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A Linear-Time n0.4-Approximation for Longest Common

Subsequence

Karl Bringmann∗ Vincent Cohen-Addad† Debarati Das‡

Abstract

We consider the classic problem of computing the Longest Common Subsequence (LCS) of two strings
of length n. While a simple quadratic algorithm has been known for the problem for more than 40 years,
no faster algorithm has been found despite an extensive effort. The lack of progress on the problem has
recently been explained by Abboud, Backurs, and Vassilevska Williams [FOCS’15] and Bringmann and
Künnemann [FOCS’15] who proved that there is no subquadratic algorithm unless the Strong Exponential
Time Hypothesis fails. This major roadblock for getting faster exact algorithms has led the community
to look for subquadratic approximation algorithms for the problem.

Yet, unlike the edit distance problem for which a constant-factor approximation in almost-linear time
is known, very little progress has been made on LCS, making it a notoriously difficult problem also in
the realm of approximation. For the general setting (where we make no assumption on the length of the
optimum solution or the alphabet size), only a naive Opnε{2q-approximation algorithm with running time
rOpn2´εq has been known, for any constant 0 ă ε ď 1. Recently, a breakthrough result by Hajiaghayi,
Seddighin, Seddighin, and Sun [SODA’19] provided a linear-time algorithm that yields a Opn0.497956q-
approximation in expectation; improving upon the naive Op?

nq-approximation for the first time.
In this paper, we provide an algorithm that in time Opn2´εq computes an rOpn2ε{5q-approximation

with high probability, for any 0 ă ε ď 1. Our result (1) gives an rOpn0.4q-approximation in linear time,
improving upon the bound of Hajiaghayi, Seddighin, Seddighin, and Sun, (2) provides an algorithm
whose approximation scales with any subquadratic running time Opn2´εq, improving upon the naive
bound of Opnε{2q for any ε, and (3) instead of only in expectation, succeeds with high probability.

1 Introduction

The longest common subsequence (LCS) of two strings x and y is the longest string that appears as a
subsequence of both strings. The length of the LCS of x and y, which we denote by Lpx, yq, is one of the
most fundamental measures of similarity between two strings and has drawn significant interest in last five
decades, see, e.g. [35, 6, 26, 27, 30, 32, 10, 31, 11, 36, 22, 16, 28, 2, 19, 4, 20, 3, 33, 34, 24]. On strings of length
n, the LCS problem can be solved exactly in quadratic time Opn2q using a classical dynamic programming
approach [35]. Despite an extensive line of research the quadratic running time has been improved only
by logarithmic factors [30]. This lack of progress is explained by a recent result showing that any truly
subquadratic algorithm for LCS would falsify the Strong Exponential Time Hypothesis (SETH); this has
been proven independently by Abboud et al. [2] and by Bringmann and Künnemann [19]. Further work in this
direction shows that even a high polylogarithmic speedup for LCS would have surprising consequences [4, 3].
For the closely related edit distance the situation is similar, as the classic quadratic running time can be
improved by logarithmic factors, but any truly subquadratic algorithm would falsify SETH [12].
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These strong hardness results naturally bring up the question whether LCS or edit distance can be effi-
ciently approximated (namely, whether an algorithm with truly subquadratic time Opn2´εq for any constant
ε ą 0, can produce a good approximation in the worst-case). In the last two decades, significant progress
has been made towards designing efficient approximation algorithms for edit distance [14, 13, 15, 9, 7, 21,
23, 29, 17]; the latest achievement is a constant-factor approximation in almost-linear1 time [8].

For LCS the picture is much more frustrating. The LCS problem has a simple rOpnε{2q-approximation
algorithm with running time Opn2´εq for any constant 0 ă ε ă 1, and it has a trivial |Σ|-approximation
algorithm with running time Opnq for strings over alphabet Σ. Yet, improving upon these naive bounds has
evaded the community until very recently, making LCS a notoriously hard problem to approximate. In 2019,
Rubinstein et al. [33] presented a subquadratic-time Opλ3q-approximation, where λ is the ratio of the string
length to the length of the optimal LCS. For binary alphabet, Rubinstein and Song [34] recently improved
the 2-approximation. In the general case (where λ and the alphabet size are arbitrary), the naive Op?

nq-
approximation in near-linear2 time was recently beaten by Hajiaghayi et al. [24], who designed a linear-time
algorithm that computes an Opn0.497956q-approximation in expectation.3 Nonetheless, the gap between the
upper bound provided by Hajiaghayi et al. [24] and the recent results on hardness of approximation [1, 5]
remains huge.

1.1 Our Contribution

We present a randomized rOpn0.4q-approximation for LCS running in linear time Opnq, where the approxi-
mation guarantee holds with high probability4 . More generally, we obtain a tradeoff between approximation
guarantee and running time: For any 0 ă ε ď 1 we achieve approximation ratio rOpn2ǫ{5q in time Opn2´εq.
Formally we prove the following:

Theorem 1. There is a randomized algorithm that, given strings x, y of length n ě 1 and a time budget
T P rn, n2s, with high probability computes a multiplicative rOpn0.8{T 0.4q-approximation of the length of the
LCS of x and y in time OpT q.

The improvement over the state of the art can be summarized as follows:

1. An improved approximation ratio for the linear time regime: from Opn0.497956q [24] to rOpn0.4q;

2. The first algorithm which improves upon the naive bound with high probability4;

3. A generalization to running time Opn2´εq, breaking the naive approximation ratio rOpnε{2q in general.

2 Technical Overview

We combine classic exact algorithms for LCS with different subsampling strategies to develop several algo-
rithms that work in different regimes of the problem. A combination of these algorithms then yields the full
approximation algorithm.

Our Algorithm 1 covers the regime of short LCS, i.e., when the LCS has length at most nγ for an
appropriate constant γ ă 1 depending on the running time budget. In this regime, we decrease the length of
the string x by subsampling. This naturally allows to run classic exact algorithms for LCS on the subsampled
string x (which now has significantly smaller size) and the original string y, while not deteriorating the LCS
between the two strings too much.

