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There are two paradigms to study nanoscale engines in stochastic and quantum thermodynamics.
Autonomous models, which do not rely on any external time-dependence, and models that make use
of time-dependent control fields, often combined with dividing the control protocol into idealized
strokes of a thermodynamic cycle. While the latter paradigm offers theoretical simplifications, its
utility in practice has been questioned due to the involved approximations. Here, we bridge the
two paradigms by constructing an autonomous model, which implements a thermodynamic cycle in
a certain parameter regime. This effect is made possible by self-oscillations, realized in our model
by the well studied electron shuttling mechanism. Based on experimentally realistic values, we find
that a thermodynamic cycle analysis for a single-electron working fluid is not justified, but a few-
electron working fluid could suffice to justify it. Furthermore, additional open challenges remain to
autonomously implement the more studied Carnot and Otto cycles.

Introduction.—The success of thermodynamics builds
on the possibility to reduce macroscopic phenomena to a
few essential elements. An important role in that respect
has played the idea of a thermodynamic cycle, allowing
to break up the working mechanism of a complex ma-
chine into steps, which are easy to study. These steps are
called, e.g., adiabatic, isothermal or isentropic strokes.

Understanding thermodynamics at the nanoscale
forces us to give up many traditionally used assump-
tions. From that perspective, it is interesting to observe
that much current work focuses on idealized cycles as
introduced by, e.g., Carnot and Otto back in the 19th
century; see Refs. [1–6] for reviews. But for a small
system, such 19th-century-cycles seem to be based on
crude assumptions: the system needs to be repeatedly
(de)coupled from a bath and work extraction is modeled
semi-classically via time-dependent fields.

Recent experiments implementing thermodynamic cy-
cles in nanoscale engines echo these problems [7–13]: the
thermal baths are typically simulated via additional time-
dependent fields and a net work extraction (including the
work spent to generate the driving fields) has not been
demonstrated. This has raised doubts about the useful-
ness of cycles to analyze nanoscale engines (see the recent
discussion [14]). Yet, a critical theoretical study to rig-
orously address this problem is missing.

Here, we provide such a critical study based on the phe-
nomenon of self-oscillations [15]. This provides a miss-
ing link between nanoscale engines studied with a cycle
analysis and autonomous engines, such as thermoelec-
tric devices [16–19] or absorption refrigerators [20]. To
be precise, by “implementing a thermodynamic cycle au-
tonomously” we mean that (see Refs. [21–24] for related
ideas):

(i) The starting point is a model without explicit time-

dependence. The guiding principle should be sim-
plicity and experimental feasibility.

(ii) In some parameter regime the dynamics of the
model reduces to that of a thermodynamic cycle.

(iii) For a subset of the parameter regime in (ii), the
thermodynamics of the cycle analysis matches the
original thermodynamics of the autonomous model.

In particular, by using experimentally realistic values,
we can draw practically relevant conclusions at the end.
Moreover, similar to autonomous Maxwell demons [25–
32], our work bridges a gap between different theoretical
paradigms, as well as between theory and experiment.

(i) Model.—We study a nano-electromechanical sys-
tem called the single-electron shuttle, which has been in-
vestigated theoretically [33–43], experimentally [44–55]
(for reviews see Refs. [56–58]) and recently also thermo-
dynamically [59–61]. Consider a quantum dot mounted
on an oscillatory degree of freedom, which can move be-
tween two electron reservoirs (leads), see Fig. 1. Prox-
imity effects enhance (suppress) tunneling events of elec-
trons whenever the dot is close (far) from the lead. More-
over, if electrons are on the dot, an electrostatic force acts
in direction of the chemical potential bias (the voltage).
Thus, the oscillator has the tendency to move with the
bias whenever the dot is filled with electrons and, due to
proximity effects, transport of electrons is enhanced due
to the oscillation. Above a threshold voltage, this intrin-
sic feedback loop causes the oscillator to enter the regime
of self-oscillations [15], even if it is damped by friction.
This self-oscillation is responsible for the implementation
of our thermodynamic cycle.

We model the dynamics of the dot and oscillator semi-
classically by a coupled Fokker-Planck and master equa-
tion [60], which includes thermal fluctuations of the os-
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FIG. 1. Two leads with chemical potentials µL and µR at
temperature T are placed at some distance. In between, a
quantum dot (grey disk) is mounted on a nanopillar, which
in turn is mounted on a larger solid at temperature T . The
nanopillar has diameter d (which is relevant for our final dis-
cussion) and can oscillate from left (x < 0) to right(x > 0).
The left/right bare tunneling rates ΓL/R(x) depend on the
dot position as sketched at the bottom. If an electron jumps
on the dot, an electrostatic force Fel acts on the nanopillar
towards the right. The sketch pictures experimental setups
of Refs. [45, 46, 51–53], but the theoretical description below
holds for a wider range of self-oscillating nanosystems.

cillator and allows us to study its entropy later on. In
our regime of interest, quantum corrections to the oscil-
lator are negligible [62]. In Appendix A we derive our
equation of motion below starting from the quantum de-
scription [39] and using phase space methods [63, 64].

