RefinedC: Automating the Foundational Verification
of C Code with Refined Ownership Types

Michael Sammler Rodolphe Lepigre Robbert Krebbers
MPI-SWS MPI-SWS Radboud University Nijmegen
Germany Germany The Netherlands

msammler@mpi-sws.org

lepigre@mpi-sws.org

mail@robbertkrebbers.nl

Kayvan Memarian Derek Dreyer Deepak Garg
University of Cambridge MPI-SWS MPI-SWS
UK Germany Germany

kayvan.memarian@cl.cam.ac.uk

Abstract

Given the central role that C continues to play in systems
software, and the difficulty of writing safe and correct C
code, it remains a grand challenge to develop effective for-
mal methods for verifying C programs. In this paper, we
propose a new approach to this problem: a type system we
call RefinedC, which combines ownership types (for mod-
ular reasoning about shared state and concurrency) with
refinement types (for encoding precise invariants on C data
types and Hoare-style specifications for C functions).

RefinedC is both automated (requiring minimal user in-
tervention) and foundational (producing a proof of program
correctness in Coq), while at the same time handling a range
of low-level programming idioms such as pointer arithmetic.
In particular, following the approach of RustBelt, the sound-
ness of the RefinedC type system is justified semantically by
interpretation into the Coq-based Iris framework for higher-
order concurrent separation logic. However, the typing rules
of RefinedC are also designed to be encodable in a new “sep-
aration logic programming” language we call Lithium. By
restricting to a carefully chosen (yet expressive) fragment
of separation logic, Lithium supports predictable, automatic,
goal-directed proof search without backtracking. We demon-
strate the effectiveness of RefinedC on a range of represen-
tative examples of C code.

CCS Concepts: « Theory of computation — Separation
logic; Automated reasoning; Type theory.

Keywords: C programming language, separation logic, own-
ership types, refinement types, proof automation, Iris, Coq

This work is licensed under a Creative Commons Attribution International 4.0 License.

PLDI °21, June 20-25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8391-2/21/06.
https://doi.org/10.1145/3453483.3454036

dreyer@mpi-sws.org

158

dg@mpi-sws.org

ACM Reference Format:

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan
Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC: Au-
tomating the Foundational Verification of C Code with Refined
Ownership Types. In Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Imple-
mentation (PLDI "21), June 20-25, 2021, Virtual, Canada. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3453483.3454036

1 Introduction

Despite numerous advances in programming language tech-
nology over the past several decades, a great deal of safety-
and security-critical systems software is still programmed
in C. The C language remains widely used in large part be-
cause it provides fine-grained control over management of
resources, which is indispensable to many systems programs.
However, this control comes at the steep cost of regularly
introducing serious and sometimes catastrophic bugs into
code. It has thus long been one of the grand challenges of
programming languages research to develop scalable for-
mal methods that can help programmers build C code that
is functionally correct, and verifiably so [2, 13, 15, 17, 19—
21, 25, 27, 29, 31, 33, 40, 53, 63, 69, 75, 82, 86].

Existing tools for formal verification of C programs come
in two varieties: automated or foundational.

On the one hand, automated tools like VeriFast [40], VCC
[17], and MatchC [86] use a variety of techniques (including
both off-the-shelf SMT solvers and bespoke separation-logic
solvers) to verify correctness of C programs with minimal
user intervention. With these tools, the user still needs to
write specifications and provide some annotations (e.g., loop
invariants) to aid the proof search, but the verification is
otherwise automatic. However, automated tools have a siz-
able trusted computing base: one must trust that the often-
sophisticated logic underpinning them is sound—and imple-
mented correctly—since the tools do not provide any form
of independently checkable proof.

On the other hand, foundational tools like VST [2, 10], as
well as major verification efforts like CertiKOS [32-34] and

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3453483.3454036
https://creativecommons.org/licenses/by/4.0/

PLDI 21, June 20-25, 2021, Virtual, Canada

seL4 [51], embed expressive frameworks for verifying C code
within a pre-existing logical foundation, typically a general-
purpose theorem prover such as Coq or Isabelle/HOL. Foun-
dational tools have the key advantage of a smaller trusted
computing base: one need only trust the proof checker of
the host theorem prover and the encoding of the operational
semantics of C, but not the particular logic or implementa-
tion of the tool itself. However, the use of foundational tools
typically requires significant manual proof effort: although
these frameworks provide tactical support for hiding tedious
proof steps, the user must still guide the proof process—
e.g., manipulating the proof context, applying lemmas, per-
forming case distinctions, unfolding definitions, instantiating
quantifiers—by hand. One exception is Bedrock [13-15, 64],
which provides much more powerful tactic-based automa-
tion. However, Bedrock does not handle many complexities
of C, instead targeting a custom assembly-like language with
a simplified memory model that prohibits many of the opti-
mizations performed by modern C compilers [14].

In this paper, we present RefinedC, a new approach to
verifying C code that is both automated and foundational,
while at the same time handling a range of low-level pro-
gramming idioms including pointer arithmetic, uninitialized
memory, and concurrency with data races.

To support automated verification, RefinedC employs a
novel type system combining refinement types and ownership
types. Refinement types let us express precise invariants on
C data types and strong Hoare-style specifications for C
functions. Ownership types let us reason modularly about
shared state and concurrency by controlling ownership of
memory a la Rust [93]. Moreover, RefinedC’s type-based
approach has the benefit of offering a predictable, syntax-
directed approach to automated verification.

To support foundational verification, RefinedC follows
the semantic typing approach of RustBelt [42, 43]: we give
meaning to RefinedC’s types by interpreting them in Iris,
a higher-order concurrent separation logic embedded in
Coq [44, 45,47, 55]. The typing rules of RefinedC thus simply
become lemmas about our separation-logic model of types,
whose soundness we establish (using Iris) in Coq. Separation
logic is a natural fit for modeling RefinedC types because
(a) it provides a built-in account of ownership-based reason-
ing, and (b) Iris provides features like invariants and ghost
state, which are useful for justifying more sophisticated typ-
ing rules concerning shared state and concurrency.

Motivating example. Figure 1 shows a concrete example
of RefinedC in action. The type struct mem_t represents the
state of a memory allocator: a block of memory pointed to by
buffer, whose size is len. The alloc function tries to allocate sz
bytes of memory from a struct mem_t. It first checks, using len,
that enough memory is available, and returns NULL otherwise.
If buffer is large enough, then its last sz bytes are allocated
using pointer arithmetic, and len is updated accordingly.

159

M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and D. Garg

1 struct [[rc::refined_by("a: nat")J]] mem_t {

2 [[rc::field("a @ int<size_t>")]] size_t len;

3 [[rc::field("&own<uninit<a>>")]] unsigned char* buffer;
41}

5

6 [[rc::parameters("a: nat", "n: nat", "p: loc")]1]

7 [[rc::args ("p @ &own<a @ mem_t>", "n @ int<size_t>")]1]
8 [[rc::returns("{n<a} @ optional<&own<uninit<n>>, null>")1]
9 [[rc::ensures("own p : {n <a?a-n:a} @memt")]]

10 void* alloc(struct mem_t* d, size_t sz) {
if(sz > d->len) return NULL;

d->len -= sz;

return d->buffer + d->len;

11
12
13

14 }
Figure 1. Memory allocator example in RefinedC.

11 blocks in Figure 1 represent RefinedC an-
notations,’ which express a refined version of mem_t and a
behavioral specification of alloc for RefinedC to verify au-
tomatically. Here, the refined mem_t is indexed by a natural
number a, the number of bytes available from the alloca-
tor. This number must match the value stored in the len
field as enforced using a @ int<size_t>, the singleton type
of the size_t integer a.? The buffer field is given the type
gown<uninit<a>>, indicating that it is a pointer to an owned
block of memory of size a. Taken as a whole, the refined mem_t
encodes the invariant that the len field contains the length
of the owned block pointed to by the buffer field.

The specification for alloc assumes (in its rc: :args clause)
that the argument d points to a struct mem_t with a available
bytes, and that the argument sz is equal to some integer value
n. The rc::returns clause specifies the refined type of the
value that alloc returns: in this case, an optional value, which
points to an uninitialized block of length n if the refinement
n < ais true, and is NULL otherwise. Finally, the rc: :ensures
clause specifies that, upon returning, alloc gives back the
ownership of p (the pointer passed in as the argument d),
now pointing to a mem_t of the appropriately reduced size.

Key idea. One may wonder how the checking of richly-
typed specifications like the one for alloc can be performed
automatically. The key idea is that, even though RefinedC’s
refinement types encode deep (undecidable) specifications,
their syntactic structure serves to judiciously and predictably
guide the proof search in a syntax-directed manner. A con-
crete example of this is the type b @ optional<T1,T2> (as seen
in the rc::returns clause in line 8 of Figure 1). Semantically,
in our Iris model of RefinedC types, this type corresponds to
a disjunction (untagged union) between the cases where b is
true or false; and in general, searching for proofs of disjunc-
tions is difficult because one may make incorrect choices,
leading to backtracking. However, as we explain in §6, the

! Annotations use C2x attributes syntax supported by recent C compilers.
2The unrefined version int<size_t> is inhabited by all size_t integers.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2335.pdf

RefinedC: Automating the Foundational Verification of C Code with Refined Ownership Types

step (A)

PLDI ’21, June 20-25, 2021, Virtual, Canada

|
: into
I

¥ C code in Coq

Caesium

| |

! ! ‘ Specification Ownership reasoning Side conditions
! ‘ ‘ - Automatic

'| Specification / | ‘ o step (B) Automatic step (C)

! . H Proof > 3 solvers /

| annotations translated constructed by type checker calls

|

|

|

Type system
Lithium
Iris

I
|
|
|
|
|
manual proofs :
I
I
I
I
|
|

Figure 2. The architecture of RefinedC.

syntactic structure of the program and refinement types pro-
vide crucial information that we use to make a definite choice,
thus avoiding backtracking.

Formally speaking, in order to ensure that RefinedC’s typ-
ing rules lead to a non-backtracking proof search, we insist
that they be expressible in a separation logic programming
framework we call Lithium. Lithium is a carefully restricted
fragment of the Iris logic, on which efficient goal-directed
proof search is possible—indeed, we have implemented it in
the form of a fully automated Coq tactic. A logic program
in Lithium consists of a set of rules (often called clauses in
logic programming), which serve to strategically guide proof
search by instructing the Lithium interpreter how to convert
every proposition into appropriate subgoals. These rules are
certified correct by interpreting them semantically as lem-
mas to be proven in Iris (as described above). By expressing
the RefinedC type system as a Lithium program, we thus
obtain an automated and foundational method for checking
C programs against RefinedC types, and one which is inher-
ently extensible (e.g., to handle new C programming idioms)
since it is encoded as an open set of Lithium rules.

The RefinedC toolchain. Figure 2 depicts the complete
RefinedC toolchain.’ Developers write standard C code as
they would without RefinedC. To this, they add a functional
specification in the form of RefinedC’s (refinement) types
and standard annotations like loop invariants. After this,
RefinedC takes over. First, in step (A), a front end that we have
created (based on the front end of Cerberus [66]) translates
the C code to a deep embedding of C in Coq, called Caesium,
and translates the annotations to RefinedC’s abstract syntax
to Coq. Next, in step (B), Lithium automatically executes
RefinedC’s typing rules (represented as a logic program) on
the Caesium code to produce a typing derivation proving
the specification in Coq. During this process, verification
conditions—which are pure Coq propositions—are generated.
These are mostly automatically discharged using a library
of Coq tactics (step (C)), but they can also be discharged by
custom (e.g., domain-specific) solvers, or manual proofs.

Under the hood, hidden from the ordinary C programmer,
lie RefinedC’s types and typing rules, which have been de-
fined ahead of time, in Lithium, by an expert. The expert must

3The implementation of RefinedC (together with case studies) is provided
as a companion artifact [79].

160

define types semantically (as explained above), and prove
typing rules sound in Iris against the Caesium C semantics.

Contributions. We make the following contributions:

e RefinedC: A foundationally sound and automatic ap-
proach to functional verification of idiomatic C code
based on refinement and ownership types (§4, §6).

e Lithium: A logic programming language based on the
Iris separation logic, embedded in Coq, suitable for
automating the type checking of RefinedC (§5).

e A front end translating annotated C code into Caesium,
a deep embedding of C in Coq (§3).

e An evaluation of the RefinedC approach using case
studies of varying complexity, which demonstrate Re-
finedC’s handling of common low-level C idioms (§7).

2

In this section, we use motivating examples to introduce
RefinedC from the user’s point of view. First, we go back in
more detail to the example of Figure 1 (§2.1). We then verify
the deallocation mechanism of a more complex allocator
relying on a linked list of free chunks, which requires a
recursive refinement type and a loop invariant (§2.2).

