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There is a growing family of rare-earth kagome materials with dominant nearest-neighbor interactions and
strong spin orbit coupling. The low symmetry of these materials makes theoretical description complicated,
with six distinct nearest-neighbor coupling parameters allowed. In this Article, we ask what kinds of classical,
ordered, ground states can be expected to occur in these materials, assuming generic (i.e. non-fine-tuned) sets
of exchange parameters. We use symmetry analysis to show that there are only five distinct classical ground
state phases occurring for generic parameters. The five phases are: (i) a coplanar, 2-fold degenerate, state with
vanishing magnetization (A1), (ii) a noncoplanar, 2-fold degenerate, state with magnetization perpendicular to
the kagome plane (A2), (iii) a coplanar, 6-fold degenerate, state with magnetization lying within the kagome
plane (E-coplanar), (iv) a noncoplanar, 6-fold degenerate, state with magnetization lying within a mirror plane
of the lattice (E-noncoplanar6), (v) a noncoplanar, 12-fold degenerate, state with magnetization in an arbitrary
direction (E-noncoplanar12). All five are translation invariant (q = 0) states. Having found the set of possible
ground states, the ground state phase diagram is obtained by comparing numerically optimized energies for each
possibility as a function of the coupling parameters. The state E-noncoplanar12 is extremely rare, occupying
< 1% of the full phase diagram, so for practical purposes there are four main ordered states likely to occur in
anisotropic kagome magnets with dominant nearest neighbor interactions. These results can aid in interpreting
recent experiments on “tripod kagome” systems R3A2Sb3O14, as well as materials closer to the isotropic limit
such as Cr- and Fe- jarosites.

I. INTRODUCTION

Frustration can come from various sources. This is cer-
tainly true of the frustration exhibited by many magnetic
materials, which may be generated by the geometry of the
lattice1,2, by competition between interactions of different
kinds3,4 or by bond-dependent anisotropies5,6. Sometimes, all
of these sources of frustration are present at once, making the
problem of determining a ground state both more challenging
and more rich7–9.

Kagome lattice rare-earth materials10–20 provide a realiza-
tion of this scenario. The kagome lattice [Fig. 1(a)] is paradig-
matic of geometrical frustration while the strong spin-orbit
coupling inherent to many rare-earth ions produces compli-
cated anisotropic exchange interactions with distinct, compet-
ing, contributions and bond-dependence.

In this Article we study a model of anisotropic exchange on
the kagome lattice, including all possible nearest neighbor in-
teractions consistent with the lattice symmetries8. This model
has six independent coupling parameters, once one allows for
the absence of reflection symmetry in the kagome plane, as is
appropriate for many materials.

Several previous works have investigated different types
of allowed anisotropic nearest-neighbor interaction on the
kagome lattice8,21–30, but none has treated all possible inter-
actions at once, in the absence of reflection symmetry in the
plane. Thus, in some sense, these previous works can be
viewed as higher-symmetry limits of the generic case studied
here. Our goal in this work is to identify the ordered, classical,
ground states which are stable over a finite fraction of the six
dimensional parameter space of the full model. We will not
address the physics at the phase boundaries between different
states or limits featuring high symmetry beyond time rever-
sal and lattice symmetries, or cases of accidental degeneracy,
although these can be of interest. In this sense, we are study-

ing those ground states stable in the presence of “generic” ex-
change anisotropy.

We find that in the full six-dimensional parameter space
there are only five such distinct ground states. They are
all translationally invariant, and may be classified by how
they transform under the C3v point group symmetries of the
kagome lattice. Example spin configurations for each are
shown in Figs. 2-6.

In addition to materials with strong exchange anisotropy,
our approach is also useful for understanding materials where
anisotropy is weak but nevertheless plays a key role in select-
ing the ground state due to the frustrated nature of Heisen-
berg interactions on the kagome lattice. Our results can be
viewed as illuminating the spectrum of possible ground states
which can be obtained by perturbing an isotropic kagome
magnet with various allowed forms of nearest-neighbor ex-
change anisotropy. This may be of use in understanding the
ordered ground states of materials including the Cr- and Fe-
jarosites31–35 and Cd-kapellasite36.

The remainder of this Article is organised as follows:

• In Section II we review the most general symmetry al-
lowed nearest neighbor exchange Hamiltonian for the
kagome lattice8,35. We then analyse it in terms of the
irreducible representations of the point group C3v .

• Building on this symmetry analysis, in Section III, we
demonstrate the five forms of magnetic order which
may arise from the generic Hamiltonian.

• In Section IV we use numerical calculations to calculate
the ground state phase diagram of the generic Hamilto-
nian, delineating the regions of parameter space covered
by each of the five ordered phases.

• In Section V we discuss experimental results on
kagome materials in the light of our calculations.
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FIG. 1. (a) The kagome lattice, a network of corner sharing trian-
gles. The labels 0, 1, 2 indicate the convention used to label the three
sublattices of the kagome lattice in this work. t1 and t2 are the basic
translations under which the lattice is symmetric (b) The C3v point
group, composed of three reflection symmetries and a threefold rota-
tion axis through the center of the triangle.

• In Section VI we close with a brief summary and dis-
cussion of open directions for future work.

II. HAMILTONIAN AND SYMMETRY ANALYSIS

We consider generalized bilinear anisotropic exchange in-
teractions on a kagome lattice [Fig. 1(a)],

H =
∑

〈ij〉
Si · Jij · Sj . (1)

We require that the interactions respect the following sym-
metries:

• Time reversal

• Lattice translations, t1, t2, indicated in Fig. 1(a)

• Spatial inversion through lattice sites

• C3 rotations around the center of each kagome triangle
[Fig. 1(b)]

• Reflections in the mirror planes indicated in Fig. 1(b)

We do not assume any reflection symmetry in the plane of
the lattice itself.

We assume that the spins Si transform like magnetic mo-
ments, i.e. as axial vectors, odd under time reversal symme-
try. This will apply not only when Si is a true magnetic mo-
ment but also when it is a pseudospin-1/2 degree of freedom
describing the 2-fold degenerate crystal electric field (CEF)
ground states of a Kramers ion. In this case the actual mag-
netic moment is related to the pseudospin via the g-tensor

mi = gi · Si. (2)

An alternative case is possible in which Si is a pseudospin
describing the low energy CEF states of a non-Kramers ion,
which will generally be non-degenerate due to a lack of pro-
tection from time reversal symmetry. In the non-Kramers
case, the pseudospin operators Si will transform differently

under time-reversal and the discussion in this section will not
apply37,38.

We now proceed to constrain the form of the exchange ma-
trices Jij using the symmetries listed above. Time reversal
symmetry T

T Si = −Si (3)

is guaranteed by the bilinear form of Eq. (1).
There are three spins in the unit cell, which we label

S0,S1,S2 according to the convention in Fig. 1(b). Trans-
lational symmetry imposes that the coupling matrices Jij
may only depend on which sublattices i and j belong to and
whether the bond ij is on an ‘up’ or ‘down’ triangle (red or
blue triangles in Fig. 1(a)). Inversion symmetry then guar-
antees that ‘up’ and ‘down’ triangles have the same coupling
matrices.

There are thus three different coupling matrices
J01,J12,J20 entering Eq. (1) which define the interac-
tions between nearest neighbour spins on each pair of
sublattices.

The form of the matrices Jij is constrained by theC3v point
group symmetry at the center of each triangle [Fig. 1(b)], and
was given in Refs. 8 and 35:

J01 =




Jx Dz −Dy

−Dz Jy K
Dy K Jz


 (4)

J12 =


1
4 (Jx + 3Jy) Dz +

√
3
4 (Jx − Jy) 1

2 (Dy +
√

3K)

−Dz +
√
3
4 (Jx − Jy) 1

4 (3Jx + Jy) 1
2 (
√

3Dy −K)
1
2 (−Dy +

√
3K) 1

2 (−
√

3Dy −K) Jz




(5)
J20 =


1
4 (Jx + 3Jy) Dz +

√
3
4 (Jy − Jx) 1

2 (Dy −
√

3K)

−Dz +
√
3
4 (Jy − Jx) 1

4 (3Jx + Jy) 1
2 (−
√

3Dy −K)
1
2 (−Dy −

√
3K) 1

2 (
√

3Dy −K) Jz


 .

(6)

There are six independent parameters in these exchange
matrices: three diagonal exchanges Jx, Jy , Jz , two
Dzyaloshinskii-Moriya (DM) interactions Dy, Dz and one
symmetric off-diagonal exchange K.

An additional symmetry which could, in principle, be
present is reflection symmetry in the plane of the kagome lat-
tice. The presence of such a symmetry would reduce the set of
allowed exchange parameters to four, by settingDy = K = 0.
This case was discussed in detail in Ref. 8. In this work,
we will continue to assume that there is no reflection symme-
try in the kagome plane, as is appropriate for many rare-earth
kagome materials17. Therefore, we shall take both Dy and K
to be nonzero.

