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Abstract

Logit dynamics is a form of randomized game dynamics where players have a bias towards
strategic deviations that give a higher improvement in cost. It is used extensively in practice. In
congestion (or potential) games, the dynamics converges to the so-called Gibbs distribution over
the set of all strategy profiles, when interpreted as a Markov chain. In general, logit dynamics
might converge slowly to the Gibbs distribution, but beyond that, not much is known about
their algorithmic aspects, nor that of the Gibbs distribution. In this work, we are interested in
the following two questions for congestion games: i) Is there an efficient algorithm for sampling
from the Gibbs distribution? ii) If yes, do there also exist natural randomized dynamics that
converges quickly to the Gibbs distribution?

We first study these questions in extension parallel congestion games, a well-studied special
case of symmetric network congestion games. As our main result, we show that there is a
simple variation on the logit dynamics (in which we in addition are also allowed to randomly
interchange the strategies of two players) that converges quickly to the Gibbs distribution in
such games. This answers both questions above affirmatively. We also address the first question
for the class of so-called capacitated k-uniform congestion games.

To prove our results, we rely on the recent breakthrough work of Anari, Liu, Oveis-Gharan
and Vinzant (2019) concerning the approximate sampling of the base of a matroid according to
strongly log-concave probability distribution.

1 Introduction

Congestion games constitute a rich class of games that have been studied extensively since their
introduction by Rosenthal [45]. An (unweighted) congestion game Γ = (N,E, (Si)i∈N , (ce)e∈E)
consists of a set of players N = {1, . . . , n} and a set of resources E = {1, . . . ,m}. Every player
i has a strategy set Si ⊆ 2E , where each strategy is a subset of resources. Furthermore, every
resource e ∈ E is equipped with a cost function ce : R≥0 → R that we assume to be non-negative
and non-decreasing. The goal of a player is to choose a strategy that minimizes her total cost
Ci(s) =

∑

e∈si
ce(ℓe(s)), where ℓe(s) is the number of players using resource e in profile s ∈ ×iSi =

S. A well-known example is the class of symmetric network congestion games, in which we are
given a directed graph G = (V,E) with origin o ∈ V and destination d ∈ V . The common strategy
set of all players is given by the set of all o, d-paths in G.

∗Most of this work has been carried out while the author was a postdoctoral fellow at the Max Planck Institute
for Informatics in Saarbrücken, Germany.
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Rosenthal [45] proved that congestion games are (exact) potential games. He showed that the
function Φ : ×iSi → R given by

Φ(s) =
∑

e∈E

ℓe(s)
∑

k=1

ce(k),

satisfies
Ci(s)− Ci(s

′
i, s−i) = Φ(s)− Φ(s′i, s−i) (1)

for every s ∈ ×iSi and s
′
i ∈ Si. Here Ci(s

′
i, s−i) is used to denote the cost of player i in the strategy

profile where i chooses s′i, and all other players choose their strategy in s. The function Φ is often
referred to as Rosenthal’s potential. The main implication of (1) is the existence of a pure Nash
equilibrium (PNE): A strategy profile in which no player can deviate to another strategy and obtain
an improved cost [45]. This follows directly from the observation that any sequence of better (or
best) response dynamics converges to a PNE in a finite number of steps. Better response dynamics
is defined as the procedure where in every step precisely one player deviates to another strategy that
yields an improved cost (until a pure Nash equilibrium is reached). For best response dynamics,
the deviating player always deviates to a strategy that yields the greatest possible improvement in
cost.

In the last two decades, the algorithmic aspects of (pure) Nash equilibria have been studied
extensively, in both general and special classes of congestion games; see, e.g., [19, 29, 1, 16, 33].
Two of the most prominent questions concerning pure Nash equilibria are the following.

1. Do (natural) player dynamics, such as better or best response dynamics, converge to a PNE
in polynomial time?

2. If not, can one compute a PNE in polynomial time by other means?

Player dynamics, roughly speaking, come in two flavors: Either one deviates to another strategy
profile according to a deterministic rule, or a probabilistic one. A well-known example of the latter
case is noisy (randomized) best response dynamics that has received a lot of attention in practice,
but seems hard to analyze from a theoretical perspective. Here, instead of making a deviation to
another strategy according to a deterministic rule, a player chooses a strategy from her set according
to a probability distribution that usually puts relatively more weight on strategies that will result
in a lower cost.1 Randomized dynamics can be studied from multiple perspectives: Either as a
randomized alternative for deterministic dynamics converging to a pure Nash equilibrium or as a
dynamical system on its one.

One well-known example of player dynamics that can be studied as a dynamical system, and
which is the topic of this paper, is the logit dynamics. It has received a lot of attention in various
communities, such as evolutionary game theory (see, e.g., [46]) and experimental economics (see,
e.g., [14]). The procedure was introduced by Blume [10] as a form of randomized game dynamics
in which players update their strategy according to a logit update rule [38]. The logit dynamics for
congestion games can be formulated as follows. For a given strategy profile s and fixed rationality
level (or temperature2) parameter T ≥ 0, first choose a player i ∈ N uniformly at random, and
then have player i choose a strategy s′i ∈ Si with probability

e−TΦ(s′i,s−i)

∑

t∈Si
e−TΦ(t,s−i)

.3 (2)

1Such methods are special cases of what is more broadly known as simulated annealing.
2The notion of temperature comes from the physics literature.
3Equivalently, and in fact the usual definition of logit dynamics for general (not necessarily potential) games, one
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Note that the denominator in (2) is a normalizing constant. The rationality level T ≥ 0 is used
to model the amount of noise players believe there to be in the system. When T → ∞, players
effectively only assign positive probability to best responses, whereas when T → 0, the distribution
in (2) approaches the uniform distribution over Si. Also note that the dynamics indeed puts
relatively more probability mass on strategies that give a greater improvement in cost.

The logit dynamics gives rise to an irreducible, time-reversible Markov chain on the set S of all
strategy profiles that has the Gibbs distribution π, given by

π(s) =
e−TΦ(s)

∑

t∈×iSi
e−TΦ(t)

for s ∈ S, as its unique stationary distribution. This simply means that if one runs the logit
dynamics for a sufficiently long time, the distribution over S converges to the Gibbs distribution.

In fact, Auletta et al. [8] interpret the Gibbs distribution as a dynamic equilibrium concept,
which they dubbed the logit equilibrium (this concept is well-defined for general games in [8]).
The goal of this work is to study algorithmic aspects of the logit equilibrium/Gibbs distribution
in congestion games. Unfortunately, in general the logit dynamics converge slowly to the Gibbs
distribution [8], in particular, the number steps needed might be Ω(eTΦmax), where Φmax is the
maximum value attained by Rosenthal’s potential. We next give a simple example illustrating this
fact.

Example 1.1. Consider the congestion game with players N = {1, 2} and two resources E = {a, b}.
Both resources e ∈ {a, b} can be used by both players, i.e., S1 = S2 = {{a}, {b}}, and have a cost
function satisfying ce(1) = 0 and ce(2) = φ for some φ ≥ 0.

If φ is large, the Gibbs distribution assigns weight close to 1/2 to the strategy profiles (s1, s2) ∈
{(a, b), (b, a)}, and weight close to 1

2e
−Tφ ≈ 0 to (s1, s2) ∈ {(a, a), (b, b)}. Now, informally speaking,

if we consider the logit dynamics with starting profile (a, b), then the number of steps we need to
run the dynamics before we see the profile (b, a) is Ω(eTφ). As both profiles appear with probability
close to 1/2 in the Gibbs distribution, this also means that we need to run the dynamics for at
least Ω(eTφ) steps before the resulting distribution over all strategy profiles is close to the Gibbs
distribution.

What is causing the slow convergence in Example 1.1? The problem is that we need to use either
the profile (a, a) or (b, b), both having very small probability in the Gibbs distribution, to move
from (a, b) to (b, a). However, as it turns out, if one in addition with some probability is allowed
to interchange the strategies of players 1 and 2, then the resulting dynamics converges quickly to
the Gibbs distribution.4 Note that this enables the possibility to directly transition between (a, b)
and (b, a). This motivates the following question:

Is there a (simple) Markov chain on S that converges rapidly to the Gibbs distribution over S at
any temperature T?

This question may be interpreted as the natural analogue of looking for other local search procedures
converging quickly to a PNE, when best/better response dynamics does not have this property.

When the answer to the above question is not directly obvious, one can take another step
back and first ask whether it is at all possible to efficiently sample from the Gibbs distribution.
Informally speaking, can we take ‘snapshots’ (according to the Gibbs distribution) from the system
in equilibrium in polynomial time? More formally speaking:

can replace the Φ(s′i, s−i) by Ci(s
′

i, s−i), and, similarly, in the normalizing constant. We choose to use Φ as this will
be more convenient for our purposes. The equivalence follows from (1).

4This is a special case of Theorem 1.2.
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Does there exist an efficient algorithm to sample (approximately) a strategy profile s ∈ S according
to the Gibbs distribution over S at any temperature T?

This question can be interpreted as a dynamic analogue of the second question posed earlier for
the computation of pure Nash equilibria. That is, although (deterministic) better/best response
dynamics might take a long time to converge to a pure Nash equilibrium, one still wants to know
whether a PNE can be computed efficiently by other means. Similarly, although logit (or other
natural) dynamics might take a long time to converge to the Gibbs distribution, we may still ask
whether, by means of sampling, we can get an impression of what the Gibbs distribution over S
looks like.

The questions above will be made precise in Section 2. We remark that one of the aspects that
makes them non-trivial is the fact that we require the questions to hold for any temperature T ,
i.e., T is considered part of the input. (For example, in Example 1.1 we could set T = Θ(1/φ) to
circumvent the problem arising there.)

1.1 Our contributions and techniques

We first address the questions from the introduction for extension parallel (EP) congestion games,
a well-studied special case of symmetric network congestion games, see, e.g., [28, 21, 22]. Here,
the common strategy set of all players is given by the set of o, d-paths P of an extension parallel
graph (see Section 4 for a definition and example). Our main result is that there is a simple
Markov chain converging quickly to the Gibbs distribution over S (also implying that we can
sample approximately from the Gibbs distribution).

We show that if one, in addition to the logit dynamics transitions, is allowed to randomly
interchange the strategies of two players (akin to the explanation given after Example 1.1), the
resulting Markov chain converges quickly to the Gibbs distribution. We call this dynamics the
relaxed logit dynamics (see Section 4.2 for a formal definition). Note that Theorem 1.2 gives a
doubly exponential improvement w.r.t. the dependence on TΦmax compared to the lower bound as
given in Example 1.1.

