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A new Bateman-Hillion solution to the Dirac equation for a relativistic Gaussian electron beam
taking explicit account of the 4-position of the beam waist is presented. This solution has a pure
Gaussian form in the paraxial limit but beyond it contains higher order Laguerre-Gaussian compo-
nents attributable to the tighter focusing. One implication of the mixed mode nature of strongly
diffracting beams is that the expectation values for spin and orbital angular momenta are fractional
and are interrelated to each other by intrinsic spin-orbit coupling. Our results for these properties
align with earlier work on Bessel beams [Bliokh et al. Phys. Rev. Lett. 107, 174802 (2011)] and
show that fractional angular momenta can be expressed by means of a Berry phase. The most sig-
nificant difference arises, though, due to the fact that Laguerre-Gaussian beams naturally contain
Gouy phase, while Bessel beams do not. We show that Gouy phase is also related to Berry phase
and that Gouy phase fronts that are flat in the paraxial limit become curved beyond it.

PACS numbers: 41.85.-p, 03.65.Pm, 03.65.Vf,42.50.Tx

Introduction.— In the past decade, there has been con-
siderable progress towards solving the Dirac equation
(DE) for the purpose of unveiling detailed properties of
electron vortex beams carrying both spin and orbital an-
gular momenta. The earliest of this work has modelled
Bessel beams as a linear superposition of Dirac or Dirac-
Volkov [1, 2] plane waves in contrast to non-relativistic
Laguerre-Gaussian (LG) [3] and Bessel beams [4] acting
as solutions to paraxial and non-paraxial wave equations,
respectively. More recently, the attention has been fo-
cused on investigating symmetry properties of relativistic
electrons to better understand the nature of their vortex
formation [5, 6] and to construct other types of wave
packets [6, 7] (see also the debate in Refs. [7–9]).
A 3-vector position in space is not form invariant un-

der Lorentz transformations. For fully relativistic calcu-
lations it is therefore necessary to replace points using
point events (4-positions) so that a beam front with ve-
locity u that reaches the waist at time T will have time
t = T + ξB/u for any other point at a distance ξB before(ξB < 0) or after (ξB > 0) the waist. The use of point
events as energy-momentum waypoint markers has prece-
dent in the derivation of Lienard-Wiechert potentials [10]
and constraint mechanics [11, 12]. Beam solutions that
incorporate a 4-position beam waist have been shown to
reduce to traditional beam models [13–15] in the non-
relativistic limit. Beam solutions that zero out the beam
waist as the origin of the beam coordinate system thus
carry a hidden non-relativistic 3-vector.

In a typical electron microscope assembly, a Gaussian
beam passes from an electron gun to a magnetic lens
that focuses it to a small waist diameter. Assuming a
modest current of energetic electrons (∼ 100keV), the av-

erage separation between them will be large enough so
that electron repulsion can be ignored. Under these con-
ditions, the expected diameter of the beam waist will be
about a hundred times the wavelength of the electrons
unless corrective measures are taken to reduce the strong
spherical and chromatic aberration, which is a normal
feature of magnetic lenses [16]. Such transmission elec-
tron microscopes are by far the only tool to produce elec-
tron vortex beams [17], which are nowadays widely used
in various physical setups [18]. This includes vortices in
external fields [19], scattering [20], atomic processes [21]
and indicates a further possible application for electron
beams to trap (sub)nanoparticles in a close analogy with
optical trapping via light vortices [22].
Over the course of last two-three decades, advances

in optical instrumentation have made it possible to pro-
duce light vortex beams, which typically carry an inte-
ger number of orbital angular momentum (OAM) quanta
[23, 24]. This led to an elucidation of the nature of frac-
tional OAM (fOAM) including its clear understanding in
terms of Berry phase [25, 26].