To begin in determining the phase diagram it is helpful to
rewrite the Hamiltonian in terms of objects mγ,k transform-
ing according to the irreducible representations (irreps) of the
point group. mγ,k are defined for each triangle of the lattice,
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which we index using k. This approach is discussed for the
kagome lattice in Ref. 8 and the pyrochlore lattice in Ref. 7.

These objects can function as local order parameters for
the different kinds of 3-sublattice order which we will en-
counter on the phase diagram of the anisotropic exchange
model. They also aid in the determination of the phase di-
agram itself. The appropriate objects are defined in Ref. 8
but we reintroduce them here since they are essential to our
discussion.

Firstly, there is one scalar object transforming according to
the trivial A1 representation of C3v . A nonzero average value
of this field breaks none of the point-group symmetries, only
breaking time-reversal symmetry.

mA1,k =
1

3

(
1

2
Sx0,k +

√
3

2
Sy0,k +

1

2
Sx1,k −

√
3

2
Sy1,k − Sx2,k

)

(7)

Here Sαi,k is the α component of the spin belonging to sublat-
tice i and triangle k.

There are then two linearly independent scalars, which
transform according to the A2 representation. A nonzero av-
erage value of these fields breaks time reversal symmetry and
all three mirror symmetries of C3v but preserves the 3-fold
rotational symmetry.

mA2a,k =
1

3

(
Sz0,k + Sz1,k + Sz2,k

)
(8)

mA2b,k =
1

3

(
−
√

3

2
Sx0,k +

1

2
Sy0,k +

√
3

2
Sx1,k +

1

2
Sy1,k − S

y
2,k

)

(9)

Finally, there are three two-component vectors, transform-
ing according to the two dimensional E-irrep of C3v

mEa,k =
1

3

(
Sx0,k + Sx1,k + Sx2,k
Sy0,k + Sy1,k + Sy2,k

)
(10)

mEb,k =
1

3

(
1
2S

x
0,k −

√
3
2 S

y
0,k + 1

2S
x
1,k +

√
3
2 S

y
1,k − Sx2,k

−
√
3
2 S

x
0,k − 1

2S
y
0,k +

√
3
2 S

x
1,k − 1

2S
y
1,k + Sy2,k

)

(11)

mEc,k =
1

3




√
3
2

(
Sz0,k − Sz1,k

)

√
2
(
− 1

2S
z
0,k − 1

2S
z
1,k + Sz2,k

)

 (12)

In terms of these objects the Hamiltonian may be written

H =
3

2

∑

k

[
λA1m

2
A1,k

+ (mA2a,k,mA2b,k)

(
λA2,aa

λA2,ab

2
λA2,ab

2 λA2,bb

)(
mA2a,k

mA2b,k

)

+ (mEa,k,mEb,k,mEc,k)



λE,aa

λE,ab

2
λE,ac

2
λE,ab

2 λE,bb
λE,bc

2
λE,ac

2
λE,bc

2 λE,cc






mEa,k

mEb,k

mEc,k



]

=
3

2

∑

k

[
λA1m

2
A1,k + (mA2a,k,mA2b,k) ΛA2

(
mA2a,k

mA2b,k

)

+ (mEa,k,mEb,k,mEc,k) ΛE



mEa,k

mEb,k

mEc,k



]

(13)

where k indexes the triangles of the lattice and the final term
in Eq. (13) should be interpreted as a sum of 9 scalar products
between the vectors mEi,k. The coefficients λγ are:

λA1 =
1

2

(
−2
√

3Dz + Jx − 3Jy

)
(14)

λA2,aa = 2Jz (15)

λA2,bb =
1

2

(
−2
√

3Dz − 3Jx + Jy

)
(16)

λA2,ab = 2
(√

3Dy +K
)

(17)

λE,aa = Jx + Jy (18)

λE,bb =
√

3Dz −
Jx
2
− Jy

2
(19)

λE,cc = −Jz (20)
λE,ab = Jx − Jy (21)

λE,ac =
√

6Dy −
√

2K (22)

λE,bc =
√

8K (23)

It is then useful to write Eq. (13) in a new basis chosen to
diagonalize the matrices ΛA2 and ΛE.

H =
3

2

∑

k

(
λA1m

2
A1,k + ωA20m

2
A20,k + ωA21m

2
A21,k +

ωE0m
2
E0,k + ωE1m

2
E1,k + ωE2m

2
E2,k

)
(24)

Here ωA2i(i = 0, 1) are the eigenvalues of ΛA2 and mA2i

are linear combinations of mA2a and mA2b corresponding to
the associated eigenvector of ΛA2 [(Eq. 13)]. Similarly,
ωEi(i = 0, 1, 2) are the eigenvalues of ΛE and mEi are lin-
ear combinations of mEa, mEb and mEc corresponding to the
associated eigenvector of ΛE. We define, without loss of gen-
erality,

ωA20 ≤ ωA21, ωE0 ≤ ωE1 ≤ ωE2 (25)

In this work we will treat the spins as classical vectors of
fixed length |Si| = 1. Due to this condition, the following
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FIG. 2. A1 ordered state, occurring as the ground state of Eq. (1)
when λA1 < ωA20, ωE0 [Eq. (24)]. All spins lie in the kagome plane
at an angle of 2π

3
to one another and perpendicular to the line joining

the spin to the centers of the two neighboring triangles. The spin
configuration has vanishing total magnetization, twofold degeneracy,
and preserves the lattice symmetries of Eq. (1) while breaking time
reversal.

constraint applies to fields mγ defined in Eqs. (7)-(12):
∑

γ

|mγ,k|2 = 1,∀ k (26)

Eq. (26) is a necessary but not sufficient condition for the
proper normalisation of the spins.

It should be emphasised that the reformulation of the prob-
lem in terms of variables mγ,k does not require any further
assumptions beyond the nearest-neighbor bilinear, nature of
the interactions and the symmetries enumerated at the begin-
ning of this section.

In what follows we will seek to find the classical ground
states of Eq. (1).

III. WHAT KINDS OF CLASSICAL GROUND STATE ARE
POSSIBLE?

In this section we seek to establish the possible classical or-
dered phases which may occur on the ground state phase dia-
gram of Eq. (1). Our focus is on classical ground states which
are stable over finite regions of the full 6-dimensional param-
eter space. So, although there may be additional ground states
which become relevant in particular high symmetry limits of
Eq. (1), these are not the subject of our present discussion as
they rely on fine-tuning of parameters.

Our conclusions may be summarized as follows:

1. A translation invariant (q = 0) ground state exists for
all values of exchange parameters.

2. If

λA1 < ωA20, ωE0 (27)

the ground state is the antiferromagnetic state shown in
Fig. 2 and discussed in Section III B.

3. If

ωA20 < λA1 , ωE0 (28)

FIG. 3. A2 ordered state, occurring as the ground state of Eq. (1)
when ωA20 < λA1 , ωE0 [Eq. (24)]. The spin configuration has mag-
netization perpendicular to the kagome plane, twofold degeneracy,
and breaks the reflection and time reversal symmetries of Eq. (1).

FIG. 4. E-coplanar ordered state. This occurs as a ground state of
Eq. (1) in part of the region where ωE0 < λA1 , ωA20 [Eq. (24)].
There is one spin lying in the kagome plane and two canted out of it
in such a way that the three spins remain coplanar, with the plane of
coplanarity being tilted with respect to the kagome plane. The plane
of coplanarity is indicated by the translucent red planes. There is a
net magnetization within the kagome plane. This state breaks time
reversal and all of the point group symmetries of the Hamiltonian,
apart from a single reflection symmetry which is preserved. It is
sixfold degenerate.

the ground state is the noncoplanar state, with magneti-
zation perpendicular to the plane, shown in Fig. 3 and
discussed in Section III C.

4. If

ωE0 < λA2 , ωA1 (29)

the ground state may be one of three states (E-coplanar,
E-noncoplanar6, E-noncoplanar12 ) shown in Figs. 4-6
and discussed in Section III D.

A summary of the five phases in terms of the values of local
order parameters mγ [Eqs. (7)-(12)] is given in Table I.

In what follows we will demonstrate these results.
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Phase mA1 mA2a mA2b mEa ψa mEb ψb mEc ψc

A1 6= 0 0 0 0 – 0 – 0 –
A2 0 6= 0 6= 0 0 – 0 – 0 –

E-coplanar 6= 0 0 0 6= 0 nπ
3

6= 0 nπ
3

6= 0 nπ
3

E-noncoplanar6 0 6= 0 6= 0 6= 0 (2n+1)π
6

6= 0 (2n+1)π
6

6= 0 (2n+1)π
6

E-noncoplanar12 6= 0 6= 0 6= 0 6= 0 [0, π) 6= 0 [0, π) 6= 0 [0, π)

TABLE I. Description of the five possible classical ground states in terms of the local order parameters defined for a triangle in Eqs. (7)-(12).
E order parameters mEα are expressed in polar form, with mEα and ψα as defined in Eqs. (39)-(41). n is an integer, with different choices of
n corresponding to different degenerate ground states in E-coplanar and E-noncoplanar6 phases.

