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Noise-induced breakdown of coherent collective motion in swarms
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We consider swarms formed by populations of self-propelled particles with attractive long-range interac-
tions. These swarms represent multistable dynamical systems and can be found either in coherent traveling
states or in an incoherent oscillatory state where translational motion of the entire swarm is absent. Under
increasing the noise intensity, the coherent traveling state of the swarms is destroyed and an abrupt transition
to the oscillatory state takes pla¢&1063-651X%99)11309-6

PACS numbds): 87.23.Cc, 05.20:y, 05.40.Ca, 87.16-e

There is a large class of problems where individual inter-and are subjected to the action of noises. This globally
acting particles, which constitute a system, are capable afoupled population forms a clouthe swarm in the consid-
active motion and form collectively traveling populations. ered one-dimensional space. The swarm can be found in dif-
Self-propulsion of particles is already possible in simpleferent states. Coherent compact traveling states are charac-
physical systemgsee, e.g.[1-5]) and is widely found in terized by a narrow distribution of velocities around a certain
biology where individual animals may group themselves intomean drift velocity, directed either to the left or to the right.
swarms, fish schools, bird flocks, or traveling cell popula-Another possible state of this population corresponds to the
tions[6-9]. The role of individual self-propelled “particles” absence of coherent translational motion, with noisy oscilla-
can also be played by localized pattefspots in reaction-  tions around a certain mean position in space, determined by

diffusion systems. A bifurcation leading to the onset of athe initial conditions.

translational motion of spots has been studied in an activator- 1he coherent traveling states exist only for sufficiently
inhibitor system with global feedbacklO] and in three- Weak noise and, as the noise intensity increases, the swarm

component reaction-diffusion systerfis1,12. Interactions undergoes a transition to the incoherent oscillatory state. We
mined from the underlying reaction-diffusion equations andSystem is abrupt and characterized by a strong hysteresis.

used to describe formation of bound states of such “par-Thus, the globally coupled swarm represents a multistable
ticles” [13]. system that may be found in different states depending on

lows several different directions. One approach is based ofimulations, is well reproduced by an approximate analytical
the notion of discrete stochastic automé@l4—16. An- theory and may represent a typical property of swarms with
other approach is formulated in terms of continuous velocityongd-range interactions. _ _

and density fields and essentially treates a swarm as an active 10 formulate the model, we note that if a system is close
fluid [17] (such hydrodynamical equations may be derived© the onset of active motion and_th|s |n_stab|l|ty is s_oft, e,
by averaging from the respective automata mogiegj). A characterlzc_-:‘d by a supercritical b|furca_t|on, the motion with
similar hydrodynamic approach is also used in the theory ofMall velocityV can generally be described by equation
traffic flows[19,20. Alternatively, one can specify dynami-

cal equations of motion for all individual particles that ex- V=aV-BV3 (1)
plicitly include interactions between them and/or action of '

external fieldg3,7,9,13,21 An interesting problem related

to statistical mechanics of large populations of self-propelledvith real coefficientsa and 5>0. This equation may be
particles is the spontaneous development of coherent colle¥iewed as a normal form of the supercritical bifurcation lead-
tive motion in such systems. This prob|em has recent]y beei‘ng to translational motion. Such bifurcations are possible in
discussed in the framework of continuous hydrodynamicafimple physicochemical systeni8]. They are also known
and discrete automata models, and the properties of the réar localized spot patterns in reaction-diffusion models and
spective kinetic phase transition were numerically and anacorrespond to the onset of their translational mofibd,12.

lytically investigated [17,18. Both in one- and two-  According to Eq.(1), the velocityV is zero below the
dimensional systems, first- and second-order transitions haJafurcation point(i.e., for «<0). Above this point, active
been found15]. motion with V== \/a/B is asymptotically established. The

In the present paper we consider a population of identicadlirection of this motion for an individual particle remains
self-propelled particles near a transition between disorderedrbitrary and is determined by initial conditions. Rescaling
oscillating motion and coherent translational motion. Thetime and introducing the new velocity variable=V+/B/ a,
particles interact via an isotropic attractive binary potentialEg. (1) can be written as
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u=u-—us. 2)

When a population of identical self-moving particles is con-

sidered, the velocity;, = x; of each particlé will satisfy this 14
dynamical equation.

