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In four-dimensional symplectic maps complex instability of periodic orbits is possible, which
cannot occur in the two-dimensional case. We investigate the transition from stable to complex

unstable dynamics of a fixed point under parameter variation.

The change in the geometry of

regular structures is visualized using 3D phase-space slices and in frequency space using the example
of two coupled standard maps. The chaotic dynamics is studied using escape time plots and by
computations of the 2D invariant manifolds associated with the complex unstable fixed point. Based
on a normal-form description, we investigate the underlying transport mechanism by visualizing the
escape paths and the long-time confinement in the surrounding of the complex unstable fixed point.
We find that the escape is governed by the transport along the unstable manifold across invariant

planes of the normal-form.

I. INTRODUCTION

There are different ways in which orbits of a dynamical
system may become unstable under variation of some pa-
rameter. One famous example is the Hamiltonian-Hopf
bifurcation as has first been studied for the triangular
equilibrium points of the planar circular restricted three-
body problem [1I 2], for which instability occurs beyond
a critical mass ratio [3]. This is also found for many
other examples in celestial and galactic dynamics [4HI2]
for the hydrogen atom [I3HI5], in the context of molecu-
lar dynamics [16], [I7], and is also of relevance to particle
accelerators [I8]. The impact of the Hamiltonian-Hopf
bifurcation on the phase space geometry has been stud-
ied in much detail in Refs. [T9H2T]. Additional insight
is provided by computations of invariant manifolds and
normal-form descriptions [22H25]. For further results see
e.g. Refs. [26H29]. The impact in quantum mechanical
systems has been investigated in Ref. [30].

Often its is helpful to reduce the time-continuous
dynamics to a discrete-time mapping by means of a
Poincaré section. For conservative Hamiltonian systems
with three degrees of freedom this leads to the study of
four-dimensional (4D) symplectic maps, which are there-
fore of importance of many areas of physics. Similar to
the Hamiltonian case, a transition from stable to com-
plex unstable dynamics is possible for 4D (and higher-
dimensional) symplectic maps [31, [32]. This has been
investigated in detail in the pioneering work [33] 34] for
a variant of the 4D coupled standard map [35]. In such a
transition to complex unstable dynamics two eigenvalue
pairs of the linearized dynamics collide on the unit circle
and afterwards form a so-called Krein quartet. This may
only happen, if the Krein signature is mixed [31]. A dis-
tinctive feature is the spiraling motion in the surround-
ing of a complex unstable periodic point [6, 30]. More-
over, it was found that commonly an extended region
around a complex unstable fixed point emerges to which
the dynamics is confined for rather long times [IT], 36
38]. Important approaches to understand the complex

unstable dynamics are based on computations of the in-
variant manifolds [306], B8, 39] and normal form descrip-
tions [I5, 40}, [41]. Hamiltonian-Hopf bifurcations have
also been studied in much detail for reversible maps, see
e.g. Refs. [42, [43].

In this paper, we investigate how the transition from
stability to complex instability of a fixed point affects
the geometry of invariant objects in its surrounding in
the phase space of a 4D symplectic map. This transition
is accompanied by the possibility that orbits can escape
from the vicinity of the fixed point which is quantified by
the average escape times of an ensemble of orbits. The
underlying escape mechanism is investigated in terms of
the geometry of the stable and unstable manifolds. We
provide evidence that the escape occurs across the invari-
ant planes of the normal-form description showing that
it is a genuinely higher-dimensional mechanism.

The text is organized as follows. In Sec. [[ we recall
some fundamental properties of linear stability of fixed
points and the requirements for complex instability in 4D
symplectic maps. Section[[TC|summarizes a normal-form
description for the transition to complex instability as in-
troduced in Ref. [40]. In Sec. [[II] we introduce a variant
of the four-dimensional coupled standard map and define
a set of parameters for investigating the transition from
elliptic-elliptic stability to complex instability. We visu-
alize the dynamics in the 4D phase space using 3D phase-
space slices [44] which is complemented by a frequency
space representation [45H47]. The escape dynamics is in-
vestigated in Sec. [[V]for an ensemble of initial conditions
close to the complex unstable fixed point. To explain
the underlying mechanism we compute the stable and
unstable manifolds associated with the complex unsta-
ble fixed point by utilizing the parametrization method
[48-50]. The dynamics of the ensemble suggests that the
escape occurs across invariant planes of the correspond-
ing normal-form description. Section [V]gives a summary
and outlook.



II. COMPLEX UNSTABLE DYNAMICS
A. Linear stability in 4D maps

In this section we collect some important results on the
stability of fixed points in 4D symplectic maps [31], the
Krein collision [31} [51H53] and its normal-form descrip-
tion [40, 54, 55]. A map M : R* — R* is called symplec-
tic if its Jacobian matrix DM fulfills DM7JDM = J,

0 —I
I 0
being the 2 x 2 identity matrix. An immediate conse-
quence is that a symplectic map is volume preserving as
det(DM) = 1. The dynamics in the vicinity of a fixed
point, i.e., a point z* that satisfies Mz* = z*, is given by
the linearized map DM. The symplecticity of M implies
that the characteristic polynomial P(\) of DM is reflex-
ive so that coefficients of P come in palindromic form.
For a 4D symplectic map this can be written as

where J = is the 4 x 4 Poisson matrix with [

P(\) =\ — AN 4+ BA\? — AN+ 1, (1)

where A = tr (DM) and 2 B = A% —tr (DM?). As conse-
quence, the eigenvalues A\; with j € {1,2} are restricted
to either hyperbolic pairs )\j,)\j_l € R, elliptic pairs of
Aj, Aj € C with [A;| = 1 or a Krein quadruplet of com-
plex eigenvalues A, \™1, A\, \™1 € C with |\ # 1.

This gives a total of four possible stability types,
namely elliptic-elliptic (EE), elliptic-hyperbolic (EH),
hyperbolic-hyperbolic (HH) and complex instability
(CU). These stability types can be distinguished by in-
troducing the stability index of an eigenvalue pair p =
A; + )\;1 and reducing the characteristic polynomial in

Eq. to
R(p)=PMN)A?=p*—-Ap+B-2. (2)

As shown in Ref. [31], different regimes of stability follow
from Eq. in dependence on A and B. The linearized
map DM is spectrally stable if and only if all roots of
R(p) are real and within the interval [—2,2]. Therefore
R(+2) = 0 yields two stability boundaries, namely

B=+424-2. (3)

Crossing either of these boundaries corresponds to a
saddle-center (SC) or a period-doubling (PD) bifurca-
tion, respectively. Another boundary corresponds to the
roots of R(p) becoming complex, which occurs when
the discriminant of the reduced characteristic polynomial
A R(p) = (p1 — p2)? = 0. This gives the so-called Krein
parabola (KP)

B=A*/4+2. (4)

The possible stability types for an arbitrary fixed point
of a 4D map in dependence of A and B can be dis-
played in the so-called Broucke diagram [T}, [31], see Fig.
The three stability boundaries SC, PD, and KP lead to
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FIG. 1. Stability of a fixed point in dependence on the coef-
ficients A and B of the characteristic polynomial of the
linearized map DM. The regions correspond to combina-
tions of elliptic (E), hyperbolic (H), and inverse hyperbolic
(I), or complex unstable (CU). The regions are seperated by
the period-doubling line (PD), saddle-center line (SC), and
the Krein parabola (KP).

seven stability regions corresponding to complex insta-
bility (CU) and the different combinations of the elliptic
(E), the hyperbolic (H) case, and the inverse hyperbolic
(I) case, for which the eigenvalue pair lies on the negative
real axis. The corresponding arrangement of the eigen-
values of the linearized map are shown as small insets.