FIG. 5. E-noncoplanar6 ordered state. This occurs as a ground state
of Eq. (1) in part of the region where ωE0 < λA1 , ωA20 [Eq. (24)].
All spins are canted out of the kagome plane and there is a net mag-
netization lying within one of the mirror planes of the lattice. This
state is non-coplanar and thus has nonzero scalar spin chirality. This
state breaks time reversal and all of the point group symmetries of
the Hamiltonian, but is symmetric under the combination of time re-
versal and one reflection symmetry. It is sixfold degenerate.

FIG. 6. E-noncoplanar12 ordered state. This occurs as a ground
state of Eq. (1) in part of the region where ωE0 < λA1 , ωA20 [Eq.
(24)] This state is generally non-coplanar and breaks time reversal
symmetry, all point group symmetries and all combinations of time
reversal with point group symmetries. It is twelvefold degenerate.
This very low symmetry configuration is rare on the ground state
phase diagram, occupying < 1% of the full parameter space of the
Hamiltonian [Fig. 11].

A. Existence of q = 0 classical ground state for all parameter
sets

Here, for completeness, we give the proof that Eq. (1) pos-
sesses a q = 0 classical ground state for all values of ex-

change parameters, following arguments previously given in
Refs. 7 and 8. We follow a strategy of building up the global
ground state from the ground states of corner sharing units, as
is frequently done for models on lattices with a corner-sharing
structure7,8,29,30,39.

As we have shown above, the nearest-neighbor exchange
Hamiltonian Eq. (1) can be rewritten as a sum over triangles:

H =
∑

4
H4 (30)

with H4 being the same on every triangle of the lattice, as
a consequence of inversion and translation symmetries. This
formulation makes it clear that any configuration which min-
imizes the energy of each individual triangle, also minimizes
the energy of the system as a whole.

Such a configuration may readily be obtained by minimiz-
ing the energy on a single “up-pointing” triangle (red trian-
gles in Fig. 1(a)) and then tiling the solution over all “up-
pointing” triangles of the lattice. The “up-pointing” trian-
gles will then all be in a ground state by construction, and
the “down-pointing” triangles will be too, because they have
the same exchange matrices as “up-pointing” triangles and the
same spin orientation on each sublattice.

This naturally results in a translation invariant (q = 0) state,
which is guaranteed to be a ground state. Moreover, it means
that the ground state problem on the whole lattice can be re-
duced to finding the ground state of three spins on a triangle.

In Sections III B-III D we examine the various possible so-
lutions to this problem, that occur in different regions of pa-
rameter space.

The argument above does not rule out the existence of addi-
tional, q 6= 0, ground states, degenerate with the q = 0 ones.
We regard it, however, as unlikely that such accidental de-
generacies are present over finite regions of the 6-dimensional
parameter space. Such a robust accidental degeneracy, would
require a pair of states not related by any symmetry, to be de-
generate with respect to each of the six independent terms of
the Hamiltonian individually, which would seem to require a
rather large coincidence. The Heisenberg-Kitaev model on
the kagome lattice29,30 exhibits an extended, accidental de-
generacy, in the classical limit, but since that model only has
two symmetry distinct terms the required coincidence is not
so large.

From now on, we assume translationally invariant ground
states built by tiling the ground states of a single triangle, and
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therefore drop the triangle index k from the fields mγ,k and
spins Si,k.

We can use the solutions of the single triangle problem to
check the validity of the assumption that there are only q = 0
ground states. We do this by checking whether two distinct
single triangle ground states can be placed on neighboring tri-
angles without causing an inconsistency at the shared site. If
they cannot, then only q = 0 ground states are possible. This
is explicitly checked for each single triangle ground state be-
low, and in each case we find that q 6= 0 states are only possi-
ble with fine tuning.

B. A1 order

We first consider the parameter regime defined by inequal-
ity (27) where λA1 is the lowest coefficient in Eq. (24).

We can use Eq. (26) to write:

m2
A1

= 1−
∑

γ 6=A1

m2
γ (31)

and so eliminate mA1 from the Hamiltonian [Eq. (24)]:

H =
3

2

∑

4

(
λA1 + (ωA20 − λA1)m

2
A20 + (ωA21 − λA1)m

2
A21

+(ωE0 − λA1)m
2
E0 + (ωE1 − λA1)m

2
E1

+(ωE2 − λA1)m
2
E2

)
(32)

All the remaining fields mA2i,mEi now appear as quadratic
forms with positive coefficients, due to inequalities (25) and
(27).

Therefore any spin configuration where all these fields van-
ish is necessarily a ground state, for all parameter sets fulfill-
ing the inequality (27). There are exactly two such configura-
tions, related to each other by time reversal symmetry:

S0 = ±
(

1

2
,

√
3

2
, 0

)
,

S1 = ±
(

1

2
,−
√

3

2
, 0

)
,

S2 = ± (−1, 0, 0) (33)

These are the ground state spin configurations of the A1 phase.
The only remaining degree of freedom on a triangle is the
choice of the + or− sign in Eq. (33). Once this sign is chosen
for one triangle, consistency at the shared spin requires that
the same sign is chosen on the neighboring triangles. Propa-
gating this throughout the lattice we see that only q = 0 tilings
are possible.

This phase preserves all lattice symmetries of the original
Hamiltonian but breaks time reversal symmetry. One of the
ground states is illustrated in Fig. 2.

C. A2 order

Next we consider parameter sets falling in the regime de-
scribed by inequality (28), such that ωA20 is the lowest coeffi-
cient in Eq. (24).

Under these conditions we can use Eq. (26) to removemA20

from the Hamiltonian [Eq. (24)] in a similar manner to the
analysis in Section III B. By this means one can show that the
ground states for parameter sets obeying the inequality (28)
are of the form

S0 = ±
(
−
√

3

2
cos(η),

1

2
cos(η),− sin(η)

)

S1 = ±
(√

3

2
cos(η),

1

2
cos(η),− sin(η)

)

S2 = ± (0,− cos(η),− sin(η)) . (34)

With the out-of-plane canting angle η being determined by the
content of the lowest eigenvector of ΛA2 [Eq. (13)]. In terms
of the coupling parameters, η obeys the relation:

tan(2η) =
4(
√

3Dy +K)

2
√

3Dz + 3Jx − Jy + 4Jz
. (35)

With η fixed by Eq. (35), the only remaining degree of free-
dom on a single triangle is the choice of sign in Eq. (34). Once
this sign is chosen for one triangle, consistency at the shared
spin requires that the same sign is chosen on the neighboring
triangles. Propagating this throughout the lattice we see that
only q = 0 tilings are possible.

The A2 configurations have nonzero scalar chirality on the
triangle:

χ = (S0 × S1) · S2 = ±3
√

3

2
cos(η)2 sin(η) (36)

This phase breaks the reflection and time reversal symmetry
of H but preserves the C3 rotational symmetry. An example
ground state in this phase is illustrated in Fig. 3.

D. E orders

We then come to the case

ωE0 < λA1 , ωA20. (37)

Applying the same type of arguments as in Sections III B-
III C, we might expect to find a ground state with mA1 =
mA2a = mA2b = 0 and with the values of mEa,b,c being deter-
mined by the lowest eigenvector of ΛE. However, for typical
eigenvectors of ΛE this is incompatible with the spin length
constraints

S2
0 = S2

1 = S2
2 = 1. (38)

The resolution of this is that the system must mix small
values of mA1 ,mA2a,mA2b into the ground state, so as to re-
spect the spin length constraints while retaining a large value
of |mE0| as favoured by the Hamiltonian.
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We can distinguish the different ways that this can hap-
pen by further consideration of the symmetries of the prob-
lem. Specifically, we can ask what symmetries of the Hamil-
tonian can be preserved in the presence of nonzero values of
mEa,mEb,mEc.

There are three possibilities consistent with nonzero values
of mEα.

1. One of the reflection symmetries of C3v is preserved.
This corresponds to the E-coplanar phase discussed be-
low in Section III D 1.

2. The combination of one of the reflection symmetries of
C3v with time reversal is preserved. This corresponds
to the E-noncoplanar6 phase discussed below in Section
III D 2.

3. None of the point group symmetries, nor any of their
combinations with time reversal symmetry are pre-
served. This corresponds to the E-noncoplanar12 phase
discussed below in Section III D 3.