Theorem 1.2 (Informal). The relaxed logit dynamics for extension parallel (EP) congestion
games, at temperature T , converges to a distribution “ǫ-close” to the Gibbs distribution in at most

n3
(

log n+ log log |P|+ log

(

2TΦmax

ǫ2

))

steps, where n is the number of players, P the number of paths in the EP graph and Φmax the
maximum value attained by Rosenthal’s potential.5

The notion of “ǫ-close” refers to the fact that the distribution seen after the indicated number
of steps differs from the Gibbs distribution at most ǫ in total variation distance (see Section 2.4),
a well-known distance measure for comparing probability distributions in Markov chain theory.

In a nutshell, Theorem 1.2 follows from the fact that in EP congestion games Rosenthal’s
potential is M-convex, as was shown by Fujishige et al. [22]. M-convexity is a property defined
in the area of discrete convex analysis [41] (see Section 2.2).6 The link between M-convexity and

5If one would drop the assumption that the cost functions are non-negative (see Section 2), the parameter Φmax

can be replaced by ∆Φ := Φmax − Φmin where Φmin is the minimum value attained by Rosenthal’s potential. This
also holds for all subsequent results.

6In fact, the result above generalizes directly to “symmetric congestion games for which Rosenthal’s potential
is M-convex”, but we are not aware of any other interesting class of congestion games for which this is true (and
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sampling has, roughly speaking, been established in a series of papers by Anari et al. [2, 4, 5]
through the theory of strongly log-concave polynomials, which in turn is also largely developed by
Brändén and Huh [13] (under the name Lorentzian polynomials). In particular, Anari et al. [4]
give the first polynomial time algorithm for approximately sampling and counting the number of
bases of a given matroid, resolving also an old conjecture by Mihail and Vazirani [40]. In this work,
we rely on the sampling result from [4], albeit for relatively simple matroid structures.

Before proving the result above, we also give another way of sampling from the Gibbs dis-
tribution in Section 4.1, that essentially is a more direct approach than the sampler induced by
the Markov chain result given above. The high-level approach used for this more direct sampler
(and for the additional application given in the next paragraph) is given in Section 3. Finally, we
give an application of our results to the problem of (almost) uniformly sampling pure Nash equilib-
ria in EP congestion games in Section 4.3, which is, to the best of our knowledge, the first of its kind.

Furthermore, we also study the class of so-called u-capacitated k-uniform congestion games for
given k = (k1, . . . , kn) and u = (u1, . . . , um). In such a game the strategy set of player i ∈ N is
given by all subsets of E of size ki. Furthermore, for every e ∈ E we are given a capacity ue so that
ce(x) = ∞ whenever x > ue.

The motivation for studying these games comes from the class of base-matroid congestion games,
where the strategy set of every player is the set of bases Bi of a given matroid Mi over the ground set
of resources E. It is well-known that best response dynamics converges to a PNE in a polynomial
number of steps in this class of games [1], and so, in particular, a PNE can be computed in
polynomial time. Given the base matroid sampling result of Anari et al. [4], a natural question
that comes to mind is if a similar result exists for sampling from the Gibbs distribution in base
matroid congestion games. Here, we give a first result addressing this question. (Note that in our
setting the strategies of player i ∈ N are the bases of the ki-uniform matroid.)

We next explain why there is a need for capacity constraints in our results. A strategy profile
s can be seen as a bipartite graph where the nodes on one side correspond to the players, having
degrees ki, and the nodes on the other side correspond to the resources, having degrees ℓe(s) (the
resource load on e in profile s). For a given profile s with resource load profile ℓ(s), the bipartite
graph is obtained in the natural way: There is an edge between player i and resource e if player i
uses resource e in profile s. Very roughly speaking, in order to apply the sampling result in [4], we
establish strong log-concavity of a certain polynomial associated to the vectors k and u. For this we
rely on an asymptotic enumeration formula7 for the number of bipartite graphs with a given degree
sequence, which, in terms of congestion games, gives the number of strategy profiles that have a
given resource load profile ℓ. The formula that we use is only valid for the range of k = (k1, . . . , kn)
and resource load profiles ℓ(s) = (ℓe(s)) satisfying the imposed capacity constraints as given in
Theorem 1.3. Our main result is as follows.

Theorem 1.3 (Informal). There is an (almost)8 polynomial time algorithm for approximately
sampling from the Gibbs distribution in u-capacitated k-uniform congestion games assuming that
1 ≤ kmaxumax = o

(

U1/4
)

when n→ ∞, where kmax = maxi ki, umax = maxj uj and U =
∑

j uj .

The proof of Theorem 1.3 reveals an interesting connection between M-convexity and asymp-
totic enumeration formulas, that might be of independent interest.

therefore choose to formulate our results in terms of EP congestion games). M-convexity of Rosenthal’s potential
already fails to hold for the smallest non-extension parallel network congestion game (the ”Figure 8” graph that has
two graphs, both consisting of two parallel edges, in series).

7Asymptotic enumeration of graphs with given degrees has been studied extensively in the area of combinatorics.
8See Remark 5.4.
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To the best of our knowledge, ours are the first sampling results for the Gibbs distribution in
congestion games, beyond the well-studied case of Glauber dynamics for the Ising model (see
Section 1.2). Given the extensive attention that logit dynamics has received in various communities,
we believe this to be an interesting line of work, at the intersection of algorithmic game theory,
combinatorics and approximate sampling, to pursue further.

In particular, for special cases of congestion games with a positive answer to questions (1) and
(2) as in the introduction, do there also exist positive answers for their dynamic analogues? As a
concrete open question, we ask whether it is always possible to efficiently sample from the Gibbs
distribution in general base matroid congestion games [1]. If true, this would provide an interesting
(qualitative) game-theoretical generalization of the sampling result of Anari et al. [4].

1.2 Further related work

For an exposition of the notion of logit equilibrium, and more related work, we refer to the survey
article of Ferraioli [20] and references therein. There are also various results addressing the ineffi-
ciency of ‘long-term’ equilibria in the context of logit dynamics, see, e.g., the works of Asadpour
and Saberi [7], Mamageishvili and Penna [36] and Penna [44].

A special case of potential games for which logit-like dynamics have been studied extensively
is the Glauber dynamics for the Ising model, which, in game-theoretical terms, can be seen as
logit dynamics in so-called max cut games, see, e.g., [24].9 Here, we are given a graph G = (V,E)
of which its nodes V are players that all have strategy set {−1,+1}. The potential function in
this case is given by Φ(s) =

∑

{i,j}∈E sisj for a strategy profile s = (s1, . . . , sn). Whether or not
the logit dynamics are rapidly mixing in this case depends on the parameter T ≥ 0 and graph
topology G, see, e.g., the work of Levin, Luczak and Peres [35] and references therein. Jerrum and
Sinclair [30] show that, nevertheless, there exists a polynomial time algorithm to sample from the
Gibbs distribution for any parameter T ≥ 0 and graph topology. The first question posed in the
introduction essentially aims at investigating to what extent a similar result is possible for (special
classes of) congestion games.

2 Preliminaries

In this section we will give all the necessary preliminaries regarding resource allocation (or conges-
tion) games, strongly log-concave polynomials and the relevant Markov chain notions and results.
We start with some general notation.

All logarithms in this work have Euler’s number e as their base, unless specified otherwise.
For k ∈ Z>0, we write [k] = {1, . . . , k}. For two vectors x, y ∈ Zn, we write x ≤ y if xi ≤ yi for
i = 1, . . . , n, and x < y if strict inequality holds for at least one i. Furthermore, with |x| = ∑n

i=1 |xi|
we denote the modulus of x. We use (ei)i=1,...,n to denote the standard basis of Rn, i.e., ei(k) = 1
if k = i and ei(k) = 0 otherwise.

2.1 Congestion games

A capacitated congestion game Γ is given by a tuple (N,E, (Si)i∈N , (ce)e∈E , (ue)e∈E), where N = [n]
is a finite set of players, E = [m] a finite set of resources (or facilities), Si ⊆ 2E is a set of strategies
of player i ∈ N , and ce : Z≥0 → Q the cost function of resource e ∈ E that satisfies ce(x) = W

9There exist many generalizations of max cut games, see, e.g., [34] and references therein, for which it might also
be interesting to study the logit dynamics.
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whenever x > ue for e ∈ E withW a (sufficiently) large number.10 Unless stated otherwise, the cost
functions are assumed to be non-negative and non-decreasing. Finally, ue is non-negative integer
modeling the capacity on resource e ∈ E. If ue = n for every resource e ∈ E, we simply call Γ
a congestion game.11 For a strategy profile s = (s1, . . . , sn) ∈ ×iSi = S, we define ℓe(s) as the
number of players using resource e, i.e., ℓe(s) = |{i ∈ N : e ∈ si}|. A game is called symmetric if
Si = Sj for all i, j ∈ [n]. We then write P to denote the common strategy set of all players.

We call ℓ(s) = (ℓe(s))e∈E the resource load profile corresponding to strategy profile s. We say
that a strategy s ∈ S is feasible if ℓe(s) ≤ ue for every e ∈ E and write Sf to denote the set of all
feasible strategy profiles.12 More generally, we say that y ∈ Nm is a (feasible) resource load profile
for (N,E, (Si)i∈N , (ue)e∈E) if there is some (feasible) strategy profile s such that y = ℓ(s). We
write S(y) for the set of strategy profiles s ∈ ×iSi whose resource load profile is y.

Similarly, for symmetric congestion games we define the notion of a strategy load profile that
models how many players are using a strategy p ∈ P in a given strategy profile s ∈ Pn. More
precisely, given a strategy profile s ∈ Pn, we define zp(s) = |{i ∈ N : si = p}| as the number of
players choosing strategy p ∈ P in strategy profile s. The vector z(s) = (zp(s))p∈P is called the
strategy load profile of s. Similarly as for resource load profiles, we define (with a slight abuse of
notation) S(x) as the set of strategy profiles s for which x = z(s).

The cost of player i ∈ N under a strategy profile s = (s1, . . . , sn) ∈ ×iSi is given by Ci(s) =
∑

e∈si
ce(ℓe(s)). A strategy profile s ∈ S is called a (pure) Nash equilibrium if for every i ∈ N and

every s′i ∈ Si it holds that Ci(s) ≤ Ci(s
′
i, s−i), where (s′i, s−i) denotes the strategy profile in which

player i plays s′i and every other player j 6= i plays sj. We write NE(Γ) to denote the set of all
pure Nash equilibria of Γ.