RefinedC by Example

2.1 A Simple Memory Allocator

As shown in §1, the RefinedC annotations on struct mem_t
in Figure 1 define a new RefinedC type called mem_t, which
is parametric in a natural number a representing the num-
ber of available bytes. We emphasize the difference between
the C type struct mem_t and the RefinedC type mem_t: The C
type only specifies the physical layout—e.g., the names and
the offsets of the fields, which are used by the compiler to
generate field accesses—but does not give meaningful cor-
rectness guarantees. For example, the C type does not enforce
that len is a valid integer: it could very well be uninitialized.
The RefinedC type mem_t captures the invariant satisfied by
struct mem_t values on which alloc operates. Note that Re-
finedC specifications are purely logical: they do not influence
the program’s compilation or its runtime behavior.

Specification of alloc. We now turn to the annotations
assigning a type (i.e., a specification) to the alloc function.
Our specification introduces a number of logical variables

PLDI 21, June 20-25, 2021, Virtual, Canada

(rc: :parameters on line 6). Parameters are universally quan-
tified in the specification and, like refinements on a struct
given with rc: :refined_by, range over arbitrary mathemati-
cal domains (i.e., Coq types). The alloc function has three
parameters: the natural numbers a and n representing the
number of available bytes and the amount requested by the
caller respectively, and the location p at which the allocator
state is stored. These parameters connect the refinements
in the argument and return types, as well as possible pre-
and postconditions. The types of the arguments are specified
using rc::args on line 7. The type p @ &own<a @ mem_t> speci-
fies that the first argument of alloc is an owned pointer to
an allocator state with a available bytes, stored at location
p. The singleton type n @ int<size_t> specifies that the sec-
ond argument of alloc—the requested allocation size—is the
size_t integer with value n.

Next, the return type of alloc is specified using rc: :returns
on line 8. The return value is an owned pointer if the alloca-
tion succeeds, otherwise it is NULL. These two possibilities are
captured by the type b @ optional<gown<...>, null>that rep-
resents an owned pointer if the refinement b is true, and null
(the singleton type containing only NuLL) if the refinement b is
false. The refinement n < a* checks whether allocation will
succeed (i.e., if the allocator state owns enough memory).

The last part of the specification is a postcondition marked
by rc::ensures on line 9. It says that alloc returns the own-
ership of the mem_t (that it received through its first argu-
ment) back to its caller. The mem_t in the postcondition has an
updated refinement since the amount of available memory
decreases on a successful allocation. Note that the first argu-
ment of alloc and the type in the postcondition are refined by
the same location p. This forces alloc to return ownership for
the same pointer that it was passed. This ownership transfer
pattern occurs often in RefinedC. It is inspired by Mezzo [71],
and is an alternative to Rust’s mutable references.

Verification. RefinedC verifies the specification of alloc
without manual intervention. In particular, RefinedC’s au-
tomation picks the correct case of the returned optional by
examining the type of the returned value (via rules S-nuLL
and S-own on page). It also splits the ownership associated
with buffer into two following the pointer addition on line 13
(via rule O-app-uNINIT On page). One part of this ownership
stays with buffer while the other part is returned to the caller.
In §6, we explain both techniques further, as well as how the
same typing rules also automatically verify a variant of alloc
that allocates from the start of buffer instead of the end.

Error messages. RefinedC’s syntax-directed proof search
affords precise error messages. For example, suppose the
programmer mistakenly writes n < a instead of n < a in the
specification of alloc on line 8 in Figure 1. When n = a, the
code returns a valid pointer, while the specification expects
NULL, causing the verification to fail:

4Curly braces {. ..} are used to delimit Coq code in RefinedC annotations.

161

M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and D. Garg

Cannot solve side condition in function "alloc"!
Location: "alloc.c" [13:2-13:28]
Case distinction (n > a) — false at "alloc.c" [11:5-11:18]

This error message tells the user where in the code the veri-
fication failed (at the return on line 13), in which branch of
the if statement on line 11 (the else branch), and what side
condition could not be proved. Using this information, the
programmer can easily debug the specification.

A thread-safe allocator. The function alloc described
so far cannot be used concurrently on the same struct mem_t
object due to a data race. This is why its specification re-
quires full ownership of the allocator state. However, alloc
can be made thread-safe by storing its state in a global vari-
able protected by a lock. RefinedC supports this through a
flexible spinlock abstraction containing two abstract types,
spinlock<y> and spinlocked<y, ...>, which are, respectively,
the type of a spinlock uniquely identified by the parameter
y and the type of values protected by the lock y. This inter-
face is more general than the standard specification for locks
in higher-order concurrent separation logic [38, 87] in that
our spinlocked type allows adding resources to a lock after
it has been allocated. A detailed discussion of our spinlock
interface is outside the scope of this paper, but details can
be found in the companion appendix [79, Section A].

2.2 Deallocation Using a List of Free Chunks

Next, consider the memory deallocation function free in
Figure 3. This function inserts a chunk of memory that is
being freed into a linked list of free memory chunks. When
in the list, the initial bytes of a chunk are occupied by a
struct chunk, which is a header that contains the chunk’s
size (line 10), and a pointer to the next chunk (line 11) if
there is one, or NULL otherwise. The remaining bytes of the
chunk can be arbitrary.

It is an invariant of free that the chunk list is always sorted
in increasing order of chunk size. Hence, free has a loop to
find where to insert the new chunk (lines 27-30).

Recursive type definition. Figure 3 defines two C types:
struct chunk of chunk headers and chunks_t of pointers to
such headers. The type chunks_t (not struct chunk) is refined
by the RefinedC type chunks_t, which is defined on line 4. The
annotation rc: :ptr_type indicates that the defined RefinedC
type refines the type of a pointer to the surrounding struct,
not the struct itself. The ellipsis in the definition of chunks_t
is a placeholder for the RefinedC type of the struct.

Note that chunks_t is a recursive type: The annotation on
the next field mentions chunks_t again. Unfolding of recur-
sive types is handled by RefinedC automatically; no extra
annotations are required to indicate when to unfold.

RefinedC: Automating the Foundational Verification of C Code with Refined Ownership Types

1 typedef struct

2 [[rc::refined_by("s: {gmultiset nat}")]]

3 [Lrc::ptr_type("chunks_t:"

4 "{s # 0} @ optional<&own<...>, null>")]]
5 [[rc::exists ("n: nat", "tail: {gmultiset nat}")1]

6 [[rc::size ("n")11

7 [[rc::constraints("{s = {[n]} W tail}",

8 "{V k, k € tail - n < k}")]]

9 chunk {

10 [[rc::field("n @ int<size_t>")]] size_t size;
[[rc::field("tail @ chunks_t")]1] struct chunk* next;
12 }* chunks_t;

13

14 [[rc::
15 [[rc:
16

11

parameters("s:{gmultiset nat}", "p:loc", "n:nat")]1]
:args("p @ &own<s @ chunks_t>", "&own<uninit<n>>",
"n @ int<size_t>")1]

17 [[rc::requires("{sizeof (struct_chunk) < n}")]1]
18 [[rc::ensures ("own p: {{[n]} W s} @ chunks_t")]]
19 [[rc::tactics ("all: multiset_solver.")1]

20 void free(chunks_t* list, void* data, size_t sz) {

21 chunks_t* cur = list;

22 [[rc::exists ("cp: loc", "cs: {gmultiset nat}")]]
23 [[rc::inv_vars("cur: cp @ &own<cs @ chunks_t>")]]
24 [[rc::inv_vars("list:"

25
26
27
28
29
30 %}

31 chunks_t entry = data;

32 entry->size = sz; entry->next = *cur;
33 kcur = entry;

34 }

"p @ &own<wand<{cp <; ({[n]} W cs) @ chunks_t},"
"{{[n]} ¥ s} @ chunks_t>>")1]
while(xcur != NULL) {
if(sz <= (*cur)->size) break;
cur = &(*cur)->next;

Figure 3. Example of an allocator with a freelist.

Multiset and invariant. We explain the type chunks_t
further. This type is refined by a multiset of natural numbers s
on line 2. This multiset contains the sizes of all chunks in the
list. When chunks_t is an owned pointer (i.e., when s is not
the empty set), the struct that it points to is parameterized
by the size of the first chunk n and the multiset tail refining
the rest of the list. These two parameters are existentially
quantified in the rest of the type (rc: :exists annotation). A
constraint (rc: :constraints annotation) relates n and tail to
s. A second constraint says that n is less than or equal to
all elements of tail, which implies that the list of chunks
is sorted. The last interesting point about chunks_t is the
rc::size annotation on line 6. This annotation means that
the chunk actually occupies n bytes in memory, of which the
C type (struct chunk) only describes the initial part. In other
words, the chunk is of size n bytes and a struct chunk (the
header) is overlaid at its beginning. The remaining bytes of
the chunk are treated as uninitialized by RefinedC.

Loop invariant and verification. The formal specifica-
tion of free should be unsurprising. It says that when free is
passed a free list with chunks of sizes s and a pointer to an
owned chunk of size n (this is the block to be freed), then at
the end of free, the free list contains chunks of sizes {[n]} ¥ s

162

PLDI ’21, June 20-25, 2021, Virtual, Canada

(using Coq multiset operation notations). Importantly, free
has a precondition (line 17) that the block being added to the
free list is large enough to fit the struct chunk header.

Verifying free in RefinedC requires an explicit loop invari-
ant (lines 22-26). Loop invariants are described with up to
three annotations: rc: :exists introduces local, existentially
quantified logical variables, rc: : inv_vars specifies RefinedC
types of relevant program variables at the start of each loop
iteration, and rc: : constraints lists additional assertions. (This
example does not need rc: : constraints.)

The loop invariant tracks the ownership of the list as it
is traversed. Logically, the list has two parts: the suffix that
has not yet been traversed and the prefix that has already
been traversed. These two parts are pointed to by the local
variable cur and the argument variable 1list, respectively. The
loop invariant associates ownership of the list’s two parts
to these two variables. Specifically, it introduces a multiset
variable cs corresponding to the multiset refinement of the
suffix and asserts that cur points to an owned list of chunk
sizes from cs. Next, it asserts that if this ownership extended
with a chunk of size n (the new chunk) is combined with the
ownership associated with list, then one obtains ownership
of the entire output list (sizes from multiset {[n1} @ s). This
if-then relation is conveniently expressed using the wand<. . .>
type using a standard technique for expressing partial data
structures via the magic wand of separation logic [11].

Finally, the annotation rc::tactics on line 19 instructs
RefinedC to use the multiset solver from the std++ Coq
library [92] for proving the side conditions in this example
that RefinedC’s default solver cannot prove.

3 RefinedC Front End and Caesium

Before a C program can be verified by RefinedC, it is elabo-
rated by the RefinedC front end to a core language we call
Caesium. This language is control-flow graph-based, and
given a formal semantics through a deep embedding in Coq.
The core of this semantics is a low-level memory model that
is roughly based on that of CompCert [61, 62]. Caesium pro-
vides both sequentially consistent and non-atomic memory
accesses, and assigns undefined behavior to data races follow-
ing the semantics of RustBelt [42]. Caesium supports many
low-level idioms like pointer arithmetic, the address-of oper-
ator (also on local variables), access to representation bytes,
fixed-size integers, goto (including unstructured switches,
such as Duff’s device), alignment checks, composite types
as arguments and return values, uninitialized memory with
poison semantics [59], and first-class function pointers. The
RefinedC front end is implemented in OCaml and relies on
the first half of the pipeline of Cerberus [66].

Since RefinedC aims at the verification of low-level sys-
tems code (like allocators, as shown in §2), the Caesium se-
mantics is more permissive than what the ISO C standard de-
scribes. Indeed, it is well documented that ISO C and de facto

PLDI 21, June 20-25, 2021, Virtual, Canada

Type Intuitive semantics

n @ int(a) C integer of type « that encodes n
¢ @ bool Boolean reflecting the truth of ¢
@ &own(T) unique ownership of 7 at location ¢
uninit(n) n uninitialized (i.e., arbitrary) bytes
null singleton type of NULL

¢ @ optional(ry, 12) if ¢ then 77 else 1,

wand(H, 1) 7 with hole H

structy T struct with layout o, fields of types 7
Ix. 7(x) type-level existential quantifier

{r| ¢} 7 with constraint ¢

padded(z, n) 7 padded to n bytes

Figure 4. A selection of RefinedC types.

practices commonly found in low-level systems code dis-
agree on many aspects of the C memory model [66, 67, 103].
Hence, the Caesium memory model has less undefined be-
havior than ISO C with respect to, e.g., padding in structs
and effective types.