For an EE fixed point the surrounding consists of a
two-parameter (Cantor) family of 2D tori as expected
from Kolmogorov-Arnold-Moser (KAM) theory. The 2D
tori are organized around one-parameter (Cantor) fami-
lies of elliptic 1D tori. These families are commonly re-
ferred to as Lyapunov families, based on the analogy to
the Lyapunov center theorem for Hamiltonian flows [56].
Such families of 1D tori have been studied in detail, see
e.g. Refs. [30, 67H62]. As the families of elliptic 1D tori
form the ‘skeleton’ of the surrounding regular dynamics,
they allow for a convenient way to understand the change
in geometry occurring when an EE fixed point becomes
CU, as will be illustrated below in Sec. [ITB]

B. Krein collision

As seen from Broucke’s diagram in Fig. |1} there are
only three possible ways to enter the CU regime, namely
the transition from a) the elliptic-elliptic (EE), or b)
the hyperbolic-hyperbolic (HH or II) stability regions
through the Krein parabola, or ¢) through the intersec-



tion points of the Krein parabola with either the saddle-
center or the period-doubling boundary at (A,B) =
(£4,6). The most interesting case is the transition of an
elliptic-elliptic fixed point, i.e. case a), as illustrated in
Fig. |2| in dependence on some parameter «, which con-
trols the transition. For a > 0, two elliptic eigenvalue
pairs approach each other on the complex unit circle un-
til they coalesce at @« = 0. For a < 0, the eigenvalues
split off the unit circle and form a Krein quadruplet.

Whether the eigenvalue pairs of an EE fixed point for a
given map can leave the unit circle or pass through each
other while staying on the unit circle depends on the so-
called Krein signature. This is given by the signature
(m4,m_) of the quadratic form

q(z) =2T JDMz, (5)

which can for example be computed numerically
from the eigenvalues of the symmetric matrix
1 (JDM + (JDM)T), where m, is the number of
positive and m_ is the number of negative eigenvalues.
If miy = 0 or m_ = 0 then the fixed point cannot
loose stability and stays elliptic-elliptic. =~ Conversely,
the fixed point may loose its stability and become
complex unstable if the signature is mixed. Note that
the quadratic form Eq. allows the construction of an
invariant of the linearized dynamics as

q(z) =2T JDMz = (DMz)T JDM (DMz)  (6)

is preserved under DM [33].

The geometric interpretation of the Krein signature
becomes more clear when considering the signature of a
multiplier A on the unit circle,

o(A) = sgnq(u), (7)

where u is any real vector in the eigenspace of A. If
eigenvalues with the same signature collide on the unit
circle, they cannot split off to form a Krein quartet. Ex-
plicitly, consider a 4D symplectic map which is uncou-
pled, i.e. M(p1,p2,q1,92) = (P}, P5, 41, 45) With (p}, 1) =
Mi(p1,q1) and (ph,q5) = Ma(p2,q2). Then using the
quadratic form and (1,0,0,0) and (0,1,0,0) as vec-
tors of the corresponding eigenspaces the signatures are
given by o(A;) = sgn((DM;)12). Therefore the fixed
point can only become complex unstable under some
generic coupling if [63], 64]

sgn((DMi)12) sgn((DM2)12) < 0. (8)

This reflects the counter-rotating nature of the dynamics
in the two independent subspaces, similar to the Cherry-
Hamiltonian describing two counter-rotating harmonic
oscillators [65].

Furthermore, a mixed Krein signature implies that
the linearized map of the coalesced eigenvalues has non-
trivial Jordan blocks of the shape my x m,4 and m_x m_
while the matrix can be diagonalized if the signature

(a) Im A (b) Im A (¢) Im A
\I-/’Re)\ \L}ReA ®Re A

FIG. 2. Krein collision of two elliptic eigenvalue pairs (red and
blue circles) in dependence of «. The eigenvalues coalesce for
a = 0 and split off the complex unit circle for a« < 0 forming
a Krein quadruplet (black circles). For non-zero angle ¢ the
location of the Krein collision is move along the unit circle.

is positive or negative definite. Thus, the linearization
takes either the form [33]
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where A = €' and 0 €]0,7[. Beside this, in case b) the
signature is always mixed. Thus for an II or HH fixed
point there is no constraint to enter the CU region.

C. Normal form description

To understand the geometry of regular and invariant
structures around a CU fixed point, it is helpful to con-
sider a non-linear normal-form description [40], of which
we now summarize the main aspects. Consider a sym-
plectic map M,

' = M(z,a,p), (10)

with «, 2’ € R* and parameters a,¢ € R. The fixed
point is assumed to be at the origin * = 0 such that
M(0;a,p) = 0 for arbitrary « and ¢. Furthermore,
the eigenvalues of the linearized map DM(0;0,0) are as-
sumed to coalesce ot A = exp (£if) with § = 27v and
irrational v €]0,1/2[. Note that the case of the ratio-
nal Krein collision is for example considered in Ref. [55].
The collision is controlled by the parameters a and ¢ as
shown in Fig. [2l The parameter « controls the transition
from the elliptic-elliptic eigenvalue pair for o > 0 to the
complex unstable quadruplet for o < 0. The angle ¢ ro-
tates the angle of the Krein collision on the complex unit
circle.

In case of the irrational Krein collision with @ = 0 and
@ = 0, the linearized map has non-trivial Jordan blocks
and can be brought into a Williamson normal-form L
by a symplectic transformation T’

TIDMT = L0(0;070) — (1“30 6}?:) (11)



where € = +1 and

cosf sinf
Ry = (— sinf cos 0) ’ (12)

For a # 0 and ¢ # 0, the Williamson normal-form has a
transversal two-parameter unfolding, i.e., there is a two-
parameter family of matrices that preserve the symplec-
tic form and describes the transition from stability to
complex instability via the Krein collision given by [55]

o _ (1 - 60{)R9+§0 €R9+¢
L=1Lo(0,a,¢p) = ( —aRosy | Rors (13)

With that, the transformed map M in the new coordi-
nates y can be represented as a formal power series

Y =My, 0)

where ®;(y, «, ) are vector-valued polynomials of degree

j. In Refs. [40, 54, 5] it is shown that Eq. (I4) can
be normalized by utlhzmg a symplectic diffeomorphism

W;(y) such that ¥ o Mo V¥; is in normal-form with
respect to L up to order j for arbitrary j € N.
As a result, one gets the non-linear normal-form [40]

()= [" e e ) 0w

with (z,y) =

~ L+ Oy, a,0) + ... (14)

(21, 72,91,y2) € R*. The parameters

h=a+bX +bo +...

are derivatives of a deduced Hamiltonian generating func-
tion with respect to the coordinates X = 2% + z3 and
I = y1x9 — x1Y2, respectively. For our purposes we trun-
cate the series of the generating function after quadratic
order and obtain 7 = ¢ and h = a+bX where h is scaled
with respect to X such that b= +1.

The normal-form Eq. is guaranteed to be equiv-
ariant to a symmetry operation [54, Thm. 2.7], i.e. the
normal-form commutes with the action of a symme-
try group. A straightforward computation reveals that
Eq. is Sl-equivariant where the symmetry transfor-
matlon acts as rotation on all coordinates (R, x Rwy) for

€ [0,2x]. The corresponding invariant of Eq. (15]) is
I(az’,y’) = I(x,y) = y122 — x1y2. Consequently, the 4D
nonlinear normal form map can be reduced further by
introducing new coordinates.