Let Pq(x, v; t) be the probability density at time t to
find the oscillator at position x (where x = 0 defines the
centre between the leads) with velocity v and the dot
with q electrons. For simplicity we assume q ∈ {0, 1}
(ultrastrong Coulomb blockade). This choice has little
influence on the qualitative behaviour we are interested
in, but we return to it at the end. Then, Pq(x, v; t) obeys

∂Pq(x, v; t)

∂t
= LqPq(x, v; t) +

∑
q′

Rqq′(x)Pq′(x, v; t), (1)

where we defined the following objects. First,

Lq ≡ −v
∂

∂x
+

∂

∂v

[
k

m
x+

γ

m
v − eαV

m
q +

γ

βm2

∂

∂v

]
(2)

generates the oscillator movement as a function of the dot
occupation q, where k is the spring constant, m the mass
and the friction coefficient γ = −Fdamp/v results from
a force Fdamp damping the oscillator in contact with an
environment at inverse temperature β = (kBT )−1. The
inverse distance α > 0 quantifies the strength of the elec-
tric field in between the leads and V = (µL − µR)/e de-
notes the voltage (e > 0 is the elementary charge). The
leads with chemical potential µL and µR are at the same
temperature T . They influence the dynamics via the rate
matrix R(x) = RL(x) + RR(x), which can be split into
contributions from the left and right lead and depends on
the oscillator position x. Explicitly, the off-diagonal ele-
ments of RL(x) (the diagonal elements are fixed by prob-
ability conservation) describing the filling or depletion of

the dot, respectively, read RL10(x) = ΓL(x)fL[ε(x)] and
RL01(x) = ΓL(x){1 − fL[ε(x)]}. Here, ΓL(x) = Γ0e

−x/λ

is an exponentially sensitive tunneling rate, Γ0 a bare
tunneling rate, λ a characteristic tunneling distance and
fL(ω) = [eβ(ω−µL) + 1]−1 the Fermi function. Impor-
tantly, the charging energy ε(x) = ε0−eαV x of the filled
dot is x-dependent (ε0 is some effective on-site energy).
Finally, the rate matrix RR(x) of the right lead is ob-
tained from RL(x) by replacing fL by fR and by setting
ΓR(x) = ΓL(−x) (symmetric tunneling rates).

We briefly discuss the thermodynamics of our au-
tonomous model. The system (dot plus oscillator) is cou-
pled to three baths: two electronic leads and the oscilla-
tor heat bath, labeled with a subscript ‘O’ below. The
heat flow up to time t from bath ν ∈ {L,R,O} is denoted
Qν(t). The first law reads

∆UDO(t) =
∑
ν

Qν(t) +Wchem(t), (3)

where ∆UDO = UDO(t) − UDO(0) is the change in in-
ternal energy of the dot and oscillator (we set the initial
time to t = 0) and Wchem(t) is the chemical work asso-
ciated to the transport of electrons (defined positive if
electrons flow along the bias). Since all baths have the
same temperature, the second law becomes

∆SDO(t)− 1

T

∑
ν

Qν(t) ≥ 0 (4)

with SDO(t) denoting the Gibbs-Shannon entropy of
Pq(x, v; t).

We are only interested in average thermodynamic
quantities. Therefore, the above analysis is quite stan-
dard and detailed definitions are postponed to Ap-
pendix B. In our numerical simulations, however, we
compute all quantities as averages over stochastic tra-
jectories as detailed in Ref. [60].

(ii) Reduced dynamics.—We now show how our au-
tonomous model implements an idealized cycle in a cer-
tain parameter regime. Numerical simulations of Eq. (1)
support our arguments.