We say that Φ : ×iSi → R is an exact potential function for a congestion game Γ if for every
strategy profile s ∈ ×iSi, for every player i ∈ N and every unilateral deviation s′i ∈ Si of i it holds:
Φ(s)− Φ(s−i, s

′
i) = Ci(s)− Ci(s−i, s

′
i). Rosenthal [45] shows that

Φ(s) =
∑

e∈E

ℓe(s)
∑

k=1

ce(k) (3)

is an exact potential function for any congestion game). Subsequently, we refer to this potential
function as Rosenthal’s potential.

A function φ : {0, . . . , n} → R, is called convex if φ(i) − φ(i − 1) ≤ φ(i + 1) − φ(i) for all
i = 1, . . . , n − 1. A function ψ : {0, . . . , n}m → R is called separable convex if it is of the form
(x1, . . . , xm) 7→ ∑m

j=1ψj(xj) where the ψj, given by xj 7→ ψj(xj), are convex. We say that φ is
concave if −φ is convex, and, similarly, ψ is separable concave if −ψ is separable convex. A simple,
but important, observation that we will use in this work is the fact that Rosenthal’s potential is a
separable convex function when seen as a function from resource load profiles to the reals. That is,
the function Φ̄ : Zm

≥0 → R, given by

Φ̄(α) =
∑

e∈E

αe
∑

k=1

ce(k) (4)

for α ∈ Zm
≥0 is separable convex.

Proposition 2.1. If the cost functions (ce)e∈E are non-decreasing, then Rosenthal’s potential Φ̄ is
a separable convex function.

10Think of W as being ∞.
11Extension parallel and capacitated uniform congestion games are defined in Sections 4 and 5, respectively.
12We only consider games in which the set of feasible strategy profiles is non-empty.
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The Gibbs distribution and logit dynamics. The Gibbs distribution π : S → R≥0 over the
strategy profiles of a congestion game Γ is given by

π(s) =
e−TΦ(s)

Z

where Φ is Rosenthal’s potential, T ≥ 0 a so-called temperature parameter, and Z the normalizing
constant (or partition function)

Z =
∑

t∈Sf

e−TΦ(t).

The logit dynamics Markov chain13 with current state s ∈ S proceeds by:

• Select a player i ∈ N uniformly at random.

• For s′i ∈ Si, transition to (s′i, s−i) with probability e−TΦ(s′i,s−i)/Z ′
i with normalizing constant

Z ′
i =

∑

r∈Si

e−TΦ(r,s−i).

It is a standard fact, which can be shown by using (1), that this Markov chain is reversible with
respect to the Gibbs distribution.

2.2 Matroids and M-concavity

Let E = [n] be a finite set called the ground set and I ⊆ 2E = {X : X ⊆ E} a collection of subsets
of E (called independent sets). The pair N = (E,I) is a matroid if i) ∅ ∈ I; ii) A ∈ I and B ⊆ A,
then B ∈ I; iii) A,B ∈ I and |A| > |B|, then there exists an a ∈ A \B such that B + a ∈ I.14 An
independent set B ∈ I of maximum size is called a basis. We use B to denote the set of all bases of
N . The set of bases B satisfies the so-called base-exchange property : If B,B′ ∈ B and e ∈ B \B′,
then there exists an e′ ∈ B′ \ B such that B + e′ − e ∈ B. It safisfies the strong base-exchange
property if both B+ e′ − e, B′ − e′ + e ∈ B. The rank of a matroid is the common cardinality r of
all bases in B. The ℓ-truncation Mℓ = (E,Iℓ) of a matroid M is the matroid with A ∈ Iℓ if and
only if A ∈ I and |A| ≤ ℓ. The partition matroid is given by a disjoint partition E = E1 ∪ · · · ∪Eq

of the ground set E, and upper bounds ui for i = 1, . . . , q. A set A ⊆ E is independent if and
only if |A ∩ Ei| ≤ ui for all i = 1, . . . , q. The k-uniform matroid is the matroid in which A ⊆ E is
independent if and only if |A| ≤ k.

A discrete polymatroid (which can be seen as a multi-set generalization of a matroid) is a finite
set of vectors R ⊂ Zn

≥0 with the properties that i) 0 ∈ R; ii) if y ∈ R and x ≤ y, then x ∈ R; and
iii) if x, y ∈ R with |y| > |x|, then there is a vector w ∈ R such that x < w < max{u, v} (where
the maximum is taken coordinate-wise). The set of bases BR is given by all maximal vectors in R
that have a common modulus r. A polymatroid satsifies the base-exchange property : if x, y ∈ BR

and xi > yi, then there exists an index j with yj > xj and x− ei + ej ∈ R.
Finally, as a generalization of discrete polymatroids, we describe the notion of M -convexity for

functions [41, 43]. As we will mostly work with its negated counterpart of M -concavity, we will
describe this first. Let ν : Zn

≥0 → R∪ {−∞} be a function.15 The effective domain of ν is given by

dom(ν) = {α ∈ Zn
≥0 : v(α) > −∞}.

13Formal Markov chain definitions are given in Section 2.4.
14For A,B,C ⊆ E with |B|, |C| ≤ 1, we use the notation A−B + C to denote the set (A \B) ∪ C.
15In particular, we set log(0) = −∞.
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The function ν is called M ♯-concave if it satisfies the (symmetric) exchange property : For any
α, β ∈ dom(ν) and any i ∈ [n] satisfying αi > βi, there exists a j ∈ [n] such that αj < βj and

ν(α) + ν(β) ≤ ν(α− ei + ej) + ν(β + ei − ej). (5)

It is well known that a separable concave function is M ♯-concave [42]. The function ν is called
M -concave if it is M ♯-concave and, in addition, there is an r ∈ Z≥0 such that dom(ν) ⊆ {α :
∑

i αi = r}. A function ν : Zn
≥0 → R ∪ {∞} is called M -convex if −ν is M -concave.

2.3 Strongly log-concave polynomials

We consider polynomials p ∈ R[x1, . . . , xn] with non-negative coefficients. For a vector β =
(β1, . . . , βn) ∈ Zn

≥0, we write

∂β =
n
∏

i=1

∂βi
xi

to denote the partial differential operator that differentiates a function βi times with respect to xi
for i = 1, . . . , n. For α ∈ Zn

≥0, we write xα to denote
∏n

i=1 x
αi

i . Furthermore, we write α! =
∏

i αi!,
and for α, κ ∈ Zn

≥0 with αi ≤ κi for all i, we write

(

κ

α

)

=

n
∏

i=1

(

κi
αi

)

.

For a constant t ∈ Z≥0 with t ≥ maxi αi, we write
( t
α

)

=
∏n

i=1

( t
αi

)

. Let κ ∈ Zn
≥0 and K =

×i{0, . . . , κi}. Let w : K → R≥0 be a weight function. The generating polynomial of w is given by

gκ(x) =
∑

α∈K

w(α)xα.

The support of gκ is the set supp(gκ) = {α ∈ K : w(α) > 0}. The generating polynomial g is called
d-homogeneous if |α| = ∑

i αi = d for all α ∈ {0, . . . , k}m with wα > 0. It is called multi-affine
if every variable xi appears with at most multiplicity one in every monomial of p. For example,
q(x1, x2) = x1x2 is multi-affine, but r(x1, x2) = x21+x1x2 is not, as the multiplicity of x1 in the first
monomial is two. Finally, the elementary symmetric polynomial of degree d, for κ = (1, 1, . . . , 1), is
given by

hκ(x) =
∑

α∈{0,1}n:|α|=d

xα.

Definition 2.2 (Strong log-concavity [25]). A polynomial p ∈ R[x1, . . . , xn] with non-negative
coefficients is called log-concave on a subset S ⊆ Rn

≥0 if its Hessian ▽
2 log(p) is negative semidefinite

on S. A polynomial p is called strongly log-concave (SLC) on S if for any β ∈ Zn
≥0, we have that

∂βp is log-concave.

For convenience, the zero polynomial is defined to be strongly log-concave always. It is interesting
to note that if a d-homogeneous multi-affine polynomial p is SLC, then the support of p must
form the collection of bases of a matroid, and, more general, if a (not multi-affine) homogeneous
polynomial is SLC, its support forms an M -convex set [13].

Finally, if the generating polynomial gκ is strongly log-concave, then the probability distribution
π(α) ∝ w(α) is called strongly log-concave.
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Remark 2.3. The definition of strong log-concavity is (in this work) is not really needed, but
included for completeness. In our proofs we essentially only rely on properties of SLC polynomials
from the literature that are reviewed below. For homogeneous generating polynomials the notion
of strong log-concavity is equivalent to that of a polynomial being Lorentzian [13], or completely
log-concave [3]. These equivalences are shown in [12].

We next state all properties of SLC polynomials that will be used in this work. First of all, it is
easy to check that the SLC property is preserved under multiplication with a non-negative scalar,
which we state below for sake of reference.

Proposition 2.4 (Brändén and Huh [13]). If p ∈ R[x1, . . . , xn] is SLC and γ ∈ R≥0, then γp is
SLC.

We continue with the polarization operator defined by Brändén and Huh [13]. The polarization
operator introduces auxiliary variables in order to turn p into a multi-affine polynomial over a larger
set of variables.16 Formally, following [13], for κ ∈ Zn

≥0 let

Rκ[xi] =
{

polynomials in R[xi]1≤i≤n of degree at most κi in xi for every i
}

,

and Ra
κ[xij] = {multi-affine polynomials in R[xij ]1≤i≤n,1≤j≤κi

} . The polarization operator Πκ :
Rκ[xi] → Ra

κ[xij ] replaces every factor xα by

1
(κ
α

)

n
∏

i=1

(

elementary symmetric polynomial of degree αi in the variables {xij}1≤j≤κi

)

.

Proposition 2.5 (Brändén and Huh [13]). If p is d-homogeneous and SLC over Rκ[xi], then Πκ(p)
is d-homogeneous and SLC over Ra

κ[xij ].

We conclude this section by stating a large class of homogeneous polynomials that are known
to be strongly log-concave.

Proposition 2.6 (Brändén and Huh [13]). For κ ∈ Zn
≥0 and w : K → R≥0 a non-negative weight

function, consider

gκ(x) =
∑

α∈K

w(α)

α!
xα, (6)

and assume that gκ is d-homogeneous. Let ν : Zn
≥0 → R ∪ {−∞} be defined by ν(α) = log(w(α))

for α ∈ K and ν(α) = −∞ otherwise. If ν is M -concave, then gκ is SLC.