1By almost-linear we mean time Opn1`εq for a constant ε ą 0 that can be chosen arbitrarily small.
2By near-linear we mean time rOpnq, where rO hides polylogarithmic factors in n.
3While the SODA proceedings version of [24] claimed a high probability bound, the newer corrected Arxiv version [25] only

claims that the algorithm outputs an Opn0.497956q-approximation in expectation. Personal communications with the authors
confirm that the result indeed holds only in expectation, see also Remark 14.

4We say that an event happens with high probability (w.h.p.) if it has probability at least 1´n´c, where the constant c ą 0
can be chosen in advance.
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For the remaining parts of the algorithm, the strings x and y are split into substrings x1, . . . , xn{m and

y1, . . . , yn{m of length m “ n{
?
T where T denotes the total running time budget. For any block pi, jq we

write Lij for the length of the LCS of xi and yj . We call a set S “ tpi1, j1q, . . . , pik, jkqu with i1 ă . . . ă ik
and j1 ă . . . ă jk a block sequence. Since we can assume the LCS of x and y to be long, it follows that
there exists a good “block-aligned LCS”, more precisely there exists a block sequence with large LCS sumř

pi,jqPS Lij .

Now, a natural approach is to compute estimates 0 ď rLij ď Lij for all blocks pi, jq and to determine the

maximum sum rL “ ř
pi,jqPS

rLij over all block sequences S. Once we have estimates rLij , the maximum rL
can be computed by dynamic programming in time Oppn{mq2q, which is OpT q for our choice of m. In the

following we describe three different strategies to compute estimates rLij . The major difficulty is that on

average per block pi, jq we can only afford time rOp1q to compute an estimate rLij .
The first strategy focuses on matching pairs. A matching pair of strings s, t is a pair of indices pa, bq such

that sras “ trbs. We write Mij for the number of matching pairs of the strings xi and yj . Our Algorithm 2
works well if some block sequence S has a large total number of matching pairs µ “ ř

pi,jqPS Mij . Here the

key observation (Lemma 7) is that for each block pi, jq there exists a symbol that occurs at least
Mij

2m
times in

both xi and yj . If Mij is large, matching this symbol provides a good approximation for Lij . Unfortunately,

since we can afford only rOp1q running time per block, finding a frequent symbol is difficult. We develop as
a new tool an algorithm that w.h.p. finds a frequent symbol in each block with an above-average number of
matching pairs, see Lemma 8.

For our remaining two strategies we can assume the optimal LCS L to be large and µ to be small (i.e.,
every block sequence has a small total number of matching pairs). In our Algorithm 3, we analyze the case
where λ “

ř
i,j Lij is large. Here we pick some diagonal and run our basic approximation algorithm on each

block along the diagonal. Since there are Opn{mq diagonals, an above-average diagonal has a total LCS of
Ωpλ{pn{mqq. If λ is large then this provides a good estimation of the LCS. The main difficulty is how to
find an above-average diagonal. A random diagonal has a good LCS sum in expectation, but not necessarily
with good probability. Our solution is a non-uniform sampling, where we first test random blocks until we
find a block with large LCS, and then choose the diagonal containing this seed block. This sampling yields
an above-average diagonal with good probability.

Recall that there always exists a block sequence G with large LCS sum (see Lemma 11). The idea of
our Algorithm 4 is to focus on a uniformly random subset of all blocks, where each block is picked with
probability p. Then on each picked block we can spend more time (specifically time rOp1{pq) to compute an

estimate rLij . Moreover, we still find a p-fraction of G. We analyze this algorithm in terms of µ and λ (the
choice of p depends on these two parameters) and show that it works well in the complementary regimes of
Algorithms 1-3.

Comparison with the Previous Approach of Hajiaghayi et al. [24] The general approach of

splitting x and y into blocks and performing dynamic programming over estimates rLij was introduced by
Hajiaghayi et al. [24]. Moreover, our Algorithm 1 has essentially the same guarantees as [24, Algorithm 1],
but ours is a simple combination of generic parts that we reuse in our later algorithms, thus simplifying the
overall algorithm.

Our Algorithm 2 follows the same idea as [24, Algorithm 3], in that we want to find a frequent symbol in

xi and yj and match only this symbol to obtain an estimate rLij . Hajiaghayi et al. find a frequent symbol by

picking a random symbol σ in each block xi, yj ; in expectation σ appears at least
Mij

2m
times in xi and yj . In

order to obtain with high probability guarantees, we need to develop a new tool for finding frequent symbols
not only in expectation but even with high probability, see Lemma 8 and Remark 14.

The remainder of the approach differs significantly; our Algorithms 3 and 4 are very different compared
to [24, Algorithms 2 and 4]. In the following we discuss their ideas. In [24, Algorithm 2], they argue about
the alphabet size, splitting the alphabet into frequent and infrequent letters. For infrequent letters the total
number of matching pairs is small, so augmenting a classic exact algorithm by subsampling works well.

3



Therefore, they can assume that every letter is frequent and thus the alphabet size is small. We avoid this
line of reasoning. Finally, [24, Algorithm 4] is their most involved algorithm. Assuming that their other
algorithms have failed to produce a sufficiently good approximation, they show that each part xi and yj
can be turned into a semi-permutation by a little subsampling. Then by leveraging Dilworth’s theorem
and Tuŕan’s theorem they show that most blocks have an LCS length of at least n1{6; this can be seen
as a triangle inequality for LCS and is their most novel contribution. This results in a highly non-trivial
algorithm making clever use of combinatorial machinery.