First, we want the oscillator to act like a work reser-
voir, which is described by the ideal limit m→∞ while
keeping ω =

√
k/m fixed [22]. We argue below that

this limit is actually ‘over-idealized,’ but for now it is in-
structive to consider it. Then, the generator (2) reduces
to Lq → −v∂x + ∂vω

2x, which describes undisturbed
motion of the oscillator according to the Hamiltonian
HO(x, v) = mv2/2 + kx2/2. If the initial condition is
Pq(x, v; 0) = Pq(0)δ(x−x0)δ(v), i.e., the oscillator starts
at position x0 with zero velocity, the state at time t reads
Pq(x, v; t) = Pq(t)δ(x− xt)δ(v− vt) with xt = x0 cos(ωt)
and vt = ẋt. Thus, there is no backaction from the dot on
the oscillator. However, the oscillator still influences the
dot, which now obeys a time-dependent master equation:

∂Pq(t)
∂t

=
∑
q′

Rqq′(xt)Pq′(t). (5)
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The solution of Eq. (5), and quantities derived from it, is
distinguished from the solution of the full dynamics (1)
by using calligraphic symbols such as Pq.

In reality, the above limit is too strong as it implies
a constant oscillator energy: dHO(xt, vt)/dt = 0. This
is unphysical because Eq. (5) predicts a finite energy
flow into the oscillator (see below). Of course, in reality
any oscillator mass is finite, albeit it can be very large.
An adequate description is achieved by replacing xt with
x̃t = at cos(ωt), where at is the amplitude of the oscil-
lator starting from a0 = x0. For large but finite mass
m, at varies slowly in time, i.e., at = x0(1 + δt) with

|δ̇t| � ω. Furthermore, for times t such that |δt| � 1,
Eq. (5) remains a good approximation while at the same
time there is a finite change in oscillator energy because
the evaluation of HO(xt, vt)−HO(x0, v0) involves terms
like δtmx0, which can be large.

The previous point is very important. The limit m→
∞ is inconsistent, whereas the regime of finite but large
mmakes our analysis consistent and non-trivial. From an
analytical and numerical perspective, this is challenging
as we can not rely on a steady state analysis of Eq. (1).
To capture thermodynamic changes of the oscillator, we
have to take into account its transient dynamics.

Finally, we justify the analysis in terms of a thermo-
dynamic cycle divided into strokes (cf. Figs. 1 and 2 and
Appendix C). First, the (approximately) periodic mo-
tion of the oscillator gives us the duration τcycle = 2π/ω
of one cycle. Next, if x0 and λ are chosen appropri-
ately, the exponential sensitivity of the tunneling rates
ΓL/R(xt) justifies to neglect the influence of both leads
when the dot is in the centre and to neglect the influence
of the left (right) lead when the dot is on the right (left).
The first case, determined by ΓL/R(xt) ≈ 0, realizes an
isentropic stroke, where the dot does not change its state
while its energy changes due to its movement in the po-
tential bias. The second case, determined by ΓL(xt)� 0
or ΓR(xt)� 0, realizes a dissipative stroke, where, both,
the state and energy of the dot changes. If parameters
are fine-tuned such that the dot remains at temperature
T , this stroke is isothermal. In general, however, the dot
is out of equilibrium in our setup.

Thus, we find that the cycle description is justified if

e|x0|/λ � 1, τisenΓ0 exp

[
|x0|
λ

sin
(ωτisen

2

)]
� 1. (6)

The first condition in Eq. (6) is necessary to neglect the
effect of the opposite, remote lead during the dissipative
strokes. The second condition involves the duration τisen
of the isentropic strokes, which depends on other param-
eters of the model. It is derived in detail in Appendix C.

We are particularly interested in the properties of our
device as a function of the oscillator mass m (keeping ω
fixed) and the friction coefficient γ. The other parame-
ters are based on reasonable estimates from Refs. [43,
48, 51–53], precisely listed in Appendix D. For them
we find a duration τisen = τcycle/12 of the isentropic
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FIG. 2. Parametric plot of the dot occupation and energy
ε(t) = ε0 − αeV xt, which is in one-to-one correspondence
with the oscillator position xt (ε0 = 0 here). We compare
the solution of Eq. (5) with unperturbed oscillator trajectory
xt = x0 cos(ωt) (black and dotted) with the average of 1000
stochastic trajectories of the full dynamics (1) (thin brown)
with identical initial condition for t ∈ [0, 250ns]. The system
quickly reaches a limit cycle, where the enclosed area mea-
sures the extracted work per cycle.

stroke in unison with condition (6) with a total cycle
time τcycle ≈ 25 ns.

(iii) Reduced thermodynamics.—We start with the
analysis of Eq. (5), distinguished by calligraphic symbols.
For now, we ignore the fact that Eq. (5) follows from an
underlying autonomous model—instead, we assume that
the time-dependent rate matrix is generated by an ideal
work reservoir as conventionally done in thermodynamic
cycle analyses [1–6]. Then, mechanical work becomes

Wmech(t) =

∫ t

0

dt′P1(t′)
∂ε(xt′)

∂t′
. (7)

For a single cycle the work equals the area enclosed by
the limit cycle trajectory (counted positive in clockwise
direction in Fig. 2), similar to a p–V diagram in tradi-
tional cycles.