Interactions between individuals may generally depend on
both their relative positions and velocities. In this paper we ﬁ
assume that the interactions are pairwise and described by -1 i
forcesf(x;—x;) that depend only on the difference of coor-
dinates of two particlesandj. We shall further assume that
the interactions are attractive and depend linearly on the dis- §=01
tance between the particles, i.&(x;—X;) < (x;—X;). These 3 2 -1 0 1 2 3
attractive forces are supposed to model the interaction within position
the size ranges of the dynamical states considered below,
where the population forms clouds of either oscillating or FIG. 1. Three snapshots of 100-particle systems @ittL0 and
translational motion. The interaction could be extended t6>=0.1, in different dynamical regimes. The central ensemble cor-
larger distances in order to represent, for instance, vanishinigsponds to disordered oscillations along a noisy limit cycle. The
forces at infinity[22]. Additionally, the system may include other two .gnsembles stand for coherent clouds with opposite aver-
noise that will be modeled by independent random force@9e velocities.

& (t) acting on individual particles. Noise prevents the col-
Iéslapns?]grfetrgee ?gﬁgrl:g?n' S0 that short-range repulfiai22 the population is determined by the initial conditions._Our
Under these conditions, the dynamical equations for a sefumerical simulations show that, if the average veloeity

of N identical self-moving particles with coordinategt) =N 'Zu; is initially close to zero, the oscillatory standing
are state is asymptotically reached. If, however, this initial aver-

age velocity is large enough, one of the two coherent travel-
. . o a N ing states will be approached.
Xi+ (XF = 1)x; + N > (x—x)=&1) (i=1,...N). Since the particles either converge to coherent motion
=1 3 with constant velocity or to disordered oscillations with no

@) average drift, the ensemble can be thought of amitistable
The coefficienta characterizes the intensity of interactions SyStemwith qualitatively different attractors. In the follow-
and can be viewed as the parameter, specifying the strengthd, we focus our attention on how these attractors respond
of coupling in the population. Equatior8) constitute the t0 the effect of noise. With this aim, we study E@) nu-
basic model investigated in this paper. We shall assume th&gerically. Integration is performed by means of a standard
&(t) are independent white noises of intens@y so that  Euler scheme with a time stejpt=10"" to 10" “. Most cal-
(&(1)€(t'))=2S6,8(t—t'). Note that Eqs(3) are invari- culations correspond to ensembles of 100 particles, with the

ant with respect to an arbitrary translation in the coordinaté&oupling intensity ranging frona=1 to 100. Larger values
space. of a require smaller values aAt. Noise is introduced by

Model (3) can behave as a system of globally coupleddenerating at each time step a random numpavith uni-
limit-cycle oscillators(cf. [23,24)). Introducing the average form distribution in the interval { £o,o). This choice cor-

— 2
coordinatex(t) of the swarm,

velocity

early stable for any positive parameterThe final state of

responds to having= £3/6At. In practice, &, is calculated
for each given value o8& Initial conditions are selected at
L 1 N random, distributing the particles aroure 0 andu=0 or 1
X(t)= N E xj(1), (4)  with a dispersion of the order of 0.5 in both variables. From
=1 each initial condition the system is left to evolve in the ab-
sence of noise until it reaches the state of disordered oscilla-
tions or coherent motion. Then, &t 30, noise is switched
on. Typical calculations extend up te=1000.

For small noise intensitieS<0.1, the stochastic pertur-
bations to the trajectories preserve the characteristic features
— constant, the particles perform persistent oscillations. | of the collective dynamics observed in the'absence of noise.
this state t'he phases of individual oscillations are randb The cqmpletely collapseq state O.f the 'n0|seless case trans-

i T o . Mforms into a cloud of particles, which still moves coherently
Note that the spatial locatior of an oscillating swarm is 4t a given velocity. Oscillatory orbits, meanwhile, proceed
arbitrary. now along a noisy limit cycle. Figure 1 shows three snap-

In addition to the random oscillatory state, syspéihhas shots of a system of 100 particles with= 10, subjected to
two coherent collapsed states where the coordinates of gllyise withS=0.1. They started from different initial condi-
particles are identical, i.ex;=x for anyi. These states cor- tions, as described above. The arrows indicate the overall
respond to uniform translational motion of the entire swarmmotion of each swarm.
with the velocityu=*1. A simple analysis shows that the  Within coherent clouds, each particle performs an oscilla-
oscillatory state and both coherent traveling states are lintory noisy motion, which is superimposed to the collective