Hence, we take advantage of the symmetry and visu-
alize the dynamics of Eq. in the hyperplane x5 = 0,
see Fig. Note that the full dynamics can be re-
obtained by applying the symmetry operation, i.e. by
simultaneous rotation in the x and y coordinates, see
Ref. [0, Eq. (3.1)]. For the sake of clarity, we stick
to the half-space with z1 > 0 since the other half can
be obtained by the transformation (z1,y1) — (—21,y1)-
Furthermore, without loss of generality we fix the pa-
rameters ¢ = 1 and b = 1. Firstly, we consider the case

FIG. 3. The reduced Poisson map from Eq. in (z1,y1,y2)
coordinates. The sphere in the origin denotes the trivial fixed
point while the gray and the blue planes visualize the I =
—0.015 and the I = 0 plane, respectively. The shown orbits
correspond to the same plane as their color indicates. The
non-trivial periodic points of the reduced map are depicted
as orange and yellow dots for the EE case (a) for a > 0 and
as magenta dots for the CU case (b) for a < 0.

I =0,ie. 0 =1 = —x1y2. Without loss of general-
ity, we choose y, = 0 and Eq. reduces to a 2D map
f(@1,91) = (2, 91)

zy = (971 + v
yy = (hay —y1) sign(gzy + 1)

with ¢ = 1 — eh. This map has two periodic points,
namely a trivial fixed point at (0,0) which is the original
fixed point of M and for a < 0 a non-trivial period-two
periodic point at (y/—a/b,0). A stability investigation
reveals that the trivial fixed point becomes unstable for
negative a as expected. In contrast, the non-trivial peri-
odic point only exists when a < 0 and is always stable.



This particular situation in the I = 0 plane corresponds
to the typical behavior of a period-doubling bifurcation
in a 2D symplectic map, for which a periodic point looses
its stability and a stable periodic point of the twice the
period is created, see e.g. [66HGI].

For the second case I # 0, the coordinate ys is given by
the invariant I. Thus, Eq. reduces to a 2D map with
all structures living on a hypercolic cylinder yo = —1 /1
in the reduced phase space. The map takes the form

.Z‘/l = \/(gml + y1)2 + IQ/acf (17&)
-h 1%/,2
y, = (g1 +v1) (1 : hry) + 17/ ' (17b)

Ty
In this case, there is only one non-trivial period-two
point, which is given by an implicit equation that we
solve numerically.

Figure a) shows the reduced phase space in
(z1,41,y2) coordinates for o > 0, i.e., the stable case.
The red sphere represents the trivial fixed point which is
elliptic-elliptic in this case. The blue and the gray planes
as well as the orbits in the same color correspond to I =0
and I = —0.015, respectively. As long as « is positive,
there exits only one fixed point in the I = 0 plane. For
I > 0and I <0 we get a continuous family of non-trivial
periodic points, shown as red and yellow curves, respec-
tively, which are both attached to the trivial fixed point
at the origin.

Figure b) shows the reduced phase space for a < 0.
The trivial fixed point (gray sphere) has become unstable
and the family of non-trivial periodic points of the I # 0
plane are detached from the origin similar to a period-
doubling bifurcation in a 2D map. In this way, this family
with its surrounding stable 1D tori forms a foliated tube-
like object in phase space.

ITII. TRANSITION TO COMPLEX INSTABILITY
A. 4D map with CU fixed point

The usual 4D standard map [70, [71], which has been
investigated in much detail, see e.g. Refs. [37, 44 [72-
74), does not allow for CU fixed points. A modified 4D
standard map has been introduced in Ref. [33], which
is inspired by the Cherry-Hamiltonian describing two
counter-rotating harmonic oscillators [65]. As exemplary
system to study the transition from EE to CU stability
we use a variant of such two coupled counter-rotating
2D standard maps given by the map M (p1,p2,q1,q2) —
(P}, P, 15 G5) as

K K
Pl =pi+ 5o sin2r(q)) + ——sin27(q] +¢4)  (18)
2 2

K, . K
Py =p2+ 5. sin 2m(qy) + 5 sin 27(qy +¢q5)  (18b)

(18c¢)
(18d)

@ =q+n
qé =42 — p2,

where K; and K> are the kicking strengths of the two
2D subsystems and K determines the coupling between
them. The phase space is restricted on the torus, i.e.
(p1,p2,q1,q2) € [—0.5,0.5[2x[0, 1[> with periodic bound-
ary conditions. Note that the counter-rotating charac-
ter of the two uncoupled 2D subsystems in (p1,q1) and
(p2, g2) is due in the negative sign of the second momen-
tum po in Eq. which ensures that condition is
fulfilled. This sign is the only difference to the usual 4D
standard map, as introduced in Refs. [70, [71]. This map
has also been investigated in Ref. [75], though with the
negative sign in Eq. instead of Eq. .

We will focus on the central fixed point at z* =
(0,0,1/2,1/2) in the following. Its stability coefficients

are
A:—K1+K2+4, (19&)
B=-K Ky + K K —2K; + KoK +2K5 + 6. (19b)

Figure [] shows the stability diagram for fixed coupling
K = 0.1 in dependence on K7 and K. The fixed point is
complex unstable in the region between the two straight
lines

K2 = —K1 and K2 =4K — Kl. (20)

The saddle-center and the period-doubling boundaries,
Eq. , lead to the hyperbolae

KK,
K- K,

~KK, +4K, — 16
K—K, +4

and (21)
In order to investigate the transition from EE to CU
stability, we choose the EE region with positive kicking
parameters and fix Ko = 0.1 while K7 is varied. The
six equidistant parameters K; = 0.31,0.305,...,0.285,
are indicated as black points, labeled by (A) to (F)
with (C) lying directly on Krein’s boundary, Eq. , for
(K, K, K5) = (0.1,0.3,0.1).

Once the fixed point has become complex unsta-
ble, we get a quadruplet of four complex eigenvalues
MATLXATY) of DM where A = exp (8 +i6) with
B € Ry and 0 € [0, 7], see Sec. The corresponding
eigenvectors (£1,&2,&1,&2) can be written as §; = u; +1v,
with u;,v; € R* and j = 1,2. The stable and unstable
invariant subspaces of the linearized map are spanned by
u1,v1 and ug, vg, respectively.

From this one key feature of the dynamics in the sur-
rounding of a CU fixed point follows: Under the lin-
earized dynamics these eigenvectors evolve as {7 = A7¢;
and consequently provides the evolution in the stable and
unstable subspaces by [21]

ul™ = exp (£fn) (cos (nB)u; —sin (nB)v;)  (22a)

ol™ = exp (£8n) (sin (nf)u; + cos (nf)v;),  (22b)

J
where the positive sign corresponds to j = 1 and the
negative to 7 = 2. Any point z in the 4D phase space
can be expressed in the basis of the eigenvectors, i.e. z =
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FIG. 4. Stability of the fixed point (0,0,1/2,1/2) for fixed
K = 0.1 in dependence of K; and K2. The magnification
shows the selected parameters for the transition from EE to
CU, (A) K1 =0.31, (B) K1 =0.305, ..., and (F) K; = 0.285.

C1u1 +cov1 +c3us +cqvo with coefficients ¢y, o, c3,c4 € R.
These coefficients can be determined with the help of the
basis of the dual space of the matrix of eigenvectors [44].
Using the time evolution of the eigenvectors Eq. al-
lows for obtaining the linearized dynamics of an orbit
for a given initial condition. Apparently, the underlying
dynamics is governed by an expanding/contracting part
and a rotating part which leads to a spiraling motion as
illustrated in Fig.[5] If ¢; or ¢y are different from zero, the
expanding dynamics will asymptotically dominate. Note
that this provides a good description for some limited
number of iterations of the map M only, beyond which
the nonlinear dynamics becomes relevant, as can be seen
by the deviations between the real orbit depicted as col-
ored spheres and the linerized dynamics shown as black
curve in Fig. [f]
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FIG. 5. Spiraling motion of an orbit started close to the
CU fixed point. Shown are the (pi1,qi,q2) coordinates with
p2 encoded in color of the first 170 iterates of the point
(0,0,0.5,0.5) + p for g = 1078, The initial spiraling motion
is well described using the linearized dynamics, Eq. , as
shown by the black curve. From the 160th iterate deviations
become visible in the plot.