As before, there are heat flows Qν(t) from lead ν and
chemical work Wchem(t) such that the first law reads

∆UD(t) = QL(t) +QR(t) +Wchem(t) +Wmech(t). (8)

Here, UD(t) = ε(xt)P1(t) is the internal energy of the
dot. Furthermore, denoting by SD(t) the Gibbs-Shannon
entropy of Pq(t), the second law reads

∆SD(t)− 1

T
[QL(t) +QR(t)] ≥ 0. (9)

This analysis follows again from standard considerations
and explicit expressions are thus only displayed in Ap-
pendix E. Note that Eqs. (8) and (9), while mathemat-
ically true, need not coincide with the thermodynamics
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of the autonomous model. In general, the dot dynamics
predicted by both methods differ, i.e., Pq(t) 6= Pq(t) ≡∫
dxdvPq(x, v; t).
We now return to the first and second law of the au-

tonomous model, Eqs. (3) and (4), rewritten as (dropping
the t-dependence for simplicity)

∆UD = QL +QR +Wchem +QO −∆UO, (10)

∆SD −
QL
T
− QR

T
+ ∆SO|D −

QO
T
≥ 0. (11)

Here, the oscillator energy UO equals the expectation
value of its Hamiltonian HO(x, v) and SO|D = SDO−SD
is the conditional entropy. The necessary conditions for
the thermodynamic laws (8) and (9) of the reduced model
to coincide with Eqs. (10) and (11) follow as

QO
T

= 0 and ∆SO|D = 0. (12)

Of course, on top of that, we also need Pq(t) = Pq(t).
Even if all parameters are kept finite in the original

model, the above conditions can be satisfied to good
approximation. First, for large mass m, keeping k/m
fixed, the dynamics is well-described by Eq. (5), i.e.,
Pq(t) ≈ Pq(t). We checked this numerically for multiple
parameters, see Fig. 2 for a particular example. Further-
more, the solution of Eq. (1) remains approximately of
the form Pq(x, v; t) ≈ Pq(t)δ(x − xt)δ(v − vt), i.e., the
oscillator state has low entropy for long times, which im-
plies ∆SO|D ≈ 0 (dash-dotted grey line in Fig. 3).

The previous argument is not yet sufficient to conclude
that QO/T ≈ 0. Instead, the heat flow QO is controlled
by the friction coefficient γ. Thus, on top of the large m
regime, we also require small γ. Then, Eqs. (10) and (11)
coincide with Eqs. (8) and (9). In this limit, the oscillator
resembles a perfect work reservoir or battery.

These arguments are exemplified in Fig. 3. First,
for increasing m, we see that we obtain ∆UO − QO ≈
−Wmech. Second, we observe for decreasing γ that QO →
0. Hence, ∆UO = −Wmech and the mechanical work
computed from the reduced dynamics (5) is stored as ex-
tractable energy in the oscillator since T |∆SO| � |∆UO|.

The question remains whether also the cycle analy-
sis matches this picture. However, if condition (6) is
satisfied, then the dynamics of the master equation (5)
matches the cycle dynamics. This is constructed by time-
evolving the state Pq(t) only with respect to the rate
matrix RL(xt) [RR(xt)] during the left [right] dissipative
stroke and by using the identity map for the isentropic
strokes. In this regime, the thermodynamic quantities in
Eqs. (8) and (9) coincide by construction with the cycle
analysis, demonstrated in detail in Appendix F.

Experimental feasibility.—Can thermodynamic cycles
realistically be used to analyse nanoscale engines? Based
on our parameter choice (see Appendix D), we find the
following. First, the experimentally used mass m is al-
ready sufficiently large, albeit an increase in it would still
be beneficial. Second, to mimic an ideal work reservoir,
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FIG. 3. Average energy change of the oscillator ∆UO (with
error bars marking the statistical error) over the time interval
[0, 250ns] versus mass for different friction coefficients (in log-
arithmic scale). Dashed curves of matching color correspond
to the heat flow QO from the oscillator bath. As γ → 0 and
m → ∞, ∆UO matches −Wmech (dash-dotted blue line) and
QO and ∆SO|D become negligible.

the friction γ needs to be about one order of magnitude
smaller than typical experimental values. This could be
in reach with current technologies. Third, as stated in
the SM, our numerics is based on a large voltage V . This
likely invalidates the ultrastrong Coulomb blockade as-
sumption and raises the final question: is a cycle with a
single-electron working fluid realistic?