1. E-coplanar

In the E-coplanar phase one of the reflection symmetries of
C3v is preserved. For concreteness, let us suppose that the
preserved symmetry is reflection in the yz plane, i.e. the mir-
ror plane that runs through site 2 in Fig. 1(b). We write mEa,
mEb, mEc in polar form

mEa = mEa

(
cos(ψEa)

sin(ψEa)

)
(39)

mEb = mEb

(
cos(ψEb)

sin(ψEb)

)
(40)

mEc = mEc

(
cos(ψEc)

sin(ψEc)

)
(41)

defining the angles ψEi to be lie in the interval [0, π), and al-
lowing the scalars mEi to take either sign ±.

Imposing preservation of reflection symmetry in the yz
plane constrains ψEα

ψEα = 0 ∀ α. (42)

More generally, if we had chosen one of the other mirror
planes [Fig. 1(b)] to be preserved, we would have ψEα =
nπ
3 , n ∈ {0, 1, 2}. If the preserved reflection plane passes

through site 2 of the unit cell [see Fig. 1(a)] then n = 0, if
through site 0 then n = 1 and if through site 1 then n = 2.

The symmetry further implies that

mA2a = mA2b = 0 (43)

but a nonzero value of mA1 is allowed

mA1 6= 0 (44)

and will be mixed into the ground state in such a way as to sat-
isfy the spin length constraints. The magnitudes and relative
signs of mEi,mA1 are fixed by minimizing the energy.

An example spin configuration on the three sublattices in
this phase has the form (taking n = 0)

S0 = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ))

S1 = (cos(φ) sin(θ),− sin(φ) sin(θ),− cos(θ))

S2 = (1, 0, 0) (45)

where φ and θ are functions of the exchange parameters,
which must be determined by minimizing the energy. De-
generate spin configurations can be obtained by applying time
reversal and lattice symmetries to Eq. (45) and there is a total
degeneracy of six.

The spins are in a common plane, which is generally not
the plane of the kagome lattice. The total magnetization of
the configuration is normal to the unbroken mirror plane. An
example configuration is shown in Fig. 4.

Minimizing the energy with respect to θ and φ gives a pair
of equations which relate the ground state canting angles to
the coupling parameters.

∂E

∂θ
= 0 =⇒

1

2
cos(θ)(cos(φ) + 4 cos(φ)2 sin(θ)−

√
3 sin(φ))Jx +

1

2
cos(θ)(3 cos(φ) + sin(φ)(

√
3− 4 sin(θ) sin(φ)))Jy +

sin(2θ)Jz + (2 cos(2θ) cos(φ)− sin(θ))Dy +

2 cos(θ)(1− 2 cos(φ) sin(θ)) sin(φ)Dz +

(
√

3 sin(θ)− 2 cos(2θ) sin(φ))K = 0 (46)
∂E

∂φ
= 0 =⇒

−1

2
sin(θ)(

√
3 cos(φ) + sin(φ) + 2 sin(θ) sin(2φ))Jx +

1

2
sin(θ)(

√
3 cos(φ)− 3 sin(φ)− 2 sin(θ) sin(2φ))Jy +

−2 cos(θ) sin(θ) sin(φ)Dy +

2 sin(θ)(cos(φ)− cos(2φ) sin(θ))Dz −
2 cos(θ) cos(φ) sin(θ)K = 0 (47)

If the angles θ and φ are measured for a given material (e.g.
from refinement of Bragg peaks) then Eqs. (46)-(47) can be
used to give constraints on the coupling parameters, at least at
the level of a classical description.

Unless the angles φ, θ are fine tuned to special values
(which requires fine tuning of exchange parameters), there
is no way to place different members of the set of 6 single-
triangle ground states on neighboring triangles. This implies
that only q = 0 configurations are possible within this phase,
for generic parameters.

2. E-noncoplanar6

In the E-noncoplanar6 phase the combination of time rever-
sal with one of the reflection symmetries of C3v is preserved.
For concreteness, let us suppose the preserved symmetry is the
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combination of time reversal with the mirror plane that runs
through site 2 in Fig. 1(b).

This symmetry constrains the angles ψEα [Eqs. (39)-(41)],
remembering that ψEα is defined to lie in the interval [0, π):

ψEα = π/2 ∀ α. (48)

More generally, if we had chosen one of the other mirror
planes [Fig. 1(b)] to be preserved when in combination with
T , we would have ψEα = (2n+1)π

6 , n ∈ {0, 1, 2}. If the mir-
ror plane preserved in combination with T runs through site
2 of the unit cell [see Fig. 1(a)] then n = 1, if through site 0
then n = 2, if through site 1 then n = 0.

The symmetry implies that

mA1 = 0 (49)

but nonzero values of mA2a and mA2b appear in the ground
state as a way to satisfy the spin length constraints

mA2 ,mA2b 6= 0. (50)

An example spin configuration for this phase is

S0 = (cos(ν) sin(µ), sin(ν) sin(µ), cos(µ))

S1 = (− cos(ν) sin(µ), sin(ν) sin(µ), cos(µ))

S2 = (0, cos(κ), sin(κ)) (51)

The parameters ν, µ and κ are functions of the exchange pa-
rameters and must be determined by minimizing the energy.
The E-noncoplanar6 configurations have nonzero scalar chi-
rality on the triangle:

χ = (S0 × S1) · S2

= ±2 cos(ν) sin(µ)(− cos(κ) cos(µ) + sin(κ) sin(µ) sin(ν))

(52)

The magnetization of the configuration lies within the mirror
plane which is unbroken when combined with time reversal.

Degenerate spin configurations can be obtained by applying
time reversal and lattice symmetries to Eq. (51) and there is a
total degeneracy of six.

Minimizing the ground state energy with respect to ν, µ, κ
gives three constraints relating the canting angles to the cou-
pling parameters

∂E

∂ν
= 0 =⇒

sin(µ)

2

(
cos(κ)(3 cos(ν) +

√
3 sin(ν)) + 2 sin(µ) sin(2ν)

)
Jx+

sin(µ)

2

(
cos(κ)(cos(ν)−

√
3 sin(ν)) + 2 sin(µ) sin(2ν)

)
Jy+

sin(µ)(
√

3 cos(ν) sin(κ) + (2 cos(µ) + sin(κ)) sin(ν))Dy+

2 sin(µ)(cos(2ν) sin(µ) + cos(κ) sin(ν))Dz+

sin(µ)(2 cos(µ) cos(ν)+sin(κ)(− cos(ν)+
√

3 sin(ν)))K = 0

(53)

∂E

∂µ
= 0 =⇒

− cos(µ)

2

(
4 cos(ν)2 sin(µ) + cos(κ)(

√
3 cos(ν)− 3 sin(ν))

)
Jx

+
cos(µ)

2

(
4 sin(ν)2 sin(µ) + cos(κ)(

√
3 cos(ν) + sin(ν))

)
Jy

− 2(cos(µ) + sin(κ)) sin(µ)Jz

−
(

cos(ν)(2 cos(2µ) + cos(µ) sin(κ))

−
√

3(cos(κ) sin(µ) + cos(µ) sin(κ) sin(ν))
)
Dy−

(2 cos(κ) cos(µ) cos(ν)−sin(2µ) sin(2ν))Dz+

(
cos(κ) sin(µ)+

2 cos(2µ) sin(ν)− cos(µ) sin(κ)(
√

3 cos(ν) + sin(ν))

)
K

= 0 (54)

∂E

∂κ
= 0 =⇒

1

2
sin(κ) sin(µ)(

√
3 cos(ν)− 3 sin(ν))Jx−

1

2
sin(κ) sin(µ)

(√
3 cos(ν) + sin(ν)

)
Jy+

2 cos(κ) cos(µ)Jz+

(
√

3 cos(µ) sin(κ)+cos(κ) sin(µ)(
√

3 sin(ν)−cos(ν)))Dy+

2 cos(ν) sin(κ) sin(µ)Dz+(
cos(µ) sin(κ)−cos(κ) sin(µ)(

√
3 cos(ν)+sin(ν))

)
K = 0

(55)

If ν, µ and κ are known for a system in the E-noncoplanar6
phase, Eqs. (53)-(55) give three constraints on the possible
coupling parameters, within the classical description.

Different members of the set of 6 ground states cannot be
placed on neighboring triangles without causing an inconsis-
tency, unless the angles µ, ν, κ are fine tuned to special values,
via fine tuning of exchange parameters. This confirms that
only q = 0 configurations are possible within this phase, for
generic parameter sets.

3. E-noncoplanar12

Finally, there is the possibility that time reversal, all point
group symmetries and all combinations of the two are bro-
ken in the ground state, leaving only translation and inversion
symmetries intact.