2.4 Markov chains

Let M = (Ω, P ) be an aperiodic, irreducible and time-reversible Markov chain with state space
Ω, transition matrix P , and stationary distribution π. Reversibility means that π(x)P (x, y) =
π(y)P (y, x) for any x, y ∈ Ω. We write P t(x, ·) for the distribution over Ω at time step t with
initial state x ∈ Ω. The total variation distance dTV (π, σ) of two distributions π and σ over Ω
is defined as dTV (π, σ) = maxS⊆Ω |π(S) − σ(S)| = 1

2

∑

x∈Ω |π(x) − σ(x)|, where for a distribution
σ over Ω, we write σ(S) =

∑

x∈S σ(x). We say that two distributions π and σ are ǫ-close if
dTV (π, σ) ≤ ǫ. The total variation distance of the distribution P t(x, ·) from π at time t with initial
state x is denoted by ∆x(t). The mixing time of M with initial state x ∈ Ω is τx(ǫ) = min{t :

16We elaborate on polarization in Section 3.1.
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∆x(t
′) ≤ ǫ for all t′ ≥ t}. Informally, τx(ǫ) is the number of steps until the Markov chain is ǫ-close

to its stationary distribution, given that it is starting in x. A treaty of some more advanced Markov
chain notions is given in Appendix A, including the definition of the modified log-Sobolev constant
ρ = ρ(P ) which can be used to bound the mixing time of a Markov chain.17 In particular, it holds
that

τx(ǫ) ≤
1

ρ(P )

(

log log π(x)−1 + log

(

1

2ǫ2

))

. (7)

Markov chain decomposition. Let Ω = Ω1 ∪ · · · ∪Ωm be a disjoint partition of the state space
Ω. Following [37], consider π̄(i) = π(Ωi) =

∑

x∈Ω π(x) and let P̄ : [m]× [m] → [0, 1] be defined by

P̄ (i, j) = π̄(i)−1
∑

x∈Ωi, y∈Ωj

π(x)P (x, y).

The Markov chain on [m] with transition matrix P̄ is called the projection chain on the partition
{Ωi}i=1,...,m. It is time-reversible with respect to the distribution π̄ over [m]. For i ∈ [m] the
restriction chain on Ωi has transition matrix Pi : Ωi ×Ωi → [0, 1] given by

Pi(x, y) =

{

P (x, y) if x 6= y,
1−∑

z∈Ωi\{x}
P (x, z) if x = y.

Its stationary distribution πi is given by πi(x) = π(x)/π̄(i) for x ∈ Ωi. In Appendix A.1 we give a
Markov chain decomposition result based on the modified log-Sobolev constant ρ.

Base-exchange Markov chain. LetN be a matroid and let π be an SLC probability distribution
over the set of bases B given by π(α) ∝ w(α) for some non-negative weight function w : K → R.
Here π(α) ∝ w(α) means that π(α) = w(α)/(

∑

α∈K w(α)). The base-exchange Markov chain on B
is defined by the following transitions, where B ∈ B is the current state of the Markov chain:

• Select an element e ∈ B uniformly at random and remove it.

• Pick a base B′ ∈ B with B′ ⊃ B − e with probability ∝ w(B′) among all such bases B′.

It is not hard to see, using the base-exchange property, that this procedure defines an ergodic,
time-reversible Markov chain with stationary distribution π. Anari et al. [3] show that this chain
is rapidly mixing for any matroid N . In particular, in a recent follow-up work, they give a (tight)
mixing time bound [5].

Theorem 2.7 (Anari et al. [5]). Let N be matroid of rank r, and let π be an SLC probability
distribution over the set of bases B given by π(α) ∝ w(α) for some weight function w : K → R≥0.
Then the mixing time of the base-exchange random walk, satisfies τ(ǫ) ≤ O(r log(r/ǫ)).

We note that the mixing time is independent of the size n of the ground set E of the matroid
N , as well as the stationary distribution π. In this work Theorem 2.7 is essentially only applied to
partition and uniform matroids. Furthermore, Cryan, Guo and Mousa [15] show that the modified
log-Sobolev of the base-exchange random walk satisfies ρ ≥ 1/r, where r is the rank of the matroid.

17The definition of ρ is deferred to Appendix A as we actually do not need it in this work; we only rely on lower
bounds on this constant obtained by other authors.
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2.5 Sampling algorithms

Consider a class of (capacitated) congestion games Γ = (N,E, (Si)i∈N , (ce)e∈E , (ue)e∈E) with n
players and m resources, and cost functions ce : Z≥0 → Q for e ∈ E. Let w : S → Q≥0 be a weight
function. In this work, an algorithm for sampling s ∈ S according to a distribution ǫ-close to π with
π(s) ∝ w(s) is said to run in (randomized) polynomial time if the number of arithmetic operations
can be upper bounded by a polynomial in n, m, 18 log(1/ǫ), maxe,j log(ce(j)) and maxs log(w(s)).
The generation of a uniform random 0/1 bit is considered to be one arithmetic operation.

Remark 2.8 (Real numbers). In this work we use Markov chains whose transition probabilities are,
in general, not rational numbers (in particular for the Gibbs distribution). Whenever we use real
numbers, it is implicitly assumed that we use sufficiently accurate approximations to these numbers.
All our results remain valid when (real-valued) transition probabilities are replaced by sufficiently
accurate rational approximations. We note that, roughly speaking, whenever we want to generate
Markov chain transitions with probabilities proportional to e−TΦ(s) for s ∈ S, our algorithms run in
pseudo-polynomial time in terms of the values of the cost functions of the congestion game under
consideration.

All our results algorithmic results are based on running Markov chains for a sufficiently long
time. We will usually write our running time bounds as the product of two factors: The number of
steps that we need to run the Markov chain (before it’s close to stationarity), and the complexity
of implementing one such step. In particular, in all cases, the transitions probabilities of one step
are determined by a sequence of rational numbers a = (a1, . . . , az) and q = (q1, . . . , qz), and we
want to sample an index i ∈ [z] with probability

qie
ai

∑

i qie
ai
. (8)

Here z, as well as the encoding size of the qi, will be poly(n,m). We will refer to C = C(n,m, a) as
the computational complexity of sampling an index i according to (approximations of) the above
probabilities in order not to overload our theorem statements. We say that probabilities of the
form (8) are suitable.

2.6 Bipartite graphs

An (undirected) bipartite graph G = (A ∪ B,F ) is given by two disjoint sets of nodes A =
{a1, . . . , an} and B = {b1, . . . , bm} with F ⊆ {{a, b} : a ∈ A, b ∈ B}. We say that G has de-
gree sequence (x,y) if d(ai) = xi for i = 1, . . . , n and d(bi) = yj for j = 1, . . . ,m, where d(v)
denotes the degree of node v in G. We write G(x,y) for the set of all bipartite graphs on A ∪ B
with degree sequence (x,y).

3 General approach

In Section 2.1, we gave two possible definitions for the load profile of a strategy profile s =
(s1, . . . , sn) ∈ ×iSi. For general congestion games, we defined the resource load profile ℓ(s) = (ℓe(s))
that keeps track of how many players use a particular resource e in s. For symmetric congestion

18Assuming that the strategy sets can be described in a “compact” form, like in the case of (symmetric) network
congestion games. Alternatively, one could replace m by maxi |Si| in case the strategy sets are assumed to be given
explicitly.
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games, we may in addition consider the strategy load profile z(s) = (zt(s))t∈S0
that keeps track of

how many player use a particular strategy t from the common strategy set P.
A general approach for sampling a strategy profile according to the Gibbs distribution in Section

4.1 and 5.1 will be to first sample a (resource or strategy) load profile α according to approximately
the right probability, and then sample a strategy profile s ∈ S(α) uniformly at random. Remember
that the set S(α) was used to denote all strategy profiles with the given (resource or strategy) load
profile. The approach is summarized in Algorithm 1, in which we essentially give the formulation
for resource load profiles, since we use Rosenthal’s potential Φ̄ : ×iSi → R as given in (4). The
formulation for strategy load profiles is exactly the same, with Φ̄ replaced by Φ as given in (3). We
note that, in order to sample a strategy load profile s ∈ S(α) uniformly at random in symmetric
games, it suffices to generate a random permutation of the players in N = {1, . . . , n}.

Sampling a load profile with the correct probability in our applications corresponds to sampling
a base of a discrete polymatroid according to a strongly log-concave distribution. In order to do
this, we present a reduction of this problem to that of sampling a base of a matroid according to a
strongly log-concave distribution in Section 3.1 (after which we can rely on Theorem 2.7).

ALGORITHM 1: Gibbs sampler for congestion game Γ.

Input : Congestion game Γ, temperature T ≥ 0 and ǫ ≥ 0.
Output: Strategy profile s ∈ S according to distribution π̄ that is ǫ-close to Gibbs distribution π at

temperature T .

Step I: Sample load profile α according to a distribution σ′ that is ǫ-close to π′ given by

π′(α) = |S(α)|e−T Φ̄(α).

Step II: Sample strategy profile s ∈ S(α) (approximate) uniformly at random.

3.1 Sampling bases of discrete polymatroids

In this section we describe how to generate a discrete polymatroid base, according to a strongly
log-concave distribution over the set of all polymatroid bases, by reducing it to the problem of
generating a base of a matroid.19 This follows more or less directly from Theorem 2.7 by using the
notion of polarization. Polarization can be seen as a functional version of the classical reduction
from discrete polymatroids to matroids, as given by Helgason [26].20

For a polymatroidR ⊂ Zn
≥0, consider a d-homogeneous strongly log-concave polynomial gR(x1, . . . , xn) =

∑

α∈BR
w(α)xα. with positive coefficients and support the set of bases BR. Consider the matroid

NR = (E,I) on ground set E = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ d}, where I ∈ I if and only if the
vector α(I) ∈ Zn

≥0 given by αe = |{f : (e, f) ∈ I}| satisfies α(I) ∈ R. The fact that NR is indeed
a matroid follows directly from the fact that R is a polymatroid. Note that, for a given α ∈ R, we
have

|{I : α(I) = α}| =
(

d

α

)

(9)

We slightly abuse notation here and write d = (d, . . . , d) for the all d-vector in Zn.

19This is a special case of sampling an element from an M-convex set under a strongly log-concave distribution.
20See also Chapter 44.6b in [47] for this reduction.
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Then, with Π(BR) the set of bases of NR, the polarization Π(g) of g can be written as

Π(g)(y11, . . . , y1d, . . . , yn1, . . . , ynd) =
∑

B∈Π(BR)

(

d

α(B)

)−1

w(α(B)) · yB

=
∑

B∈Π(BR)

wΠ(α(B)) · yB

where, for B ∈ Π(BR), we define

wΠ(α(B)) =

(

d

α(B)

)−1

w(α(B)). (10)

Polarization should be interpreted as spreading out the weight w(α) for α ∈ R equally over all
bases B ∈ {A : α(A) = α} ⊆ Π(BR). Proposition 2.5 implies that Π(g) is also strongly log-concave.