B. 3D phase-space slice

To get an intuition for the dynamics of the transition
from EE to CU stability of the fixed point in phase space,
we use a 3D phase-space slice [44]. The idea is to reduce
the 4D phase space by one dimension by considering a 3D
hyperplane I' and determining those points of an orbit
that fulfill the slice condition

Lo = {(p1,p2, a1, ) | [p2| < €} (23)

For the resulting points the coordinates (p1,q1,g2) are
displayed in a 3D plot. The parameter ¢, i.e., the thick-
ness of the slice, controls the resolution. Smaller values
of € require longer orbits to obtain the same number of
points in the slice as the slice condition is fulfilled
less often. For all 3D phase-space slice plots in this paper
we choose € = 1076, Typically f-dimensional objects in
the full 4D phase space appear as (f —1)-dimensional ob-
jects in the 3D phase-space slice. For example 2D tori lead
to two (or more) separate (but dynamically connected)
rings in the 3D phase-space slice and 1D tori lead to two
(or more) points in the slice. For further examples, also
including more general slice conditions, and detailed dis-
cussions see Refs. [44] [61] [62] [7T5HTS].

Figure[6]shows a sequence of 3D phase-space slice plots
of regular orbits in the vicinity of the central fixed point
for the parameter sets (A), (C), and (F), see Fig. [4] In
Fig. [f[a) for parameter set (A), i.e. K3 = 0.31, one is
in the stable regime and quite far away from the Krein
collision. The EE fixed point (red sphere) is surrounded
by regular 2D tori shown as grey curves, which form pairs
closed loops on either side of the fixed point. The gen-
eral arrangement of the 2D tori is governed by the two
(Lyapunov) families of 1D-tori which are attached to the
EE fixed point and shown in yellow and orange, respec-
tively. Due to the symmetries of the map, both families
lie in the ¢1—¢g2 plane. Thus they can be displayed in 2D
diagrams to clarify the change of the families under pa-
rameter variation, see Figs. [6(d)-(f). Note that the small
gap in the yellow family in Fig. [f]a) is caused by a reso-
nance, see Sec. [[ITC] Both families of elliptic 1D-tori are
surrounded by regular 2-tori which form pairs of rings
in the 3D phase-space representation, depicted in gray
color. Interestingly, the regular 2-tori in the direct vicin-
ity of the fixed point show a strong bending close to the
fixed point. This geometry is similar to the phase space
of the normal-form for a > 0 in Fig. a) where the hy-
perbolic shape of the I # 0 plane forces the tori to bend
away from the y;—yo plane. Furthermore, the families of
1D tori correspond to the family of period-two periodic
points in the normal-form.

Figure [6[b) shows the situation for point (C) in pa-
rameter space with Ky = 0.3. For this parameter the two
eigenvalue pairs of the linearized map at the fixed point
coalesce at two places on the complex unit circle, see
Fig. b). When approaching the Krein collision param-
eter, the angle between the eigenvectors of the linearized
map decreases until the eigenvectors of the eigenvalue
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Sequence of 3D phase-space slice plots of regular tori represented as grey rings in the vicinity of the fixed point

shown as red spheres for elliptic-elliptic stability and as a grey sphere for complex instability. The families of 1D tori (red,
yellow, magenta) form the skeleton of the surrounding 2D tori. The chosen parameters are (a) K; = 0.31, (b) K1 = 0.3,
(¢) K1 = 0.285 and correspond to points (A), (C) and (F) in parameter space, see Fig. The right column (d), (e), (f)
depicts the families of 1D tori, which lie in the gi—¢2 plane due to the symmetry of the map. For a rotating view see

http://www.comp-phys.tu-dresden.de/supp/.

pairs become collinear. Accordingly, the families of 1D
tori are approximately parallel in the vicinity of the fixed
point as can be seen in Fig. @(b)

Finally, Fig. @(c) shows the situation after the Krein
collision, i.e. for K3 = 0.285, which corresponds to pa-
rameter (F) in Fig. 4l Once the fixed point has become
complex unstable, the two families of 1D tori detach from
the fixed point and merge into one single family. This
corresponds to the normal-form behavior for a < 0, see
Fig. b). The regular tori close to the family of 1D tori
persist. Interestingly, orbits in the vicinity of the CU
fixed point stay in its surrounding for very long times
and only eventually escape. This will be discussed in
more detail in Sec. [Vl

To quantify the detachment of the regular 2D tori from
the CU fixed point, we compute the minimal distance

diori between the complex unstable fixed point and the
family of 1D tori. In the normal-form description of
Sec.[[TC]the minimal distance is given by the distance be-
tween the trivial fixed point at the origin and the period-
two periodic point, namely by diori = v/—a/b. For the
4D map this translates in first approximation to

dtori X/ Kik - Kl (24)

with K1 < K} = 0.3. Figure |7| shows the numerically
determined minimal distance dq,; in dependence on the
kicking strength K3 as black dots. Good agreement with
the square root behavior , shown as a dashed line, is
found. Further away from the Krein collision parameter
small deviations become visible.
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FIG. 7. Minimal distance diori between the central fixed point
and the family of 1D tori in dependence on K;. The distance
follows the predicted behavior « /Kj — K1, shown as red
dashed line for K; < K{ = 0.3.

C. Frequency space

Complementary to the representation in phase space
one can display regular tori in frequency space, which
is particularly useful for understanding the influence
of resonances. A regular torus is characterized by
two frequencies, one describing the motion along the
major radius of the 2-torus and one for the motion
along the minor radius. Numerically the frequencies
v1,v9 € [0,1] for an orbit started in a phase-space point
(p1(0),p2(0), ¢1(0), ¢2(0)) are determined using a Fourier-
transform based frequency analysis [45], [46] [79], B0]. As
signals z;(n) = ¢;(n) —ip;(n) for each degree of freedom
j =1,2 is used, where (g;(n),p;(n)) are the coordinates
obtained from N successive iterates of the map. In order
to distinguish regular and chaotic motion, the frequen-
cies v; of the first half of an orbit, i.e., iterates in the
interval n € [0, N/2 — 1], are computed and compared
to the frequencies v; of the second half, i.e., the iter-
ates in the interval n € [N/2,N]. For the motion on
a regular torus, the difference of these frequency pairs
should be rather small. Thus if the maximal difference
max{|v; — 7|} is smaller than some threshold dcys, we
consider the orbit as regular. In the following ey, = 1078
is used. Of course, such a numerical criterion does not
guarantee that the orbit eventually could become chaotic
at very large times, as is also the case with other chaos
indicators, see Ref. [81] for a recent overview. Using an
ensemble of 107 initial conditions, randomly chosen in the
4D phase-space volume defined by p1,ps € [—0.1,0.1] and
q1, g2 € [0.4,0.6], and plotting the frequencies (v, v3) of
the regular tori provides the two-dimensional frequency
space representation.