To answer it, we estimate the number N of elec-
trons contributing to the transport in the ‘bias window’
∆E ≡ eV . The electrostatic energy of the dot is ED =
(eN)2/(2C), where C ≈ 4πε0d is the self capacitance of
the dot mounted on the nanopillar with diameter d [65].
Equating ∆E = ED, we obtain N2 ≈ 3.5 · 1010 · d/m for
our parameter choice. For N = 1 (the case considered
here), this requires a nanopillar with a diameter of 30 pm.
This is smaller than the radius of a hydrogen atom and
impossible to fabricate. Hence, we assume a diameter of
5 nm for stability reasons, which is optimistic compared
to experimental values of d = 60 nm [51][66]. Then, we
obtain the estimate N ≈ 13. We conclude that an au-
tonomous implementation of a thermodynamic cycle with
a single-electron working medium seems experimentally
impossible, but N & 10 electrons could suffice.

Our conclusions seem to remain for other experimen-
tal platforms [67], but a recent experiment [55] reports
sustained oscillations of a suspended carbon nanotube
for N = 1 electron. However, in view of our Fig. 1,
the nanotube oscillates vertically (i.e., up–down instead
of left–right), which makes the identification of strokes
unclear. Nevertheless, it remains an intriguing question
whether the nanotube acts like an ideal work reservoir.

We remark that we have not shown how to implement
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a Carnot or Otto cycle. Our cycle is driven by a voltage
instead of temperature bias, converting chemical work
into mechanical work. Autonomously realizing Carnot
and Otto cycles faces additional challenges and remains
open.

Conclusions.—We demonstrated the potential of self-
oscillating engines to address problems of foundational
and practical relevance. These models could pave the
way for fruitful future research avenues, as evidenced also

by other recent studies [59–61, 68–77].
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[39] T. Novotný, A. Donarini, and A.-P. Jauho, Phys. Rev.

Lett. 90, 256801 (2003).
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ĉ0ĉ
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′
ĉ0 + ρ̂e−2x̂/λ

′
ĉ0ĉ
†
0

)
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ρ̂ex̂/λ

′
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ĉ†0ĉ0
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Here, we mostly followed the notation of Ref. [39], but explicitly denoted operators with a hat for convenience. The
notation of the main text is obtained after identifying Hosc = HO, λ′ = 2λ, E = αV and γ′ = γ/m (note that the

friction coefficient γ in the main text does not have the dimension of a rate in contrast to γ′). Furthermore, ĉ†0 (ĉ0)
creates (annihilates) an electron on the dot and N̄ = (eβ~ω − 1)−1 is the Bose-Einstein distribution. Finally, we point
out that the master equation in Ref. [39] was derived in the ‘high-bias’ limit, which allowed them to replace the Fermi
functions by fL(ω) ≈ 1 and fR(ω) ≈ 0 for all dot energies ω. For simplicity in the presentation and in unison with
Ref. [39] we keep the Fermi function out of the discussion here.

For the reasons spelled out in Footnote [62] of the main text, we are interested in the classical limit of the quantum
master equation above. This is most conveniently derived by considering the time-evolution of the Wigner function
W (x, p) of the oscillator (where p is its momentum) and by taking the formal limit ~→ 0 [63]. Moreover, we are only
interested in the occupation probabilities of the dot as coherences between the empty and filled state of the dot are
prohibited since they correspond to superpositions of different charged states. Thus, we define

Wq(x, p) =
1

~π

∫ ∞
−∞

dy〈x− y, q|ρ̂|x+ y, q〉e2ipy/~, (A5)

where q ∈ {0, 1} denotes the number of electrons on the dot. The time-evolution of Wq(x, p) can then be derived
from Eq. (A1) by using operator correspondence rules, which can be readily checked for consistency in textbooks [64].
Examples are

x̂ρ̂ 7→
(
x+

i~
2

∂

∂p

)
Wq(x, p), p̂ρ̂ 7→

(
p− i~

2

∂

∂x

)
Wq(x, p), . . . , (A6)

from which we can already confirm the position-momentum commutation relation. Multiplication from the right with
these operators follows from Hermitian conjugation, as does a combination of them (provided one minds the correct
ordering).

We find for the first term in Eq. (A1) that

Lcohρ̂ 7→
[
− ∂

∂x

p

m
+

∂

∂p
(kx− eEq)

]
Wq(x, p), (A7)

without any need to take the limit ~ → 0. After setting v = p/m, Eq. (A7) reproduces the first, second and fourth
term of the generator Lq defined in Eq. (2) of the main text.