Caesium lacks some features of ISO C that are subject to
active research. It does not support C’s loose expression eval-
uation ordering [29, 37, 52] (Caesium fixes a left-to-right or-
dering), lifetimes of block-scoped variables [37, 57] (all local
variables are function-scoped in Caesium), integer-pointer
casts [49, 66], and relaxed-memory concurrency [5, 22, 48]
(Caesium’s only atomic accesses are sequentially consistent).
To mitigate the first two points, the RefinedC front end per-
forms an over-approximating analysis that emits warnings
if an expression may be non-deterministic, or if the address
of a block-scoped variable could escape.

Trusted computing base. The trusted computing base
(TCB) of RefinedC includes the implementation of the front
end, the definition of the Caesium semantics, and Coq. The
front end contains around 6000 lines of OCaml code (exclud-
ing Cerberus) that transform Cerberus’s AIL intermediate
language into a control-flow graph and translate AIL con-
structs to Caesium (almost 1-to-1). The definition of the
Caesium semantics is currently roughly 1500 lines of Coq
code (including some proofs) and additionally uses defini-
tions from the Coq standard library, std++, and the language
interface of Iris. The Iris logic itself is not part of the TCB
since its adequacy theorem establishes a closed Coq state-
ment that involves just the operational semantics. Similarly,
the Lithium interpreter described in §5 need not be trusted
since it generates proofs in Iris.

4 RefinedC Types and Specifications

This section describes RefinedC’s types further. Several in-
teresting RefinedC types, along with their intuitive meaning,
are shown in Figure 4. (These types also appeared in earlier
examples.) In RefinedC, most types can have a refinement,

163

M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and D. Garg

an optional parameter that limits values in the type. A re-
finement is a logical predicate on values of the type, but the
meta-level sort of the refinement and the predicate vary from
type to type. For example, the type int(«) can be refined by
a mathematical integer n to form the type n @ int(a) that
represents the singleton set {n} of a-sized integers. The type
¢ @ bool is the single Boolean value reflecting the validity
of proposition ¢. The refinement type £ @ &own(7) denotes
an owned (non-aliased) pointer and its refinement ¢ speci-
fies the exact memory location that is owned. As examples,
the annotations on mem_t on line 3 in Figure 1 use &qwn(7)
together with uninit(n) to denote a pointer to a block of n
bytes of uninitialized memory. The type ¢ @ optional(zy, 73)
is a type-level case distinction on the validity of ¢. It is most
commonly used to represent nullable pointers (via &own(7)
and null), as illustrated in §2. Another interesting type is
wand(H, 7), which is used to encode partial data structures
via the magic wand [11]. The loop invariant of free in Fig-
ure 3 uses this type.

The last four types in Figure 4 are most often generated
from other annotations (although they can be used directly,
too). A structure type struct, T is built by combining the
types given by the rc::field annotations on a C struct (e.g.,
lines 2-3 in Figure 1). The types Jx. 7(x) and {7 | ¢} are
generated from rc::exists and rc::constraints annotations
(e.g., lines 5-7 of Figure 3). Finally, the type padded(z, n),
which represents type 7 padded to n bytes, is generated from
rc::size annotations (e.g., line 6 of Figure 3).

Function types. Functions have RefinedC types of the
form fn(Vx. Targ; Hore) — Y. Tret; Hpost- Function types are
generated from the source code annotations we have already
seen. For example, the annotations on alloc (lines 6-9 of Fig-
ure 1) lead to the function type allocspec shown in Figure 5.
Logical variables in the rc: :parameters annotation (line 6) cor-
respond to x in the function type, the annotations rc: :args
and rc::returns (lines 7-8) correspond to T, and 7y, re-
spectively, and the annotations rc: :requires and rc: :ensures
(line 9) correspond to Hpyre and Hpost, respectively. Existential
variables that are bound in the return type and the postcondi-
tions by rc: :exists correspond to y. RefinedC function types
are first-class: functions can be stored in memory and passed
to or returned from other functions.

RefinedC assigns types to C programs through a type sys-
tem consisting of several typing judgments and typing rules.
Before introducing these judgments and rules, we describe
the fragment of the Iris separation logic in which RefinedC’s
typing rules are represented in Cogq.

5 Lithium: Separation Logic Programming

RefinedC’s typing rules lie in a fragment of the Iris separation
logic for which proof search can be directed entirely by the
goal to be proven, without backtracking. This enables us
to automate RefinedC efficiently. In this section, we define

RefinedC: Automating the Foundational Verification of C Code with Refined Ownership Types

PLDI ’21, June 20-25, 2021, Virtual, Canada

a @ mem_t £ structstruct mem_t [@ @ int(size_t), &own(uninit(a))]
allocgpec = fn(Y(a,n, p). p @ &own(a @ mem_t), n @ int(size_t); True)
— 3(). (n < a) @ optional(&own(uninit(a)), null);p < ((n <a)? (a—n):a) @ mem_t

Figure 5. The formal specification of alloc (Figure 1) in RefinedC’s type system (slightly simplified).

this fragment, called Lithium, describe how proof search
works for it, and how we implement the proof search in Coq.
We note that Lithium is similar to the substructural logic
programming language Lolli [39] in its use of goal-directed
search, but Lithium is simpler and never backtracks.

Lithium syntax. A Lithium judgment has the formI'; A I
G, where G is the goal to be proven, and I" and A are two con-
texts of hypotheses whose elements can be used an arbitrary
number of times (unrestricted) and at most once (resources),
respectively. The syntax of contexts and goals is:

Atom As=Lqr|va,T]...

Basic goal F =+l 5| A; <t A, {G}]...

Goal G:=True |F|H*G|H =G |G AGy
| Vx. G(x) | Ix. G(x)

Left-goal H:=="¢7|A|H=+H |3x.H(x)

Contexts r==0|I,x|I,¢ Az=0|AA

The unrestricted context I' contains universally quantified
variables (parameters) x and pure propositions ¢, all of which
are duplicable. The resource context A contains atoms A. The
atom ¢ < 7 expresses that location ¢ has type 7, and the atom
v <, T expresses that value v has type 7. Atoms are non-
duplicable because types may contain resource ownership.

Next, we describe goals, G. The simplest goals are basic
goals, denoted F. Basic goals represent RefinedC typing and
subsumption (subtyping) judgments. For example, the basic
goal A; <: A, {G} is a RefinedC subsumption judgment; log-
ically, it is equivalent to A; - (A, *G). The basic goal/typing
judgment +Z . s means that the C statement s is well-typed
in the function state 3, which contains the control-flow graph
and the postcondition of the function containing s.

As an example, we show below the Lithium judgment stat-
ing that alloc has the type in Figure 5. Importantly, RefinedC
typing assumptions about alloc’s arguments are represented
in the Lithium context (to the left of I), and X contains the
postcondition of alloc, i.e., the consequent of allocspec.

0564 <1 p @ &own(a @ mem_t),

l; 4 n @ int(size_t) I (I—?TMT alloc(¢g, s,))

Besides basic goals, goals G may also contain the sepa-
ration logic connectives *, -, A, ¥ and 3. However, the left
sides of - and = are restricted to a smaller class of goals
called left goals, H, which cannot contain A, V and -. We
explain the exact purpose of this restriction later but, briefly,
it significantly narrows the search space for proofs.

164

Goal-directed search. The search for a proof of I'; A - G
in Lithium is directed by the goal G, and proceeds by case
analysis of G. We summarize the cases below. The action in
each case is based on standard introduction and rewriting
rules of separation logic.

. G = True: The search succeeds trivially.

. G =Gy A Gy: Fork to prove both T'; A I Gy and T; A I G,.

. G =Vx.G'(x): Prove I, y; A I G'(y) for a fresh y.

. G =3dx.G’(x): Prove T'; A I+ G’ (?x), for a fresh evar ?x.

. G = F: Find a RefinedC typing rule % whose conclusion
F’ can be unified with F, and prove I'; A I G'.

.a. G = (H; * Hy) = G’: Prove the equivalent judgment
I;A v H; = (Hy * G'); the next step will analyze the
smaller formula H;.

. G = (3x. H(x)) * G': Prove the equivalent Lithium
judgment I'; A + 3x. (H(x) = G") and use case (4); the
next step will analyze a smaller formula H(?x).

c. G = "¢ % G': Solve the pure side condition ¢ under
premises I' and prove I'; A - G'.

. G=A=*G'":Find A’ € A that is related to A, and prove
[A\A F A’ <: A{G’}. Atoms A and A’ are related if
they both assign types to the same value or location.

. G = (H; = Hy) - G’: Prove the equivalent Lithium
judgment T'; A = Hy - (Hy ~ G’); the next step will
analyze the smaller formula Hj.

. G = (Ix. H(x)) - G’: Prove the equivalent Lithium
judgment T'; A IF Vx. H(x) -+ G’ and use case (3); the
next step will analyze the smaller formula H(y).

c. G="¢7 =+ G":ProveT, ;A - G’.

d G=A-=G":Prove; A,A I G'.

No backtracking. The Lithium proof search procedure is
efficient in large part because it does not backtrack. Several
design choices make this possible. First, the left side of * in
goals is limited to the form H, which cannot contain A, V,
and . Without this restriction, proving a goal G, * G, would
require a two-way split of the resource context A to prove G;
and G, simultaneously, requiring backtracking over possible
splits of A. However, when G; is limited to the form H, we
can reduce it in place all the way down to atoms (case (6) and
its subcases), which eliminates this form of backtracking.

Second, the left side of - in goals is also restricted to
the form H. This allows us to reduce local assumptions to
atoms before adding them to the context A (case (7) and
its subcases). By keeping only atoms in A, we eliminate
backtracking over possible hypotheses that can be used to
prove a given goal atom of the form ¢ < 7 or v<, 7: We trivially

Ul W N =

[o)}

PLDI 21, June 20-25, 2021, Virtual, Canada

match ¢ or v from the goal to each hypothesis and at most
one hypothesis will match, since the context A won’t contain
multiple typing assumptions for the same location or value.
In principle, backtracking could arise in case (5), where
more than one RefinedC typing rule could match the goal
F. However, multiple matches do not actually arise because
RefinedC’s typing rules are syntax-directed: types and code
inside F uniquely determine the applicable typing rule.’

Handling of evars. One important aspect of Lithium not
mentioned so far is the handling of evars created in case (4).
In particular, Lithium must be careful when instantiating
evars because a bad instantiation could easily make the goal
unprovable. To prevent this, case (4) seals the evars it creates
so that they cannot be prematurely instantiated by Coq’s
unification. In fact, the only place sealed evars can get instan-
tiated is when solving side conditions emitted by case (6¢),
at which point Lithium attempts to eliminate any evars in
the side condition using one of the following heuristics.

First, Lithium tries to find a suitable instantiation for the
evars by checking if the side condition is an equality and,
if so, removing the seals from all evars and then trying to
unify both sides (potentially instantiating evars). Though this
heuristic is often effective, it may also turn a provable goal
into an unprovable goal if it unifies an evar appearing as the
argument of a non-injective symbol. For example, unifying
(length ?x) and (length I) will lead to ?x being instantiated
with [, whereas the correct instantiation for ?x might in fact
be another list with the same length as I. In such cases, the
user’s only recourse at present is to adjust the annotations
to generate side conditions in an order that allows correct
instantiation. However, this has not caused problems in the
examples we have tried so far. In particular, all examples of
§7 use this heuristic.

Second, if Lithium cannot instantiate the evars in the side
condition, it simplifies the goal using a set of user-extensible
rewriting rules and equivalences. For example, a side con-
dition of the form ?xs # [] is simplified to the equivalent
Jy. Jys. ?xs = y = ys, which leads Lithium to introduce evars
?y and ?ys and instantiate xs with ?y ::?ys. The simplification
rules are also used by case (7c) to normalize assumptions
introduced into the context. For example, an assumption
xs # ys = [] is simplified to xs = [] and ys = [], which
causes both xs and ys to be substituted with []. By default,
this simplification mechanism applies equivalences and thus
preserves provability, but there is an escape hatch that lets
one add implications (rather than equivalences) as simplifi-
cation rules. (Doing so can make provable goals unprovable.)

The procedure described above is not complete as there
can be a side condition for which the heuristic for evar in-
stantiation fails and no simplification rule applies. However,

>Lithium also offers a way to specify priority among RefinedC rules in case
this property fails to hold. But once a rule is chosen, RefinedC does not
backtrack on the choice.

165

M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and D. Garg

the predictable nature of goal-directed search in Lithium
helps the user avoid such side conditions: since Lithium
always processes goals from left to right, it is straightfor-
ward to predict in which order the side conditions will be
generated. For example, when checking a function call the
arguments (rc: :args) are checked before additional precon-
ditions (rc: : requires), so one need not worry about evars in
the preconditions if they are determined by the arguments.
(See free in Figure 3 for an example of this.) Finally, for the
uncommon case where the above heuristics fail, the user has
two fallback options: they can either extend the simplifica-
tion rules or choose RefinedC annotations more carefully in
order to generate simpler unification problems.