Egs.(3) in absence of noise read
X+ (x2-1)x+a(x—x)=0 (i=1,...N). (5

Thus, if the swarm does not move as a whole, i;ét,)
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FIG. 2. Normalized profiles of coherent clouds as functions of
the deviation from the average position, for different values of FIG. 4. The asymptotic mean velocity of 100-particle coherent
andS=0.1 in a 100-particle ensemble. clouds as a function o8, for different values of. Symbols corre-

spond to numerical measurements and lines stand for the analytical
translation. The distribution of particles inside the clouds hasesult, Eq.(13).
a well-defined profile, shown in Fig. 2 for some valuesaof
in the case of positive velocity. The normalized distributionundergoes anoise-induced transitiorfrom a condition of
p(y) is there plotted as a function of the coordinate relativemultistability with two kinds of attractors to a situation
to the average positiop;=x; — x. For decreasing, the dis- Where only one of them exists. The coherent clouds observed
tribution becomes broader and more asymmetric, with afor small noise intensities are no longer possible fr
accumulation of particles at the front of the cloud. >S;, and the system is necessarily led to the state of noisy,
The coherent traveling states of the population cease téisordered oscillations. -
exist at sufficiently high noise intensities and the swarm un- Figure 4 displays the dependence of the mean velacity
dergoes an abrupt transition to its random oscillatory statepf the traveling swarm on the noise intensi®/for three
characterized by the absence of the translational motion. Thigdifferent values of the coupling coefficieat We see that the
breakdown of coherent swarm motion is illustrated in Fig. 3.mean velocity monotonously decreases with the noise inten-
We see that if the noise is relatively weldkg. 3(@)], switch-  sity, until a certain critical noise intensity is reached and the
ing it on att=30 only produces a slight decrease of thecoherent swarm motion becomes impossible The mean ve-
velocity of the coherent cloud, so that the average velocCitygcity at the critical point is still relatively largej~0.8. The
u(t) exhibits fluctuations around a constant mean value critical noise intensityS, becomes lower for smaller values
<1.If, however, the noise intensity exceeds a certain threshef a. Note that the behavior of the swarm is characterized by
old, the effect of introducing noise is qualitatively different a strong hysteresis. If the breakdown of the coherent motion
[Fig. 3(b)]. Within a certain time interval after the introduc- has occurred, subsequently decreasing the noise intensity
tion of noise, the swarm continues to travel at a somewhakaves the system in the oscillatory state with zero mean
reduced, strongly fluctuating average veloaiit). Then, it  velocity, down toS=0.
suddenly starts to decelerate and soon reaches a steady statéAn interesting property of the considered noise-induced
where the average velocity(t) fluctuates near zero. Inspec- transition is the divergence of the waiting time at the critical
tion of the distribution of particles in the ensemble showsPCint- The waiting timeT, is defined as the time at which the
that in this state the system has been attracted to the noigyverage velocityu(t) of the cloud first reaches zerve
limit cycle mentioned above. We conclude that the systemneasure this time starting from the momenst30 when the
noise is switched on Figure 5 shows the waiting timg, as
Lo a function ofS-S; in a log-log plot. We see that for very
08 R T small values ofS-S., this time decreases following a power
06 | law, Tox(S-S.) 7, with y~1.33. Then, at abouS-S,

04r =0.03, the behavior changes to a power law wjts 0.52.
aoaf | a Straight dashed lines with slopes4/3 and—1/2 have been
1o — ' ' ' : plotted for reference.

The observed noise-induced transition between coherent
clouds and disordered oscillations of the swarm can be ex-
plained by a simple approximate analytical approach. By
summing all Egs(5) for different particles and taking into
account that the noises acting on individual particles are not
correlated, an evolution equation for the average swarm ve-
locity u(t) is obtained:

FIG. 3. Average velocity of 100-particle coherent clouds in two
realizations at(a) S=0.10 and(b) 0.12, with a=10. Noise is
switched on at=30 (dashed ling The horizontal lines indicate the
asymptotic mean values of(t).
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107 stationary probability distribution foy; is readily found and
the average square dispersion of velocities is obtained as
10: \ R S (11)
N \.\ o= — .
e \‘ 3U2_ 1
T, 2 _
’ 1 “'\{\\ The algebraic equations forand o can be solved, yield-
107 °‘\.\ ing the statistical dispersion of particles in the traveling
RN swarm,
AN Tl
10— e e 012=5(1%1-99), (12
10° 10* 10! 10° 10' . :
§-3 and its mean velocity
FIG. 5. Waiting timeT,, at which the average velocity of ini- U% = 1(2+1-99). (13

tially coherent clouds vanishes for the first time, as a function of
S-S, for a=10 in a 100-particle system. The dashed lines have Thus, the traveling-state solutions disappear when the

slopes—1/2 and—4/3. critical noise intensity5,;=1/9=0.11 . . . isreached. At this
_ _ _ o critical point the mean swarm velocity isi.=+2/3
Let us introduce for each particle its deviatigh=x;—X  =0.82... and thenean dispersion of particles in the cloud

from the average position of the swarm. Then we can writejs ¢-.=1/9=0.11 . . .