In this case the angles ψEα [Eqs. (39)-(41)] can take arbi-
trary values, and symmetry does not fix any relationship be-
tween them

ψEa 6= ψEb 6= ψEc. (56)

Moreover mA1 ,mA2a,mA2b may all be present by symmetry

mA1 6= 0, mA2a 6= 0, mA2b 6= 0. (57)
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The spin directions of the three sites on the triangle have
no fixed relationship enforced by symmetry, so there are 6
parameters in the ground state that can only be determined
energetically:

S0 = (cos(ζ0) sin(υ0), sin(ζ0) sin(υ0), cos(υ0))

S1 = (cos(ζ1) sin(υ1), sin(ζ1) sin(υ1), cos(υ1))

S2 = (cos(ζ2) sin(υ2), sin(ζ2) sin(υ2), cos(υ2)). (58)

An example configuration is shown in Fig. 6. The state
will generally have nonzero chirality and magnetization in an
arbitrary direction. Degenerate spin configurations can be ob-
tained by applying time reversal and lattice symmetries to Eq.
(58), giving a total degneracy of twelve - the maximum possi-
ble for a state with translation and inversion symmetries.

As shall be shown using numerics in Section IV, this low
symmetry state does appear on the ground state phase dia-
gram, but only in a very small region of parameter space.

Minimizing the energy with respect to ζi, υi (i = 0, 1, 2)
gives a total of six equations relating the canting angles to the
coupling parameters.

dE

dζi
= 0 =⇒

∑

j 6=i



− sin(ζi) sin(υi)

cos(ζi) sin(υi)

0


 · Jij ·




cos(ζj) sin(υj)

sin(ζj) sin(υj)

cos(υj)


 = 0

(59)
dE

dυi
= 0 =⇒

∑

j 6=i




cos(ζi) cos(υi)

sin(ζi) cos(υi)

− sin(υi)


 · Jij ·




cos(ζj) sin(υj)

sin(ζj) sin(υj)

cos(υj)


 = 0

(60)

Thus, if for a system in the E-noncoplanar12 phase, all six
angles are known it should be possible to use Eqs. (59)-(60)
to uniquely determine the six exchange parameters.

IV. PHASE DIAGRAM

In this section we calculate the ground state phase diagram
of Eq. (1) numerically, by comparing optimized energies for
the five phases described in Section III. The numerical opti-
mization of the energy was done by a combination of random
search, simulated annealing and iterative minimisation40. De-
tails of the numerics are given in Appendix A.

Figs. 7-10 show slices of the phase diagram as a function
of Jx/|Jz| and Jy/|Jz| with K/|Jz| = {−0.5, 0.5} for both
positive [Figs. 7- 8] and negative [Figs. 9- 10] Jz . Each
panel in a given figure corresponds to different values of DM
interactions Dy/|Jz| and Dz/|Jz|. Dy/|Jz| increases from
left to right within each figure and Dz/|Jz| from bottom to
top. Taken together, Figs. 7-10 give a broad view of the com-
petition between different magnetic orders as anisotropic ex-
change parameters are varied. Further phase diagrams, for a

A1 A2 E-cpl
E- 

noncpl6
E- 

noncpl12

FIG. 7. T = 0 phase diagram with Jz > 0 and K = −0.5|Jz|.
Each panel shows a slice of the phase diagram as a function of Jx
and Jy for different, fixed, values of the DM directions Dy and Dz ,
with Dy increasing from left to right and Dz from bottom to top.
The phase diagram is obtained by comparing numerically optimized
energies for the five phases described in Section III. The numerical
optimization procedure is described in Appendix A. The white lines
show analytic calculations of the boundaries of the A1 and A2 phases,
using conditions (27) and (28).

greater range and variety of parameter sets are shown in the
Supplemental Material41.

The boundaries of the A1 and A2 phases can also be calcu-
lated analytically using conditions (27) and (28). These ana-
lytic boundaries are shown as white lines in Figs. 7-10, and
agree with the results of the numerics. The boundaries be-
tween the different E phases are only calculated numerically.

One notable feature of Figs. 7-10 is that the E-coplanar
phase is generally found bordering the A1 phase, whereas the
E-noncoplanar6 phase is generally found bordering the A2

phase. This is natural since the E-coplanar phase mixes in
a finite value of the A1 order parameter and likewise the E-
noncoplanar6 includes a finite A2 order parameter.

Another striking feature of the phase diagram is the rarity of
the E-noncoplanar12 phase. This low-symmetry configuration
occupies only small portions of the phase diagrams in Figs.
7-10, with its stability generally being increased by a strong
negative value of Dz .

To investigate the relative frequency of the different phases
in the overall parameter space we have calculated the ground
state for 100000 different parameter sets, randomly cho-
sen from a uniform distribution on the surface of the 6-
dimensional hypersphere defined by

J2
x + J2

y + J2
z +D2

y +D2
z +K2 = 1. (61)

The pie chart in Fig. 11(a) shows the relative frequency of
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A1 A2 E-cpl
E- 

noncpl6
E- 

noncpl12

FIG. 8. T = 0 phase diagram with Jz > 0 and K = 0.5|Jz|.
Each panel shows a slice of the phase diagram as a function of Jx
and Jy for different, fixed, values of the DM directions Dy and Dz ,
with Dy increasing from left to right and Dz from bottom to top.
The phase diagram is obtained by comparing numerically optimized
energies for the five phases described in Section III. The numerical
optimization procedure is described in Appendix A. The white lines
show analytic calculations of the boundaries of the A1 and A2 phases,
using conditions (27) and (28).

each of the five phases obtained from this procedure. It con-
firms that E-noncoplanar12 is indeed a rare phase, found as the
ground state for only ∼ 0.5% of randomly generated parame-
ter sets. The four other phases are comparatively common.

This leads us to conclude although the E-noncoplanar12
state does not require perfect fine tuning to be realized in a
kagome material (i.e. it occupies a finite fraction of parameter
space), it is unlikely to be realized serendipitously. The other
four phases should constitute the classical ground states for
the vast majority of kagome materials to which the theory in
this paper can be applied (i.e. those with nearest-neighbour,
anisotropic interactions).

The above assumes a probability distribution of param-
eter sets which is isotropic in the 6-dimensional space
(Jx, Jy, Jz, Dy, Dz,K). This may not be the case physically,
and indeed it is frequently assumed that the off-diagonal com-
ponents of the exchange tensor Dy, Dz,K should be smaller
than the diagonal ones Jx, Jy, Jz . We have investigated the
distribution of ground states under this assumption, by gener-
ating 100000 random parameter sets by choosing Jx, Jy, Jz
from a uniform distribution on the surface of the unit sphere:

J2
x + J2

y + J2
z = 1 (62)

and indepently choosing Dy, Dz,K from a uniform distribu-
tion on the surface of a smaller sphere:

D2
y +D2

z +K2 = 0.1. (63)

A1 A2 E-cpl
E- 

noncpl6
E- 

noncpl12

FIG. 9. T = 0 phase diagram with Jz < 0 and K = −0.5|Jz|.
Each panel shows a slice of the phase diagram as a function of Jx
and Jy for different, fixed, values of the DM directions Dy and Dz ,
with Dy increasing from left to right and Dz from bottom to top.
The phase diagram is obtained by comparing numerically optimized
energies for the five phases described in Section III. The numerical
optimization procedure is described in Appendix A. The white lines
show analytic calculations of the boundaries of the A1 and A2 phases,
using conditions (27) and (28).

The resulting distribution of ground states is shown in Fig.
11(b). The relative frequency of different phases is very sim-
ilar to that with an isotropic distribution of parameters, al-
though the prevalence of the E-noncoplanar12 phase increases
from ∼ 0.5/% to ∼ 2/%.

A. Phase diagram in the vicinity of the Antiferromagnetic
Heisenberg limit

The limit Jx = Jy = Jz = J > 0, Dy = K = Dz =
0, gives the well studied nearest neighbor antiferromagnetic
Heisenberg model, which is known to have a highly degener-
ate ground state39. Generic perturbations away from this limit
lift the degeneracy, stabilizing a ground state which is unique
up to global symmetry operations.

Fig. 12 shows the effect of perturbing the Heisenberg
model with finite off-diagonal couplings Dy, Dz,K. Dz > 0
strongly favours A2 order, whileDz < 0 favours ordering into
the E-coplanar or E-noncoplanar6 phases depending on which
ofDy orK is the more dominant perturbation. Our results are
in agreement with those of Elhajal et al21, who considered the
case of perturbing the Heisenberg model with Dzyaloshinskii-
Moriya interactions Dy, Dz , fixing K = 0.