Implementation. We have implemented a Lithium inter-
preter in the Ltac language [23] of Coq. The interpreter maps
I' to the standard Coq context and A to the spatial context
provided by the Iris Proof Mode [54, 56]. The search for
matching RefinedC typing rules (case (5) above) is handled
using Coq’s typeclass mechanism [84]. For unification, we
leverage Coq’s unification. The simplification mechanism for
side conditions containing evars is based on a combination
of the autorewrite tactic and typeclasses.

Extensibility. Inspired by the semantic typing approach
of RustBelt [42, 43], RefinedC types and typing judgments
are defined semantically in terms of the connectives of the
Iris separation logic, and typing rules are proved as lem-
mas in Iris. This means that RefinedC can be extended with
user-defined types and typing rules. RefinedC’s extensibil-
ity is reflected in Lithium’s automated proof search as well:
when new typing rules are added, Lithium’s proof search
automatically uses them through case (5) above.

6 Examples of RefinedC Typing Rules

Next, we explain selected typing rules, shown in Figure 6.
Every typing rule has the form % where G is a Lithium goal
and F is a Lithium basic goal, which encodes a RefinedC
typing judgment.

Judgment basics. RefinedC has a specialized typing judg-
ment for each program construct, e.g., -, for conditional
statements and Fgyop for binary operators. These judgments
are parameterized by the types of the values they operate
on. This ensures that Lithium’s proof search does not need
to backtrack since these types uniquely determine the ap-
plicable rule. For example, consider the rules Ir-Boor and
Ir-InT in Figure 6. Depending on the type of the condition
(bool vs. int) a different rule applies and typing proceeds
differently. Such type-based overloading allows RefinedC to
handle the same program construct differently depending on
the context. This is useful because, in C, the same construct
may serve different purposes.

Construct-specific judgments arise in the premises of rules
for general statement and expression judgments, e.g., T-1¢
or T-siNvor. The expression judgment Feypr € {v, 7. G(v, 1)},

RefinedC: Automating the Foundational Verification of C Code with Refined Ownership Types

PLDI ’21, June 20-25, 2021, Virtual, Canada

IF-BOOL IF-INT
(r(/J)-I N l_SETMT 51) A (r_'qs-l — }_ETMT 52) (rn #07 l_SZTMT sl) A (l‘n =07 l_SZTMT 52)
FIZF ¢ @ bool thens; elses, FIEF n @ int(a) thens; elses;
T-1r 5 T-BINOP
FExpr € {V’ T. b T thens; else 32} Fexpr €1 {vls T1. Fexer €2 {VZs T2. Fginop (Vl : Tl) © (VZ : TZ) {v, T. G(V> T)}}}
'_ETMT if e thens; elses; Fexpr €1 O €2 {Va T. G(V, T)}
O-OPTIONAL-EQ
("¢ = v; @y &own(7) + G(false, False @ bool)) A (T=¢™ =+ G(true, True @ bool))
Famor (V1 : ¢ @ optional(&own(7), null)) = (v, : null) {v,z. G(v, 1)}
S-NULL S-owN

l__|¢-| * G
v <, null <:v<, @ @ optional(&own(7), null) {G}

O-ADD-UNINIT

ToTx (VL. b1 <: <15 {G})

Ve &own(71) <t vy $ @ Optional(&own(TZ): null) {G}

"0 <ny < nl—I * (vl Y &own(uninit(HZ)) = G(vl + na, &own(uninit(nl - nZ))))

Femor (V1

CAs-BOOL

: &own(uninit(ny))) + (v2 : ny @ int(size_t)) {v,7. G(v, 1)}

(v2 <y &own (b1 @ bool) + G(false, False @ bool)) A
((b1 2 Hy : Hy) = (by ? Hr : Hy) * (v2 <y &own(b1 @ bool) + G(true, True @ bool)))

Fcas CAS (vy : atomicbool(H+, Hy), V2 : &ewn(b1 @ bool),vs : by @ bool) {v,7. G(v, 1)}

Figure 6. Selected RefinedC typing rules. (Simplified by, e.g., omitting refinements of &own.)

which also appears in the premises of rules, is a bit unusual
since it is parameterized by a continuation G, similar to the
postcondition of the weakest precondition assertion in Iris.
This continuation has two purposes. First, typing an expres-
sion infers a type 7. This type, together with an inferred
(symbolic) value v for the result, is passed as an argument
to the continuation. Second, the continuation is used to lin-
earize type checking as in T-sinor, which first types e, then,
in the continuation, types e,, and, after both 7; and 7, have
been inferred, introduces Fyyop- This continuation-passing
style ensures that every typing rule’s premise has one logical
formula, which simplifies Lithium’s implementation.®

Typing rules for optional. As demonstrated in §2.1, the
optional type of RefinedC plays a key role in handling the
common low-level programming pattern of encoding an
error value as NULL. Most uses of this pattern can be handled
by three RefinedC typing rules: the rule O-orrionar-EQ for
comparing an optional with NULL, and the two rules S-nuLL
and S-own for introducing an optional type.

The rule O-orrroNaL-EQ is used to prove .. if (e
NULL) then s; else s;. To do this, Lithium first applies T-1¥,
whose premise requires typing the boolean expression e =

®In the companion appendix we list all RefinedC judgments [79, Section B]
and give more typing rules for Fy,; and Fexer [79, Section CJ.

166

NULL. It then applies T-inop, which requires typing e. Sup-
pose Lithium infers the type ¢ @ optional(&own(7), null)
for e. Next, Lithium types the second expression, NULL. This
is trivial as NULL has type null. At this point, Lithium’s goal
is a judgment that matches the conclusion of O-opTiONAL-EQ.

We now explain O-orrionaL-EQ in detail. The rule distin-
guishes two cases via A, corresponding to the cases where ¢
holds or does not hold. When ¢ holds (first case), v; must be
an owned pointer, which cannot equal NULL, so the result of
the equality check in the conclusion of the rule must be false.
Accordingly, in this case, the continuation G is checked with
argument false, and ¢ and v; <y &own(7) are added to the
context (using case (7c) and case (7d) of §5). When ¢ does not
hold (second case), v; must have the type null, so v; must be
NULL and, hence, equal to v,. Accordingly, the continuation G
is checked with argument true and —¢ added to the context.

In either of these two cases, the typing of +2,,. if (e =
NULL) thens; else s, continues using Ir-soor (with the meta-
variable ¢ of Ir-Boor instantiated to False or True, respec-
tively). This rule also distinguishes two cases, but one holds
vacuously by virtue of the new assumption False (or —=True).

Next, we explain how Lithium establishes that a value v
has type ¢ @ optional(&own(7), null). A typing goal is an
atom (A) in Lithium, so the proof starts with case (6d) of §5.
Accordingly, Lithium looks for an atom A’ in the context that

PLDI 21, June 20-25, 2021, Virtual, Canada

types v. Typically, A” will type v at either null or &gy, (7”)
for some 7’. In the first case, (6d) yields a new goal of the
form v<, null <: v, (¢ @ optional(&ewn(7), null)) {G"} (for
some continuation G’). At this point, rule S-nuLL is used to
reduce the goal to proving —¢ (and G’), which is what one
expects from the intuitive meaning of the optional type. In
the second case, Lithium’s goal is v <y &own (") <:v <, (¢ @
optional (&own (7), null)) {G’}. Using rule S-own, this reduces
to proving ¢ and a subsumption between 7’ and 7, which
again follows the meaning of the optional type.

Ownership reasoning. Next, we explain how program
syntax guides ownership reasoning in RefinedC. Consider
the expression d->buffer + d->len on line 13 of Figure 1. Log-
ically, this expression splits the ownership of d->buffer into
two parts: one part that remains associated with d->buffer,
and a second part that is returned to the caller with the al-
located memory. This reasoning is performed by the rule
O-app-uNiNIT, Which types the addition of an integer n; to a
pointer to uninitialized memory of length n; (RefinedC type
uninit(ny)). The rule splits uninit(n;) into the smaller pieces
uninit(nz) and uninit(n; — ny), after checking that n, < n;.
This rule is a representative instance of how RefinedC’s in-
formative types disambiguate the intended logical meaning
of a commonly overloaded C operator (+ in this case).

Note that O-app-uniniT can be reused in other contexts
where programs add values of type &own(uninit(n)) and
int(size_t). For example, say we change the implementation
of alloc to allocate from the beginning of buffer instead of
the end, i.e, replacing line 13 in Figure 1 with the following:
1 unsigned char *res = d->buffer;

2 d->buffer += sz;

3 return res;

RefinedC automatically verifies the resulting version of alloc
without further changes since O-app-uniniT is general enough
to cover the type checking of + in both cases. The only dif-
ference is that the two versions distribute v; and v; +; n,
differently. In the original version, v; and the associated
&own (Uninit(ny)) stay in buffer, while v; +; ny is returned
with &gwn(uninit(n; — ny)). In the new version, buffer is
updated to v; +; ny, while the original value v; is returned.’

Fine-grained concurrency. RefinedC can also automati-
cally verify fine-grained concurrent code. We illustrate this
with the type atomicbool (H+, H,), which represents a Bool-
ean that can be accessed atomically. The type holds the own-
ership of Hr if the Boolean is true, and of H, if the Boolean
is false. For example, a spinlock that protects the resource H
can be modeled as the type atomicbool(True, H).

The main atomic operation supported by the atomicbool
type is atomic_compare_exchange_strong, corresponding to Cae-
sium’s CAS (£atom, fexp» Vdes) operation. The first argument
(fatom) is a pointer to the value to be modified atomically, the

"This variant of the example was suggested by a PLDI reviewer; it type
checked without requiring any changes to RefinedC or its typing rules.

167

M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and D. Garg

second argument (£.,) is a pointer to the current expected
value of £4;0m, and the third argument (vg;) is the value to
be assigned to £4;0m. CAS also sets £, to the previous value
stored at £,;01m.

CAS is verified using the rule Cas-Boor. The second and
third arguments of CAS have singleton Boolean types that
determine whether the premise uses Hr or H, . Cas-BooL
has two cases corresponding to whether the CAS fails or
succeeds. (First case) When CAS fails, the second argument is
updated to —by, and false is returned. (Second case) When
CAS succeeds, we receive ownership stored with the atomic
Boolean before the CAS, and have to prove ownership stored
after the CAS. Subsequently, we receive ownership of v, and
the CAS returns true. (The implementation of the spinlock
mentioned earlier uses Cas-Boor with b; £ false and b,
true, which means that on a successful CAS, one receives
the ownership of H stored in the spinlock.)

The RefinedC type atomicbool hides complex Iris con-
cepts related to fine-grained concurrency like impredicative
invariants and ghost state. These concepts show up only in
proving the soundness of Cas-Boor, which we have done
once and for all in Coq. Lithium’s automation only uses the
much simpler statement of the Cas-Boor rule, not its proof.

7 Evaluation and Case Studies

To evaluate the automation and expressiveness of RefinedC,
we verified full functional correctness of six classes of pro-
grams in Figure 7. We selected these programs to cover a
wide variety of reasoning patterns ranging over standard
benchmarks (#1), tricky ownership reasoning (#2), difficult
side conditions (#3, #4), real-world C code (#5) and concur-
rent algorithms (#6).

First, the table in Figure 7 lists the most interesting types
used by each example. This shows how RefinedC types like
wand or padded are reused across different programs. Then,
the table shows the number of RefinedC typing rules used in
type checking each of the examples. All typing rules used by
the examples are either automatically generated unfolding
rules for user-defined types or they are part of the RefinedC
standard library. This standard library currently contains
around 30 types and 200 typing rules. As explained in §5,
Lithium automatically selects and applies the right typing
rule from these predefined rules. Figure 7 shows how many
such automatic rule applications Lithium performs. This
number gives a sense of the automation afforded by Lithium,
showing the extent to which typing rules handle tasks like
ownership manipulation and unfolding of definitions that
must be performed manually in some other tools. Addition-
ally, the table shows how many existential variables are
automatically instantiated via the heuristics described in §5.
Across all programs, we had to instantiate only one evar
manually (in Spinlock).