Figure[§|shows a sequence of such frequency space plots
for all six parameter sets specified in Fig. ] The fre-
quencies of the EE fixed point is indicated by a large red
point in Fig. [§a)-(c). For the complex unstable fixed

point there is only one frequency given by the angle of the
complex eigenvalues, which is shown on the —1: 1 : 0 res-
onance line as large grey point in Fig. [§[(d)-(f). Although
hardly noticable, the angle gets smaller with decreasing
K. As for the 3D phase-space slice shown in Fig. [6] the
orange, yellow and magenta points mark the frequencies
of the families of 1D tori, which form the edges of the
gray regions of regular tori.

Resonances correspond to straight lines in frequency
space,

nivy + nals = m, (25)

with m,ny,ny € Z and ged(m,ny,m2) = 1 and either
ny # 0 or ng # 0. Some relevant resonance lines are
shown as blue dashed lines, labeled by n; : no : m. Such
resonances lead to resonance channels [46] and gaps in
the families of 1D tori [61].

The typical frequency space around an EE fixed point
is seen in Fig. [§(a)-(b) for K; = 0.31 and K; = 0.305
which corresponds to parameters (A) and (B) in Fig.
respectively. Both families of 1D tori are attached to
the fixed point forming a cusp and the regular tori fill
a region in between these families. As the eigenvalues
approach the Krein collision parameter in Fig. (b)7 the
fixed point has to approach the —1 : 1 : 0 resonance line
since the eigenvalues of the linearized map eventually co-
alesce on the pair e*?™ with v = v; = 1. This shift of
the frequencies of the fixed point stretches the families of
1D tori and the top of the cusp accordingly. During this
process, the density of regular tori close to the —1:1:0
resonance line decreases. This becomes especially appar-
ent in case of the Krein collision parameter in Fig. c)7
i.e. for parameter (C) in Fig. || for K7 = 0.3. This corre-
sponds to the tangency of the families of 1D tori so that
only few regular tori exist in the surrounding of the fixed
point.

Figure [§|(d)-(f) show the frequency space plots for the
complex unstable case for K; = 0.295, K; = 0.29, and
K, = 0.285, corresponding to the points (D), (E) and (F)
in Fig.[4l The two former families of 1D tori merge in the
Krein collision parameter and subsequently detach from
the —1 : 1 : 0 resonance line once the fixed point looses its
stability. We observe two branches of the merged family
which bend away from the fixed point and simultane-
ously from the resonance line. Note, that these branches
are actually connected which can be seen by applying
the unimodular transformation (v1,vs) — (v2,2vs — 17)
to the upper branch resulting in the magenta dotted line.
The transformed branch connects seamlessly to the other
branch yielding a complete arc beginning and ending at
ve == 0. This illustrates that both branches actually be-
long to just one family of 1D tori after the fixed point
has turned CU. In general, such linear transformations
with determinant +1 can always be applied for systems
of periodic functions [82, Theorem 5 and 6].

Shortly after the transition of the fixed point to com-
plex instability, there are no regular tori in its vicinity or
the —1 : 1 : 0 resonance line in frequency space. How-
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(A)—(F) in Fig. 4] Light gray dots correspond to regular orbits while the orange, yellow, and magenta dots correspond to the
families of 1D tori. The frequency of the elliptic-elliptic (red) and complex unstable (gray) fixed point are depicted as enlarged
dot. The dotted magenta curve in (d)-(f) is the unimodular transformation of the upper branch of 1D tori. Some relevant

resonance lines are shown as dashed lines.

ever, the regular tori between the branches of the former
cusp still exist directly after the transition as is visible
in Fig. d). Only when the fixed point becomes more
unstable, the distance of the branches increases and the
density of regular tori between them decreases until a gap
emerges, see Fig. [§f). The remaining regular orbits in
Fig. f) are close to the family of 1D tori. This confirms
the observations in the 3D phase-space slice in Fig. @(c),
where regular tori are only found in the surrounding of
the family of 1D tori and no regular structures are left in
the direct vicinity of the fixed point.

Note that the arc like structure in the range of 0.06 <
1 < 0.075 below the discussed region of regular tori, see
Fig. a)-(d), belongs to regular orbits in the surrounding
of a periodic orbit close to the central fixed point. Al-
though these orbits are not in the focus of this study they
illustrate how the complex instability of the fixed point
gradually destroys all stable structures in its vicinity.

IV. ESCAPE FROM THE CU REGION

When the EE fixed point becomes CU, this immedi-
ately affects its direct surrounding as the two elliptic
families of 1D tori become detached from the fixed point.
Thus there are also no regular tori in its direct vicinity.
Instead one has a 2D stable and a 2D unstable manifold
which lead to chaotic dynamics. However, in practice
close to the Krein collision parameter, initial conditions
in the vicinity of the fixed point lead to orbits staying for
very long times in a confined phase-space volume. In this
section, we investigate this behavior and the underlying
escape paths in more detail.

A. Escape times

To study the escape of orbits from the surrounding
of the CU fixed point, we use escape time plots as in
Refs. [75] B3], B4], see Fig. [0} Using a grid of initial con-
ditions on a particular plane in the 4D phase space for
each initial point the escape time nes., required to reach
some specific exit region, is determined. Since we are in-
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FIG. 9. Escape time plots in the ¢1—g2 plane for p1 = 0 and p2 = 0 for (a) K1 = 0.305, (b) K1 = 0.29, (¢) K1 = 0.285, and
(d) K = 0.27. The escape time is encoded in color, where white corresponds to those points which have not escaped within
Nmax = 107 iterations. The fixed point is shown as red (elliptic-elliptic) or gray dot (complex unstable) and the families of 1D

tori are shown as black dots.

terested in the behaviour close to the family of 1D tori,
we choose the initial points in the ¢;—¢2 plane through
the fixed point with ¢1,g2 € [0.25,0.75] and p; = 0 and
p2 = 0. On this plane, a 2000 x 2000 grid of initial points
is used. We define the exit region as q1, g2 ¢ [0.25,0.75]
with arbitrary momenta p;,ps € [—0.5,0.5]. Each initial
condition is iterated until it enters the exit region or a
maximal number n,,, of iterations is reached.

Figure [0] shows the escape time nes. encoded in color
ranging from yellow for fast escaping points to black for
nearly regular orbits while white points do not escape

to the exit region within nma, = 10° iterations (though
they may escape eventually). In addition, the families
of 1D tori are shown in black and the fixed point as red
or gray dot for EE or CU stability, respectively. The
parameters for Fig. [0fa)-(c) correspond to the points (B),
(E), and (F) in parameter space specified in Fig. [4l In
addition, the families of 1D tori are shown in black and
the fixed point as red or gray dot for EE or CU stability,
respectively.

As before, we focus on the structures close to the fixed
point. For the EE case, the vicinity of the fixed point is



naturally governed by a white region which corresponds
to the regular 2-tori surrounding the families of 1D tori,
compare with Fig. @(a). Thus, even for arbitrarily large
times these orbits do not escape. Furthermore, we see
the impact of the —1 : 3 : 0 resonance in form of a notch
in the white region. This is consistent with the frequency
analysis in Fig. [§[a) for K = 0.31.