When comparing the results here with those of [21] one
should note that the ground state configurations of the E −



11

A1 A2 E-cpl
E- 

noncpl6
E- 

noncpl12

FIG. 10. T = 0 phase diagram with Jz < 0 and K = 0.5|Jz|.
Each panel shows a slice of the phase diagram as a function of Jx
and Jy for different, fixed, values of the DM directions Dy and Dz ,
with Dy increasing from left to right and Dz from bottom to top.
The phase diagram is obtained by comparing numerically optimized
energies for the five phases described in Section III. The numerical
optimization procedure is described in Appendix A. The white lines
show analytic calculations of the boundaries of the A1 and A2 phases,
using conditions (27) and (28).

noncoplanar6 phase become coplanar in the limit of strong
positive J and K = 0. This agrees with the labelling of the
same phase as coplanar in [21]. Once all symmetry allowed
couplings (particularly K) are present, this phase becomes
non-coplanar, as identified here.

It is notable that the A1 phase does not appear at all in Fig.
12. This can be readily understood from the couplings in Eqs.
(14-20). When Jx = Jy , λA1 = λA2,bb. This then implies
that ωA20 ≤ λA1 [cf. Eqs. (25), (27)] with the equality only
applying when λA2,ab = 2(

√
3Dy +K) = 0.

Thus, when Jx = Jy the A2 phase will quite generally have
a lower energy than the A1 phase. A necessary (but not suffi-
cient) condition for the A1 configurations to be the sole ground
states is that λA1 < λA2bb =⇒ Jx < Jy .

The effect of allowing small anisotropy in the transverse
exchanges Jx, Jy is illustrated in Fig. 13. Here we set

Dz = 0, Jz = J > 0, Jx = J +
δJ⊥

2
, Jy = J − δJ⊥

2

and varyDy/J andK/J . As implied by the discussion above,
δJ⊥ < 0 favours A1 order, becoming unstable to the E-
coplanar phase on increasing K. Conversely, when δJ⊥ > 0
favours A2 order, which gives way to the E-noncoplanar6
phase for strong K.

(a)

(b)

FIG. 11. Relative frequency of different phases within the full pa-
rameter space of the Hamiltonian [Eq. (1)], with exchange param-
eters generated randomly from two different distributions. (a) Ex-
change parameters are generated randomly according to a uniform
distribution on the surface of the 6-dimensional hypersphere defined
by Eq. (61). (b) Diagonal exchange parameters Jx, Jy, Jz are gen-
erated according to a uniform distribution on the surface of a sphere
with unit radius, and off-diagonal Dy, Dz,K exchange parameters
are generated independently from a uniform distribution on the sur-
face of a sphere with radius= 0.1 [Eqs. (62)-(63)]. This models
the effect of the assumption that the scale of off-diagonal couplings
is lower. The effect on the distribution of phases is minor overall,
although assuming weaker off-diagonal exchange expands the size
of the rare E-noncoplanar12 from ∼ 0.5% to ∼ 2% In each case,
frequencies are determined by numerically finding the ground state
for 100000 random parameter sets generated according to the stated
distributions.

V. RELEVANCE TO KAGOME MATERIALS

In this section we discuss the application of our results
to real kagome materials. We divide our discussion into
two areas: firstly, rare-earth magnets belonging to the family
R3A2Sb3O14

13–20 (sometimes referred to as “tripod kagome”
materials15,17), and secondly, Cu, Fe and Cr based magnets
where exchange anisotropy should be weaker but nevertheless
plays a role in ground state selection.
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E-cpl

A1

A2

E- 
noncpl6

E- 
noncpl12

(a) Dz = −0.25J (b) Dz = 0 (c) Dz = 0.25J

FIG. 12. Ground state phase diagram obtained from perturbing the antiferromagnetic Heisenberg model (Jx = Jy = Jz = J > 0) with
off-diagonal couplingsDy, Dz,K. Phase diagrams are shown as a function ofDy/J,K/J at fixed values ofDz/J = −0.25 [(a)],Dz/J = 0
[(b)], Dz/J = 0.25 [(c)] The phase diagram is obtained by comparing numerically optimized energies for the five phases described in Section
III. The numerical optimization procedure is described in Appendix A. The A1 phase does not appear on these phase diagrams, as it can only
be stabilized as a unique ground state when Jx < Jy , whereas Jx = Jy here. The white lines show analytic calculations of the boundaries of
the A2 phase, using condition (28).

E-cpl

A1

A2

E- 
noncpl6

E- 
noncpl12

(a) δJ⊥ = −0.25J (b) δJ⊥ = 0.25J

FIG. 13. Ground state phase diagram obtained from perturbing the antiferromagnetic Heisenberg model with off-diagonal couplings Dy,K,
and anisotropy in the transverse exchange Jx = J + δJ⊥

2
, Jy = J − δJ⊥

2
. We set Jz = J > 0 and Dz = 0 in both panels. Phase diagrams

are shown as a function of Dy/J,K/J at fixed values of δJ⊥/J = −0.25 [(a)], δJ⊥/J = 0.25 [(b)] The phase diagram is obtained by
comparing numerically optimized energies for the five phases described in Section III. The numerical optimization procedure is described in
Appendix A. The white lines show analytic calculations of the boundaries of the A1 and A2 phases, using conditions (27)-(28).

Aside from the systems mentioned below, we anticipate that
ongoing work in synthesizing frustrated magnets with strong
spin-orbit coupling will reveal new kagome systems to which
our results can be applied in the coming years.

A. R3A2Sb3O14 family

In the last few years several rare-earth kagome materials
with the general formula R3A2Sb3O14 have been synthesized.
This includes materials with A=Mg, Zn and R=Pr, Nd, Sm,
Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb13,14,17,19.

Where R is a non-Kramers ion (Pr, Eu, Tb, Ho, Tm), the
crystal electric field (CEF) will generally have a non-magnetic
singlet ground state, due to the low symmetry of the rare-earth
environment. If the gap between this singlet and higher CEF

states is smaller than or comparable to the energy scale of in-
teractions, interesting physics may ensue. If the CEF gap is
large, the overall ground state of the system will be a triv-
ial singlet driven by the onsite physics. Either way, Eq. (1)
cannot describe such physics without being augmented by ad-
ditional terms, so we will not discuss non-Kramers materials
further here.

WhereR is a Kramers ion, the CEF will split the 2J+1 mul-
tiplet into a series of doublets. At energy and temperature
scales below the gap between the lowest and first excited dou-
blet, the magnetism may be represented by pseudospin-1/2
operators Si. Si does not correspond precisely to the mag-
netic moment, but relates to it via the g-tensor [Eq. 2]. The
important thing for our purposes is that Si transforms like
a magnetic moment with respect to time-reversal and lattice
symmetries, in which case Eqs. (1)-(6) describe the exchange
interactions. Below we briefly discuss the various members of
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the R3A2Sb3O14 family, with Kramers ions R, in the light of
the predictions made in this Article.

The scalar chiral order observed in Nd3Mg2Sb3O14
16,20

corresponds precisely to the A2 phase predicted in this work.
The magnetic order of the sister compound Nd3Zn2Sb3O14

has not yet been characterized, but given its essentially similar
thermodynamic properties17 and crystal field environment18 it
seems likely to fall in the same phase as Nd3Mg2Sb3O14.

Er3Mg2Sb3O14 was reported in Ref. 17 to avoid long range
order down to very low temperatures. It thus appears to be a
candidate spin liquid material. The regions near the phase
boundaries of the classical phase diagram presented here are
likely to be particularly fertile ground for the formation of spin
liquid states, and this will be an interesting direction for future
research. Er3Zn2Sb3O14 exhibits strong structural disorder
and associated glassy behavior of the magnetic properties17,
which is beyond the scope of our present discussion.

Yb3Mg2Sb3O14 exhibits long range order at TN ≈
0.88K17. The form of this magnetic order has yet to be re-
ported in the literature. Based on the expectation that, as a rare
earth magnet with moderate magnetic moment, the theory in
this manuscript should be applicable to Yb3Mg2Sb3O14, we
expect that the order will be one of the states discussed in this
work. Like Er3Zn2Sb3O14, Yb3Zn2Sb3O14 has strong struc-
tural disorder, although unlike the Er compound it does not
show clear signs of spin freezing17.