Example 3.1. Let p(x1, x2) = x21x2 + x1x2, so that supp(p) = {(2, 0), (1, 1)}, and take d = (2, 2).
Then

Πd(p) =
1

2
x11x12(x21 + x22) +

1

4
(x11 + x12)(x21 + x22)

=
1

2
x11x12x21 +

1

2
x11x12x22 +

1

4
x11x21 +

1

4
x11x22 +

1

4
x12x21 +

1

4
x12x22.

Note that, looking at the support of p, we have
(d
α

)

= 2 monomials corresponding to α = (2, 0) and
(d
α

)

= 4 monomials corresponding to α = (1, 1).

Corollary 3.2 below now follows directly from Theorem 2.7. It simply says the following. Sup-
pose the current state of the base-exchange Markov chain after T steps, starting from any state
B0 ∈ Π(BR), is the base B ∈ Π(BR), and suppose we output the polymatroid base α(B). If T is
large enough, such that we are in state B with probability close to wΠ(α(B)) for every B ∈ Π(BR),
then α(B) will be outputted with probability close to w(α(B)), with wΠ(α(B)) and w(α(B)) as in
(10).

Corollary 3.2. Let π be the distribution over BR with π(α) ∝ w(α), and let Ππ be the distribution
over Π(BR) with Ππ(B) ∝ wΠ(α(B)). Let B ∈ Π(BR) and let ΠT

σ = P T (B, ·) be the distribution
over Π(BR) after T steps of the base-exchange Markov chain M = (Π(BR), P ). Let σT be the
induced distribution over BR given by σT (α) =

∑

B:α(B)=α ΠT
σ (B). If dTV (Π

T
σ ,Ππ) ≤ ǫ, then also

dTV (σ
T , π) ≤ ǫ.

Remark 3.3. It is possible to define a more direct Markov chain on the set of all bases of a given
discrete polymatroid, and prove that this chain is rapidly mixing (also based Theorem 2.7), but this
is not necessarily needed for our results (and not of interest of this work).

4 Extension parallel congestion games

An extension parallel congestion game is a symmetric congestion game in which the common
strategy set P of the players consists of the o, d-paths in a (directed) extension-parallel network
G = (V,A) with source o and target d. For two given networks Gi = (Vi, Ai) with source oi and
target di for i = 1, 2, let G′ = (V1∪V2, A1∪A2) be the union of G1 and G2. The parallel composition
of G1 and G2 is the network obtained by identifying o1 with o2, and d1 with d2. These nodes are
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the source and target of G′, respectively. The series composition of G1 and G2 is obtained by iden-
tifying d1 with o2. The node o1 becomes the source of G′, and d2 its target. An extension parallel
network either consists of i) a single arc (o, d), ii) two extension-parallel networks in parallel, iii) a
single arc in series with an extension parallel network. An example is given in Figure 4.1. For a
given extension parallel graph G, we use P = {p1, . . . , pq} to denote all o, d-paths in G. Note that
for an extension parallel network we have q ≤ |A| = m.

o d

Figure 4.1: Example of an extension parallel network

In this section we will always be working with strategy load profiles (and so these are sometimes
simply referred to as load profiles). The set of all possible strategy load profiles will be denoted by
L = {α ∈ {1, . . . , q}n : |α| = n}. We consider the potential Φ : L → Q defined by Φ(α) = Φ(s) for
some s ∈ S(α).21 The main result that we will need in this section is the M-convexity of Rosenthal’s
potential for EP congestion games.

Proposition 4.1 (Fujishige et al. [22]). Let Γ be an extension parallel congestion game. Then the
potential Φ : L → Q defined by Φ(α) = Φ(s) for s ∈ S(α), is M -convex.

Before giving our main result as sketched in Section 1.1, we first give a more direct approach
for sampling from the Gibbs distribution in EP congestion games.

4.1 Sampling from the Gibbs distribution

As mentioned in Section 3, and sketched in Algorithm 1, the high-level algorithmic idea for sampling
a strategy profile according to the Gibbs distribution consists of first sampling a load profile α with
the correct probability, and then a strategy profile from S(α) uniformly at random. The main
result of this section, based on this approach, is stated in Theorem 4.2.

Theorem 4.2. Let ǫ > 0 and T ≥ 0, and let Γ be an extension parallel congestion game with n
players. There is a randomized algorithm A with output distribution π̄ over Pn that is ǫ-close to
the Gibbs distribution π at temperature T , and runs in (expected) time O(C ·n log(n/ǫ)) with C the
complexity of implementing one step of a base-exchange Markov chain with suitable probabilities
(see Section 2.5).

Proof. Note that for an extension parallel congestion game, the number of strategy profiles corre-
sponding to a given load profile α is |S(α)| = n!

α! .
22

Lemma 4.3. The n-homogeneous generating polynomial

g(x1, . . . , xn) =
∑

α∈[q]n:|α|=n

|S(α)|e−TΦ(α)xα =
∑

α∈[q]n:|α|=n

n!

α!
e−TΦ(α)xα (11)

is strongly log-concave. Hence, the distribution π′ over L given by π′(α) ∝ n!
α!e

−TΦ(α) for α ∈ L is
strongly log-concave.

21This is well-defined as the potential value is the same for any choice of s ∈ S(α).
22This is the number of ways in which we can assign n labeled balls to bins b1, . . . , bp, where bi contains αi balls.

15



Proof. Strong log-concavity is preserved under scalar multiplication by Proposition 2.4, so it suffices
to show that

1

n!
g(x) =

∑

α∈[q]n:|α|=n

e−TΦ(α)

α!
xα

is strongly log-concave. In turn, by Proposition 2.6, it is sufficient to show that log
(

e−TΦ(α)
)

=
−TΦ(α) is an M -concave function on its effective domain. As T ≥ 0, this is equivalent to showing
that Φ(α) is M -convex on its effective domain L = {α ∈ [q]n : |α| = n}. This follows from
Proposition 4.1.

Because of Lemma 4.3, the polarization Π(g) of g in (11) is also strongly log-concave. The
support of Π(g) can be seen as the bases of the n-uniform matroid N on ground set {(i, j) :
1 ≤ i, j ≤ n}. Our algorithm now consists of first running the base-exchange Markov chain for
O(n log(n/ǫ)) steps, starting from any initial base. We output α(B), where B is the state we are in
after the O(n log(n/ǫ)) steps that were carried out. The resulting distribution σ′(α) over L satisfies
dTV (σ

′, π′) ≤ ǫ by Corollary 3.2. We then uniformly at random choose a strategy profile from S(α).
Let π̄ be the resulting output distribution over S. It remains to show that dTV (π, π̄) ≤ ǫ, which
can be done using a simple calculation that is deferred to Appendix B.2.

We conclude with analysing the running time of the algorithm. One step of the base-exchange
Markov chain can be implemented in time O(C) by definition. Generating an s ∈ S(α) uniformly at
random can be done by generating a uniform random permutation µ of {1, . . . , n}. We set si = p1
for players i = µ(1), . . . , µ(α1), si = p2 for players µ(α1 + 1), . . . , µ(α2 + 1), and so on. Generating
a uniform random permutation can be done in time O(n log(n)) using random 0/1 bits.

4.2 Relaxed logit dynamics

In this section, we give the proof of Theorem 1.2, reformulated in Theorem 4.4 below. Formally,
the relaxed logit dynamics Markov chain with current state s ∈ Pn proceeds by:

• With probability 1
2 : Select two players i, j ∈ N uniformly at random and transition to s′

given by

s′k =







si if k = j
sj if k = i
sk otherwise.

• With probability 1
2 : Perform a transition according to the logit dynamics (as in Section 2.1).

We note that for any symmetric congestion game, this is a well-defined ergodic, time-reversible
Markov chain with the Gibbs distribution as stationary distribution.

Theorem 4.4. For an extension parallel congestion game Γ with common strategy set P and initial
state s ∈ Pn, the mixing time of the relaxed logit dynamics Markov chain at temperature T ≥ 0
satisfies

τs(ǫ) ≤ n3
(

log n+ log log |P| + log

(

2TΦmax

ǫ2

))

where Φmax = maxr∈S Φ(r) is the maximum value attained by Rosenthal’s potential over Pn.

Compared to the mixing time of the (non-relaxed) logit dynamics for general games, we get
a doubly exponential improvement in terms of the dependence on TΦmax (at the cost of a small
polynomial increase in the dependence on n).
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Proof of Theorem 4.4. We will use a Markov chain decomposition argument based on the two
operations that define the relaxed logit dynamics Markov chain. We first partition the state space
S = Pn naturally based on load profiles by setting Ωα = S(α) for α ∈ L, where as before we have
L = {α : α ∈ [q]n and |α| = n}. Our proof approach is to apply the Markov chain decomposition
theorem of Hermon and Salez [27] as given in Theorem A.1. In particular, for this we will need to
bound the modified log-Sobolev constants of the projection and restriction chains. We start with
the modified log-Sobolev constant ρ̄ of the projection chain.

The projection chain P̄ has state space L and stationary distribution π̄(α) = |S(α)|e−TΦ(α) for
α ∈ L. Let α, β ∈ L such that

∑

e |αe − βe| = 2, i.e., there exist paths p and p′ such that

αe =







βe + 1 if e = p
βe − 1 if e = p′

αe if e ∈ E \ {p, p′}.