RefinedC: Automating the Foundational Verification of C Code with Refined Ownership Types

PLDI ’21, June 20-25, 2021, Virtual, Canada

Class Test Types used Rules 3 "¢7 Impl Spec Annot Pure Ovh
Singly linked list wand, alloc 44/613 119 47/5 106 33 24(4/20/0) 2 ~0.2

1. Oueue list segments, alloc ~ 42/310 81 10/0 42 15 9(9/0/0) 0 ~0.2
Binary search arrays, func. ptr. 40/308 68 73/6 42 16 6 (0/5/1) 19 ~0.6

49 Thread-safe allocator wand, padded, lock 58/319 96 28/2 68 18 21 (14/2/5) 3 ~0.4
Page allocator padded 40/236 60 14/0 43 14 14 (14/0/0) 0 ~0.3

#3 Bin. search tree (layered) wand, alloc 50/964 216 50/11 133 65 22(8/7/7) 128 ~1.1
Bin. search tree (direct) wand, alloc 48/977 240 47/43 115 43 17 (8/7/2) 10 ~0.2

#4 Linear probing hashmap unions, arrays, alloc 57/1167 356 175/39 111 46 34(14/17/3) 265 ~2.7
#5 Hafnium mpool allocator wand, padded, lock 72/1730 515 122/11 191 53 55(28/19/8) 5 ~0.3
6 Spinlock atomic Boolean 25/65 10 14/1 24 12 13(0/1/12) 1 ~06
One-time barrier atomic Boolean 18/34 5 6/0 20 7 2(0/0/2) 0 ~0.1

Figure 7. Evaluation of RefinedC. Types used: Salient type constructs used in the program. Rules: Number of distinct typing
rules / number of typing rule applications. 3: Number of automatically instantiated existential quantifiers. "¢": Number
of side conditions automatically proved / manually proved. Impl: Lines of C code (counted by tokei [94]). Spec: Lines of
top-level (function) specification. Annot: Lines of annotation in source code (numbers in parentheses show breakdown into

data structure invariants / loop annotations / other annotations)). Pure: Lines of pure Coq reasoning, including definitions and
lemma statements. Ovh: Sum of Annot and Pure divided by Impl.

Figure 7 also lists how many pure side conditions RefinedC
solves automatically using its default solver and how many
need at least some manual help. We count these numbers
very conservatively: In many cases, a standard solver, like
set_solver from std++ [92], discharges several side conditions
automatically, but we still count these side conditions in
“manual” since the developer has to explicitly specify that
the set solver must be used. Basically, any side condition
that cannot be discharged by the one default solver that
we wrote—which currently only targets linear arithmetic
and Coq lists—is counted as manual. This default solver can
definitely be improved in the future. Finally, for each example,
Figure 7 lists the number of lines of C code, annotations, and
pure Coq reasoning for manual proofs. Importantly, there is
no column for the number of lines of separation logic (Iris)
reasoning since the RefinedC automation is able to handle
this automatically (with the exception of the initialization
function for spinlocks, which we explain later).

Overall, our experience is that RefinedC’s automation can
handle a wide variety of low-level reasoning, requiring man-
ual input only for example-specific pure (mathematical) side
conditions and only in the more challenging examples. Re-
finedC’s relative annotation overhead is moderate—less than
0.7 for all examples that do not involve complex side condi-
tions (which are not the focus of RefinedC’s automation at
present).

#1: Common case studies. The first three examples of
Figure 7 are case studies common to many verification tools.
The verification of singly-linked lists uses the representation

168

of partial data structures with magic wand [11, 12] illustrated
in §2.2, while the verification of queues needs a more spe-
cialized notion of list segments. Both use the first allocator
of #2 below for the allocation of new nodes. The five side
conditions counted here as manually discharged are actually
handled automatically by set_solver from std++. Addition-
ally, we verified a binary search implementation using a
function pointer, and a client of it. RefinedC handles this
easily since function pointer types are first class. The an-
notation overhead for these examples is low. In addition to
annotations for loops and data structure invariants, only a
single annotation (to import manual proofs) is necessary.

#2: Ownership reasoning. To evaluate RefinedC’s own-
ership reasoning, we verified two memory allocators. These
examples showcase RefinedC’s expressiveness, as all neces-
sary ownership transfers can be represented using types like
padded (rc::size annotation in Figure 3). The thread-safe
allocator uses annotations to manipulate the spinlocked type,
as described in §2 and in the companion appendix [79, Sec-
tion A]. (A third memory allocator from real-world code is
covered in #5 below.)

#3: Layered vs. direct verification. A popular approach
to verification of low-level code is to split the verification
tasks into many layers of intermediate specifications [34, 63].
To investigate how this layered approach works in RefinedC,
we verified a binary search tree first via an intermediate
functional layer, and second by directly going from C to
the desired specification as a functional set. Although both
approaches are viable with RefinedC, the overhead of the

PLDI 21, June 20-25, 2021, Virtual, Canada

direct approach is significantly less than the overhead of
the layered approach as it does not require defining the
intermediate layer. The direct approach works well because
the type system cleanly separates ownership reasoning from
pure functional reasoning and all except three side conditions
are automatically discharged by variants of set_solver.

#4: Complex functional reasoning. To check whether
RefinedC scales to data structures with complex functional
invariants, we verified a hashmap with linear probing. Ver-
ifying linear probing is non-trivial since all keys share the
same array, and one has to prove that an insertion or dele-
tion does not affect unrelated keys. The verification uses a
functional version of the probing function for stating the
invariant. RefinedC reduces verification to pure reasoning
about this invariant, which is discharged through manual
proofs in Coq.

#5: Real-world code. Our largest case study applies Re-
finedC to a version of the page allocator® of the Hafnium
hypervisor [35]. This verification combines many of the pre-
viously mentioned techniques, and shows that RefinedC can
verify real-world C code. Even though this allocator is sig-
nificantly more complicated than the allocators in #2, we did
not have to define any new RefinedC types to automatically
handle the ownership reasoning.

#6: Concurrent abstractions. The examples in this class
show that RefinedC can automatically verify fine-grained
concurrent code that is out of reach for many other auto-
matic verifiers. In particular, we use the atomic Boolean type
from §6 to verify two concurrent algorithms: a spinlock and
a one-time barrier. This type is abstract enough to automate
the verification of the acquire and release functions of the
spinlock and the barrier. The initialization function needs
manual proofs where it allocates a ghost token and for in-
stantiating one existential quantifier with a newly generated
ghost name. As mentioned in §2, RefinedC also provides
a spinlocked type, which decouples the spinlock from the
resources protected by it; the typing rules for spinlocked re-
quire 162 lines of additional Iris proofs. Altogether, the result
is a reusable spinlock abstraction, which is used by several
other examples in Figure 7 (the first allocator of #2, and the
allocator of #5).

8 Related Work

Bedrock. Like RefinedC, the Bedrock project [13-15, 64]
targets foundational and mostly automatic separation logic-
based verification of low-level programs. However, Bedrock
is based on a custom assembly-like language and custom
DSLs built on top, using macros that are verified similar
to compiler passes [14, 15]. In contrast, RefinedC applies
to existing C code that can be compiled using off-the-shelf
optimizing C compilers.
8The original code had to be adapted since it uses integer-pointer casts,
which are not yet supported by Caesium.

169

M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and D. Garg

Another point of difference from RefinedC is that, rather
than exploiting the higher-level abstractions of a refined type
system to drive automation, Bedrock encodes specifications
and abstract predicates in plain separation logic, for which
proof automation [13, 64] can be extended via custom Ltac
tactics and hints for unfolding abstract predicates. However,
Bedrock’s hint format is less expressive than Lithium, e.g.,
it cannot represent rules like Cas-soor from §6. Also, un-
like RefinedC typing rules, Bedrock hints cannot be tied to
specific program constructs and, hence, cannot be directed
by program syntax. Thus, for example, the verification of a
singly-linked list requires four custom hints and ~10 lines
of custom Ltac in Bedrock [91], whereas no such extra work
is required in RefinedC. (Both tools require loop invariant
annotations.)

VST. VST [2,10] is a separation logic-based framework for
verifying CompCert C programs. Users of VST deploy a set of
semi-automatic tactics to build functional correctness proofs
in Coq [10], or a front end [102] that uses source code anno-
tation to reduce verification to a set of entailments that have
to be proven in Coq. However, in both cases the user needs
to manually guide the proof by performing case distinctions,
applying lemmas, unfolding predicates, and instantiating
existential quantifiers—tasks that RefinedC’s Lithium-based
automation handles automatically in most cases. As a con-
crete example, verification of a binary search tree similar to
the one in §7 by the authors of VST [97] requires manual
effort for hundreds of such proof steps, which is not the case
in RefinedC. (The binary tree example in RefinedC needs
manual effort only for pure side conditions.)

Foundational verification of large-scale C programs.
There are several projects that perform C verification at scale,
most notably seL4 [51] and CertiKOS [32-34].

seL4 [50, 51] demonstrated the first formal proof of func-
tional correctness of a complete, general-purpose operating-
system kernel and comes with a translation-validation pro-
cedure [68, 81] to transfer the proofs to generated assembly
code. However, most of seL4’s proofs about C code are man-
ual and rely only on basic tactic support [50, 104]. Later work
automates some but not all of the most tedious parts [30, 31].
This automation, and the original seL4 verification, do not
support some aspects of C (such as concurrency and taking
addresses of local variables) that are supported by RefinedC.

CertiKOS [32-34] provides the first correctness proof of
a general-purpose concurrent OS kernel with fine-grained
locking. CertiKOS verification is integrated with the Comp-
Cert C compiler, so the proof applies to the generated as-
sembly code. The proof technique used (called “certified
abstraction layers”) is based on writing programs at different
layers of abstraction and proving refinements between these
layers. Refinement proofs are discharged (broadly similar
to VST) by manually guiding specialized tactics in Coq. As
seen in §7, RefinedC does not (in most cases) require such

RefinedC: Automating the Foundational Verification of C Code with Refined Ownership Types

manual guidance in Coq, and it also supports a layer-based
approach (although quite different from CertiKOS’s, since
RefinedC’s is based on layers of types vs. layers of programs
in CertiKOS). However, further work is needed in order to
establish the effectiveness of RefinedC at the larger scale at
which seL4 and CertiKOS have been deployed.

Non-foundational tools for verification of C. We com-
pare RefinedC to some of the most closely related non-
foundational tools for verifying C code.

VCC [17] employs SMT solvers to verify C programs and
has been used on large C programs in practice. However, it
lacks good support for dynamic ownership reasoning. For
example, a linked list predicate that supports member testing
requires three ghost fields—all of which need to be updated
manually in the add function [18, 95]. No such ghost fields
and annotations are necessary in RefinedC.

VeriFast [40] is an automated, separation logic-based ver-
ification tool for C and Java. It provides heuristics to auto-
matically infer annotations to reduce the proof burden [100].
VeriFast’s symbolic execution approach (of which only a core
subset has been proven sound [99]) uses a fixed rule for each
program construct, whereas RefinedC allows type-based
overloading as described in §6. RefinedC also benefits from
existing Coq libraries like std++[92]: the binary search tree
(layered) example from §7 requires roughly half the number
of lines of pure reasoning compared to a similar example in
VeriFast [96] by judicious use of existing lemmas and tactics.
Other than this, the annotation burden is similar.

MatchC [78, 86] is an automated verification tool for C
based on the K framework [77] and matching logic [76]. Its
rewrite-based approach provides good automation for non-
trivial pointer-manipulating programs and can be extended
with new abstractions and custom rules like RefinedC. How-
ever, unlike RefinedC, these abstractions and their rules
are not proven sound against a model, and must be trusted.
MatchC also does not support concurrency.

Verification of crypto. Various projects have embedded
subsets of C suitable for crypto verification in off-the-shelf
verification tools. Fiat Crypto [26] provides a language for
crypto in Coq, which is compiled to C. Fiat Crypto is used to
verify a high-performance implementation of the P-256 ellip-
tic curve. Low™ [72] provides a semi-foundational approach
to C verification through a shallow embedding of C in F*
[88], which is then extracted to C. Verification of Low™ code
can use the full power of F*, including SMT. Low™ is used
in the verified HACL* cryptographic library [107]. Due to
the exclusive focus on crypto, these projects do not support
some features of C that are supported by RefinedC, such as
recursive data types, function pointers, and concurrency.

Separation logic automation. The verification literature
abounds in (non-foundational) automatic solvers for separa-
tion logic and frame inference [16, 58, 60, 70, 73, 90]. These
solvers are usually specialized for a certain class of atomic

170

PLDI ’21, June 20-25, 2021, Virtual, Canada

formulas (usually a variant of the symbolic heap fragment [6]
of separation logic), rely on more sophisticated automation
(e.g., based on SMT solvers), and can automate more diffi-
cult reasoning patterns (e.g., induction reasoning [16]) than
Lithium. In contrast, proof search in Lithium is conceptually
more straightforward (which makes it more predictable and
amenable to implementation in a proof assistant), and has no
built-in knowledge about atoms and atomic formulas; rather,
it relies on the user to extend it with domain-specific atoms
and typing rules. This makes Lithium extensible with cus-
tom abstractions and adaptable to many different reasoning
patterns used in idiomatic C code.

Logic programming languages for linear and separa-
tion logic. Prior work on logic programming for linear or
separation logic [1, 3, 36, 39] focuses on identifying large sub-
sets of the underlying logic that remain amenable to logic
programming. However, these fragments need expensive
techniques like backtracking. In contrast, Lithium is deliber-
ately limited to the smallest subset of separation logic that
suffices for a type system. Proof search in a type system is
directed by program syntax and types, and typically does
not require backtracking. Accordingly, we eliminate back-
tracking from Lithium, which makes it easier to implement
a certifying interpreter for it in Coq.

