,a−1gb ϑ

AB
g (a, ã|b, b̃)

∣∣g aã−−→
bb̃

〉
(B.4)

and

∣∣g̃ ã−→̃
b

〉−1
?
∣∣g aã−−→

bb̃

〉
= δg̃,g

ϑAB
ã−1gb̃

(ã−1, aã|b̃−1, bb̃)

ϑABg̃ (ã, ã−1|b̃, b̃−1)

∣∣ã−1gb̃
ã−1aã−−−−−→
b̃−1bb̃

〉
(B.5)
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so that

∣∣g̃ ã−→̃
b

〉−1
?
∣∣g a−→

b

〉
?
∣∣g̃ ã−→̃

b

〉
= δg̃,g δg̃,a−1gb

ϑABg (a, ã|bb̃)ϑAB
ã−1gb̃

(ã−1, aã|b̃−1, bb̃)

ϑABg̃ (ã, ã−1|b̃, b̃−1)

∣∣ã−1gb̃
ã−1aã−−−−−→
b̃−1bb̃

〉
.

(B.6)

Using the groupoid cocycle condition d(2)ϑABg (ã, ã−1, aã|b̃, b̃−1, bb̃) and performing the summations

finally yield the desired result.

B.3 Proof of the diagonalisation property (5.69)

Given the action of the Hamiltonian projector (5.67) on Y4, we show that the basis states defined as

|ρABIAB , ρBCIBC , ρACIAC〉Y4

:=
∑

g1,g2∈G
a,a′∈A
b,b′∈B
c,c′∈C

∑
{J}

DρABJABIAB

(∣∣g1
a−→
b

〉)
DρBCJBCIBC

(∣∣g2
b′−−→
c

〉)[ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACIACJAC

(∣∣a′g1g2c′−1 a′−−→
c′

〉)
× |g1, a, b, g2, b

′, c, a′, c′〉Y4

satisfy the relation

PY4
(
|ρABIAB , ρBCIBC , ρACIAC〉Y4

)
= |ρABIAB , ρBCIBC , ρACIAC〉Y4 . (B.7)

By direct computation, we have

PY4
(
|ρABIAB , ρBCIBC , ρACIAC〉Y4

)
=

∑
{g∈G}
a,a′∈A
b,b′∈B
c,c′∈C

∑
{J}

DρABJABIAB

(∣∣g1
a−→
b

〉)
DρBCJBCIBC

(∣∣g2
b′−−→
c

〉)[ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACIACJAC

(∣∣a′g1g2c′−1 a′−−→
c′

〉)
× 1

|A||B||C|
∑
ã∈A
b̃∈B
c̃∈C

ϑACa′g1g2c′−1(a′, ã|c′, c̃)
ϑABg1

(ã, ã−1a|b̃, b̃−1b)ϑBCg2
(b̃, b̃−1b′|c̃, c̃−1c) ζABC

ã,b̃,c̃
(g1, g2)

× |ã−1g1b̃, ã
−1a, b̃−1b, b̃−1g2c̃, b̃

−1b′, c̃−1c, a′ã, c′c̃〉Y4 .

Using the invariance property (5.29) of the Clebsch-Gordan series, we can rewrite the previous quantity

as

PY4
(
|ρABIAB , ρBCIBC , ρACIAC〉Y4

)
=

1

|A||B|2|C|
∑
{g∈G}
ã,a,a′∈A
b̃,b̃′,b,b′∈B
c̃,c,c′∈C

∑
{J}

DρABJABIAB

(∣∣ã−1g1b̃′
ã−1a−−−−→
b̃′−1b

〉)
DρBCJBCIBC

(∣∣b̃′−1g2c̃
b̃′−1b′−−−−→
c̃−1c

〉)
×
[
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACIACJAC

(∣∣a′g1g2c′−1 a′ã−−−→
c′c̃

〉)
×
ϑABg1

(ã, ã−1a|b̃′, b̃′−1b)ϑBCg2
(b̃′, b̃′−1b′|c̃, c̃−1c) ζABC

ã,b̃′,c̃
(g1, g2)

ϑABg1
(ã, ã−1a|b̃, b̃−1b)ϑBCg2

(b̃, b̃−1b′|c̃, c̃−1c) ζABC
ã,b̃,c̃

(g1, g2)

× |ã−1g1b̃, ã
−1a, b̃−1b, b̃−1g2c̃, b̃

−1b′, c̃−1c, a′ã, c′c̃〉Y4 .