Next, we consider the second term Ldriveρ̂(t) in Eq. (A1). The exponential factors ex̂/λ
′

in it make the mapping
complicated in principle, but remember that we are only interested in the limit ~ → 0. Since ~ appears nowhere
explicitly in Ldrive, we can directly use lim~→0 x̂ρ̂ 7→ xWq(x, p), which follows from Eq. (A6). Thus, we can set, e.g.,

lim~→0 e
x̂/λ′

ρ̂ 7→ ex/λ
′
Wq(x, p) and we obtain

lim
~→0
Ldriveρ̂ 7→ −

ΓL
2
e−2x/λ

′
(
ĉ0ĉ
†
0W (x, p)− 2ĉ†0W (x, p)ĉ0 +W (x, p)ĉ0ĉ

†
0

)
− ΓR

2
e2x/λ

′
(
ĉ†0ĉ0W (x, p)− 2ĉ0W (x, p)ĉ†0 +W (x, p)ĉ†0ĉ0

)
.

(A8)

Here, we have not yet taken matrix element |q〉 in the dot basis. Doing so reveals that

lim
~→0
Ldriveρ̂ 7→

∑
q′

Rqq′(x)Wq′(x, p), (A9)

where Rqq′(x) is the rate matrix defined in the main text in the high bias limit (as discussed above).
Finally, the last term Ldampρ̂(t) in Eq. (A1) simply describes the dynamics of a damped harmonic oscillator. It

reduces to the third and fifth term of the generator Lq defined in Eq. (2) of the main text for ~ → 0, after paying
attention to the fact that γ′ = γ/m. Thus, after setting Pq(x, v; t) ≡ Wq(x,mv), we obtain Eq. (1) of the main
text as the classical limit of the quantum master equation derived in Ref. [39]. Note that in the classical limit
Pq(x, v; t) = Wq(x,mv) has no negativities and becomes a well defined probability density.

Appendix B: Precise thermodynamic definitions for the autonomous model

We define the internal energy and entropy of the combined dot-oscillator system as

UDO(t) ≡
∑
q

∫
dxdv

[
mv2

2
+
kx2

2
+ ε(x)q

]
Pq(x, v; t), SDO(t) ≡ −kB

∑
q

∫
dxdvPq(x, v; t) ln

[
~
m
Pq(x, v; t)

]
.

(B1)
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FIG. 4. Plot of the bare tunneling rates ΓL(xt) (circles) and ΓR(xt) (squares) as a function of the oscillator trajectory
xt = x0 cos(ωt) obtained in the limit of an ideal work reservoir for the numerical parameters specified in Sec. D. The regimes
where we identify the different strokes are separated by vertical lines. We remark that the precise numerical definition of the
strokes requires to introduce a threshold value and is therefore only fixed with respect to that value. To be on the safe side,
we choose our threshold value such that the integral (C1) is much smaller than one. Then, at the boundary of the isentropic
stroke, the dot is still hardly coupled to any of the leads, and small changes of the cycle durations will have no net effect.

We remark that the factor ~/m, which ensures that the argument of the logarithm is dimensionless, cancels out
whenever we take differences of SDO(t). This is always the case in the following. Furthermore, the instantaneous heat

flow from lead ν ∈ {L,R} is composed out of an energy and a particle current: Q̇ν(t) = Jν(t) − µνIν(t). They are
defined as

Jν(t) ≡
∑
q,q′

∫
dxdv(ε0 − αeV x)qRνq,q′(x)pq′(x, v; t), Iν(t) ≡

∑
q,q′

∫
dxdvqRνq,q′(x)pq′(x, v; t). (B2)

The instantaneous heat flow from the oscillator bath Q̇O(t) only has an energy component:

Q̇O(t) =
∑
q

∫
dxdv

(
mv2

2
+
kx2

2
− αeV xq

)
LqPq(x, v; t). (B3)

The heat flows appearing in the first law (3) in the main text follow by integration: Qν(t) =
∫ t
0
dt′Q̇ν(t′), ν ∈ {L,R,O}.

Finally, the chemical work is defined as

Wchem(t) ≡
∫ t

0

dt′ [µLIL(t′) + µRIR(t′)] . (B4)

Appendix C: Partitioning the cycle into strokes

The emergence of different strokes in our analysis arises from the sensitivity of the bare tunneling rates ΓL/R(xt)
with respect to the changing position xt of the oscillator as sketched in Fig. 4. If ΓL(xt) � ΓR(xt) ≈ 0 [ΓR(xt) �
ΓL(xt) ≈ 0], the oscillator is on the left [right] and we can neglect the influence of the opposite lead, which defines
the respective dissipative strokes. If ΓL(xt) ≈ ΓR(xt) ≈ 0, the oscillator is in the middle, which defines the isentropic
strokes. Whether these strokes can be identified and how long they last depends on the precise choice of numerical
parameters. Below, we estimate the time τisen that the oscillator spends in the centre with negligible influence from
both leads, i.e., we ask when is ΓL(xt) ≈ ΓR(xt) ≈ 0. This gives us the second condition in Eq. (6) in the main text.