We show that these ideas can be completely avoided, by instead relying on classic algorithms based on
matching pairs augmented by subsampling. Specifically, we replace their combinatorial machinery by our
Algorithms 3 and 4 described above (recall that Algorithm 3 considers a non-uniformly sampled random
diagonal while Algorithm 4 subsamples the set of blocks to be able to spend more time per block). We stress
that our solution completely avoids the concept of semi-permutation or any heavy combinatorial machinery
as used in [24, Algorithm 4], while providing a significantly improved approximation guarantee.

Organization of the Paper. Section 3 introduces notation and a classical algorithm by Hunt and
Szymanski. In Section 4 we present our new tools, in particular for finding frequent symbols. Section 5
contains our main algorithm, split into four parts that are presented in Sections 5.1, 5.3, 5.4, and 5.5, and
combined in Section 5.6. In the appendix, for completeness we sketch the algorithm by Hunt and Szymanski
(Appendix A) and we present pseudocode for all our algorithms (Appendix B).

3 Preliminaries

For n P N we write rns “ t1, 2, . . . , nu. By the notation rO and rΩ we hide factors of the form polylogpnq. We
use “with high probability” (w.h.p.) to denote probabilities of the form 1 ´ n´c, where the constant c ą 0
can be chosen in advance.

String Notation. A string x over alphabet Σ is a finite sequence of letters in Σ. We denote its length
by |x| and its i-th letter by xris. We also denote by xri..js the substring consisting of letters xris . . . xrjs.
For any indices i1 ă i2 ă . . . ă ik the string z “ xri1s . . . xriks forms a subsequence of x. For strings x, y

we denote by Lpx, yq the length of the longest common subsequence of x and y. In this paper we study the
problem of approximating Lpx, yq for given strings x, y of length n. We focus on the length Lpx, yq, however,
our algorithms can be easily adapted to also reconstruct a subsequence attaining the output length. If x, y
are clear from the context, we may replace Lpx, yq by L. Throughout the paper we assume that the alphabet

is Σ Ď rOpnqs (this is without loss of generality after a rOpnq-time preprocessing).

Matching Pairs. For a symbol σ P Σ, we denote the number of times that σ appears in x by #σpxq,
and call this the frequency of σ in x. For strings x and y, a matching pair is a pair pi, jq with xris “ yrjs. We
denote the number of matching pairs by Mpx, yq. If x, y are clear from the context, we may replace Mpx, yq
by M . Observe that M “

ř
σPΣ #σpxq ¨ #σpyq. Using this equation we can compute M in time Opnq.

Hunt and Szymanski [27] solved the LCS problem in time rOpn ` Mq. More precisely, their algorithm

can be viewed as having a preprocessing phase that only reads y and runs in time rOp|y|q, and a query phase

that reads x and y and takes time rOp|x| ` Mq.

Theorem 2 (Hunt and Szymanski [27]). We can preprocess a string y in time rOp|y|q. Given a string x and

a preprocessed string y, we can compute their LCS in time rOp|x| ` Mq.

For convenience, we provide a proof sketch of their theorem in Appendix A.
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4 New Basic Tools

4.1 Basic Approximation Algorithm

Throughout this section we abbreviate L “ Lpx, yq andM “ Mpx, yq. We start with the basic approximation
algorithm that is central to our approach; most of our later algorithms use this as a subroutine. This
algorithm subsamples the string x and then runs Hunt and Szymanski’s algorithm (Theorem 2).

Lemma 3 (Basic Approximation Algorithm). Let x, y P Σn. We can preprocess y in time rOpnq. Given x,

the preprocessed string y, and β ě 1, in expected time rOppn`Mq{β ` 1q we can compute a value rL ď L that

w.h.p. satisfies rL ą L
β

´ 1.

Proof. In the preprocessing phase, we run the preprocessing of Theorem 2 on y.
Fix a constant c ě 1. If β ě 1{p8c lognq, then in the query phase we simply run Theorem 2, solving LCS

exactly in time rOp|x| ` Mq “ rOppn ` Mq{β ` 1q.
Otherwise, denote by x1 a random subsequence of x, where each letter xris is removed independently

with probability 1´p (i.e., kept with probability p) for p :“ 8c logpnq{β. Note that p ď 1 by our assumption
on β. We can sample x1 in expected time Op|x1| ` 1q, since the difference from one unremoved letter to the
next is geometrically distributed, and geometric random variates can be sampled in expected time Op1q, see,
e.g., [18]. Note that this subsampling yields Er|x1|s “ p|x| “ rOp|x|{βq and ErMpx1, yqs “ pM “ rOpM{βq.

In the query phase, we sample x1 and then run the query phase of Theorem 2 on x1 and y. This runs in
time rOp|x1| ` Mpx1, yq ` 1q, which is rOpp|x| ` Mq{β ` 1q in expectation.

Finally, consider a fixed LCS of x and y, namely z “ xri1s . . . xriLs “ yrj1s . . . yrjLs for some i1 ă . . . ă iL
and j1 ă . . . ă jL. Each letter xriks survives the subsampling to x1 with probability p. Therefore, we can
bound Lpx1, yq from below by a binomial random variable BinpL, pq (the correct terminology is that Lpx1, yq
statistically dominates BinpL, pq). Since Z “ BinpL, pq is a sum of independent t0, 1u-variables, multiplicative
Chernoff applies and yields PrrZ ă ErZs{2s ď expp´ErZs{8q. If L ě β then ErZs “ Lp ě 2L{β and
ErZs ě 8c logn, and thus PrrLpx1, yq ě L{βs ě 1 ´ n´c. Otherwise, if L ă β, then we can only bound
Lpx1, yq ě 0. In both cases, we have Lpx1, yq ą L{β ´ 1 with high probability.

The above lemma behaves poorly if L ď β, due to the “´1” in the approximation guarantee. We next
show that this can be avoided, at the cost of increasing the running time by an additive rOpnq.
Lemma 4 (Generalised Basic Approximation Algorithm). Given x, y P Σn and β ě 1, in expected time
rOpn ` M{βq we can compute a value rL ď L that w.h.p. satisfies rL ě L{β.