Memory safety in low-level programming languages.
RefinedC focuses on full functional verification of low-level
programs. Much prior work [7, 9, 106] focuses instead on
the different—and simpler—problem of automatically ver-
ifying memory safety. One popular approach [20, 25, 69]
is to combine static and dynamic checks to enforce safety
of C programs. In contrast, RefinedC targets verification
without affecting the dynamic semantics of the program.
Low-Level Liquid Types [75] verify memory safety of C code
using a combination of refinement types [74] and alias types
[83, 101]. The annotation overhead is low (e.g., no loop in-
variants are required), but the goal is only memory safety. In
contrast, RefinedC targets full functional verification, and
thus requires more annotations but can also verify more pro-
grams (e.g., it addresses the limitations described by Rondon
et al. [75, Section 5.1]). Finally, safety can also be attained
by using a memory-safe language such as Vault [24], Cy-
clone [41, 89], or Rust [93] in place of C. However, these
languages rely on runtime checks, and—unlike RefinedC—
cannot guarantee functional correctness.

Refinement and ownership type systems. Refinement
types [28, 74, 105], although originally developed for func-
tional programs, have also been used for the safety and cor-
rectness of imperative code [4, 75, 98]. This line of work
usually focuses on fully automatic type systems for rela-
tively simple imperative languages. In contrast, RefinedC
requires more annotations (e.g., loop invariants), but can
verify more complicated properties and supports a more re-
alistic subset of C (including pointer arithmetic, uninitialized

PLDI 21, June 20-25, 2021, Virtual, Canada

memory, and concurrency). A recent, closely related piece
of work in this area is ConSORT [98], which, like RefinedC,
combines refinement types with ownership types. ConSORT
achieves a higher degree of automation by using a simpler
model of ownership types. However, ConSORT does not sup-
port abstractions like the magic wand and atomic Booleans
that are used in many of the programs in §7.

Foundational verification of fine-grained concurrent
algorithms. There is an abundance of related work on foun-
dational verification of fine-grained concurrent algorithms
using interactive proofs, e.g., in FCSL [80], VST [65], and Iris
[46, 56]. This line of work has focused on more challeng-
ing concurrent algorithms than the spinlock and barrier we
have verified in RefinedC. In future work, we aim to inves-
tigate if we can develop types besides the atomic Boolean
type (§6) that would enable automatic verification of more
sophisticated concurrent algorithms.

Semantic typing. RefinedC’s semantic typing approach—
in particular, building a semantic model of types on top of
Iris—is modeled after that of RustBelt [42]. However, the con-
crete design of RefinedC’s type system differs from RustBelt
in several key aspects: (1) RefinedC uses Mezzo-like [71] alias
types [83, 101] instead of Rust’s lifetimes and mutable refer-
ences, (2) RefinedC includes refinement types in addition to
ownership types, and (3) RefinedC supports automated type
checking, which RustBelt does not.

9 Limitations and Future Work

In this paper, we have demonstrated the potential of refined
ownership types to effectively automate the foundational
verification of C code. However, RefinedC is still in its in-
fancy and has a number of limitations that we plan to address
in future work.

C idioms and features. RefinedC relies on an expert
crafting typing rules to handle relevant programming id-
ioms in the code one wishes to verify. Our evaluation shows
that it is possible to come up with reusable typing rules for
several common C programming idioms. However, there
are C programming idioms that are not yet covered by our
existing typing rules. For example, although array accesses
are already well-supported, good typing rules for pointers
to array elements remain to be developed.

Also, Caesium and the front end lack support for some
features of C like floats or integer-pointer casts. The former
is mostly a matter of engineering since mechanized libraries
for floating point semantics exist [8], while the latter requires
more research to find the right semantics [49, 66].

Furthermore, RefinedC relies on syntactic, not semantic,
equality of pointers (see Lithium’s case (6d)). This suffices in
many cases because RefinedC is designed so that computing
the same pointer twice (e.g., taking the address of the same
field twice) results in the same pointer syntactically. How-
ever, some C code, in particular code using integer-pointer

171

M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and D. Garg

casts (not currently handled by RefinedC), requires a proper
treatment of pointers that are semantically equal, but syn-
tactically unequal. One idea would be to use a solver for
semantic equality of locations in case (6d).

RefinedC currently does not support reasoning about ex-
ternal function calls and input-output behavior of programs.
We believe that the automation provided by Lithium can also
be useful for such I/O verification.

Pure automation and evars. So far, we have focused
mainly on automating the separation logic aspects of reason-
ing. We additionally support automation for several domains
of purereasoning by leveraging existing solvers for e.g., linear
arithmetic, sets, and multisets, but this support can certainly
be extended further. Furthermore, as described in §5, the
handling of evars is known to be incomplete in certain cases
and can be improved.

Liveness properties. RefinedC only verifies partial, not
total, correctness. This is mainly due to Iris’s focus on verify-
ing safety properties. However, recent work enables termina-
tion verification in Iris using transfinite step-indexing [85].
It would be interesting to combine transfinite step-indexing
with RefinedC and Lithium to achieve automated and foun-
dational verification of liveness properties.

Acknowledgments

We thank Ralf Jung and Jan-Oliver Kaiser for many useful dis-
cussions, Ike Mulder, Paul Zhu, and Emanuele D’Osualdo for
their early adoption of RefinedC, and our shepherd Tahina
Ramananandro and the anonymous reviewers for their help-
ful feedback. Additionally, we thank Peter Sewell, Hong-Seok
Kim, Chung-Kil Hur, Neel Krishnaswami, Christopher Pulte,
Jean Pichon-Pharabod, Jieung Kim, Youngju Song, Ben Lau-
rie, Sarah de Haas, the pKVM development team, and all
other people involved in the pkVM verification effort for
their useful feedback and support.

This research was supported in part by a European Re-
search Council (ERC) Consolidator Grant for the project
“RustBelt”, funded under the European Union’s Horizon 2020
Framework Programme (grant agreement no. 683289), in part
by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(AdG grant agreement No 789108, ELVER), in part by the
Dutch Research Council (NWO), project 016.Veni.192.259, in
part by the EPSRC Programme Grant REMS: Rigorous Engi-
neering of Mainstream Systems (EP/K008528/1), in part by a
Google PhD Fellowship for the first author, and in part by
generous awards from Android Security’s ASPIRE program
and from Google Research.

References

[1] Jean-Marc Andreoli. 1992. Logic programming with focusing proofs
in linear logic. J. Log. Comput. 2, 3 (1992), 297-347. https://doi.org/
10.1093/logcom/2.3.297

https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1093/logcom/2.3.297

RefinedC: Automating the Foundational Verification of C Code with Refined Ownership Types

(2]

(3]

(4]

(5]

(6]

(7]

[8

=

[9

—

[10

=

(11

—

(12

—

(13]

(14]

(15]

(16

=

(17]

(18]

(19]

Andrew W. Appel. 2014. Program Logics for Certified Compilers.
Cambridge University Press. https://www.cambridge.org/de/
academic/subjects/computer-science/programming-languages-
and-applied-logic/program-logics-certified-compilers

Pablo A. Armelin and David J. Pym. 2001. Bunched logic pro-
gramming. In IJCAR (LNCS, Vol. 2083). Springer, 289-304. https:
//doi.org/10.1007/3-540-45744-5_21

Alexander Bakst and Ranjit Jhala. 2016. Predicate abstraction for
linked data structures. In VMCAI (LNCS, Vol. 9583). Springer, 65-84.
https://doi.org/10.1007/978-3-662-49122-5_3

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark
Weber. 2011. Mathematizing C++ concurrency. In POPL. ACM, 55-66.
https://doi.org/10.1145/1926385.1926394

Josh Berdine, Cristiano Calcagno, and Peter W. O’'Hearn. 2004. A
decidable fragment of separation logic. In FSTTCS (LNCS, Vol. 3328).
Springer, 97-109. https://doi.org/10.1007/978-3-540-30538-5_9
Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005. Small-
foot: Modular automatic assertion checking with separation logic. In
FMCO (LNCS, Vol. 4111). Springer, 115-137. https://doi.org/10.1007/
11804192_6

Sylvie Boldo and Guillaume Melquiond. 2011. Flocq: A unified li-
brary for proving floating-point algorithms in Coq. In ARITH. IEEE
Computer Society, 243-252. https://doi.org/10.1109/ARITH.2011.40
Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok
Yang. 2009. Compositional shape analysis by means of bi-abduction.
In POPL. ACM, 289-300. https://doi.org/10.1145/1480881.1480917
Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and
Andrew W. Appel. 2018. VST-Floyd: A separation logic tool to verify
correctness of C programs. J. Autom. Reason. 61, 1-4 (2018), 367-422.
https://doi.org/10.1007/s10817-018-9457-5

Qinxiang Cao, Shengyi Wang, Aquinas Hobor, and Andrew W. Appel.
2019. Proof pearl: Magic wand as frame. CoRR abs/1909.08789 (2019).
http://arxiv.org/abs/1909.08789

Arthur Charguéraud. 2016. Higher-order representation predicates in
separation logic. In CPP. ACM, 3-14. https://doi.org/10.1145/2854065.
2854068

Adam Chlipala. 2011. Mostly-automated verification of low-level
programs in computational separation logic. In PLDL. ACM, 234-245.
https://doi.org/10.1145/1993498.1993526

Adam Chlipala. 2013. The Bedrock structured programming sys-
tem: Combining generative metaprogramming and Hoare logic in
an extensible program verifier. In ICFP. ACM, 391-402. https:
//doi.org/10.1145/2500365.2500592

Adam Chlipala. 2015. From network interface to multithreaded web
applications: A case study in modular program verification. In POPL.
ACM, 609-622. https://doi.org/10.1145/2676726.2677003

Duc-Hiep Chu, Joxan Jaffar, and Minh-Thai Trinh. 2015. Automatic
induction proofs of data-structures in imperative programs. In PLDIL
ACM, 457-466. https://doi.org/10.1145/2737924.2737984

Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,
Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.
2009. VCC: A practical system for verifying concurrent C. In TPHOLs
(LNCS, Vol. 5674). Springer, 23-42. https://doi.org/10.1007/978-3-642-
03359-9_2

Ernie Cohen, Mark A. Hillebrand, Stephan Tobies, Michal Moskal,
and Wolfram Schulte. 2012. Verifying C programs: A VCC tuto-
rial. https://archive.codeplex.com/projects/VCC/fda99f81-18b5-
45ae-8f49-5b28c747dcc3

Jeremy Condit, Brian Hackett, Shuvendu K. Lahiri, and Shaz Qadeer.
2009. Unifying type checking and property checking for low-level
code. In POPL. ACM, 302-314. https://doi.org/10.1145/1480881.
1480921

172

PLDI ’21, June 20-25, 2021, Virtual, Canada

[20] Jeremy Condit, Matthew Harren, Zachary R. Anderson, David Gay,

[21

[22

[23

(24

[25

[26

[27

[28

[29

(30

(31

(32

(33

[35

(36

(37

—

]

[t

flan?

=

—

—

=

]

]

]

=

=

flaa?