Our intention here is to build on existing work both
on optical and electron vortices to calculate fractional
– spin and orbital – angular momenta for a tightly fo-
cused relativistic Gaussian beam of electrons, which con-
tains higher order LG modes. Taking proper account of
the 4-position of the beam waist, we evaluate the total
energy-momentum of relativistic electrons and derive a
fundamental property called the Gouy phase [27, 28], ac-
cumulated along the propagation direction as a result of
the transverse localization of the beam [29]. We demon-
strate the interplay of the Gouy phase and the fractional
angular momenta, quantified by an intrinsic spin-orbit in-
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teraction (SOI) term, with the Berry geometric phase. In
view of this, we parameterize the total shift of the Gouy
phase in a relativistic Gaussian beam, from far field to
far field, in terms of the Berry phase. We shall also calcu-
late beyond the paraxial limit to show that Gouy phase
fronts that have generally thought to be planar are actu-
ally curved.

Exact Bateman-Hillion-Gaussian beams from Dirac
equation.— In order to achieve our goal, we develop a
theory that incorporates Lorentz invariance of relativistic
Gaussian solutions of wave equations known as Bateman-
Hillion (BH) solutions [30, 31] that also take proper ac-
count of the beam waist position. We use the BH ansatz
to solve the Klein-Gordon equation (KGE) then convert
it to a solution of the full DE. Our solutions build on ex-
isting approaches for relativistic LG beams [6, 7]. It must
be recognized, however, that our inclusion of the beam
waist 4-position matters since it brings a resolution to a
well known problem of BH Gaussian beams that electrons
move in both directions [7] additional to certain other
benefits that include Lorentz invariance and correspon-
dence to accepted beam models in the non-relativistic
and paraxial limits.

Consider a beam of electrons each having a mass of
m, a 4-position xµ = (ct,−r) and a 4-momentum pµ =(E/c,−p), where µ = {0,1,2,3} and c is the speed of light
in vacuum. It follows the particle has an energy E and
3-momentum p at world time t and world position r. Let
us also assume that each electron passes through a beam
waist with a 4-position Xµ = (cT,−R), where R is the
world position of the beam waist at world time T . Note
that we introduce two different time coordinates since
the equality T = t is not form preserving under Lorentz
transformations.

The dynamics of each of the electrons in the beam is
then given by the DE expressed as [32]

(γµp̂µ −mc)Ψ±(xµ,Xµ) = 0 . (1)

Here, p̂µ = ıh̵∂/∂xµ is the canonical 4-momentum opera-
tor, γµ are the Dirac matrices, h̵ is the reduced Planck’s
constant, while Ψ±(xµ,Xµ) represents a bi-spinor wave
function of each individual electron, where “±” stand for
spin-up and -down states, respectively. Equation (1)
also has two negative-energy bi-spinor solutions that we
will not consider since they describe anti-particles. The
DE (1) can be simplified using the substitution

Ψ± (xµ,Xµ) = [ (p̂0 +mc)χ±
σip̂iχ±

]Ψ (xµ,Xµ) (2)

with χ+ = (1 0)T , χ− = (0 1)T being two-component
spinors, Ψ(xµ,Xµ) a scalar function, σi the Pauli ma-
trices (i = {1,2,3}), and where the inner product σip̂i ≡
σ1p̂1 + σ2p̂2 + σ3p̂3 and the superscript T means “trans-
posed”. Combining Eqs. (1) and (2) leads to the KGE

for Ψ

(p̂µp̂µ −m2c2)Ψ (xµ,Xµ) = 0 . (3)

The clear understanding here is that the bi-spinor solu-
tion Ψ± satisfies the DE provided that the scalar function
Ψ acts as a solution of the KGE, a procedure that is also
applied in Ref. [7] for constructing relativistic wave pack-
ets with non-zero OAM.
The solution to the KGE (3) for the Gaussian beam

has been developed in two recent papers [13, 14]. For
our purposes, we start from the BH based ansatz