Sm3Mg2Sb3O14
13 and Sm3Zn2Sb3O14

14 have both been
synthesized but their low temperature magnetism has yet to
be characterized in detail. This may be challenging due to
the small magnetic moment of the Sm3+ ion, but recent ex-
periments on the pyrochlores Sm2Ti2O7 and Sm2Sn2O7 in-
dicate that this is possible42. There is some evidence of
hysteresis in the low temperature magnetization curve for
Sm3Zn2Sb3O14

14 but not for Sm3Mg2Sb3O14
13, which may

provide some clue as to the low temperature state.
Materials with R=Gd present a somewhat different case, be-

cause Hund’s rules imply vanishing orbital angular momen-
tum L = 0 for the Gd3+ ion. The magnetism on the Gd sites
thus comes from a pure S = 7/2 spin and anisotropies in the
interactions should be much weaker. Some understanding of
this case can be gained from considering a model with nearest
neighbor Heisenberg exchange and the nearest-neighbor part
of the dipolar interaction:

H = J
∑

〈ij〉
Si · Sj + D̃nn

∑

〈ij〉
(Si · Sj − 3Si · r̂ijSj · r̂ij)

(64)

In terms of the symmetry-allowed interaction matrices [Eqs.
(4)-(6)] this Hamiltonian corresponds to setting

Jx = J − 2D̃nn, Jy = Jz = J + D̃nn,

Dy = Dz = K = 0. (65)

Inserting Eq. (65) into Eqs. (14)-(23) leads us to the conclu-
sion that for J, D̃nn > 0, theA1 configuration is favored out of
the forms of order considered in this Article. This agrees with
the conclusions of Maksymenko et al43, who studied the phase
diagram incorporating isotropic nearest neighbor exchange J

with the full long ranged dipolar interaction D, and found the
A1 configuration as the ground state for weak to moderate D
and antiferromagnetic J . It also agrees with previous predic-
tions about the ground state of Gd3Mg2Sb3O14

15, and with
the observed antiferromagnetic transition at TN ≈ 1.7K15,44,
although differences between the field cooled and zero-field
cooled susceptibility44 remain to be understood.

For R=Dy the ionic magnetic moment is very large and the
long range component of the dipolar interaction cannot be ig-
nored. Dy3Mg2Sb3O14 exhibits an unusual “fragmented”45

phase where there is an ordering of emergent “charge” de-
grees of freedom while spins remain partially disordered46.
The long-range dipole-dipole interaction plays a crucial role
in this phenomenon47,48 and thus it is beyond the scope of the
theory presented in this Article.

B. Nearly isotropic systems

While the most obvious application of the results in this Ar-
ticle is found in systems where exchange anisotropy is strong,
our results can also be applied to understand cases where
isotropic Heisenberg exchange is weakly perturbed by short
ranged anisotropic interactions.

This is the case in the Fe- and Cr- jarosites
AM3(OH)6(SO4)2 where M= {Fe, Cr} and A={K, Rb,
NH4, Na}31–35. These are found to order in the A2 phase -
the most prevalent of our phase diagram. This is generally
understood to be a consequence of antiferromagnetic Heisen-
berg exchange perturbed by a weak Dy . This interpretation
fully agrees with the results presented here: it can readily be
checked that inserting

Jx = Jy = Jz = J > 0

Dz = K = 0, |Dy| << J (66)

into Eqs. (14)-(23) gives an outcome obeying condition (28)
and hence a ground state in the A2 phase [cf. Fig. 12]. What
this work adds to the discussion is a simple and systematic ap-
proach to finding the preferred ground state for general kinds
of anisotropic nearest neighbor perturbation.

An example where weak anisotropic perturbations away
from a Heisenberg model lead to something other than A2

order is given by Cd-kapellasite36. The weak ferromagnetic
moment confined within the kagome planes in that material is
only consistent with the E-coplanar phase, out of the phases
in this Article.

VI. SUMMARY AND DISCUSSION

In this Article we have developed a theory of the magnetic
orders induced by nearest-neighbor exchange anisotropy in
kagome magnets. Our theory reveals that five distinct mag-
netic orders can be expected from such interactions, all retain-
ing the translational symmetry of the lattice, but being distin-
guished from one another by their transformations under time-
reversal and point group symmetries. The five phases are: A1
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[Fig. 2], A2 [Fig. 3], E-coplanar [Fig. 4], E-noncoplanar6
[Fig. 5], E-noncoplanar12 [Fig. 6]. They are labelled ac-
cording to the irreducible representation of the point group
C3v with which the primary order parameter transforms, their
coplanar or noncoplanar nature and their degeneracy. Eqs.
(27)-(28) give exact conditions for the A1 and A2 configura-
tions to be classical ground states.

We have used numerical calculations to determine the
full zero temperature phase diagram of the most general
anisotropic nearest-neighbor exchange model, showing the
extent of these five phases [Figs. 7-10]. One of the five phases
(E-noncoplanar12) is found to be exceedingly rare in the pa-
rameter space [Fig. 11].

We have discussed how this theory relates to various real
kagome materials [Section V], with both strong and weak ex-
change anisotropy.

The dominance of noncollinear (A1, E-coplanar) and non-
coplanar (A2, E-noncoplanar6,12) states on the phase diagram
suggests a high possibility of spin excitations with topologi-
cal band structures in many kagome materials49–51. It is likely
that the five phases identified here from analysis of broken
symmetries can be subdivided further by the topology of the
excitation bands. Relatedly, the possibility of coupling to itin-
erant electrons is an interesting area for future research with a
view to investigating topological transport phenomena.

The approach used in this work relies on the ability to de-
compose the Hamiltonian into a sum over blocks, such that
the ground state is obtained by finding the ground state on
each block and tiling it over the lattice. This would seem to
limit the usefulness of the approach for systems with further
neighbor interactions, since such a decomposition may either
not be possible or may require such large blocks that the de-
composition is no longer a useful simplification. Applying
the method from this work to quantum systems will also not
be possible in general - even for nearest neighbor interactions
- because the Hamiltonians on neighboring blocks will usually
not commute. There are, however, some specific, fine-tuned,
cases where the exact ground state of a quantum system can
be built up by such a block-by-block approach28,52.

While we have restricted ourselves here to phases which
are stable over finite regions of the classical phase diagram,
a study of the phase boundaries may also be interesting. As
has been studied elsewhere7,8 phase boundaries between com-
peting classical phases can host non-trivial enlarged mani-
folds of zero-energy states, which in some cases are associ-
ated with new forms of spin liquid53. In general, the greater
the degree of degeneracy around the phase boundary, the more
more favorable the situation becomes towards the formation
of spin liquids. Different phase boundaries will have different
amounts of additional degeneracy and so some will be more
favorable for spin liquid formation than others. Boundaries
where 3 (rather than just 2) phases meet may host particularly
interesting physics as seen in (e.g.) [53]. An analysis of each
possible phase boundary would be an interesting undertaking,
which we leave open for future work.
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Appendix A: Numerical optimization of energies

Here we describe the numerical optimization used to ob-
tain the phase diagrams in Figs. 7-10 and the estimates of the
relative frequency of phases in Fig. 11.

For a given parameter set, the energy is optimized sepa-
rately for each of the five phases described in Section III and
then the optimized energies are compared to determine which
is the lowest.

Due to the argument in Section III A, we need only optimize
the configuration on a single triangle, since we know that a
ground state on the full lattice can be obtained by tiling the
ground state of a single triangle everywhere.

The optimization for each phase is done by either ran-
dom search or simulated annealing combined with iterative
minimization40, apart from the A1 phase where the spin con-
figuration is fixed [Eq. 33] and thus the corresponding energy
can directly be calculated without any optimization being nec-
essary:

EA1 =
3

4

(
−2
√

3Dz + Jx − 3Jy

)
. (A1)

For the other four phases (A2, E-coplanar, E-noncoplanar6,
E-noncoplanar12), the optimization procedure is as described
below.

1. Optimizing A2 configuration

The form for the A2 configurations is given in Eq. (34).
This can be written as

S0 =

(
−
√

3

2
sa, sa/2, sb

)
(A2)

S1 =

(√
3

2
sa, sa/2, sb

)
(A3)

S2 = (0,−sa, sb) (A4)

with (sa, sb) on the unit circle

s2a + s2b = 1. (A5)

Initially, we calculate the energy for 105 randomly gener-
ated values of (sa, sb) on the unit circle. The lowest energy
configuration obtained from this random search is then used
as input for the iterative minimization step.
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In the iterative minimization step (sa, sb) are updated as

sa →
sa − c ∂E∂sa

|(sa − c ∂E∂sa , sb − c
∂E
∂sb

)|

sb →
sb − c ∂E∂sb

|(sa − c ∂E∂sa , sb − c
∂E
∂sb

)| . (A6)

For sufficiently small, positive, c this update is guaranteed to
reduce the energy, unless the system is already in a locally
optimal configuration before the update.

The parameter c is initially set to 0.1. If the update (A6)
does not reduce the energy then c is reduced by a factor of 2
and the update is attempted again. This procedure is repeated
until the configuration converges.

2. Optimizing E-coplanar configuration

The form for an E-coplanar configuration is given in Eq.
(45). This can be rewritten as

S0 = (σx, σy, σz) (A7)
S1 = (σx,−σy,−σz) (A8)
S2 = (1, 0, 0) (A9)

with (σx, σy, σz) on the unit sphere

σ2
x + σ2

y + σ2
z = 1. (A10)

Initially, we calculate the energy for 105 randomly gener-
ated values of (σx, σy, σz) on the unit sphere. The lowest en-
ergy configuration obtained from this random search is then
used as input for the iterative minimization step.