In this case we say that α and β are adjacent load profiles differing on paths p and p′. Note that
if s ∈ S(α) and s′ ∈ S(β) are such that they differ by a deviation of some player i from path p to

path p′, then P (s, s′) = 1
2n

exp(−TΦ(p′,s−i))
Z′ and this expression is the same for every such player i

with si = p. Moreover, note that π(x) = π(y) for any two strategy profiles x, y ∈ S(α).
For some fixed choice of strategy profile x ∈ Ωα and player i using path p, i.e., si = p, the

transition probabilities for adjacent load profiles can then be seen to equal23

2P̄ (α, β) =
1

π̄(α)

∑

x∈Ωα,y∈Ωβ

π(x)P (x, y) =
π(x)

π̄(α)

αp

n
|S(α)|exp(−TΦ(β))

Z ′

=
exp(−TΦ(α))/Z

|S(α)| exp(−TΦ(α))/Z
αp

n
|S(α)|exp(−TΦ(β))

Z ′

=
αp

n

exp(−TΦ(β))
Z ′

= 2αpP (s, s
′) (12)

where the last equality is true for any choice of s ∈ S(α) and s′ ∈ S(β). Note that this implies that
for any α, β ∈ L, s ∈ S(α) and s′ ∈ S(β), we have

P (s, s′)

P̄ (α, β)
=

1

αp
≥ 1

n
. (13)

The lower bound of 1/n will serve as our lower bound on χ as defined in Appendix A.1. In order
to bound the modified log-Sobolev constant of the projection chain, one can use a comparison
argument (as defined in Appendix A.2) with the base-exchange Markov chain on the support of
the polarization Π(gΓ) of gΓ as in (11). In this section the support corresponds to the set of bases
of an n-uniform matroid. In particular, it holds that

ρ̄ ≥ 1

n
· ρ(Π(L)) ≥ 1

n2
, (14)

where ρ(Π(L)) is the modified log-Sobolev constant of the base-exchange Markov chain on the
support of Π(g) with g as in (11). The second inequality comes from the fact that ρ(Π(L)) ≥ 1/n,
as was shown by Cryan, Guo and Mousa [15]. The first inequality is not hard to see, but we defer

23Here Z and Z′ are the normalizing constants as in Section 2.1

17



it to Appendix B.3 as it requires a Markov chain comparison argument between two Markov chains
on different state spaces.

We continue with bounding the modified log-Sobolev constant of the restriction chains. In order
to do this, we will use a comparison argument with the random transposition Markov chain on the
set Sk of all permutations of {1, . . . , k}. Given a permutation σ, this chain proceeds by selecting
two positions a and b uniformly at random, and interchanging the positions of the elements σ(a)
and σ(b). With ρrt denoting the modified log-Sobolev constant of this chain, it follows that for
every α ∈ L, we have

ρα ≥ ρrt ≥
1

n− 1
(15)

using the fact that ρrt ≥ 1/(n − 1), as shown by Goel [23]. This comparison argument is also
deferred to Appendix B.3. Now, applying Theorem A.2, it follows that ρ̄ ≥ 1/n3. Plugging this
into (7), it then follows that

τs(ǫ) ≤ n3
(

log n+ log log |P| + log

(

2TΦmax

ǫ2

))

using that π(s)−1 ≤ |P|ne−TΦmax for every s ∈ S, because of the non-negativity of the cost functions.

4.3 Uniform sampling of pure Nash equilibria

In Theorem 4.5 we show that the result in Theorem 4.2 also implies that, for an extension parallel
congestion game Γ, we can (approximate) uniformly at random sample a pure Nash equilibrium
from the set NE(Γ) of all pure Nash equilibria of Γ in pseudo-polynomial time. That is, we sample
every s ∈ NE(Γ) with probability approximately 1/|NE(Γ)|. The (approximate) uniform sampling
of combinatorial objects has received a lot of attention in the last thirty years, in particular within
the area of theoretical computer science. However, to the best of our knowledge, no non-trivial
results for (pure) Nash equilibria are known, despite the fact that the problem of computing Nash
equilibria has received much attention.

For the proof of Theorem 4.5 we use the fact that Nash equilibria are precisely the profiles
minimizing Rosenthal’s potential in EP congestion games. Furthermore, we will exploit the fact
that Theorem 4.2 holds for any temperature T ≥ 0. In particular, if we set T large enough,
then most weight in the stationary distribution will be assigned to profiles minimizing Rosenthal’s
potential (under the assumption that the cost functions are integer-valued). This means that, with
high probability, Algorithm 1 will output a strategy profile minimizing Rosenthal’s potential with
domain S.24 We will use the Gibbs distribution with base 2 instead of e to avoid having to work
with real numbers. The full proof of Theorem 4.5 is given in Appendix B.4

Theorem 4.5. Let ǫ > 0 and let Γ be an extension parallel congestion game with integer-valued cost
functions and n players. There is a randomized algorithm A with output distribution π̄ over NE(Γ)
that is ǫ-close to the uniform distribution over NE(Γ), and runs in (expected) time polynomial in
n,m,Φmax and log(1/ǫ) where Φmax is the maximum value attained by Rosenthal’s potential.

Remark 4.6. The pseudo-polynomial dependence, coming from the polynomial dependence on Φmax

rather than log2(Φmax), arises from the fact that we have to compute transition probabilities of the
form 2ai/

∑

i 2
ai , where the ai are integers, which requires Ω(

∑

i ai) random 0/1 bits (following

24Whenever we refer to Algorithm 1, we mean the implementation of the high-level approach as given in the
previous section.
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the notion of suitable probabilities in Section 2.5). However, there is no a priori reason that the
problem of (approximately) sampling pure Nash equilibria according to the uniform distribution
requires pseudo-polynomial (in the input size of the original congestion game) time, as opposed to
sampling from the Gibbs distribution. We leave open the question of finding a truly polynomial time
algorithm.

5 Capacitated uniform congestion games

In this section, we consider u-capacitated k-uniform congestion games for vectors u = (u1, . . . , um)
and k = (k1, . . . , kn). We write K = |k| = ∑

i ki and U = |u| = ∑

e ue. The vector u models
the capacities of the resources e ∈ E, i.e., the variables (ue)e∈E as defined in Section 2.1. The
strategy set of player i ∈ N is given by all subsets S ⊆ E of cardinality |S| = ki, i.e., the bases
of the ki-uniform matroid on E. We write Γ(u, k) for the collection of all u-capacitated k-uniform
congestion games. We remark that in this section load profiles will refer to resource load profiles
as defined in Section 2.1, and no longer to path load profiles as considered in Section 4.

Note that we can naturally model a feasible strategy profile in s = (s1, . . . , sn) ∈ S of a
capacitated uniform congestion game as a (simple) bipartite graph G = (N ∪ E,F ) ∈ G(u, k) on
N ∪ E: There is an edge {i, e} ∈ F if and only if player i ∈ N uses resource e ∈ E in si.

The main result needed in this section is stated in Proposition 5.1 below. We use the notation
[x]b = x(x− 1) · · · (x− b+ 1) for x, b ∈ Z≥0. For a bipartite degree sequence (k, α), we then write
Kb =

∑n
i=1[ki]b and Ab =

∑m
j=1[αj ]b. Note that K = A = K1 = A1.

Proposition 5.1 (McKay [39]). Let D be the collection of all bipartite degree sequences (k, α) for
which 1 ≤ kmaxαmax = o

(

K1/4
)

. Then

|G(k, α)| = K!
∏

i ki!
∏

j αj !
exp

(

−K2

K2
· A2 +O

(

max{kmax, αmax}4/K
)

)

as K → ∞.

5.1 Sampling from the Gibbs distribution

In this section we give an (almost polynomial time) sampling algorithm that samples from a dis-
tribution which is close to the Gibbs distribution (provided the game is sufficiently large). That is,
we show that for a large class of pairs (u, k), we can sample from a distribution close to the Gibbs
distribution.

We follow again the high-level approach in Algorithm 1. The set of all feasible load profiles is
now given by L(k, u) = {α : 0 ≤ α ≤ u and |α| = ∑

i ki} and S(α) = G(k, α) for any feasible load
profile α ∈ L(k, u). Recall that we want to sample an α ∈ L(k, u) with probability proportional
to (approximately) ≈ |S(α)|e−TΦ(α), and then sample a strategy profile s ∈ S(α) with probability
≈ 1/|S(α)|.

A couple of problems arise here compared to the case of extension parallel congestion games.
First of all, there is no polynomial time algorithm known to compute the numbers wα = |S(α)|.25
Instead, we will rely on a fully-polynomial randomized approximation scheme for computing ap-
proximations ŵα to the numbers wα up to arbitrary precision [9, 31]. Secondly, in this case the
polynomial

g(x1, . . . , xn) =
∑

α∈L(k,u)

|S(α)|e−TΦ(α)xα (16)

25In fact, it is still an open question whether or not this problem is #P-complete (see, e.g., [31]).
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is in general not strongly log-concave. We overcome this problem by showing that we can restore
strong log-concavity ‘approximately’ when the game becomes large, and when there are, in addition,
suitable capacity constraints. We do this by using asymptotic enumeration formulas for the number
of bipartite graphs with a given degree sequence, an area that has received considerable attention
in combinatorics. It turns out that replacing |S(α)| by an asymptotic approximation φ(α) in (16)
gives rise to a strongly log-concave polynomial.

Finally, the problem of sampling a strategy profile s ∈ S(α) = G(k, α) now corresponds to that
of sampling a bipartite graph with degree sequence (k, α) for which many algorithms are known.
The main result of this section is given in Theorem 5.2.

Theorem 5.2. Let ǫ ≥ 0, let π be the Gibbs distribution at temperature T ≥ 0, and let D be the
the class of all congestion games Γ(k, u) satisfying

1 ≤ kmaxumax = o
(

K1/4
)

. (17)

There is a randomized algorithm A for the class D, and a constant K0 ≥ 0, such that the output
distribution σ̄ over S has the property that

dTV (σ̄, π) ≤ ǫ

whenever K ≥ K0. The algorithm runs in (expected) time

C · n
(

log n+ log log |P|+ log

(

2TΦmax

ǫ2

))

with C(n,m, ǫ,Φmax) = poly(1/ǫ, n,m,Φmax).

Proof. Setting

φ(α) =
K!

k!α!
exp

(

−K2

K2
·A2

)

it follows, assuming (17) holds, that for any 0 ≤ α ≤ u, we have φ(α) = (1 + o(1))|S(α)|, where
o(1) is with respect to K → ∞. In particular if K ≥ K0 for K0 large enough, it follows that

1

2
|S(α)| ≤ φ(α) ≤ 3

2
|S(α)|. (18)

The next step is now to show that replacing |S(α)| by φ(α) in (19) gives rise to a strongly log-
concave polynomial. The crucial observation here is to see that A2 =

∑

j αj(αj − 1) is a separable
convex function.

Lemma 5.3. The K-homogeneous generating polynomial

g(x1, . . . , xn) =
∑

α∈L(k,u)

K!

k!α!
· exp



−K2

K2
·

m
∑

j=1

αj(αj − 1)



 exp (−TΦ(α)) · xα (19)

is strongly log-concave.

Proof. Following the proof of Lemma 4.3, first observe that26

k!