Ψ (xµ,Xµ) = CΦ(ξ1, ξ2, ξ3 + ξ0) exp (−ık′µxµ) , (4)

where C is a constant number, ξµ = xµ − Xµ is the 4-
position of the electron relative to the beam waist, k′µ is
the wave 4-vector and Φ(ξ1, ξ2, ξ3 + ξ0) is a scalar func-
tion incorporating non-trivial vortex and both space- and
time-dependent phase structures of the electron beam.
Following Ref [14], we insert the BH ansatz (4) into the

KGE (3) and solve the resulting equation for Φ(ξρ, ξφ, ξ3+
ξ0) by utilizing the ‘radial’ ξρ = √ξ2

1
+ ξ2

2
and ‘azimuthal’

ξφ = arctan(ξ2/ξ1) coordinates. This leads to the LG
solution

Φlp = aℓp (
√
2ξρ∣w∣ )

∣l∣

L∣l∣p ( 2ξ
2

ρ∣w∣2 ) exp(−
ξ2ρ

w0w
+ ılξφ − ıglp) (5)

with aℓp ≡ √2p!/ [π∣w∣2(p + ∣l∣)!] and k′µk
µ′ = m2c2/h̵2.

Furthermore, L
∣l∣
p represent the generalized Laguerre

polynomials in terms of the radial, p ≥ 0, and the az-
imuthal indices, −∞ < l < ∞,

glp = (1 + ∣l∣ + 2p)arctan[2κ(ξ3 + ξ0)] (6)

is the Gouy phase and κ = [w2

0
(k3 + k0)]−1. The solution

(5) also contains the complex parameter

w = w0 [1 + 2κ(ξ3 + ξ0)ı] , (7)

whose modulus, ∣w∣, characterizes the beam radius, such
that w0 represents the beam radius at the waist. Note
that the Gouy phase (6) depends on both the space and
time variables in sharp contrast to only a time-dependent
Gouy phase of Ref. [6]. Our setup considers a beam con-
fined in the transverse (x, y)-plane and propagating in
the longitudinal direction, chosen to be the z-axis, mean-
ing that the beam spreads as a function of z and time t.
This confinement in two dimensions can be experimen-
tally designed by spherical lenses complementing the one-
dimensional case realized by cylindrical lenses. The dif-
ference of expressions in round parentheses (1 in Eq. (6)
and 3/2 of Ref. [6]) is a consequence of an altered sce-
nario, when the beam is confined in three dimensions [6],
a situation which is yet to be experimentally generated.
Equations (2), (4) and (5) constitute an exact BH so-

lution to the DE for LG modes of the electron beam. We
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shall, however, focus our attention only on the Gaussian
wave packets leaving a treatment of more general LG
modes for future work as relevant physical conclusions
can be drawn already from relativistic Bateman-Hillion-
Gaussian (BHG) beams, i.e., when ℓ = p = 0. Inserting,
therefore, Ψ = Ψ00 = CΦ00 exp (−ık′µxµ) into Eq. (2) leads
to

Ψ± = ( bχ±±h̵k3χ± )Ψ00 + ( h̵κχ±±h̵κχ± )Ψ01 ± ( 0√
2h̵

w0

χ∓
)Ψ10 ,

(8)
where kµ = (k′0 +κ,0,0,−k′3 +κ) will be referred to as the
effective wave vector of the electron beam,

Ψ00 =
√
2C√
πw

exp(− ξ2ρ

w0w
) exp (−ık′µxµ) ,

Ψ01 =
√
2C√
πw
( ∣w∣2
w2
− 2ξ2ρ

w2
) exp(− ξ2ρ

w0w
) exp (−ık′µxµ) ,

Ψ10 = 2Cξρ√
πw2

exp(− ξ2ρ

w0w
+ ıξφ) exp (−ık′µxµ) ,

b ≡ h̵k0 +mc. We have omitted the arguments (xµ, ξµ)
for brevity. Equation (8) is the exact solution to the
DE for the lowest order (Gaussian) bi-spinor mode of
electron beam. In the paraxial and semi-relativistic limit
(k3 ≪ k0, k0 ≃mc), we recover Barnett’s solution [8].
The constant C in Eq.(4) can be determined from the