The time evolution of the dot is given by the time-ordered exponential of the rate matrix appearing in Eq. (5) in
the main text and we seek to find the time-intervals in which this is approximately equal to the identity, i.e., the state
of the dot remains unchanged. The length of this ‘isentropic’ time interval is denoted τisen in the following. Clearly,
by symmetry these time-interval are centered around the times π(n+ 1

2 )/ω (n ∈ N) when the oscillator is in the centre
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around xt ≈ 0 [note that the initial condition for the oscillator is (x0, v0) = (|x0|, 0), see Sec. D]. To determine the
length τ of, say, the first time-interval, we demand that

I ≡

π
2ω+

τisen
2∫

π
2ω−

τisen
2

dt [ΓL(xt) + ΓR(xt)]� 1. (C1)

Here, ΓL(xt) = Γ0e
−xt/λ = ΓR(−xt) are the bare tunneling rates for the left and right lead ignoring the influence of

the Fermi functions. Since the Fermi functions are always smaller than one, neglecting them only underestimates the
length τisen.

Nevertheless, an exact analytical evaluation of the integral (C1) is still not possible. Therefore, we make further
approximations. First, we assume the necessary requirement exp(|x0|/λ) � 1, i.e., the first condition of Eq. (6) in
the main text, to be satisfied. Together with our choice for the initial state of the oscillator, we simplify

I ≈

π
2ω∫

π
2ω−

τisen
2

ΓL(xt)dt+

π
2ω+

τisen
2∫

π
2ω

ΓR(xt)dt� 1. (C2)

This step undestimates the value of I, but this is well compensated by the next crude approximation, where we replace
ΓL(xt) and ΓR(xt) by their maximum values taken at the boundaries for t = π

2ω −
τisen
2 and t = π

2ω + τisen
2 , respectively.

Then,

I ≈ τisen
2

ΓL
(
xπ/2ω−τisen/2

)
+
τisen

2
ΓR
(
xπ/2ω+τisen/2

)
= τisenΓ0 exp

[
|x0|
λ

sin
(ωτisen

2

)]
, (C3)

where we used the identity cos(π/2± x) = ∓ sin(x). Now, the requirement that I � 1 gives the second condition in
Eq. (6) in the main text.

For the numerical parameters listed in Sec. D below, we find a partition into strokes as summarized in Table I.

stroke time interval [τcycle]

(a) right dissipative stroke
[
0, 5

24

)
∪
[
19
24
, 1
)

(b) isentropic stroke
[

5
24
, 7
24

)
(c) left dissipative stroke

[
7
24
, 17
24

)
(d) isentropic stroke

[
17
24
, 19
24

)
TABLE I. Division of the cycle into four strokes such that Eq. (6) in the main text is satisfied.

Appendix D: Parameter choice for numerical simulations

The electron shuttle can be realized using different experimental setups. We here focus on the case where the
oscillatory degree of freedom is a nanopillar as sketched in Fig. 1 in the main text and realized in Refs. [48, 51–53].
The material parameters typical for such experiments and used in this work are summarized below and in Table II.

The bias voltage for electron shuttles can be tuned over a large regime. Here, we use a value of V = 25V, which
is a bit larger than experimentally reported values, but guarantees a clearly visible regime of self-oscillations and a
simpler numerical treatment. We remark that the threshold value for the onset of self-oscillations is in our model
around V ∗ ≈ 10 V for the parameters chosen here. In reality, for V = 25V we no longer expect the ultrastrong
Coulomb blockade assumption to work well, which means that multiple electrons can hop on the dot. Importantly,
this effect does not change the general conclusions reported in this paper and it can be easily accounted for (see the
final conclusions in the main text). Furthermore, in all our calculations we choose a temperature of T = 1K and set
the chemical potentials as µL = ε0 +eV/2 and µR = ε0−eV/2, which eliminates the dependence on the on-site energy
ε0 in all equations.

Since we consider transient dynamics, the choice of initial conditions and running time is important. Here, we
choose the initial conditions x0 = 6.0 nm, v0 = 0.0 nm/ns and Pq(0) = δq,1 (filled dot). The simulation runs for
tf = 250 ns, which corresponds to roughly 150 cycles, and we average over 1000 trajectories.
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Parameter Value Units Source

ω 0.25 GHz [52]

m 20× 10−19 kg [52, 53]

λ 1 nm [53]

α 0.01 nm−1 Estimated from [48, 51]

γ 0.05× 10−10 kg/s [53]

Γ0 0.01 GHz [53]

V 25.0 V

T 1 K

TABLE II. Parameters used in this work.