If the eigenvalues of the fixed point approach the Krein
collision parameter the fraction of the white points only
slightly diminishes and the overall pattern of the escape
time plot does not change much (not shown). After the
transition to complex instability, see Figs. [0[b)-(d), the
white region reduces substantially. Starting with the ap-
pearance of two small unstable regions in the white re-
gion for K; = 0.29 in Fig. @(b) above and below the
fixed point. Still, there are orbits in the direct vicinity of
the fixed point which stay close to it for more than n,,x
iterations. Quantitatively, the size of the white region de-
pends on the threshold nyax, but a larger value of mpyax
does not affect the shown escape time plots significantly.
The reason for this is that orbits in the vicinity of the CU
fixed point are confined for an extremely long time when
the parameters of the map are sufficiently close to the EE
region in Fig. @l The more unstable the fixed point be-
comes, i.e. the smaller K is, the more the two branches
of the family of 1D tori separate and the white region
diminishes because the regions of instability get larger.
Finally, for point (F) in Fig. [ with K; = 0.285 all orbits
in the direct vicinity of the fixed point are able to reach
the exit region within nn.y iterations, see Fig. @(c) For
this parameter we observe that the unstable regions in
the escape plots reach the fixed point, and consequently
the large white region is divided into two smaller ones.
These two white regions correspond to the tubes of reg-
ular motion in the 3D phase-space slice representation,
e.g. see Fig. @(f), as well as the attached regular tori of
the branches of the family of 1D tori in frequency space,
see Fig. [§[f).

Figure @(d) shows the escape time plot for K, = 0.27,
i.e. far in the CU regime. The branches of the family
of 1D tori moved far away from the fixed point and the
unstable region in between is large. Interestingly, this
unstable region reveals a unique spiral pattern which
is attached to the fixed point. Orbits on this spiral
need at least one to two orders of magnitude more itera-
tions to escape into the exit region than the neighboring
ones. Additionally, there is another spiral structure on a
smaller scale as shown in the magnification in the inset.

A closer investigation of orbits started in the darker
colored region reveals that the spiral pattern is due to
the influence of the —2 : 3 : 0 resonance: In cases where
a frequency analysis of these orbits is possible, i.e. the
orbit is confined for long times and considered as regular
by our algorithm, see section [[ITC| we get frequencies on
or close to this resonance line.

The escape time plots raise the following question:
Which structures govern the slow transport in the vicin-
ity of a complex unstable fixed point? An important
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ingredient to answer this question are the invariant man-
ifolds of the fixed point, which are discussed in the next
section.

B. Stable and unstable manifolds

The stable and unstable manifolds associated with an
unstable fixed point govern the chaotic dynamics in its
surrounding. For a complex unstable fixed point of a 4D
map the manifolds are two-dimensional invariant objects
in the 4D phase space. Numerically the manifolds are
computed using the parameterization method [48H50, [77,
89l [86], see Appendix |A| for details. In the 3D phase-
space slice representation they lead to one-dimensional
curves, see Fig. where the red curve corresponds to
the unstable manifold and the blue curve to the stable
manifold.

The regular 2-tori (gray loops) as well as the families
of 1D tori (black curves) in Fig.|10(a) are the same as in
Fig. @(f ). Figure b) shows the geometry for a smaller
value of Ky = 0.28. The complex unstable fixed point is
indicated by a gray sphere in both plots.

Numerically it is found that the stable and unstable
manifolds intersect in one point. This point therefore
is a homoclinic point whose forward iterates approach
the fixed point on the stable manifold while the back-
ward iterates approach the fixed point on the unstable
manifold. The existence of a transverse homoclinic point
therefore immediately implies an infinity of such homo-
clinic points. Note that generically two 2D manifolds in
a 4D phase space will not intersect. The fact that this
happens for the manifolds of the considered fixed point
must be due to the symmetries of the map.

The geometry becomes more clearly visible for smaller
K, = 0.28 as shown in Figure b). The arrangement of
the manifolds in the 3D phase-space slice reminds of the
homoclinic tangle in 2D symplectic maps. In comparison
to Fig. a) the excursions of the manifolds are more
pronounced which corresponds to a larger chaotic region
surrounding the complex unstable fixed point.

It has to be emphasized, that even though the geome-
try visually resembles the homoclinic tangle in 2D sym-
plectic maps, the iterate of any of the homoclinic inter-
sections in general is not contained in the 3D phase-space
slice. Actually, we find numerically that the stable and
unstable manifolds intersect in a 1D line which is itself
an invariant set. Therefore, the intersection point in the
3D phase-space slice and its iterates are only a subset of
the 1D intersection line. Moreover, as the manifolds are
only 2D they cannot enclose a volume, so that there is
no equivalent to the lobe structure and transport via a
turnstile mechanism as in 2D symplectic maps [87H90].
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FIG. 10. 3D phase-space slice representation of the stable (blue) and unstable (red) manifolds of the CU fixed point together
with regular 2-tori (gray) and the family of 1D tori (black) for (a) K1 = 0.285 and (b) K1 = 0.28. Thus (a) corresponds to the

point (F) in Fig. [d] compare with Fig. [6{c), (f)
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FIG. 11. Average escape time (nesc) of an ensemble of 104
orbits started in Us in dependence on K for § = 1078 (purple
downward triangles), § = 107° (blue triangles), and § = 10™*
(red circles).

C. Escape statistics

To investigate the chaotic transport in the vicinity of
the CU fixed point we consider an ensemble of initial
conditions in a 4D cube

Us = [=6,6]2 x [0.5 — 8,0.5 + 82, (26)

. For a rotating view see | http://www.comp-phys.tu-dresden.de/supp/.

with small §. The exit region is again chosen to be
p1,p2 € [—0.5,0.5] and q1,q2 ¢ [0.25,0.75]. Figure [11]
shows the average escape time (nes.) for an ensemble of
10* orbits in dependence on K, for different § = 1074,
d =105, and § = 10~8. When approaching the Krein
collision parameter K = 0.3, the average escape time
(nesc) strongly increases and for K7 > 0.29 exceeds 107
iterations. The same is also found for the smallest escape
time (not shown). Extracting the functional dependence
from the data turned out to inconclusive.

The tail of the distribution P(nes.) of escape times is
very well described by an exponential, see Fig. This
provides a hint at what mechanism could be responsible
for such large escape times: there could be one partial
barrier (of unknown origin) for the dynamics which al-
lows for a small flux towards the escape region [89]. Such
a a single partial barrier would lead to a simple exponen-
tial [91] while in contrast several partial barriers would
typically lead to an overall power-law behavior m—lﬂﬂ
Note that for the small hump of (nes) seen in Fig. [1
around K7 = 0.284 the corresponding P(nesc) shows a
non-exponential behavior in the tail.

To quantify the escape dynamics of the ensemble, we
now consider the extent as a function of the number of
iterates. Explicitly we determine

dmax(n) = max;<, {||z — z*|| | with 29 € Us}, (27)
where z(® is the i-th iterate of an initial point 2(%) € Us
and ||z; — z*|| is the distance to the complex unstable
fixed point at z*. We use 10* initial conditions in Us
with § = 107°. Figure (13| shows the result for five dif-
ferent values of K;. The expansion during the first 100
iterations is similar and after about 10 iterations follows
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FIG. 12. Histogram P(nesc) of the escape times for K; =
0.287 and K7 = 0.288. The dashed lines show a fit to an
exponential for large Nesc

an overall exponential given by |A|™, where A is the eigen-
value with largest absolute value. For K; = 0.28 this is
illustrated by the blue dashed curve. On a finer scale the
initial expansion happens in a step-like manner. This is
due to the spiraling motion of each orbit as illustrated in
Fig.[5l This motion has a different extent in the different
directions, so that a larger distance is only obtained pe-
riodically after approximately ten iterations for the first
expansion phase. This corresponds to half the reciprocal
winding frequency of the fixed point.