Dirac current j±µ = Ψ†
±γ0γµΨ± using the normalization

condition, ⟨j±µ (ξ1, ξ2, ξ3 + ξ0)⟩ = kµ/k0 [33], which implies

C = [2(h̵k0b + h̵2κ2)]−1/2 and gives the expected velocity

of the beam front ξB/ξ0 = k3/k0 where ξB = ξ3√1 + ξ2ρ/ξ23
is distance traveled. We now eliminate the elapsed time
ξ0 in Eq. (6) using the previous expression to give

glp = (1 + ∣l∣ + 2p)arctan[k3ξ3 + k0ξB
ξR(k3 + k0)] , (9)

for ξB >> ξR where ξR = 1

2
k3w

2

0
represents the Rayleigh

range. To recover the standard LG beam formulae we
shall instead set ξ0 = k0ξ3/k3 consistent with the paraxial
approximation ξ3 ≃ ξr, inserting this into Eqs. (6) and
(7) yields the traditional paraxial beam formula

glp = (1 + ∣l∣ + 2p)arctan(ξ3/ξR) , (10)

∣w∣ = w0

√
1 + (ξ3/ξR)2 , (11)

The beam radius ∣w∣ determines an important relation

sin θD = limξ3→∞ (∣w∣/ξ3) = 2 / (w0k3) (12)

between the angular divergence of the beam, θD, the lon-
gitudinal component of the wave vector and the beam ra-
dius at the waist. Figure 1 shows a comparison of curved
non-paraxial to planar paraxial Gouy phase fronts calcu-
lated using Eqs. (9) and (10) respectively.
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FIG. 1: A comparison of paraxial (flat) and beyond paraxial
(curved) Gouy phase fronts for a 100KeV electron beam. The
beam radius of 5pm is set smaller than occurs in practice to
accentuate the difference.

In order to estimate the magnitude of terms in the so-
lution (8), we evaluate the averaged probability density:

⟨∣Ψ±∣2⟩ = (b2+h̵k23)⟨∣Ψ00∣2⟩+2h̵2κ2⟨∣Ψ01∣2⟩+ 2h̵2

w2

0

⟨∣Ψ10∣2⟩ ,
where we use ⟨∣Ψlp∣2⟩ = C2 to confirm ⟨j0⟩ = ⟨∣Ψ±∣2⟩ = 1.
The cross terms vanish here since the products of the
bi-spinors are identically zero. It now follows that

2h̵2κ2⟨∣Ψ01∣2⟩/⟨∣Ψ±∣2⟩ = 2h̵2κ2C2 < 10−8 (13)

owing to current imperfections in magnetic lenses that
limit w0 to values of about 50 pm or greater. For our
further purposes, it is therefore reasonable to drop the
negligible term in Eq. (8) giving Ψ±(xµ, ξµ) to be

Ψ± = ( bχ±±h̵k3χ± )Ψ00 ± ( 0√
2h̵

w0

χ∓
)Ψ10 (14)

and C ≃ √1/(2h̵k0b) holding to a very high degree of
accuracy. Equation (14) completes the solution of the DE
for the relativistic BHG beam of electrons and enables
evaluation of linear and angular momenta in the beam.
Momentum and energy of the beam.— Some of rela-

tivistic beam solutions, such as Bessel [1] and Volkov-
Bessel modes [2], although reasonable in other respects,
actually carry an infinite beam energy. BHG solutions,
similar to LG modes, do not share this ‘problem’. In
particular, the expectation values for the 4-momentum
in a beam are determined to be pµ = ⟨Ψ†

±p̂µΨ±⟩ = h̵kµ.
Inserting this result into the dispersion relation k′µk

µ′ =
m2c2/h̵2 we obtain the averaged total energy E = p0c of
a single Dirac particle in a Gaussian beam