K!
g(x1, . . . , xn) =

∑

α∈L(k,u)

1

α!
exp



−K2

K2
·

m
∑

j=1

αj(αj − 1)



 exp (−TΦ(α))xα

26Note that k and all quantities involving k are considered fixed.
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is strongly log-concave as well because of Proposition 2.4. Then, in order to apply Proposition 2.6,
it suffices to show that

−





K2

K2
·

m
∑

j=1

αj(αj − 1) + TΦ(α)





isM -concave over its domain L(k, u).27 This follows directly from the fact that both
∑m

j=1 αj(αj−1)
and Φ(α) are separable convex functions in (α1, . . . , αm) over the (effective) domain L(k, u), and
the fact that K2,K, T ≥ 0. Separable convex functions (over effective domain L(k, u)) are known
to be M -convex [42].

One can now carry out similar steps as in the proof of Theorem 4.2, albeit with some modifica-
tions. Again, the polarization Π(g) of g as in (19) is strongly log-concave as well. The support of
Π(g) is now the set of bases of the n-truncation of a partition matroid N on ground set E = ∪jEj

where Ej = {(j, i) : 1 ≤ i ≤ n} with A ⊆ E is independent if and only if |A ∩ Ej| ≤ uj for
j = 1, . . . ,m. It follows that the modified log-Sobolev constant of this chain satisfies ρN ≥ 1/n. A
simple Markov chain comparison argument (as described in Appendix A.2), in combination with
(18), then yields that the modified log-Solev constant ρ of the Markov chain in which we use the
original quantities |S(α)|, instead of the approximation φ(α), satisfies ρ ≥ 1

2n .
Of course, the algorithmic problem is now that we cannot compute the quantities wα = |S(α)|

exactly in polynomial time, so one step of this base-exchange Markov chain cannot be implemented
efficiently. Nevertheless we can use the approximation scheme of Bezáková, Bhatnagar and Vigoda
[9] to compute approximations ŵα up to arbitrary precision in time polynomial in n,m and 1/ǫ (this
gives the dependence of 1/ǫ in C). A Markov chain comparison argument then implies that the
base-exchange Markov chain on N using these approximation is also rapidly mixing, in particular,
it is sufficient to run the chain

3n

(

log n+ log log |P|+ log

(

2TΦmax

ǫ2

))

steps and then output α(B) where B is the current base after having run the chain for the above-
mentioned number of steps.

We conclude with the sampling of a strategy profile from the set S(α) uniformly at random,
which now requires sampling a bipartite graph from the set G(k, α) uniformly at random. One
algorithm to do this for degree sequences satisfying the condition in Proposition 5.1 is that of
Arman, Gao and Wormald [6] that runs in expected polynomial time.28

Remark 5.4. We remark here that the algorithm of Theorem 5.2 does not run in polynomial time,
as described in Section 2.5, because of the dependence of C on 1/ǫ (as opposed to the required
log(1/ǫ)). This dependence arises because of the algorithmic approximations of the numbers |S(α)|
used in the proof of Theorem 5.2. Alternatively, we could just use the approximations φ(α) straight
away. However, these predictions only become accurate when K → ∞, so this gives a weaker result
in terms of closeness to the Gibbs distribution.

Acknowledgements. The author is grateful to Prasad Tetali for pointing him to [27], and to
the anonymous reviewers of EC 2021 for their useful comments.

27That is, formally speaking, we define it to be −∞ outside of L(k, u)
28For an overview of algorithms that can be used to (approximately) sample a bipartite graph with a given degree

sequence, see, e.g., [18].
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A Markov chains and functional inequalities

Let M = (Ω, P ) be a time-reversible Markov chain with stationary distribution π, and f, g : Ω →
R≥0. Let Eπ(f) =

∑

x∈Ω π(x)f(x) and

Varπ(f) =
∑

x∈Ω

π(x)(f(x)− Eπ(f))
2.

Furthermore, define the entropy-like quantity

Entπ(f) = Eπ [f log(f)− f log(Eπ(f))]

and the Dirichlet form

EP (f, g) =
1

2

∑

x∈Ω

∑

y∈Ω

π(x)P (x, y)[f(x) − f(y)][g(x) − g(y)].

The Poincaré constant is defined by

λ(P ) = inf

{EP (f, f)
Varπ(f)

∣

∣

∣
f : Ω → R≥0, Varπ(f) 6= 0

}

,

the log-Sobolov constant by

α(P ) = inf

{EP (
√
f,

√
f)

Entπ(f)

∣

∣

∣
f : Ω → R≥0, Entπ(f) 6= 0

}

,

amd the modified log-Sobolev constant of the Markov chain M is defined by

ρ(P ) = inf

{EP (f, log(f))
Entπ(f)

∣

∣

∣
f : Ω → R≥0, Entπ(f) 6= 0

}

.

These quantities satisfy (see Prop. 3.6 in [11])

2λ(P ) ≥ ρ(P ) ≥ 4α(P ). (20)

It is well-known they can be used to upper bound the mixing time of a Markov chain as

τx(ǫ) ≤
1

2λ(P )

(

log π(x)−1 + 2 log

(

1

2ǫ

))

, τx(ǫ) ≤
1

ρ(P )

(

log log π(x)−1 + log

(

1

2ǫ2

))

, and

τx(ǫ) ≤
1

4α(P )

(

log log π(x)−1 + log

(

1

2ǫ2

))

.

A.1 Markov chain decomposition

Let M = (Ω, P ) be a time-reversible Markov chain with stationary distribution π and let Ω =
Ω1∪· · ·∪Ωm be a disjoint partition of the state space. We write λ for the Poincaré constant of this
chain, λ̄ for the Poincaré constant of the projection chain, and λi for that of the restriction chain
Pi (and define λmin = mini λi). We define α, ᾱ and αmin similarly for the log-Sobolev constant, as
well as ρ, ρ̄ and ρmin for the modified log-Sobolev constant.
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Hermon and Salez [27] recently gave a Markov chain decomposition theorem that applies to
the Poincaré constant, the log-Sobolev constant and the modified log-Sobolev constant.29 We next
describe the necessary objects to formulate their result.

Assume that for each i, j ∈ [m] with i 6= j and P̄ (i, j) > 0, we are given a coupling κij :
Ωi × Ωj → [0, 1] of the probability distributions πi and πj . That is, κij is such that

∀x ∈ Ωi,
∑

y∈Ωj

κij(x, y) = πi(x),

∀y ∈ Ωj,
∑

x∈Ωi

κij(x, y) = πj(y).

Based on the couplings κij , we define

χ = min
x∈Ωi,y∈Ωj ,i,j∈[m]

{

π(x)P (x, y)

π̄(i)P̄ (x, y)κij(x, y)

}

,

with the range taken over all combinations for which the denumerator in the fraction is strictly
positive. We state (a small variation of) the theorem of Hermon and Salez [27] for the modified
log-Sobolev constant (for the other constants the statements are similar).

Theorem A.1 (Hermon and Salez [27]). With the above notation, it holds that ρ ≥ min{χρ̄, ρmin}
with

χ = max
x∈Ωi,y∈Ωj ,i,j∈[m]: ¯P (i,j)>0

{

P (x, y)

P̄ (i, j)
,
P (y, x)

P̄ (j, i)

}

.

A.2 Markov chain comparison

Another useful property of proving mixing time bounds through Poincaré and (modified) log-
Sobolev constants, is that it is easy to see that small perturbations in the transition probabilities
and the stationary distribution only result in mild variations in these constants, by means of a
Markov chain comparison argument. Goel [23] states the following for the modified log-Sobolev
constant, based on similar results for the other constants by Diaconis and Saloff-Coste [17].

Theorem A.2 (Lemma 4.1 [23]). Let M = (Ω, P ) and M′ = (Ω′, P ′) be two finite, reversible
Markov chains with stationary distributions π and π′, respectively, and modified log-Sobolev constant
ρ and ρ′, respectively. Assume there is a mapping φ : W (Ω, π) → W ′(Ω′, π′) mapping f → f ′ for
f : Ω → R≥0, and constants C, c > 0 and B ≥ 0 such that for all f ∈W (Ω, π), we have

EP ′(f ′, log f ′) ≤ C · EP (f, log f) and c · Entπ(f) ≤ Entπ′(f ′) +B · EP (f, log f).

Then
cρ′

C +Bρ′
≤ ρ.

In particular, if Ω = Ω′ and there exists a δ > 0 such that (1 − δ)P (x, y) ≤ P ′(x, y) ≤
(1 + δ)P (x, y) for all x, y ∈ Ω, and (1− δ)π(x) ≤ π′(x) ≤ (1 + δ)π(x) for x ∈ Ω, it directly follows
that

1

ρ
≤ 1 + δ

1− δ
· 1
ρ′
.

29For other Markov chain decomposition theorems, see, e.g., the work of Jerrum et al. [32] (who, in particular,
give stronger theorems for the Poincaré and log-Sobolev constant).

26



B Omitted proofs

In this appendix we give all proofs missing from the main body. These result are not very difficult
to prove, but somewhat tedious to formally write down, and, hence, were omitted.

B.1 Proof of Corollary 3.2

Corollary 3.2. Let π be the distribution over BR with π(α) ∝ w(α), and let Ππ be the distribution
over Π(BR) with Ππ(B) ∝ wΠ(α(B)). Let B ∈ Π(BR) and let ΠT

σ = P T (B, ·) be the distribution
over Π(BR) after T steps of the base-exchange Markov chain M = (Π(BR), P ). Let σT be the
induced distribution over BR given by σT (α) =

∑

B:α(B)=α ΠT
σ (B).

If dTV (Π
T
σ ,Ππ) ≤ ǫ, then also dTV (σ

T , π) ≤ ǫ.

Proof. We have that

2dTV (σ, π) =
∑

α∈BR

∣

∣

∣

∣

∣

∣

∑

B:α(B)=α

σ′(B)− w(α)

∣

∣

∣

∣

∣

∣

=
∑

α∈BR

∣

∣

∣

∣

∣

∣

∑

B:α(B)=α

[

σ′(B)−
(

d

α(B)

)−1

w(α)

]

∣

∣

∣

∣

∣

∣

(using (9))

≤
∑

B∈B′

|σ′(B)−w′(α(B))| (triangle inequality)

= 2dTV (σ
′, π′) ≤ 2ǫ.

This gives the desired result.

B.2 Calculation that dTV (π, π̄) ≤ ǫ in proof of Theorem 4.2

Note that

π̄(s) =
α!

n!
σ′(α)

where α = ℓ(s) is the load profile corresponding to strategy s. Then

∑

s∈S

|π̄(s)− π(s)| =
∑

α

∑

s∈S:ℓ(s)=α

|π̄(s)− π(s)|

=
∑

α

∑

s∈S:ℓ(s)=α

∣

∣

∣

∣

α!

n!
σ′(α)− e−TΦ(α)

∣

∣

∣

∣

=
∑

α

n!