= =

—

and George C. Necula. 2007. Dependent types for low-level pro-
gramming. In ESOP (LNCS, Vol. 4421). Springer, 520-535. https:
//doi.org/10.1007/978-3-540-71316-6_35

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. 2012. Frama-C: A software
analysis perspective. In SEFM (LNCS, Vol. 7504). Springer, 233-247.
https://doi.org/10.1007/978-3-642-33826-7_16

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and
Derek Dreyer. 2020. RustBelt meets relaxed memory. Proc. ACM
Program. Lang. 4, POPL (2020), 34:1-34:29. https://doi.org/10.1145/
3371102

David Delahaye. 2000. A tactic language for the system Coq. In LPAR
(LNCS, Vol. 1955). Springer, 85-95. https://doi.org/10.1007/3-540-
44404-1_7

Robert DeLine and Manuel Fahndrich. 2001. Enforcing high-level
protocols in low-level software. In PLDI. ACM, 59-69. https://doi.
org/10.1145/378795.378811

Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David
Tarditi. 2018. Checked C: making C safe by extension. In SecDev. IEEE
Computer Society, 53-60. https://doi.org/10.1109/SecDev.2018.00015
Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam
Chlipala. 2019. Simple high-level code for cryptographic arithmetic -
with proofs, without compromises. In IEEE Symposium on Security
and Privacy. IEEE, 1202-1219. https://doi.org/10.1109/SP.2019.00005
Xinyu Feng, Zhong Shao, Yu Guo, and Yuan Dong. 2008. Combining
domain-specific and foundational logics to verify complete software
systems. In VSTTE (LNCS, Vol. 5295). Springer, 54-69. https://doi.org/
10.1007/978-3-540-87873-5_8

Timothy S. Freeman and Frank Pfenning. 1991. Refinement types for
ML. In PLDI. ACM, 268-277. https://doi.org/10.1145/113445.113468
Dan Frumin, Léon Gondelman, and Robbert Krebbers. 2019. Semi-
automated reasoning about non-determinism in C expressions. In
ESOP (LNCS, Vol. 11423). Springer, 60-87. https://doi.org/10.1007/978-
3-030-17184-1_3

David Greenaway, June Andronick, and Gerwin Klein. 2012. Bridging
the gap: Automatic verified abstraction of C. In ITP (LNCS, Vol. 7406).
Springer, 99-115. https://doi.org/10.1007/978-3-642-32347-8_8
David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein.
2014. Don’t sweat the small stuff: formal verification of C code
without the pain. In PLDI. ACM, 429-439. https://doi.org/10.1145/
2594291.2594296

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,
Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and
Yu Guo. 2015. Deep specifications and certified abstraction layers. In
POPL. ACM, 595-608. https://doi.org/10.1145/2676726.2676975
Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim, Jérémie Koenig,
Xiongnan (Newman) Wu, Vilhelm Sjoberg, and David Costanzo. 2019.
Building certified concurrent OS kernels. Commun. ACM 62, 10 (2019),
89-99. https://doi.org/10.1145/3356903

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu,
Jérémie Koenig, Vilhelm Sj6berg, Hao Chen, David Costanzo, and
Tahina Ramananandro. 2018. Certified concurrent abstraction layers.
In PLDI. ACM, 646-661. https://doi.org/10.1145/3192366.3192381
Hafnium. 2020. Hafnium. https://review.trustedfirmware.org/plugins/
gitiles/hafnium/hafnium/+/HEAD/README.md.

James Harland, David J. Pym, and Michael Winikoff. 1996. Program-
ming in Lygon: An overview. In AMAST (LNCS, Vol. 1101). Springer,
391-405. https://doi.org/10.1007/BFb0014329

Chris Hathhorn, Chucky Ellison, and Grigore Rosu. 2015. Defining
the undefinedness of C. In PLDI. ACM, 336-345. https://doi.org/10.
1145/2737924.2737979

https://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers
https://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers
https://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers
https://doi.org/10.1007/3-540-45744-5_21
https://doi.org/10.1007/3-540-45744-5_21
https://doi.org/10.1007/978-3-662-49122-5_3
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1007/978-3-540-30538-5_9
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/11804192_6
https://doi.org/10.1109/ARITH.2011.40
https://doi.org/10.1145/1480881.1480917
https://doi.org/10.1007/s10817-018-9457-5
http://arxiv.org/abs/1909.08789
https://doi.org/10.1145/2854065.2854068
https://doi.org/10.1145/2854065.2854068
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1145/2676726.2677003
https://doi.org/10.1145/2737924.2737984
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2
https://archive.codeplex.com/projects/VCC/fda99f81-18b5-45ae-8f49-5b28c747dcc3
https://archive.codeplex.com/projects/VCC/fda99f81-18b5-45ae-8f49-5b28c747dcc3
https://doi.org/10.1145/1480881.1480921
https://doi.org/10.1145/1480881.1480921
https://doi.org/10.1007/978-3-540-71316-6_35
https://doi.org/10.1007/978-3-540-71316-6_35
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1145/3371102
https://doi.org/10.1145/3371102
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1145/378795.378811
https://doi.org/10.1145/378795.378811
https://doi.org/10.1109/SecDev.2018.00015
https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1007/978-3-540-87873-5_8
https://doi.org/10.1007/978-3-540-87873-5_8
https://doi.org/10.1145/113445.113468
https://doi.org/10.1007/978-3-030-17184-1_3
https://doi.org/10.1007/978-3-030-17184-1_3
https://doi.org/10.1007/978-3-642-32347-8_8
https://doi.org/10.1145/2594291.2594296
https://doi.org/10.1145/2594291.2594296
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/3356903
https://doi.org/10.1145/3192366.3192381
https://review.trustedfirmware.org/plugins/gitiles/hafnium/hafnium/+/HEAD/README.md
https://review.trustedfirmware.org/plugins/gitiles/hafnium/hafnium/+/HEAD/README.md
https://doi.org/10.1007/BFb0014329
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1145/2737924.2737979

—

[t

flan)

—

-

—

PLDI 21, June 20-25, 2021, Virtual, Canada

[38] Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli.

2008. Oracle semantics for concurrent separation logic. In ESOP
(LNCS, Vol. 4960). Springer, 353-367. https://doi.org/10.1007/978-3-
540-78739-6_27

[39] Joshua S. Hodas and Dale Miller. 1991. Logic programming in a

fragment of intuitionistic linear logic. In LICS. IEEE Computer Society,
32-42. https://doi.org/10.1109/LICS.1991.151628

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem
Penninckx, and Frank Piessens. 2011. VeriFast: A powerful, sound,
predictable, fast verifier for C and Java. In NASA Formal Methods
(LNCS, Vol. 6617). Springer, 41-55. https://doi.org/10.1007/978-3-642-
20398-5_4

Trevor Jim, Greg Morrisett, Dan Grossman, Michael W. Hicks, James
Cheney, and Yanling Wang. 2002. Cyclone: A safe dialect of C.
In USENIX. 275-288. http://www.usenix.org/publications/library/
proceedings/usenix02/jim.html

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek
Dreyer. 2018. RustBelt: Securing the foundations of the Rust program-
ming language. Proc. ACM Program. Lang. 2, POPL (2018), 66:1-66:34.
hitps://doi.org/10.1145/3158154

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek
Dreyer. 2021. Safe systems programming in Rust. Commun. ACM
64, 4 (April 2021), 144-152. https://cacm.acm.org/magazines/2021/4/
251364-safe-systems-programming-in-rust/fulltext

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016.
Higher-order ghost state. In ICFP. ACM, 256-269. https://doi.org/10.
1145/2951913.2951943

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars
Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular
foundation for higher-order concurrent separation logic. J Funct.
Program. 28 (2018), e20. https://doi.org/10.1017/S0956796818000151
Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna
Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs. 2020. The
future is ours: Prophecy variables in separation logic. Proc. ACM
Program. Lang. 4, POPL (2020), 45:1-45:32. https://doi.org/10.1145/
3371113

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and
invariants as an orthogonal basis for concurrent reasoning. In POPL.
ACM, 637-650. https://doi.org/10.1145/2676726.2676980

[48] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and

Viktor Vafeiadis. 2017. Strong logic for weak memory: Reasoning
about release-acquire consistency in iris. In ECOOP (LIPIcs, Vol. 74).
Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 17:1-17:29. https:
//doi.org/10.4230/LIPlcs.ECOOP.2017.17

[49] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov,

Steve Zdancewic, and Viktor Vafeiadis. 2015. A formal C mem-
ory model supporting integer-pointer casts. In PLDL. ACM, 326-335.
https://doi.org/10.1145/2737924.2738005

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby C. Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. 2014. Comprehen-
sive formal verification of an OS microkernel. ACM Trans. Comput.
Syst. 32,1 (2014), 2:1-2:70. https://doi.org/10.1145/2560537

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. seL4: Formal verification of an OS kernel. In
SOSP. ACM, 207-220. https://doi.org/10.1145/1629575.1629596
Robbert Krebbers. 2014. An operational and axiomatic semantics for
non-determinism and sequence points in C. In POPL. ACM, 101-112.
https://doi.org/10.1145/2535838.2535878

Robbert Krebbers. 2015. The C standard formalized in Coq. Ph.D.
Dissertation. Radboud University Nijmegen. https://robbertkrebbers.
nl/thesis.html

=

=

—

[t

=

—

—

=

[’

—

—

=

—

=

M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and D. Garg

[54] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tas-

sarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud, and
Derek Dreyer. 2018. MoSeL: A general, extensible modal framework
for interactive proofs in separation logic. Proc. ACM Program. Lang.
2, ICFP (2018), 77:1-77:30. https://doi.org/10.1145/3236772

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan,
Derek Dreyer, and Lars Birkedal. 2017. The essence of higher-order
concurrent separation logic. In ESOP (LNCS, Vol. 10201). Springer,
696-723. https://doi.org/10.1007/978-3-662-54434-1_26

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive
proofs in higher-order concurrent separation logic. In POPL. ACM,
205-217. http://dl.acm.org/citation.cfm?id=3009855

Robbert Krebbers and Freek Wiedijk. 2013. Separation logic for
non-local control flow and block scope variables. In FoSSaCS (LNCS,
Vol. 7794). Springer, 257-272. https://doi.org/10.1007/978-3-642-
37075-5_17

Quang Loc Le, Jun Sun, and Shengchao Qin. 2018. Frame inference for
inductive entailment proofs in separation logic. In TACAS (1) (LNCS,
Vol. 10805). Springer, 41-60. https://doi.org/10.1007/978-3-319-89960-
2.3

Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur,

Sanjoy Das, David Majnemer, John Regehr, and Nuno P. Lopes.
2017. Taming undefined behavior in LLVM. In PLDI. ACM, 633-647.
https://doi.org/10.1145/3062341.3062343

Wonyeol Lee and Sungwoo Park. 2014. A proof system for separation
logic with magic wand. In POPL. ACM, 477-490. https://doi.org/10.
1145/2535838.2535871

Xavier Leroy, Andrew Appel, Sandrine Blazy, and Gordon Stewart.
2012. The CompCert memory model, version 2. Technical Report
RR-7987. Inria. https://hal.inria.fr/hal-00703441

Xavier Leroy and Sandrine Blazy. 2008. Formal verification of a C-like
memory model and its uses for verifying program transformations.
J. Autom. Reason. 41, 1 (2008), 1-31. https://doi.org/10.1007/s10817-
008-9099-0

[63] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan Parno, Shaz

Qadeer, Upamanyu Sharma, James R. Wilcox, and Xueyuan Zhao.
2020. Armada: Low-effort verification of high-performance concur-
rent programs. In PLDL ACM, 197-210. https://doi.org/10.1145/
3385412.3385971

Gregory Malecha, Adam Chlipala, and Thomas Braibant. 2014. Com-
positional computational reflection. In ITP (LNCS, Vol. 8558). Springer,
374-389. https://doi.org/10.1007/978-3-319-08970-6_24

William Mansky, Andrew W. Appel, and Aleksey Nogin. 2017. A
verified messaging system. Proc. ACM Program. Lang. 1, OOPSLA
(2017), 87:1-87:28. https://doi.org/10.1145/3133911

Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell,
Alexander Richardson, Robert N. M. Watson, and Peter Sewell. 2019.
Exploring C semantics and pointer provenance. Proc. ACM Program.
Lang. 3, POPL (2019), 67:1-67:32. https://doi.org/10.1145/3290380
Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nien-
huis, David Chisnall, Robert N. M. Watson, and Peter Sewell. 2016.
Into the depths of C: elaborating the de facto standards. In PLDIL. ACM,
1-15. https://doi.org/10.1145/2908080.290808 1

Magnus Oskar Myreen. 2009. Formal verification of machine-code
programs. Ph.D. Dissertation. University of Cambridge, UK. http:
//ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611450

George C. Necula, Scott McPeak, and Westley Weimer. 2002. CCured:
Type-safe retrofitting of legacy code. In POPL. ACM, 128-139. https:
//doi.org/10.1145/503272.503286

Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2014. Automat-
ing separation logic with trees and data. In CAV (LNCS, Vol. 8559).
Springer, 711-728. https://doi.org/10.1007/978-3-319-08867-9_47

https://doi.org/10.1007/978-3-540-78739-6_27
https://doi.org/10.1007/978-3-540-78739-6_27
https://doi.org/10.1109/LICS.1991.151628
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
https://doi.org/10.1145/3158154
https://cacm.acm.org/magazines/2021/4/251364-safe-systems-programming-in-rust/fulltext
https://cacm.acm.org/magazines/2021/4/251364-safe-systems-programming-in-rust/fulltext
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1145/2560537
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/2535838.2535878
https://robbertkrebbers.nl/thesis.html
https://robbertkrebbers.nl/thesis.html
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-662-54434-1_26
http://dl.acm.org/citation.cfm?id=3009855
https://doi.org/10.1007/978-3-642-37075-5_17
https://doi.org/10.1007/978-3-642-37075-5_17
https://doi.org/10.1007/978-3-319-89960-2_3
https://doi.org/10.1007/978-3-319-89960-2_3
https://doi.org/10.1145/3062341.3062343
https://doi.org/10.1145/2535838.2535871
https://doi.org/10.1145/2535838.2535871
https://hal.inria.fr/hal-00703441
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/3385412.3385971
https://doi.org/10.1145/3385412.3385971
https://doi.org/10.1007/978-3-319-08970-6_24
https://doi.org/10.1145/3133911
https://doi.org/10.1145/3290380
https://doi.org/10.1145/2908080.2908081
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611450
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611450
https://doi.org/10.1145/503272.503286
https://doi.org/10.1145/503272.503286
https://doi.org/10.1007/978-3-319-08867-9_47