E = +c√p2ρ + p23 +m2c2 , (15)

where p2ρ = ⟨Ψ†
±p̂

2

ρΨ±⟩ = 2h̵2/w2

0
and p2

3
= h̵2k2

3
denote the

square values of radial and axial momentum respectively.
Equation (15) has been obtained elsewhere for a Klein-
Gordon particle in a Gaussian beam, see Ref. [14], which
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also connects the stored kinetic energy in the beam to
the Bohm potential [34].
Fractional angular momenta and non-trivial phase

structure of the beam.— Expected values for angular mo-
menta of an electron parallel to the beam axis can be
calculated if the explicit forms of the spin angular mo-
mentum (SAM), Ŝ3 = (h̵/2)diag (σ3, σ3), and OAM op-
erators, L̂3 = (h̵/ı)(ξ1∂/∂x2 − ξ2∂/∂x1), are employed.
Direct evaluation of corresponding integrals leads to

⟨Ψ†
±Ŝ3Ψ±⟩ = (1 −∆) sh̵ , ⟨Ψ†

±L̂3Ψ±⟩ = ∆sh̵ , (16)

where s = ± 1

2
, while

∆ ≡ ∆ (θD) = (1 −mc2/E) sin2 θD (17)

represents the intrinsic SOI term. There is a little need
for us to dwell on these expressions since they look like
a special case (ℓ = 0) of more general relations but de-
rived from relativistic Bessel-beam solutions to the DE [1]
(c.f., [35]).
Nonetheless, there are two subtle differences in the SOI

terms for Bessel and BHG beams. (i) The Bessel-type so-
lutions naturally contain non-paraxiality as a key feature,
which is quantified by means of a parameter called open-

ing angle θ0 = arcsin(√k2
1
+ k2

2
/k) similarly appearing in

the sine function [1]. In our case of Eq. (17), we have
the divergence angle instead, that carries more informa-
tion about the beam radius (at the waist) via Eq. (12).
(ii) It is true that in the non-relativistic regime (k → 0)
SOI terms vanish for both types of beams. Due to the
transverse localization of Gaussian modes, moreover, the
first term of the SOI parameter depends explicitly on the
beam radius at the waist by virtue of Eq. (15). Combin-
ing these yields an explicit connection between the SOI
term and the beamwidth, which can be simplified to

∆ ≈ 2h̵2/ (m2c2w2

0
) [1 + 2/ (w2

0k
2

3
)] (18)

for existing experimental setups, i.e., when h̵/ (mcw0)≪
1 for w0 > 50 pm. As seen, the SOI term vanishes for large
beam radii independent of the longitudinal momentum
h̵k3, or else, for very small divergence angles (c.f., Eqs. 12
and 17).
Another implication of expected angular momenta is

that the focusing of relativistic Gaussian modes with bi-
spinor structure will cause a fraction of angular momen-
tum, ∆sh̵, to convert from the expected SAM to OAM
and vice versa (see the left panel of Fig. 2 for s = 1/2).
At the same time, the total angular momentum (TAM)

of the beam, ⟨Ψ†
±Ĵ3Ψ±⟩ = sh̵ with Ĵ3 = L̂3 + Ŝ3, is con-

served along the propagation direction as depicted by the
straight green dash-dotted line. As the divergence angle
increases from 0 to π/2, the stake ∆sh̵ starts disappear-
ing from the SAM and reappearing as fOAM resulting
in the fractional spin-to-orbit conversion. For θD = π/2,
the fractional SAM (fSAM) and fOAM parts contribute

in the conserved TAM with the shares mc2sh̵/E and(1 −mc2/E) sh̵, respectively. Depending on the electron
kinetic energy, the spin-to-orbit conversion occurs either
fully (for 0.5 MeV), so that the shares by angular mo-
menta are equal, or partially (e.g., for 0.1 MeV) due to
the gradual decrease of the SOI term.
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FIG. 2: Fractional angular momenta (left panel), the total
Gouy phase shift and Berry phase (right panel) as functions
of the divergence angle for spin-up electrons with a kinetic en-
ergy of 0.5 MeV (upper panel) and of 0.1 MeV (lower panel).