Proof. We run the basic approximation algorithm from Lemma 3, which computes a value rL ď L. Addition-
ally, we compute the number of matching pairs M “ Mpx, yq in time rOpnq. If M ą 0, then there exists a

matching pair, which yields a common subsequence of length 1. Therefore, if M ą 0 we set rL :“ maxtrL, 1u.
In the proof of Lemma 3 we showed that if L ě β then w.h.p. we have rL ě L{β. We now argue differently

in the case L ă β. If L “ 0, then rL ě 0 “ L{β and we are done. If 0 ă L ă β, then there must exist at least

one matching pair, so M ą 0, so the second part of our algorithm yields rL ě 1 ą L{β. Hence, in all cases

w.h.p. we have rL ě L{β.

We now turn towards the problem of deciding for given x, y and ℓ whether Lpx, yq ě ℓ. To this end,
we repeatedly call the basic approximation algorithm with geometrically decreasing approximation ratio β.
Note that with decreasing approximation ratio we get a better approximation guarantee at the cost of higher
running time. The idea is that if the LCS L “ Lpx, yq is much shorter than the threshold ℓ, then already
approximation ratio β « ℓ{L allows us to detect that L ă ℓ. This yields a running time bound depending
on the gap L{ℓ.

Lemma 5 (Basic Decision Algorithm). Let x, y P Σn. We can preprocess y in time rOpnq. Given x, the

preprocessed y, and a number 1 ď ℓ ď n, in expected time rOppn ` MqL{ℓ ` n{ℓq we can w.h.p. correctly
decide whether L ě ℓ. Our algorithm has no false positives (and w.h.p. no false negatives).
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Proof. In the preprocessing phase, we run the preprocessing of Lemma 3. In the query phase, we repeatedly
call the query phase of Lemma 3, with geometrically decreasing values of β:

1. Preprocessing: Run the preprocessing of Lemma 3.

2. For β “ n, n{2, n{4, . . . , 1:

3. Run the query phase of Lemma 3 with parameter β to obtain an estimate rL.
4. If rL ě ℓ: return “L ě ℓ”

5. If rL ď ℓ{β ´ 1: return “L ă ℓ”

Let us first argue correctness. Since Lemma 3 computes a common subsequence of x, y, we have rL ď L.
Thus, if rL ě ℓ, we correctly infer L ě ℓ. Moreover, w.h.p. rL satisfies rL ą L{β ´ 1. Therefore, if rL ď ℓ{β ´ 1,
we can infer L ă ℓ, and this decision is correct with high probability. Finally, in the last iteration (where

β “ 1), we have ℓ{β ´ 1 “ ℓ ´ 1, and thus one of rL ě ℓ or rL ď ℓ{β ´ 1 must hold, so the algorithm indeed
returns a decision.

The expected time of the query phase of Lemma 3 is rOppn`Mq{β ` 1q. Since β decreases geometrically,
the total expected time of our algorithm is dominated by the last call.

If L ě ℓ, the last call is at the latest for β “ 1. This yields running time rOpn ` Mq ď rOppn ` MqL{ℓq.
If L ă ℓ, note that for any β ď ℓ

L`1
we have rL ď L ď ℓ{β ´ 1, and thus we return “L ă ℓ”. Because

we decrease β by a factor 2 in each iteration, the last call satisfies β ě ℓ
2pL`1q . Hence, the expected running

time is rOppn ` MqpL ` 1q{ℓ ` 1q. If L ě 1 then this time bound simplifies to rOppn ` MqL{ℓ ` 1q. If L “ 0,

then also M “ 0, and the time bound becomes rOpn{ℓ`1q. In both cases we can bound the expected running

time by the claimed rOppn ` MqL{ℓ ` n{ℓq, since ℓ ď n.

4.2 Approximating the Number of Matching Pairs

Recall that for given strings x, y of length n the number of matching pairs M “ Mpx, yq can be computed
in time Opnq, which is linear in the input size. However, later in the paper we will split x into substrings
x1, . . . , xn{m and y into substrings y1, . . . , yn{m, each of length m, and we will need estimates of the numbers
of matching pairs Mij “ Mpxi, yjq. In this setting, the input size is still n (the total length of all strings xi

and yj) and the output size is pn{mq2 (all numbers Mij), but we are not aware of any algorithm computing

the numbers Mij in near-linear time in the input plus output size rOpn ` pn{mq2q.5 Therefore, we devise an
approximation algorithm for estimating the number of matching pairs.

Lemma 6. For x1, . . . , xn{m, y1, . . . , yn{m P Σm write Mij “ Mpxi, yjq and M “ ř
i,j Mij. Given the strings

x1, . . . , xn{m, y1, . . . , yn{m and a number q ą 0, we can compute values ĂMij that w.h.p. satisfy Mij{8 ´ q ď
ĂMij ď 4Mij, in total expected time rOpn ` M{qq.

This yields a near-linear-time constant-factor approximation of all above-average Mij : By setting q :“
ΘpMm2

n2 q, in expected time rOpn ` pn{mq2q we obtain a constant-factor approximation of all values Mij with
Mij " q.

Proof. The algorithm works as follows.

1. Graph Construction: Build a three-layered graph G on vertex set V pGq “ L Y U Y R, where L has a
node i for every string xi, R has a node j for every string yj, and U has a node pσ, ℓ, rq for any σ P Σ
and 0 ď ℓ, r ď logm. Put an edge from i P L to pσ, ℓ, rq P U iff #σpxiq P r2ℓ, 2ℓ`1q. Similarly, put an
edge from j P R to pσ, ℓ, rq P U iff #σpyjq P r2r, 2r`1q. Note that all frequencies and thus all edges of

this graphs can be computed in total time rOpnq. For i P L and j P R, we denote by Uij Ď U their

5In fact, one can show conditional lower bounds from Boolean matrix multiplication that rule out near-linear time for
computing all Mij ’s unless the exponent of matrix multiplication is ω “ 2.
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common neighbors. Note that any pσ, ℓ, rq P Uij represents all matching pairs of symbol σ in xi and
yj, and the number of these matching pairs is #σpxiq ¨ #σpyjq P r2ℓ`r, 2ℓ`r`2q.