Let us now use the fact that

ζABC
ã,b̃′,c̃

(g1, g2)

ζABC
ã,b̃,c̃

(g1, g2)
= ζABC

1A,b̃−1b̃′,1C
(ã−1g1b̃, b̃

−1g2c̃)ϑ
AB
g1

(ã,1A|b̃, b̃−1b̃′)ϑBCg2
(b̃, b̃−1b̃′|c̃,1C)
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as well as the groupoid cocycle conditions

d(2)ϑABg1
(ã,1A, ã

−1a|b̃, b̃−1b̃′, b̃′−1b) = 1 and d(2)ϑBCg2
(b̃, b̃−1b̃′, b̃′−1b|c̃,1C , c̃−1c)

in order to rewrite

ϑABg1
(ã, ã−1a|b̃′, b̃′−1b)ϑBCg2

(b̃′, b̃′−1b′|c̃, c̃−1c) ζABC
ã,b̃′,c̃

(g1, g2)

ϑABg1
(ã, ã−1a|b̃, b̃−1b)ϑBCg2

(b̃, b̃−1b′|c̃, c̃−1c) ζABC
ã,b̃,c̃

(g1, g2)

= ϑAB
ã−1g1b̃

(1A, ã
−1a|b̃−1b̃′, b̃′−1b)ϑBC

b̃−1g2c̃
(b̃−1b̃′, b̃′−1b′|1C , c̃−1c) ζABC

1A,b̃−1b̃′,1C
(ã−1g1b̃, b̃

−1g2c̃) .

Performing a simple relabelling of summation variables, we then obtain

PY4
(
|ρABIAB , ρBCIBC , ρACIAC〉Y4

)
=

1

|A||B|2|C|
∑
{g∈G}
ã,a,a′∈A
b̃,b̃′,b,b′∈B
c̃,c,c′∈C

∑
{J}

DρABJABIAB

(∣∣g1b̃−1b̃′
a−−−−→

b̃′−1b

〉)
DρBCJBCIBC

(∣∣b̃′−1b̃g2
b̃′−1b′−−−−→
c

〉)
×
[
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACIACJAC

(∣∣g3
a′−−→
c′

〉)
× ϑABg1

(1A, a|b̃−1b̃′, b̃′−1b)ϑBCg2
(b̃−1b̃′, b̃′−1b′|1C , c) ζABC

1A,b̃−1b̃′,1C
(g1, g2)

× |g1, a, b̃
−1b, g2, b̃

−1b′, c, a′, c′〉Y4 .

Moreover, let us notice that (5.29) induces

1

|B|
∑
b̃′

∑
{J}

DρABJABIAB

(∣∣g1b̃−1b̃′
a−−−−→

b̃′−1b

〉)
DρBCJBCIBC

(∣∣b̃′−1b̃g2
b̃′−1b′−−−−→
c

〉)
×
[
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACIACJAC

(∣∣a′g1g2c′−1 a′−−→
c′

〉)
× ϑABg1

(1A, a|b̃−1b̃′, b̃′−1b)ϑBCg2
(b̃−1b̃′, b̃′−1b′|1C , c) ζABC

1A,b̃−1b̃′,1C
(g1, g2)

=
∑
{J}

DρABJABIAB

(∣∣g1
a−−−−→

b̃−1b

〉)
DρBCJBCIBC

(∣∣g2
b̃−1b′−−−−→
c

〉)[ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACIACJAC

(∣∣a′g1g2c′−1 a′−−→
c′

〉)
.

A final relabelling of summation variables yields the desired result.
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