Appendix E: Precise thermodynamic definitions for the reduced model

The internal energy and entropy of the dot are defined as follows:

UD(t) ≡
∑
q

[ε0 − αeV x(t)]qPq(t), SD(t) ≡ −kB
∑
q

Pq(t) lnPq(t). (E1)

The heat flow and chemical work rate are composed out of the energy and matter fluxes as usual: Q̇ν(t) = Jν(t) −
µνIν(t) and Ẇchem(t) =

∑
ν µνIν(t). They are defined as

Iν(t) ≡
∑
q,q′

qRνq,q′(xt)Pq′(t), Jν(t) ≡ [ε0 − αeV x(t)]Iν(t). (E2)

Appendix F: Cycle analysis of the reduced model in terms of thermodynamic strokes

In this section we denote by τa,b,c,d the time-intervals defined in Table I for brevity. Furthermore, for definiteness
we focus on the analysis of the first cycle [0, τcycle]. Extending our result below to further cycles is merely a matter
of notation.

Based on this, the state of the dot within the cycle analysis at time t ∈ [0, τcycle], denoted [Pq(t)]cycle, can be written
in the compact form

[Pq(t)]cycle = T+ exp

{∫
τa∩[0,t]

dtRL(xt) +

∫
τc∩[0,t]

dtRR(xt)

}
Pq(0), (F1)

where T+ denotes the time-ordering operator. If condition (6) in the main text is satisfied, then we have

[Pq(t)]cycle ≈ Pq(t) = T+ exp

{∫ t

0

dt[RL(xt) +RR(xt)]

}
Pq(0). (F2)

The claim is now that this is sufficent to demonstrate that the thermodynamic analysis of the cycle coincides with
the analysis of Sec. E.

To this end, we first note that the definition of the state functions internal energy and system entropy are the same
as in Sec. E, see Eq. (E1), with Pq(t) replaced by [Pq(t)]cycle. Thus, clearly, if Pq(t) ≈ [Pq(t)]cycle, then

UD ≈ [UD]cycle and SD ≈ [SD]cycle, (F3)

where we used [X ]cycle to denote a thermodynamic quantity X in our cycle analysis. Furthermore, the definition of
mechanical work during stroke s (s ∈ {a, b, c, d}) is

[W(s)
mech]cycle =

∫
τs

dt[P1(t)]cycle
∂ε(xt)

∂t
. (F4)

Again, if Pq(t) ≈ [Pq(t)]cycle, we clearly have∑
s

[W(s)
mech]cycle ≈ Wmech =

∫ τcycle

0

dtP1(t)
∂ε(xt)

∂t
. (F5)

We now continue with a step-by-step analysis of the thermodynamic cyle
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(a) Left dissipative stroke: The dot is only coupled to the left lead and the first and second law read

∆US = [QL]cycle + [Wchem]cycle +Wmech, ∆SD − [QL]cycle/T ≥ 0. (F6)

The not yet defined quantities appearing here are

[QL]cycle =

∫
τa

dt[JL(t)− µLIL(t)], [Wchem]cycle =

∫
τa

dtµLIL(t) (F7)

with the energy and matter current defined in Eq. (E2).

(b) Isentropic stroke: One has

∆US =Wmech, [QL]cycle = [QR]cycle = 0, [Wchem]cycle = 0, ∆SD = 0. (F8)

(c) Left dissipative stroke: Everything as in (a) with L replaced by R and τa replaced by τc.

(d) Isentropic stroke: Identical to (b).

Thus, to finally guarantee that the cycle analysis matches the analysis from Sec. (D), we recall that the bare
tunneling rates ΓL,R(xt) are contained in the rate matrix RL,R(xt) as an overall factor. Thus, if condition (6) in the
main text is satisfied, we observe that

QL =

∫
[0,τcycle]

dt[JL(t)− µLIL(t)] ≈
∫
τa

dt[JL(t)− µLIL(t)] = [QL]cycle, (F9)

QR =

∫
[0,τcycle]

dt[JR(t)− µRIR(t)] ≈
∫
τc

dt[JR(t)− µRIR(t)] = [QR]cycle. (F10)

This shows that the thermodynamic analysis in terms of a cycle is automatically consistent if the analysis of Sec. E
is consistent (which requires large mass m and small friction γ) and condition (6) in the main text is satisified.
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