2. Subsampling: We sample a subset rU Ď U by removing each node pσ, ℓ, rq P U independently with
probability 1 ´ pℓ,r, where pℓ,r :“ mint1, 2ℓ`r`3{qu.

3. Determine Common Neighbors: For each pσ, ℓ, rq P rU enumerate all pairs of neighbors i P L and

j P R. For each such 2-path, add pσ, ℓ, rq to an initially empty set rUij . This step computes the sets
rUij :“ Uij X rU in time proportional to their total size.

4. Output: Return the values ĂMij :“
ř

pσ,ℓ,rqP rUij
2ℓ`r{pℓ,r.

Correctness: To analyze this algorithm, we consider the numbers M ij :“ ř
pσ,ℓ,rqPUij

2ℓ`r. Observe

that we have M ij ď Mij ď 4M ij , since each pσ, ℓ, rq P Uij corresponds to at least 2ℓ`r and at most 2ℓ`r`2

matching pairs of xi and yj . It therefore suffices to show that ĂMij is close to M ij . Using Bernoulli random
variables Berppℓ,rq to express whether pσ, ℓ, rq survives the subsampling, we write

ĂMij “
ÿ

pσ,ℓ,rqPUij

2ℓ`r

pℓ,r
¨ Berppℓ,rq.

This yields an expected value of ErĂMijs “ M ij , so by Markov’s inequality we obtain ĂMij ď 4M ij ď 4Mij

with probability at least 3{4. Since ĂMij is a linear combination of independent Bernoulli random variables,
we can also easily express its variance as

VrĂMijs “
ÿ

pσ,ℓ,rqPUij

`
2ℓ`r{pℓ,r

˘2 ¨ pℓ,rp1 ´ pℓ,rq “
ÿ

pσ,ℓ,rqPUij

2ℓ`r ¨ 2ℓ`r
´ 1

pℓ,r
´ 1

¯
.

We now use the definition of pℓ,r :“ mint1, 2ℓ`r`3{qu to bound

2ℓ`r
´ 1

pℓ,r
´ 1

¯
“ 2ℓ`r

´
max

!
1,

q

2ℓ`r`3

)
´ 1

¯
“ maxt0, q{8 ´ 2ℓ`ru ď q{8.

This yields VrĂMijs ď M ijq{8. We now use Chebychev’s inequality PrrX ă ErXs ´ λs ď VrXs{λ2 on

λ “ 0.5ErXs and X “ ĂMij to obtain

PrrĂMij ă M ij{2s ď q

2M ij

.

In case Mij ě 8q, we have M i,j ě Mij{4 ě 2q and hence PrrĂMij ě Mij{8s ě PrrĂMij ě M ij{2s ě 3{4.
Otherwise, in case Mij ă 8q, we can only use the trivial ĂMij ě 0 ą Mij{8 ´ q.

Hence, each inequality ĂMij ď 4Mij and ĂMij ě Mij{8´ q individually holds with probability at leat 3{4.
Finally, we boost the success probability by repeating the above algorithm Oplog nq times and returning for

each i, j the median of all computed values ĂMij .

Running Time: Steps 1 and 2 can be easily seen to run in time rOpnq. Steps 3 and 4 run in time

proportional to the total size of all sets rUij , which we claim to be at most 8M{q in expectation. Over

Oplog nq repetitions, we obtain a total expected running time of rOpn ` M{qq. (We remark that here we

consider a succinct output format, where only the non-zero numbers ĂMij are listed; otherwise additional

time of rOppn{mq2q is required to output the numbers ĂMij “ 0.)

7



It remains to prove the claimed bound of Erři,j |rUij |s ď 8M{q. Since 2ℓ`r{pℓ,r “ maxt2ℓ`r, q{8u ě q{8,
from the definition of ĂMij “ ř

pσ,ℓ,rqP rUij
2ℓ`r{pℓ,r we infer ĂMij ě q

8
|rUij |. Therefore,

E

”ÿ

i,j

|rUij |
ı

ď E

”8
q

ÿ

i,j

ĂMij

ı
“ 8

q

ÿ

i,j

M ij ď 8

q

ÿ

i,j

Mij “ 8M

q
.

4.3 Single Symbol Approximation Algorithm

For strings x, y that have a large number of matchings pairs M “ Mpx, yq, some symbol must appear often
in x and in y. This yields a common subsequence using (several repetitions of) a single alphabet symbol.

Lemma 7 (Cf. Lemma 6.6.(ii) in [20] or Algorithm 3 in [24]). For any x, y P Σn there exists a symbol σ P Σ

that appears at least M
2n

times in x and in y. Therefore, in time rOpnq we can compute a common subsequence

of x, y of length at least M
2n

. In particular, we can compute a value rL ď L that satisfies rL ě M
2n

.

Proof. Let k be maximal such that some symbol σ P Σ appears at least k times in x and at least k times
in y. Let Σw :“ tσ P Σ | #σpwq ď ku for w P tx, yu. Since no symbol appears more than k times in x and
in y, we have Σx Y Σy “ Σ. We can thus bound

M “ Mpx, yq “
ÿ

σPΣ
#σpxq ¨ #σpyq ď

ÿ

σPΣx

k ¨ #σpyq `
ÿ

σPΣy

#σpxq ¨ k ď 2kn,

since the frequencies #σpxq sum up to at most n, and similarly for #σpyq. It follows that k ě M
2n

. Computing

k, and a symbol σ P Σ attaining k, in time rOpnq is straightforward.