N N Below the breakdown thresholtbr S<S;), solution(13)
1 > C=13+30u+ 1 DR @) has two branches shown by solid and dashed lines in Fig. 4.
N ! Ni= 7 The lower branch is apparently unstable, since it approaches
) the valueu=1/\/§=0.58 ... atS=0, i.e., in absence of the
wherec=N"'3;y? is the average square dispersion of thenoise. A special property of the derived solution is that it
swarm. The last cubic term in this equation can be neglectedoes not depend on the parameder

if the distribution of particles in the traveling cloud is sym-  Comparing the theoretical prediction with the numerically
metric. As we have seen from numerical simulatigfig. 2),  determined values of the mean swarm velocity, which are
this is indeed a good approximation for sufficiently largealso plotted in Fig. 4, we can see that this approximation
values of the coupling constaat Within this approximation, provides good estimates of the swarm velocity and the criti-

Il
[

Eq. (6) takes the form cal noise intensity when the parameteis relatively high
L L (a=100 anda=10). At small values ofa, the deviations
u+(u®—1)u+3cu=0. (8) from the numerical results become significant near the break-

o _ down threshold. This can be understood if we take into ac-
On the other hand, deviations of particles from the centeeount that, according to Fig. 2, the distribution of particles in

of the swarm obey the stochastic differential equation a traveling swarm shows significant asymmetry for such a
LN small value ofa and, therefore, our approximations are not
S —. : : lid.
i+(3u2—1)y;+ay,+3u(y?— o)+ |y - — -3) va — —
yitl yitayF3ulyi—a)+| yi- g 21 yi For a standing swarmu=0), the deviationsy;=x; — X
_ obey in the limitN—o the nonlinear stochastic differential
=&(). ©) equation
Assuming that the deviations tyf, are relatively small and v+ (V2= 1)V +av = &(t 14
linearizing this equation, we obtain Y- Dyiray=4(0), 4
. — . which is similar to the Van der Pol equatid@5]. In this
yit(Bui=1yitay=§&(t). (100 state, therefore, the particles in the swarm perform periodic

limit-cycle oscillations with a random distribution of phases.

This state exists for any noise intensand is approached
/hen the noise-induced breakdown of the coherent motion

takes place ab=S..

" Thus, we have found in this paper that a swarm of inter-

acting, actively moving particles may show bistable behav-

th I?ence, we htaYe(;jerlvgt;j athclosed set&; E’ﬁ};ap?(l.O) t.ior, i.e., they can be found either in a coherent state traveling
at approximately describe the swarm. We want 1o INVestiy, 3 fiyeq velocity, or in a rest state where the translational

gate steady statlstlcal_states of this system. The stationagy tion is absent and the individual particles perform oscil-
solutions to Eq(8) areu=*y1-3c¢ andu=0. The latter |ations around the center of the swarm. The bistability per-
solution corresponds to the resting swarm. sists in the presence of noise if its intensity remains rela-

Examining Eq.(10), we note that it describes damped tively low. Increasing the noise intensity leads to a sudden
oscillations only if 312—1>0, i.e., only if the mean velocity breakdown of the coherent traveling motion and a transition
of the swarm is sufficiently large. Under this condition, theto the resting oscillatory state occurs. This behavior is differ-

In this approximation the deviations for different particles
represent statistically independent random processes. This
lows us to replace the ensemble average in the dispeesion
by the statistical average taken over independent random r
alizations of such processes, defined by @d).
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ent from the second-order phase transitions to coherent coirdividual interacting self-propelled particles, the problem
lective motion, which were found in the previously studied shows significant similarities to synchronization and conden-
models[17,18. We conjecture that the difference is related sation in populations of globally coupled oscillatdisee,

to the fact that in our model the interactions between selfe.g.,[23,26)). The significant new aspect is that collapsed

propelled particles have a long range and extend over thgynchronous states correspond here to translational motion of
entire swarm. It would be interesting to see how this behavihe entire population.

ior is modified when other interaction laws and systems with
higher dimensionality are considered. Finally, we remark The authors acknowledge financial support from Funda-
that, when formulated in terms of dynamical equations forcion Antorchas(Argentina.
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