RefinedC: Automating the Foundational Verification of C Code with Refined Ownership Types

(71]

(72]

(73]

(74]

(75]

[76]

(7]

(78]

(79]

(80

—

(81]

(82]

(83

=

(84

flan)

(85

—

(86

—

(87

—

(88]

Francois Pottier and Jonathan Protzenko. 2013. Programming with
permissions in Mezzo. In ICFP. ACM, 173-184. https://doi.org/10.
1145/2500365.2500598

Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi,
Tahina Ramananandro, Peng Wang, Santiago Zanella Béguelin, An-
toine Delignat-Lavaud, Catalin Hritcu, Karthikeyan Bhargavan, Cé-
dric Fournet, and Nikhil Swamy. 2017. Verified low-level program-
ming embedded in F*. Proc. ACM Program. Lang. 1, ICFP (2017),
17:1-17:29. https://doi.org/10.1145/3110261

Andrew Reynolds, Radu Iosif, Cristina Serban, and Tim King. 2016.
A decision procedure for separation logic in SMT. In ATVA (LNCS,
Vol. 9938). 244-261. https://doi.org/10.1007/978-3-319-46520-3_16
Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008.
Liquid types. In PLDI. ACM, 159-169. https://doi.org/10.1145/1375581.
1375602

Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2010.
Low-level liquid types. In POPL. ACM, 131-144. https://doi.org/10.
1145/1706299.1706316

Grigore Rosu, Chucky Ellison, and Wolfram Schulte. 2010. Match-
ing logic: An alternative to Hoare/Floyd logic. In AMAST (LNCS,
Vol. 6486). Springer, 142-162. https://doi.org/10.1007/978-3-642-
17796-5_9

Grigore Rosu and Traian-Florin Serbanuta. 2010. An overview of
the K semantic framework. J. Log. Algebraic Methods Program. 79, 6
(2010), 397-434. https://doi.org/10.1016/j.jlap.2010.03.012

Grigore Rosu and Andrei Stefanescu. 2012. Checking reachability
using matching logic. In OOPSLA. ACM, 555-574. https://doi.org/10.
1145/2384616.2384656

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan
Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC: Au-
tomating the foundational verification of C code with refined owner-
ship types (Artifact and Appendix). https://doi.org/10.5281/zenodo.
4646747 Project webpage: https://plv.mpi-sws.org/refinedc/.

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Mech-
anized verification of fine-grained concurrent programs. In PLDI
ACM, 77-87. https://doi.org/10.1145/2737924.2737964

Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein.
2013. Translation validation for a verified OS kernel. In PLDI. ACM,
471-482. https://doi.org/10.1145/2491956.2462183

Zhong Shao, Valery Trifonov, Bratin Saha, and Nikolaos Papaspyrou.
2005. A type system for certified binaries. ACM Trans. Program. Lang.
Syst. 27,1 (2005), 1-45. https://doi.org/10.1145/1053468.1053469
Frederick Smith, David Walker, and J. Gregory Morrisett. 2000. Alias
types. In ESOP (LNCS, Vol. 1782). Springer, 366-381. https://doi.org/
10.1007/3-540-46425-5_24

Matthieu Sozeau and Nicolas Oury. 2008. First-class type classes. In
TPHOLs (LNCS, Vol. 5170). Springer, 278-293. https://doi.org/10.1007/
978-3-540-71067-7_23

Simon Spies, Lennard Géher, Daniel Gratzer, Joseph Tassarotti, Rob-
bert Krebbers, Derek Dreyer, and Lars Birkedal. 2021. Transfinite Iris:
Resolving an existential dilemma of step-indexed separation logic. In
PLDI. ACM. https://doi.org/10.1145/3453483.3454031

Andrei Stefanescu. 2014. MatchC: A matching logic reachability
verifier using the K framework. Electron. Notes Theor. Comput. Sci.
304 (2014), 183-198. https://doi.org/10.1016/j.entcs.2014.05.010
Kasper Svendsen and Lars Birkedal. 2014. Impredicative concurrent
abstract predicates. In ESOP (LNCS, Vol. 8410). Springer, 149-168.
https://doi.org/10.1007/978-3-642-54833-8_9

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub,
Karthikeyan Bhargavan, and Jean Yang. 2011. Secure distributed
programming with value-dependent types. In ICFP. ACM, 266-278.
https://doi.org/10.1145/2034773.2034811

174

(89]

[90

[t

[91]

[92]
(93]
[94]

[95]

[96]

[97]

(98]

[99

[

[100

[t

[101

—

[102

=

[103

[t

[104]

[105

=

[106

=

[107]

PLDI ’21, June 20-25, 2021, Virtual, Canada

Nikhil Swamy, Michael W. Hicks, Greg Morrisett, Dan Grossman,
and Trevor Jim. 2006. Safe manual memory management in Cyclone.
Sci. Comput. Program. 62, 2 (2006), 122-144. https://doi.org/10.1016/j.
5€ic0.2006.02.003

Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan
Chin. 2018. Automated lemma synthesis in symbolic-heap separation
logic. Proc. ACM Program. Lang. 2, POPL (2018), 9:1-9:29. https:
//doi.org/10.1145/3158097

The Bedrock Team. 2015. Verification of a singly linked list. https://
github.com/mit-plv/bedrock/blob/e3ff3c2cba9976ac4351caaabb4bf/
Bedrock/Examples/SinglyLinkedList.v.

The Cog-std++ Team. 2020. An extended “standard library” for Coq.
https://gitlab.mpi-sws.org/iris/stdpp

The Rust Team. 2020. The Rust programming language. https://rust-
lang.org.

The Tokei Team. 2020. Tokei. https://github.com/XAMPPRocky/
tokei.

The VCC Team. 2016. Verification of a singly linked list. https://github.
com/microsoft/vce/blob/47f3f33d459f5fd9233203ec3d5d2fc803/vec/
Docs/Tutorial/c/7.2 list.c.

The Verifast Team. 2019. Verification of a binary
search tree. https://github.com/verifast/verifast/blob/
8bc966726de829749eaf916ec3863bf294/examples/sorted_bintree.c.
The VST Team. 2020. Verification of Binary Search
Tree. https://github.com/PrincetonUniversity/VST/blob/
14e6b3a7929685a478786436c6f0a45dc44c3d52/progs/verif_bst.v.
John Toman, Ren Siqi, Kohei Suenaga, Atsushi Igarashi, and Naoki
Kobayashi. 2020. ConSORT: Context- and flow-sensitive ownership
refinement types for imperative programs. In ESOP (LNCS, Vol. 12075).
Springer, 684-714. https://doi.org/10.1007/978-3-030-44914-8_25
Frédéric Vogels, Bart Jacobs, and Frank Piessens. 2015. Featherweight
VeriFast. Log. Methods Comput. Sci. 11, 3 (2015). https://doi.org/10.
2168/LMCS-11(3:19)2015

Frédéric Vogels, Bart Jacobs, Frank Piessens, and Jan Smans.
2011. Annotation inference for separation logic based verifiers.
In FMOODS/FORTE (LNCS, Vol. 6722). Springer, 319-333. https:
//doi.org/10.1007/978-3-642-21461-5_21

David Walker and J. Gregory Morrisett. 2000. Alias types for recursive
data structures. In TIC (LNCS, Vol. 2071). Springer, 177-206. https:
//doi.org/10.1007/3-540-45332-6_7

Qinshi Wang and Qinxiang Cao. 2019. VST-A: A foundationally sound
annotation verifier. CoRR abs/1909.00097 (2019). http://arxiv.org/
abs/1909.00097

Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zel-
dovich, and M. Frans Kaashoek. 2012. Undefined behavior: What
happened to my code?. In APSys. ACM, 9. https://doi.org/10.1145/
2349896.2349905

Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick,
David Cock, and Michael Norrish. 2009. Mind the gap. In TPHOLs
(LNCS, Vol. 5674). Springer, 500-515. https://doi.org/10.1007/978-3-
642-03359-9_34

Hongwei Xi. 2007. Dependent ML: An approach to practical program-
ming with dependent types. J. Funct. Program. 17, 2 (2007), 215-286.
https://doi.org/10.1017/50956796806006216

Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron
Cook, Dino Distefano, and Peter W. O’Hearn. 2008. Scalable shape
analysis for systems code. In CAV (LNCS, Vol. 5123). Springer, 385-398.
https://doi.org/10.1007/978-3-540-70545-1_36

Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. 2017. HACL*: A verified
modern cryptographic library. In CCS. ACM, 1789-1806. https:
//doi.org/10.1145/3133956.3134043

https://doi.org/10.1145/2500365.2500598
https://doi.org/10.1145/2500365.2500598
https://doi.org/10.1145/3110261
https://doi.org/10.1007/978-3-319-46520-3_16
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1706299.1706316
https://doi.org/10.1145/1706299.1706316
https://doi.org/10.1007/978-3-642-17796-5_9
https://doi.org/10.1007/978-3-642-17796-5_9
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1145/2384616.2384656
https://doi.org/10.1145/2384616.2384656
https://doi.org/10.5281/zenodo.4646747
https://doi.org/10.5281/zenodo.4646747
https://plv.mpi-sws.org/refinedc/
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/1053468.1053469
https://doi.org/10.1007/3-540-46425-5_24
https://doi.org/10.1007/3-540-46425-5_24
https://doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1016/j.entcs.2014.05.010
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1016/j.scico.2006.02.003
https://doi.org/10.1016/j.scico.2006.02.003
https://doi.org/10.1145/3158097
https://doi.org/10.1145/3158097
https://github.com/mit-plv/bedrock/blob/e3ff3c2cba9976ac4351caaabb4bf/Bedrock/Examples/SinglyLinkedList.v
https://github.com/mit-plv/bedrock/blob/e3ff3c2cba9976ac4351caaabb4bf/Bedrock/Examples/SinglyLinkedList.v
https://github.com/mit-plv/bedrock/blob/e3ff3c2cba9976ac4351caaabb4bf/Bedrock/Examples/SinglyLinkedList.v
https://gitlab.mpi-sws.org/iris/stdpp
https://rust-lang.org
https://rust-lang.org
https://github.com/XAMPPRocky/tokei
https://github.com/XAMPPRocky/tokei
https://github.com/microsoft/vcc/blob/47f3f33d459f5fd9233203ec3d5d2fc803/vcc/Docs/Tutorial/c/7.2.list.c
https://github.com/microsoft/vcc/blob/47f3f33d459f5fd9233203ec3d5d2fc803/vcc/Docs/Tutorial/c/7.2.list.c
https://github.com/microsoft/vcc/blob/47f3f33d459f5fd9233203ec3d5d2fc803/vcc/Docs/Tutorial/c/7.2.list.c
https://github.com/verifast/verifast/blob/8bc966726de829749eaf916ec3863bf294/examples/sorted_bintree.c
https://github.com/verifast/verifast/blob/8bc966726de829749eaf916ec3863bf294/examples/sorted_bintree.c
https://github.com/PrincetonUniversity/VST/blob/14e6b3a79a9685a478786436c6f0a45dc44c3d52/progs/verif_bst.v
https://github.com/PrincetonUniversity/VST/blob/14e6b3a79a9685a478786436c6f0a45dc44c3d52/progs/verif_bst.v
https://doi.org/10.1007/978-3-030-44914-8_25
https://doi.org/10.2168/LMCS-11(3:19)2015
https://doi.org/10.2168/LMCS-11(3:19)2015
https://doi.org/10.1007/978-3-642-21461-5_21
https://doi.org/10.1007/978-3-642-21461-5_21
https://doi.org/10.1007/3-540-45332-6_7
https://doi.org/10.1007/3-540-45332-6_7
http://arxiv.org/abs/1909.00097
http://arxiv.org/abs/1909.00097
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1007/978-3-642-03359-9_34
https://doi.org/10.1007/978-3-642-03359-9_34
https://doi.org/10.1017/S0956796806006216
https://doi.org/10.1007/978-3-540-70545-1_36
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043

	Abstract
	1 Introduction
	2 RefinedC by Example
	2.1 A Simple Memory Allocator
	2.2 Deallocation Using a List of Free Chunks

	3 RefinedC Front End and Caesium
	4 RefinedC Types and Specifications
	5 Lithium: Separation Logic Programming
	6 Examples of RefinedC Typing Rules
	7 Evaluation and Case Studies
	8 Related Work
	9 Limitations and Future Work
	Acknowledgments
	References