We devise a variant of Lemma 7 in the following setting. For strings x1, . . . , xn{m, y1, . . . , yn{m P Σm we
write Lij “ Lpxi, yjq, Mij “ Mpxi, yjq and M “ ř

i,j Mij . We want to find for each block pi, jq a frequent
symbol in xi and yj , or equivalently we want to find a common subsequence of xi and yj using a single
alphabet symbol. Similarly to Lemma 6, we relax Lemma 7 to obtain a fast running time.

Lemma 8. Given x1, . . . , xn{m, y1, . . . , yn{m P Σm and any q ą 0, we can compute for each i, j a num-

ber rLij ď Lij such that w.h.p. rLij ě Mij´q

16m
. The algorithm runs in total expected time rOpn ` M{qq.

Proof. We run the same algorithm as in Lemma 6, except that in Step 4 for each i, j with non-empty set rUij

we let rLij be the maximum of 2mintℓ,ru over all pσ, ℓ, rq P rUij . For each empty set rUij , we implicitly set
rLij “ 0, i.e., we output a sparse representation of all non-zero values rLij .

The running time analysis is the same as in Lemma 6.
For the upper bound on rLij , since σ appears at least 2ℓ times in xi and at least 2r times in yj , there is

a common subsequence of xi and yj of length at least rLij . Thus, we have rLij ď Lij .

For the lower bound on rLij , fix i, j and order the tuples pσ, ℓ, rq P Uij in ascending order of 2mintℓ,ru,
obtaining an ordering pσ1, ℓ1, r1q, . . . , pσk, ℓk, rkq. For h P rks we let S :“ tpσ1, ℓ1, r1q, . . . , pσh, ℓh, rhqu and
L :“ tpσh, ℓh, rhq, . . . , pσk, ℓk, rkqu. Recall that M ij “

ř
pσ,ℓ,rqPUij

2ℓ`r, and observe that we can pick h with

ÿ

pσ,ℓ,rqPS
2ℓ`r ě M ij{2 and

ÿ

pσ,ℓ,rqPL
2ℓ`r ě M ij{2. (1)

Then we have

M ij

2
ď

ÿ

pσ,ℓ,rqPS
2ℓ`r “

ÿ

pσ,ℓ,rqPS
2mintℓ,ru ¨ 2maxtℓ,ru ď 2mintℓh,rhu

ÿ

pσ,ℓ,rqPS
2maxtℓ,ru.

Note that for any pσ, ℓ, rq P S the symbol σ appears at least 2maxtℓ,ru times in xi or in yj , and thus the

sum on the right hand side is at most 2m. Rearranging, this yields 2mintℓh,rhu ě Mij

4m
ě Mij

16m
, where we used

M ij ě Mij{4 as in the proof of Lemma 6. In particular, due to our ordering we have for any pσ, ℓ, rq P L:
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2mintℓ,ru ě 2mintℓh,rhu ě Mij

16m
. (2)

Consider the number of nodes in L surviving the subsampling, i.e., Z :“ |L X rUij |. If Z ą 0, then some

node in L survived, and thus by (2) the computed value rLij is at least
Mij

16m
. It thus remains to analyze

PrrZ ą 0s.
In case some pσ, ℓ, rq P L has pℓ,r “ 1, we have Z ą 0 with probability 1. Otherwise all pσ, ℓ, rq P L

have pℓ,r ă 1 and thus pℓ,r “ 2ℓ`r`3{q. In this case, we write Z as a sum of independent Bernoulli random
variates in the form Z “ ř

pσ,ℓ,rqPLBerppℓ,rq. In particular,

ErZs “
ÿ

pσ,ℓ,rqPL
2ℓ`r`3{q

p1q
ě 4M ij

q
ě Mij

q
.

Since Z is a sum of independent t0, 1u-variables, multiplicative Chernoff applies and yields PrrZ ă ErZs{2s ď
expp´ErZs{8q. We thus obtain

PrrZ ą 0s ě 1 ´ Pr
“
Z ă ErZs{2

‰
ě 1 ´ exp

`
´ ErZs{8

˘
ě 1 ´ exp

´
´ Mij

8q

¯
.

In case Mij ě q, we obtain PrrZ ą 0s ě 1 ´ expp´1{8q ě 0.1, and thus we have rLij ě Mij

16m
with probability

at least 0.1. Otherwise, in case Mij ă q, we can only use the trivial bound rLij ě 0 ą Mij´q

16m
. In any

case, we have rLij ě Mij´q

16m
with probability at least 0.1. Similar to the proof of Lemma 6, we run Oplog nq

independent repetitions of this algorithm and return for each i, j the maximum of all computed values rLij ,
to boost the success probability and finish the proof.

5 Main Algorithm

In this section we prove Theorem 1. First we show that Theorem 9 implies Theorem 1, and then in the
remainder of this section we prove Theorem 9.

Theorem 9 (Main Result, Relaxation). Given strings x, y of length n and a time budget T P rn, n2s, in
expected time rOpT q we can compute a number rL such that rL ď L :“ Lpx, yq and w.h.p. rL ě rΩpLT 0.4{n0.8q.

Recall Theorem 1:

Theorem 1. There is a randomized algorithm that, given strings x, y of length n ě 1 and a time budget
T P rn, n2s, with high probability computes a multiplicative rOpn0.8{T 0.4q-approximation of the length of the
LCS of x and y in time OpT q.

Proof of Theorem 1 assuming Theorem 9. Note that the difference between Theorems 1 and 9 is that the
latter allows expected running time and has an additional slack of logarithmic factors in the running time.

In order to remove the expected running time, we abort the algorithm from Theorem 9 after rOpT q time
steps. By Markov’s inequality, we can choose the hidden constants and logfactors such that the probability
of aborting is at most 1{2. We boost the success probability of this adapted algorithm by running Oplog nq
independent repetitions and returning the maximum over all computed values rL. This yields an rOpn0.8{T 0.4q-
approximation with high probability in time rOpT q.