In the iterative minimization step (σx, σy, σz) are updated
as

σα →
σα − c ∂E∂σα

|(σx − c ∂E∂σx , σy − c
∂E
∂σy

, σz − c ∂E∂σz )| (A11)

The parameter c is initially set to 0.1. If the update (A11)
does not reduce the energy then c is reduced by a factor of 2
and the update is attempted again. This procedure is repeated
until the configuration converges.

The set of configurations covered by the E-coplanar ansatz
(45) includes the A1 configurations (when φ = 4π

3 , θ = π
2 ).

Because of this, if the E-coplanar optimization is found to give
the lowest energy of the five possibilities we must check that
the obtained configuration has a nonzero value of at least one
of the order parameters mEα. In practice we check that

|mEa|2 + |mEb|2 + |mEc|2 > 10−5. (A12)

If the E-coplanar optimization obtains the lowest energy but
the inequality (A12) is not fulfilled, the ground state is as-
signed to the A1 phase.

3. Optimizing E-noncoplanar6 configuration

The form for an E-noncoplanar6 configuration is given in
Eq. (45). This can be rewritten as

S0 = (τx, τy, τz) (A13)
S1 = (−τx, τy, τz) (A14)
S2 = (0, ta, tb) (A15)

with (τx, τy, τz) on the unit sphere and (ta, tb) on the unit
circle

τ2x + τ2y + τ2z = 1 (A16)

t2a + t2b = 1. (A17)

Initially, we calculate the energy for 105 randomly gener-
ated values of (τx, τy, τz) and (ta, tb) obeying Eqs. (A16)-
(A17). The lowest energy configuration obtained from this
random search is then used as input for the iterative minimiza-
tion step.

In the iterative minimization step, we update the parameters
according to the following:

τα →
τα − c ∂E∂τα

|(τx − c ∂E∂τx , τy − c
∂E
∂τy

, τz − c ∂E∂τz )|

tα →
tα − c ∂E∂tα

|(ta − c ∂E∂ta , tb − c
∂E
∂tb

)| (A18)

The parameter c is initially set to 0.1. If the update (A18) does
not reduce the energy then c is reduced by a factor of 2 and
the update is attempted again. This procedure is repeated until
the configuration converges.

The set of configurations covered by the E-noncoplanar6
ansatz (51) includes the A2 configurations (when µ = −(κ−
π
2 ), ν = −π6 ). Because of this, if the E-noncoplanar6 op-
timization is found to give the lowest energy of the five
possibilities we must check that the obtained configuration
has a nonzero value of at least one of the order parameters
mEα. Numerically, we check the condition (A12). If the E-
noncoplanar6 optimization obtains the lowest energy but the
inequality (A12) is not fulfilled, the ground state is assigned
to the A2 phase.

4. Optimizing E-noncoplanar12 configuration

Because the E-noncoplanar12 state allows for any config-
uration of three spins on a single triangle, the configuration
space of states is larger and we use simulated annealing rather
than a purely random search for the initial optimization, be-
fore the iterative minimization step.

In the simulated annealing the three spins on a triangle are
initialized in a random configuration. Updates are attempted
one spin at a time, being certainly accepted if they reduce the
energy and accepted with probability exp(−δE/T ) if they in-
crease the energy by an amount δE. Initially, the “tempera-
ture”, T = 0.2 in units where |Jz| = 1 (for Figs. 7- 10] ) or
where J2

x + J2
y + J2

z + D2
y + D2

z + K2 = 1 (for Fig. 11(a))
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or where J2
x + J2

y + J2
z = 1 (for Fig. 11(b)). The triangle is

swept 105 times at a given temperature, and the temperature is
then reduced by a factor of 0.9. This procedure is repeated 200
times. There are than 105 sweeps of the triangle with T = 0,
i.e. only accepting energy reducing updates.

The whole annealing procedure is performed from the start
3 times for each parameter set with the final output being the
lowest energy configuration obtained over all three sweeps.

To converge the configuration further, there is then an itera-
tive minimisation step where each spin component is updated
as:

Sαi →
Sαi − c ∂E∂Sαi

|(Sxi − c ∂E∂Sxi , S
y
i − c ∂E∂Syi , S

z
i − c ∂E∂Szi )| (A19)

The parameter c is initially set to 0.1. If the update (A19) does
not reduce the energy then c is reduced by a factor of 2 and

the update is attempted again. This procedure is repeated until
the configuration converges.

If the energy produced from this procedure is lower than
the energy produced from optimizing within the A1, A2, E-
coplanar orE-noncoplanar6 phases, then the ground state may
be within the E-noncoplanar12 phase. Because the configura-
tion on the triangle is completely general, to confirm that the
configuration has not converged to one of the other phases we
check that the inequality (A12) is satisfied, and also check
that:

m2
A1
> 10−5 (A20)

m2
A2a +m2

A2b > 10−5. (A21)

If inequalities (A12), (A20), (A21) are not satisfied, the
ground state is assigned to one of the other phases depend-
ing on the values of the various mγ [Table I].
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Supplemental Material: Ordered ground states of kagome magnets with generic
exchange anisotropy
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In this Supplemental Material we present phase diagrams for a series of additional values of Dy/|Jz|, Dz/|Jz|,K/|Jz|
from {−0.75,−0.25, 0.25, 0.75}, with both signs of Jz.
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FIG. S1. T = 0 phase diagram with Jz > 0 and K = −0.75|Jz|. Each panel shows a slice of the phase diagram as a function
of Jx and Jy for different, fixed, values of the DM directions Dy and Dz, with Dy increasing from left to right and Dz from
bottom to top. The phase diagram is obtained by comparing numerically optimized energies for the five phases described in
the main text. The white lines show analytic calculations of the boundaries of the A1 and A2 phases.
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FIG. S2. T = 0 phase diagram with Jz > 0 and K = −0.25|Jz|. Each panel shows a slice of the phase diagram as a function
of Jx and Jy for different, fixed, values of the DM directions Dy and Dz, with Dy increasing from left to right and Dz from
bottom to top. The phase diagram is obtained by comparing numerically optimized energies for the five phases described in
the main text. The white lines show analytic calculations of the boundaries of the A1 and A2 phases.
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FIG. S3. T = 0 phase diagram with Jz > 0 and K = 0.25|Jz|. Each panel shows a slice of the phase diagram as a function
of Jx and Jy for different, fixed, values of the DM directions Dy and Dz, with Dy increasing from left to right and Dz from
bottom to top. The phase diagram is obtained by comparing numerically optimized energies for the five phases described in
the main text. The white lines show analytic calculations of the boundaries of the A1 and A2 phases.
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FIG. S4. T = 0 phase diagram with Jz > 0 and K = 0.75|Jz|. Each panel shows a slice of the phase diagram as a function
of Jx and Jy for different, fixed, values of the DM directions Dy and Dz, with Dy increasing from left to right and Dz from
bottom to top. The phase diagram is obtained by comparing numerically optimized energies for the five phases described in
the main text. The white lines show analytic calculations of the boundaries of the A1 and A2 phases.
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FIG. S5. T = 0 phase diagram with Jz < 0 and K = −0.75|Jz|. Each panel shows a slice of the phase diagram as a function
of Jx and Jy for different, fixed, values of the DM directions Dy and Dz, with Dy increasing from left to right and Dz from
bottom to top. The phase diagram is obtained by comparing numerically optimized energies for the five phases described in
the main text. The white lines show analytic calculations of the boundaries of the A1 and A2 phases.
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FIG. S6. T = 0 phase diagram with Jz < 0 and K = −0.25|Jz|. Each panel shows a slice of the phase diagram as a function
of Jx and Jy for different, fixed, values of the DM directions Dy and Dz, with Dy increasing from left to right and Dz from
bottom to top. The phase diagram is obtained by comparing numerically optimized energies for the five phases described in
the main text. The white lines show analytic calculations of the boundaries of the A1 and A2 phases.
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FIG. S7. T = 0 phase diagram with Jz < 0 and K = 0.25|Jz|. Each panel shows a slice of the phase diagram as a function
of Jx and Jy for different, fixed, values of the DM directions Dy and Dz, with Dy increasing from left to right and Dz from
bottom to top. The phase diagram is obtained by comparing numerically optimized energies for the five phases described in
the main text. The white lines show analytic calculations of the boundaries of the A1 and A2 phases.
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FIG. S8. T = 0 phase diagram with Jz < 0 and K = 0.75|Jz|. Each panel shows a slice of the phase diagram as a function
of Jx and Jy for different, fixed, values of the DM directions Dy and Dz, with Dy increasing from left to right and Dz from
bottom to top. The phase diagram is obtained by comparing numerically optimized energies for the five phases described in
the main text. The white lines show analytic calculations of the boundaries of the A1 and A2 phases.