After the first rapid expansion phase, the maximal dis-
tance shows prominent plateaus extending over several
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FIG. 13. Maximal distance dmax of an ensemble of

10* initial conditions started in the 4D cube Us with
§ = 107°% vs. the number of iterations n for K; =
0.28,0.2825,0.285,0.2875, 0.29 (top to bottom, corresponding
to increasing escape time). The initial expansion is well de-
scribed by o |A|™, shown for K; = 0.28 (blue dashed curve).
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orders of magnitude in time. These plateaus become
longer the closer the parameter K is to K7 = 0.3, i.e.
the parameter of the Krein collision. Thus for a very long
time the ensemble is effectively confined in phase space.
Afterwards there is at least one trajectory which leaves
this region very quickly, as manifested by the sharp in-
crease of dyax.

A closer look at the plateaus reveals that there is still
a rather slow increase. The occurrence of the plateaus
can be explained by the alternating spiraling in and out
of the dynamics already observed in Refs. [6, 111 36} B8]:
An orbit initially started near the complex unstable fixed
point moves away from it on a spiral along the unstable
manifold until it reaches a maximal distance to the fixed
point. This behavior corresponds to the first expansion
phase up to approximately 100 iterations. Subsequently,
the orbit spirals in again and gets very close to the fixed
point with some minimal distance. When spiraling out
again, this can lead to a slightly increased maximal dis-
tance. This process of inward and outward spiraling re-
peats many times before the orbit escapes quickly. Note,
that this sequence of outward and inward spiraling only
holds for parameters which are near the elliptic-elliptic
region in the parameter plot in Fig. [4 i.e. if K; is suffi-
ciently close to K7 = 0.3. Further away from the Krein
collision parameter the extent of the plateau of dyax be-
comes very short or even non-existent, see Fig. for
Ky, =0.28.

It is also illuminating to consider the extent of the
iterated ensemble at a given number of iterations,

dimax(n) = max{||z™ — z*|| | with 2 € Us}, (28)

see Fig. Initially one has the overall exponential in-
crease which is superimposed by small oscillation caused
by the spiraling motion. This occurs until the ensem-
ble has expanded until the homoclinic intersection, which
corresponds to the beginning of the plateaus in Fig. [I3]
Afterwards, there is a prominent dip around n = 200 i.e.
the extent of the ensemble has become quite small again
and most of the points are located in a small surrounding
of the complex unstable fixed point. These minima con-
verge to the plateau for growing n such that the second
dip is already barely visible. This effect is due to the in-
ward and outward spiraling behavior of each individual
orbit. The inset of Fig.|14]shows di,ax of one single orbit.
The position of the first minimum after the expansion of
one single orbit matches roughly the first minimum in the
plateau of the ensemble. This expansion and contraction
of the ensemble repeats approximately periodically un-
til some loss of correlations sets in and the dips of dyax
become less and less prominent. Note that such kind
of dynamics is also found for 2D symplectic maps for the
dynamics after a period-doubling bifurcation and also for
4D symplectic maps with an II fixed-point. A more de-
tailed investigation and comparison of these cases would
be very interesting and is left for future studies.
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FIG. 14. Maximal extent givmax of an ensemble of 10 initial
conditions started in the 4D cube Us with § = 107% vs. the
number of iterations n. The inset shows the maximal extent
of a single exemplary orbit up to the first 1000 iterations.

D. Escape dynamics

The temporal dependence of the extent of the iter-
ates of the ensemble allows for quantifying the long-time
confinement within the chaotic region surrounding the
complex unstable fixed point. Still, the key question is,
what is responsible for this long-time confinement and
what is the escape mechanism? In particular, referring
to the normal form description, there could be either an
escape within the I = 0 plane or across different planes
with I # 0. Escape within I = 0 would be similar to the
case of the period-doubling bifurcation in 2D symplectic
maps, where just after the fixed point has become un-
stable there are usually still invariant curves so that an
escape of orbits is only possible when being further away
from the bifurcation in parameter space. In contrast,
the escape across different planes with I # 0 would be
a genuinely 4D effect. In principle there could also be a
competition between these two escape routes and which
of them is relevant could depend both on parameters and
considered time-scales.

As a measure of the invariant I of the normal form for
a symplectic map we make use of the quadratic invariant
of the linearized map. With Eq. @) we get

Q=—pi+p;— (K — K) - ¢5(K> — K)
+p1¢1 (K — K1) + p2ga (K2 — K)
+ K(p1g2 — p2q1 + 2q142). (29)
By use of a suitable coordinate transformation Eq.

degenerates for the Krein collision parameter into two
planes, namely the py = —py and the ¢; = g2 plane [33].
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FIG. 15. (a) Shown are the g1, go-coordinates and the

quadratic invariant of the linearization @ of 1000 orbits
started with random initial conditions in Us with § = 107
and K7 = 0.288 over m = m — Mesc. The escape criterion
is the same as in the previous experiments and marked as a
red dashed line while in the last plot the blue dashed line
represents QQo. (b) 3D phase-space slice representation of seg-
ments of a single exemplary orbit for K; = 0.288. Each seg-
ment consists of consecutive 10000 iterates and shown are
those points fulfilling the slice condition for the segments
j = 3,7,11,15,19, and 23, see the text for further expla-
nation. The unstable manifold is shown as a red curve and
the @Q = Qo plane as gray transparent surface. For a rotating
view see | http://www.comp-phys.tu-dresden.de/supp/.

These two planes geometrically correspond to the repre-
sentation of the I = 0 plane for the hyperplanes x5 = 0 or
alternatively yo = 0 in the normal form description, see
section [[TC] Hence, the quadratic invariant at the fixed
point is Q(z*) = 0.

However, away from the Krein collision the two planes
are not degenerate anymore. Therefore (Q does not re-
semble the I = 0 plane and we get

_K1 + Ky

Qu=Q(z") ===+ K, (30)

which is not zero in general. Still it turns out, that Q—Q
is a well suited quantity to approximate the invariant 1
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of the normal form for a symplectic map.

To address the question of the possible escape route,
it is helpful to compare for an ensemble of initial condi-
tions the individual coordinates of the orbits right before
they escape. Figure (a) shows the ¢; and ¢ coordi-
nates as well as the quadratic invariant ) as function of
T = N — Nese, 1.€. for a few iterations before and after
the escape of an orbit. The initial conditions of the en-
semble with 1000 orbits are started in Us with § = 10~°
and the kicking strength is K; = 0.288. The orbits are
confined for negative m and fulfill the escape criterion
for positive 7, as indicated by the red dashed horizontal
lines. The spread of the distances of ¢; and ¢o around
the fixed point, i.e. the width of the distribution of dis-
tances around 0.5, is slightly increasing towards n = 0.
Even though this trend is visible in both coordinates, the
escape condition is reached first by the ¢, coordinate.

In order to understand the escape mechanism in terms
of the phase space geometry, we compare the escape path
in the 3D phase-space slice with the geometry of the
normal-form. The arrangement of regular tori and the
family of 1D tori, see Fig. [6] suggest that the @ = Qo
plane is a good approximation to the I = 0 plane, com-
pare to the gray plane in Fig. b). Therefore, @ — Qg
provides an approximate measure of how far a point of an
orbit is away from the I = 0 plane, see Fig. [L5(a). As for
the single coordinates, () shows an overall increase and is
spread more widely as n approaches 0. However, about
7 iterations before n = 0 the distribution of @ splits into
two separate parts, away from 0.

In order to determine if the ensemble escapes through
these two separated escape paths or interchanges between
those two, we split the ensemble in two subsets by either
QM =10)> Qo or Q(n =0) < @ and determine their
mean and variance. Figure [16{a) shows the average as
dots and their standard deviation as error bars of the
Q(m =0) > Qp and the Q(n = 0) < Qp subset in blue
and red color, respectively. The ensemble clearly sepa-
rates in these two sets and fluctuates around @y marked
as a black dashed line. Once the escape criterion is ful-
filled, either @ > Qo or @ < o and initially no fur-
ther change in sign occurs. This behavior translates to
escape either across I > 0 or I < 0 planes in the normal-
form picture. Crossing the planes with different I is only
possible because the normal-form geometry provided by
Eq. is broken.