To remove the logfactors in the running time, as the first step in our algorithm we subsample the given
strings x, y, keeping each symbol independently with probability p “ 1{polylogpnq, resulting in subsampled

strings x̃, ỹ. Since any common subsequence of x̃, ỹ is also a common subsequence of x, y, the estimate rL
that we compute for x̃, ỹ satisfies rL ď Lpx̃, ỹq ď Lpx, yq. Moreover, if Lpx, yq ě polylogpnq then by Chernoff

bound with high probability we have Lpx̃, ỹq “ rΩpLpx, yqq, so that an rOpn0.8{T 0.4q-approximation on x̃, ỹ

also yields an rOpn0.8{T 0.4q-approximation on x, y. Otherwise, if Lpx, yq ď polylogpnq, then in order to
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compute a rOp1q-approximation it suffices to compute an LCS of length 1, which is just a matching pair and
can be found in time Opnq (assuming that the alphabet is rOpnqs).

This yields an algorithm that computes a value rL ď L such that w.h.p. rL ě rΩpLT 0.4{n0.8q. The algorithm
runs in time OpT q, and this running time bound holds deterministically, i.e., with probability 1. Hence, we
proved Theorem 1.

It remains to prove Theorem 9. Our algorithm is a combination of four methods that work well in different
regimes of the problem, see Sections 5.1, 5.3, 5.4, and 5.5. We will combine these methods in Section 5.6.

5.1 Algorithm 1: Small L

Algorithm 1 works well if the LCS is short. It yields the following result.

Theorem 10 (Algorithm 1). We can compute in expected time rOpT q an estimate rL ď L that w.h.p. satisfies
rL ě mintL,

a
LT {nu.

Proof. Our Algorithm 1 works as follows.

1. Run Lemma 7 on x and y.

2. Run Lemma 4 on x and y with β :“ maxt1, M
2T

u.

3. Output the larger of the two common subsequence lengths computed in Steps 1 and 2.

Running Time: Step 1 runs in time rOpnq “ rOpT q. Step 2 runs in expected time rOpn ` M{βq. Since
β ě M

2T
we have M{β ď 2T , so the expected running time is rOpn ` T q “ rOpT q.

Upper Bound: Steps 1 and 2 compute common subsequences, so the computed estimate rL satisfies
rL ď L.

Approximation Guarantee: Note that Step 1 guarantees rL ě M
2n

and Step 2 guarantees w.h.p.
rL ě L{β. If M ď 2T then β “ 1 and rL “ L, so we solved the problem exactly. Otherwise we have M ą 2T

and β “ M
2T

, so Step 2 guarantees w.h.p. rL ě 2LT {M . By multiplying the two guarantees on rL and taking
square roots, we obtain w.h.p.

rL ě
c

M

2n
¨ 2LT

M
“

c
LT

n
.

It follows that w.h.p. rL ě mintL,
a
LT {nu.

5.2 Block Sequences and Parameter Guessing

This section introduces some general notation and structure for the remaining algorithms.

Block Sequences: We split x into substrings x1, . . . , xn{m of length m “ n{
?
T . Similarly, we split y

into y1, . . . , yn{m. A pair pi, jq P rn{ms2, corresponding to the substrings xi, yj, is called a block. For any
block we write Mij “ Mpxi, yjq and Lij “ Lpxi, yjq. Moreover, we write pi, jq ă pi1, j1q if and only if i ă i1

and j ă j1. A block sequence is a set S “ tpi1, j1q, . . . , pik, jkqu with S Ď rn{ms2 satisfying the monotonicity

property pi1, j1q ă . . . ă pik, jkq. In what follows, every algorithm will compute estimates 0 ď rLij ď Lij and

then choose a block sequence S to produce an overall estimate rL “
ř

pi,jqPS
rLij . Note that this guarantees

rL ď L, as the sum
ř

pi,jqPS
rLij corresponds to some (block-aligned) common subsequence of x and y. In

order to get bounds in the other direction, we need to show that there always exists a block sequence of
large LCS sum, i.e., a long “block-aligned common subsequence”. This is shown by the following lemma.
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Lemma 11. There exists a block sequence G of size |G| “ L
?
T

8n
such that for any pi, jq P G we have Lij ě L

4
?
T

and Mij ď 8µn

L
?
T
. In particular, we have

ř
pi,jqPG Lij ě L2

32n
.

Remark 12. This is analogous to [24, Lemma 8.2], but we improve the size of G.

Proof. Let L˚
ij be the contribution of block pi, jq to the LCS. More precisely, fix an LCS z of x and y, and write

z “ xra1s . . . xraLs “ yrb1s . . . yrbLs for pa1, b1q ă . . . ă paL, bLq. Then for any block pi, jq, the number L˚
ij

counts all indices k with ak P ppi´ 1qm, ims and bk P ppj ´ 1qm, jms. Consider the set A :“ tpi, jq | L˚
ij ą 0u

consisting of all contributing blocks. From the monotonicity pa1, b1q ă . . . ă paL, bLq it follows that also the
contributing blocks form a monotone sequence, in the sense that for any pi, jq, pi1, j1q P A we have i ď i1 and
j ď j1, or i1 ď i and j1 ď j. (However, these inequalities are not necessarily strict, so A is not necessarily a
block sequence.) This monotonicity implies that there are |A| ď 2n{m contributing blocks. Also note thatř

pi,jqPA L˚
ij “ L. Now consider the subset B “ tpi, jq | L˚

ij ą Lm
4n

u Ď A. Note that the remaining blocks in
total contribute ÿ

pi,jqPAzB
L˚
ij ď |A| ¨ Lm

4n
ď 2n

m
¨ Lm
4n

“ L

2
,

and thus B contributes
ř

pi,jqPB L˚
ij ě L{2.