α!

∣

∣

∣

∣

α!

n!
σ′(α)− e−TΦ(α)

∣

∣

∣

∣

=
∑

α

∣

∣

∣

∣

σ′(α)− n!

α!
e−TΦ(α)

∣

∣

∣

∣

≤ 2ǫ.

This shows that dTV (π, π̄) ≤ ǫ as desired.
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B.3 Comparison arguments omitted in proof of Theorem 4.4

First inequality in (14). We start with showing the first inequality in (14), which is

ρ̄ ≥ 1

n
· ρ(Π(L)),

by using Theorem A.2. We will heavily abuse notation and write Π(·) for many different objects in
order not to overload the notation. Remember that ρ̄ is the modified log-Sobolev constant of the
projection chain M = (L, P̄ ), where L = {α ∈ [q]n : |α| = n}, with stationary distribution given
by

π̄(α) = |S(α)|e−TΦ(α).

Furthermore, ρ(Π(L)) is the modified log-Sobolev constant of the base-exchange Markov chain
MΠ = (Π(L), PΠ) on Π(L) with stationary distribution πΠ. Similar to what was explained in
Section 3.1, we may write Π(L) = ∪Fi where Fi = {(i, j) : 1 ≤ j ≤ n} for i = 1, . . . , n, and
Π(L) is then the set of bases of the n-uniform matroid on ∪Fi. Roughly speaking, for every path
p ∈ P we introduce n auxiliary elements (corresponding to the n auxiliary variables introduced
when polarizing).

For every α ∈ L, there are
(n
α

)

bases B ∈ Π(L) corresponding to it (as in Section 3.1). We will
denote this set of bases by

Π(α) = {A ∈ Π(L) : α(A) = α},
where α(A) is the vector given by αi = |A ∩ Fi| for i = 1, . . . , n.

We start with defining the required mapping φ needed in Theorem A.2. For f : L → R≥0, we
define f ′ : Π(L) → R≥0 simply by setting f ′(A) = f(α(A)) for A ∈ Π(L). It can then easily be
checked that Entπ(f) = EntπΠ

(f ′) as π(α) =
∑

A∈Π(α) πΠ(A). This means that we can take c = 1
and B = 0 in Theorem A.2. In order to show the desired Dirichlet form inequality in the statement
of Theorem A.2, it suffices to prove that for any adjacent α, β ∈ L, it holds that

∑

A∈Π(α)

πΠ(A)
∑

B∈Π(β)

PΠ(A,B) ≤ C · π̄(α)P̄ (α, β). (21)

with C = n. The fact that this is sufficient follows from the observation that summing up (21) for
all ordered pairs (α, β) for α, β ∈ L gives the desired result (in combination with the definition of
f ′).

Now, fix α, β ∈ L and assume that they are adjacent (the case α = β can be dealt with
similarly). Remember that γ ∈ L is adjacent to α if

∑

e |αe − γe| = 2, i.e., there exist paths p and
p′ such that

αe =







γe + 1 if e = p
γe − 1 if e = p′

αe if e ∈ E \ {p, p}.
Let r be the path for which αr = βr + 1 and write Nr(α) for all load profiles γ adjacent to α for
which αr = γr + 1 (including β). Following the definition of the base-exchange Markov chain, it
then holds that for any A ∈ Π(α) and B ∈ Π(β), we have

2 ·
∑

B∈Π(β)

PΠ(A,B) =
αp

n

(n− βp′
β
+ 1)

(n
β

)−1
e−TΦ(β)

∑

γ∈Nr(α)∪{α}
(n− γp′γ + 1)

(n
γ

)−1
e−TΦ(γ)

=: Q (22)
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where p′γ is used to indicate the path p′ = p′γ for which αp′ = γp′ − 1 for γ ∈ Np(α), and p
′
α = r.

With some care, it can be shown that for γ ∈ N (α) ∪ {a}, it holds that

(n− γp′γ + 1)
(n
γ

)−1

(n− βp′
β
+ 1)

(

n
β

)−1 =
γp′γ
βp′

β

=
βp′γ + 1

βp′
β

≥ 1

n
.

Continuing the estimate in (22), we then get

Q ≤ n · αp

n

e−TΦ(β)

∑

γ∈Nr(α)∪{α}
e−TΦ(γ)

= 2nP̄ (α, β),

using (12) for the final equality. This gives the desired result in (21). Applying Theorem A.2 with
c = 1, C = n and B = 0 then gives the desired first inequality in (14).

First inequality in (15). In order to show the inequality in (15), we will again use a Markov
chain comparison between two chains on different state spaces. We want to show that

ρα ≥ ρrt

where ρα is the modified log-Sobolev constant of the restriction chain on S(α) for a ∈ L, in which
we randomly interchange the strategies of two players, and ρrt the modified log-Sobolev constant
of the so-called random transposition walk. From now on, we fix some α ∈ L.

It is convenient to study these chains in terms of bipartite graphs with given degrees on node
partition A∪B. For α ∈ L we consider the degree sequence x = (x1, . . . , xn) with xi = 1 for every
i ∈ B, and the sequence y = (y1, . . . , yq) with yp = αp for p ∈ A, where one should remember
that q is the number of strategies, i.e., paths, available in the common strategy set (denoted by A
here) of all players. It follows directly that there is a one-to-one correspondence between S(α) and
G(x, y) where, for a given strategy profile s ∈ S(α), there is an edge {i, p} if and only if si = p.
(This is similar to the setting we consider in Section 5.) Given s ∈ S(α), our restriction chain can
be interpreted as randomly selecting two edges from the bipartite graph Gs corresponding to the
profile s and switching them if possible. That is, if we select {i, p} and {i′, p′} with p 6= p′, we
delete the edges {i, p} and {i′, p′}, and add the edges {i, p′} and {i′, p} (note that i 6= i′ always
holds as the nodes in B have degree one).

In order to introduce the random transposition Markov chain, we split up every node pj ∈ A
into nodes pj1, . . . , pjαj

, and consider bipartite graphs on two sets of n nodes B = {1, . . . , n} and
A∗ = ∪jA

∗
j , with A

∗
j = {pj1, . . . , pjαj

}, where every node has degree one. That is, every such graph
is a perfect matching between A∗ and B. Note that there are precisely

q
∏

j=1

αj ! = α!

perfect matchings corresponding to the graph Gs for s ∈ S(α) under the natural transformation
in which, for a given perfect matching, we consider the graph that we get by merging all the
nodes pj1, . . . , pjαj

back into one node pj for every j = 1, . . . , q. We will denote this set of perfect
matchings by H(s) for s ∈ S(α). The random tranposition Markov chain M = (H, P ), with
H = ∪sH(s) denoting the set of all perfect matchings on the bipartition A∗ ∪ B, proceeds by
selecting two edges (of the current perfect matching) uniformly at random, and switching them.
Note that this is always possible here as opposed to in the case of our restriction chains on S(α).
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We can now use a similar type of comparison argument as for the first inequality in (14) given
above. We define the mapping φ, for a given function f : S(α) → R≥0, by setting f ′(M) = f(s)
whenever M ∈ H(s) for s ∈ S(α). Let σ be the uniform distribution over S(α) and let σH the
uniform distribution over H. Note that σ(s) =

∑

M∈H(s) σH(M). It then follows that for every

s, s′ ∈ S(α), we have

∑

M∈H(s)

σH(M)
∑

M ′∈H(s′)

P (M,M ′) = σ(s)Pα(s, s
′) (23)

since Pα(s, s
′) = 1

n(n−1) =
∑

M ′∈H(s′) P (M,M ′) for allM ∈ H(s) whenever s 6= s′ and Pα(s, s
′) > 0.

Note that there is only one matching M ′ ∈ H(s′) such that P (M,M ′) > 0. When s = s′, we also
have

∑

M ′∈H(s′)

P (M,M ′) = Pα(s, s
′).

This implies that we can take C = 1. As before, we can take a = 1 and B = 0.

B.4 Proof of Theorem 4.5

Theorem 4.5. Let ǫ > 0 and let Γ be an extension parallel congestion game with integer-valued
cost functions and n players. There is a randomized algorithm A with output distribution π̄ over
NE(Γ) that is ǫ-close to the uniform distribution over NE(Γ), and runs in (expected) time polyno-
mial in n,m,Φmax and log(1/ǫ) where Φmax is the maximum value attained by Rosenthal’s potential.

For the proof of Theorem 4.5 we will use the following correspondence between Nash equilibria
and strategy profiles minimizing Rosenthal’s potential.

Proposition B.1 (Holzman and Law-Yone [28]; Fotakis [21]). The set of strategy profiles NE(Γ)
of an extension parallel congestion game Γ coincides with the set of strategy profiles that minimize
Rosenthal’s potential as in (3).

Proof of Theorem 4.5. We first show that, for T sufficiently large in the algorithm used to prove
Theorem 4.2, most weight will be assigned to strategy profiles minimizing Rosenthal’s potential.
We will apply the idea in Algorithm 1 used to prove Theorem 4.2 with base 2 instead of base e.
Remember that q is the number of (o, d)-paths in the extension parallel network of the game Γ. Let
φ = Φ(s) be the common potential value of all strategy profiles s ∈ NE(Γ). For any other strategy
profile s′ ∈ S \ NE(Γ), we have

2−TΦ(s′) ≤ 2−T (φ+1) = 2−T e−Tφ

by assumption that all cost functions are integer-valued. As there are q strategies to choose from
for every player, we have |S| = qn = 2n log2(q). This implies that the Gibbs distribution π over S
with temperature T = ⌈n log2(q) + log2(2/ǫ)⌉, satisfies

π(S \ NE(Γ)) =
∑

s∈NE(Γ)

2−TΦ(s′) ≤ 2n log(q)2−T 2−Tφ ≤ ǫ

2
· π(NE(Γ)). (24)

The algorithm for sampling an (almost) uniform sample from NE(Γ) now works as follows. First
compute a strategy profile minimizing Rosenthal’s potential in order to determine φ. This can be
done efficiently, see, e.g., [21]. Then run Algorithm 1 with T = ⌈n log2(q)+ log2(2/ǫ)⌉ and ǫ′ = ǫ/2.
If the resulting strategy profile has potential value φ, output this strategy profile, and, otherwise,
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rerun Algorithm 1 until it does. Note that with probability at least (1 − ǫ/2), Algorithm 1 will
output a strategy profile with potential value φ in one run. A simple argument then shows that
the output distribution is ǫ-close to the uniform distribution over NE(Γ) as desired.
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