Figure b) shows the time evolution of the variance
of both sets ranging from 2000 iterations before the es-
cape up to the escape. We observe the same type of in-
crease of the variance for both subsets towards the escape
at n = 0. Understanding the behaviour of the variance
quantitatively is an interesting future task.

By following one single orbit we can also get an intu-
ition of how the orbit crosses the different I # 0 planes,
see Fig. [I5|b). Here, we consider a single orbit with
initial condition (p1,p2,q1,q2) = (0,0,0.5 + p,0.5 + p)
with g = 1075 for K; = 0.288. This orbit escapes after
approximately 266000 iterations in our numerical imple-
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FIG. 16. The mean width standard deviation a) and the
variance b) of the quadratic invariants @ of the ensemble in
Fig. [[5] are shown. The blue set corresponds to the set of
orbits with Q(n = 0) > Qo and the inverse to the red data
points. The black dashed line in a) represents Qo

mentation of the map. For this orbit we consider succes-
sive segments [7-10000, (§41)-10000] of the iterates of the
orbit. For each segment those points fulfilling the slice
condition with ¢ = 10™* are determined. A selection
in the surrounding of the complex unstable fixed point
is shown in Fig. b) together with the 3D phase-space
slice of the unstable manifold as a red curve. This plot
shows that the iterates of the initial point are approxi-
mately restricted around 1D lines in the 3D phase-space
slice. These lines follow the unstable manifold and each
of the successive segments appears to lie on a slightly
bent surface, similar to the I # 0 planes of the normal
form, compare with Fig. 3] This suggests that an escap-
ing orbit is following the unstable manifold which gives
rise to transport through the I # 0 planes. Note that the
slice segments for 7 = 7,19 are located at the excursion of
the manifold farther away from the fixed point and there-
fore do only appear at the edge of the magnification. In
general, the motion along the unstable manifold explains
also the repetitive expanding and contracting behavior of
the orbits.



V. SUMMARY AND OUTLOOK

In this paper the transition of a fixed point with
elliptic-elliptic dynamics to complex-unstable dynamics
under parameter variation is investigated for a 4D sym-
plectic map. Using 3D phase-space slices we visualize
regular dynamics in the vicinity of the fixed point. While
in the elliptic-elliptic case there exist two families of 1D
tori which are attached to the fixed point and are sur-
rounded by regular 2-tori, these families merge into one
single family and split off the fixed point. Moreover, the
geometry of regular orbits close to the fixed point in the
3D phase-space slice lie on surfaces as predicted by the
normal form description, see Fig. |3l The phase-space rep-
resentation is complemented by a frequency analysis of
regular tori, see Fig. [§] Before the transition to complex
instability the two families of 1D tori are attached to the
fixed point forming a cusp-like region which encloses the
regular tori. The fixed point becomes complex unstable
under parameter variation when reaching the —1:1:0
resonance line and the families of 1D tori split off the
fixed point. Applying a unimodular transformation clar-
ifies that these apparently two families of 1D tori actually
form a single arc in frequency space.

Once the fixed point has become complex unstable
nearby orbits may eventually escape. However, it turns
out that shortly after the transition orbits are confined
to a particular phase-space region for very long times.
This region can be visualized using escape time plots,
see Fig.[0] The extent is governed by the stable and un-
stable invariant manifolds of the complex unstable fixed
point. In the 3D phase space they lead to a geometry
which is visually similar to that of the well-known homo-
clinic tangle for 2D symplectic maps.

To quantify these observations we consider the escape
statistics for an ensemble of 10* orbits, started in the
vicinity of the fixed point in dependence on the distance
to the bifurcation point, i.e. by varying the parameter
Ki. The average escape time strongly increases when
approaching the bifurcation point. Measuring the max-
imal distance of all orbits of the ensemble to the fixed
point over the number of iterations, reveals three differ-
ent phases of the dynamics, see Fig. Initially, for the
first approximately 100-200 iterations, the distance in-
creases exponentially, followed by a extended plateaus in
the second phase. These plateaus correspond to the long-
time confinement and extend over longer times the closer
the parameter is to the Krein bifurcation. A closer look
at the plateaus shows that there is a very slow increase
as function of time. The plateaus are due to the inward
and outward spiraling dynamics of the ensemble which
follows the unstable invariant manifold. Thus, the slope
corresponds to a slowly growing extent of individual or-
bits, see Fig. Eventually, in the last phase one orbit
of the ensemble will escape after a critical time and the
maximal distance of the ensemble quickly reaches approx-
imately 1. If the fixed point is very unstable, the plateau
is very short or even not existent.
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Comparing the ¢1, g2 coordinates and the quadratic
invariant @) of the ensemble for the transition from phase
two to three allows for determining the main escape paths
close to the bifurcation, see Fig. This provides evi-
dence that long confined orbits escape across either I > 0
or I < 0 planes of the normal-form. Thus the escape
mechanism is genuinely higher-dimensional.

Based on the improved understanding of the geometry
and escape of orbits near a complex unstable fixed point,
an interesting future task is to explicitly determine the
invariant I for the specific map using a numerical normal
form analysis. This would allow for accurately quanti-
fying the transport across the approximately invariant
planes and to investigate whether the escape can be de-
scribed by a diffusive process.
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Appendix A: Computing stable and unstable
manifolds

There are various methods to determine the invariant
manifolds associated with an unstable fixed point, see e.g.
Refs. [96HI0I]. Here we use the parametrization method,
which was introduced in Refs. [48H50] and has been used
for example in Refs. [77, 85 [86].

The parameterization method takes advantage of the
Hartman-Grobman theorem which for symplectic maps
states that the linearization of a fixed point or periodic
orbit is conjugate to its local stable and unstable in-
variant manifolds W}, if the eigenvalues have an ab-
solute value different from one, i.e., if they are unstable.
The key point of the parameterization method is to find
smooth vector-valued functions F5 and F,, which param-
eterize the stable and unstable invariant manifolds. In
order to do so, Fs, have to obey on the one hand the
linear conditions

Fsu(0)=2" and (A1)
M:& fOI‘ 1§1Snbu (AQ)

90; ’
with @ = (61, ... .0, ,) € C"* and & € C*" be-

ing the associated eigenvector to the ng stable and n,,
unstable eigenvalues A;.

On the other hand, F;, must satisfy the conjugacy
equation

Mo ]:s,u(e) = ]:s,u(/\leh v 7>‘n5,u6ns,u) (A?))



in order to take the non-linearity of the map into account.

For a complex unstable fixed point of a 4D symeplectic
map one finds ny = n, = 2. Therefore, we expand F; ,,
into the power series

p1(61,02) o o
9 79 i nJ
]:s,u(el,HQ) = Zigei,gzi = z_; s .fij 91 Gé’ (A4)
q2(01,02) T

with vector-valued coefficients f;; € C*.
For the considered map , the non-linear terms
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consist of sine functions with various input arguments,
namely three different sums of phase-space coordinates.
We approximate these sine functions by their Tay-
lor series representation. Advantageously, the coeffi-
cients of this series can be easily computed by an auto-
differentiation algorithm which is based on Refs. [102]
103]. Using the series representation of the sine terms
of the map M and combining and the conjugacy
equation leads to a homological equation which can
be solved iteratively for the coefficients f;; up to a given
order (m,n). The corresponding initial value problem is

solved by the linear conditions (Al]) and (A2).
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