Variations in the beamwidth over the infinite length of
the beam axis represent an adiabatic cycle in the sense
that the beam divergence beyond the waist undoes the
convergence occurring ahead of the waist. Such an adia-
batic cycle, being inherently characterized by the diver-
gence angle, contributes in the SOI due to the tight focus-
ing of the BHG beam by means of non-zero higher mode
bi-spinors proportional to Ψ01 and Ψ10 (see Eq. (8)).
Over the course of such a cyclic adiabatic process, the
beam accumulates also a Berry (geometric) phase from
these higher mode bi-spinors. The Berry phase can be
evaluated exactly in the same manner as for relativis-
tic Bessel beams by making use of the so-called Foldy-
Wouthuysen momentum representation [1]. Following
Bliokh et al. we may therefore write the Berry phase
as gained due to the non-trivial fOAM as γB = 2π∆s.
For a tightly focused BHG beam, the expected Gouy

phase

ḡT = ∑lp
⟨Ψ†
±glpΨ±⟩ = [1 + 0.5∆(θD)]g00 (19)

is larger than would be the case for a pure Gaussian beam
owing to the SOI. The total Gouy phase shift from far
field to far field in the beam is therefore given by

µT = lim
ξ3→∞

(ḡT ) − lim
ξ3→−∞

(ḡT ) = π + 0.5 ∣γB ∣ , (20)

showing that the Gouy phase as well as the fOAM in-
crease in direct proportion to the Berry phase, while the
fSAM decreases. The right panel of Fig. 1 illustrates the
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growth of both phases dependent on the divergence angle
and the electron kinetic energy. The Berry phase rises as
the SOI term increases and retains its maximum value
along with the Gouy phase at θD = π/2. The presence of
non-vanishing expectation values for the transverse com-
ponents of the linear momentum implies that the relevant
phase angle to consider in this case is not the azimuth
phase associated with the fOAM but the Gouy phase [29].
It thus appears from our results that the Berry phase for
this cycle is not the baseline Gouy phase for the paraxial
beam but the fractional increase in the Gouy phase above
the baseline value that can be explicitly attributed to the
adiabatic cycle. Our evidence for this assertion being the
direct proportionality between the Gouy phase and the
fOAM value is shown in Eq. (19).

Discussion.— Dirac published his quantum theory of
the electron in 1928 [32]. Some ninety years later, it is
now being extensively applied to understand the effects
of transverse localization on electron beams. A signif-
icant progress has been made in this direction by de-
riving (either exact or approximated) solutions to the
DE for Bessel [1, 2] and LG beams [6–8]. In our pa-
per, we derive a new and exact BHG solution to the DE,
which possesses the full relativistic nature of the beam
propagation as it takes into account the 4-position of
the beam waist [36]. This has enabled us to calculate
the energy-momentum, fractional angular momenta and
the Gouy phase in the beam and demonstrate the pres-
ence of the intrinsic SOI leading to the fractional spin-to-
orbit conversion. Remarkably, both the fOAM and the
Gouy phase are directly proportional to the Berry phase.
This both corroborates the earlier finding of Bliokh et
al. [1] for fOAM and takes it a step further with our
inclusion of Gouy phase into the evolving understand-
ing of the role geometric phase has to play in relativis-
tic electron beams, predicted earlier for a non-relativistic
Gaussian beam [38] and demonstrated recently for op-
tical rays [39]. Additionally, we have found that Gouy
phase fronts that have traditionally thought to be planar
are in fact curved. This curvature is most apparent in
the far fields of strongly diffracting beams.
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CNPq.
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