We now greedily pick a subset C Ď B as follows. Pick any pi, jq P B, add pi, jq to C, and then remove
each pi1, j1q P B with i1 “ i or j1 “ j from B. Repeat until B is empty.

By construction, C is a block sequence and for any pi, jq P C we have Lij ě Lm
4n

“ L

4
?
T
. We claim that

|C| ě L
4m

“ L
?
T

4n
. To see this, observe that all blocks pi1, j1q P B with i1 “ i in total contribute at most m,

since they describe a subsequence of xi, which has length m. Similarly, all blocks pi1, j1q P B with j1 “ j in
total contribute at most m. Therefore, one step of the greedy procedure removes a contribution of at most

2m. Since the total contribution is
ř

pi,jqPB L˚
ij ě L{2, there are at least L

4m
“ L

?
T

4n
greedy steps. Finally,

we consider the number of matching pairs. Since C is a block sequence, we have
ř

pi,jqPC Mij ď µ. Thus, on

average each pi, jq P C has a number of matching pairs of at most µ{|C| “ 4µn

L
?
T
. By Markov’s inequality, at

least half of the blocks pi, jq P C have Mij ď 8µn

L
?
T
. We denote the set of these blocks by G Ď C. The set G

satisfies all claimed bounds. This finishes the proof.

Parameter Guessing: We analyze our algorithms in terms of n (the length of the strings), T (the
running time budget), L (the length of the LCS), as well as λ and µ, defined as

λ :“
ÿ

i,j

Lij and µ :“ max
block seq. S

ÿ

pi,jqPS
Mij ,

where the maximum goes over all block sequences S. Note that λ is the total LCS length over all blocks and
µ is the maximum total number of matching pairs along any block sequence.

The numbers n and T are part of the input, and we can assume to know M , since it can be computed
in time Opnq. However, in order to set some parameters in our algorithms, it would be convenient to
also know L, λ, µ up to constant factors (which seemingly is a contradiction, as our goal is to compute a
polynomial-factor approximation of L).

We therefore run our algorithmsOplog3 nq times, once for each guess L̂ “ 2i, λ̂ “ 2j, and µ̂ “ 2k. Then for

at least one call we have L{2 ď L̂ ď L, λ{2 ď λ̂ ď λ, and µ{2 ď µ̂ ď µ, that is, we know L, λ, µ up to constant
factors. For this correct guess, we prove that our algorithms have the promised approximation guarantee and
running time bound. For the wrong guesses, the approximation guarantee can fail, but we always ensure the
upper bound rL ď L, by ensuring that the estimate corresponds to some common subsequence of x and y.
Hence, returning the maximum computed value rL over all guesses L̂, λ̂, µ̂ yields the promised approximation
guarantee. For this reason, in the following we assume to know estimates L̂ « L, λ̂ « λ, µ̂ « µ up to constant
factors; we will only use them to set certain parameters.

We remark that for the wrong guesses, not only the approximation guarantee but also the running time
bound can fail, so we need to abort each of the Oplog3 nq calls after time rOpT q.
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Diagonals: A diagonal is a set of the form Dd “ tpi, jq P rn{ms2 | i ´ j “ du. Each diagonal is a
block sequence, so we have

ř
pi,jqPDd

Mij ď µ. Note that there are 2n{m´ 1 ă 2
?
T (non-empty) diagonals.

Moreover, we have
ř

d

ř
pi,jqPDd

Mij “ M . This yields the inequality

M ă 2µ
?
T . (3)

5.3 Algorithm 2: Large L, Large µ

In this section we present Algorithm 2, which works well if µ is large, i.e., if some block sequence has a
large total number of matching pairs. The algorithm makes use of the single symbol approximation that
we designed in Lemma 8. This yields estimates 0 ď rLij ď Lij , over which we then perform dynamic

programming to determine the maximum of
ř

pi,jqPS
rLij over all block sequences S. (This is similar to [24,

Algorithm 3], but we obtain concentration in a wider regime, see Remark 14 for a comparison.)

Theorem 13 (Algorithm 2). We can compute in expected time rOpT q an estimate rL ď L that w.h.p. satisfies

rL “ Ω
´µ

?
T

n

¯
.

Proof. Algorithm 2 works as follows.

1. Run Lemma 8 with q :“ M
4T

to compute values rLij .

2. Perform dynamic programming over rn{ms2 to determine the maximum
ř

pi,jqPS
rLij over all block

sequences S. Output this maximum value rL. More precisely:

• Initialize Dri, 0s “ Dr0, is “ 0 for any 0 ď i ď n{m.

• For i “ 1, . . . , n{m and j “ 1, . . . , n{m: Dri, js “ max
 rLij`Dri´1, j´1s, Dri´1, js, Dri, j´1s

(
.

• Output Drn{m,n{ms.

We analyze this algorithm in the following.

Upper Bound: Since Lemma 8 ensures rLij ď Lij , the dynamic programming step ensures rL ď L.

Approximation Guarantee: Let S be a block sequence achieving
ř

pi,jqPS Mij “ µ. Step 2 computes

an estimate rL ě
ř

pi,jqPS
rLij , and Lemma 8 yields w.h.p.

rL ě
ÿ

pi,jqPS

rLij ě
ÿ

pi,jqPS

Mij ´ q

16m
“ µ

16m
´ |S| q

16m
.

By the monotonicity property of block sequences, we have |S| ď n{m. Using our definitions of q “ M
4T

and

m “ n{
?
T as well as inequality (3), we obtain

|S| q

16m
ď qn

16m2
“ M

64n
ď µ

?
T

32n
.

Plugging this into our bound for rL yields

rL ě µ
?
T

16n
´ µ

?
T

32n
“ µ

?
T

32n
.
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Running Time: For Step 1 note that Lemma 8 runs in expected time rOpn`M{qq “ rOpT q. Step 2 can
be easily seen to run in time Oppn{mq2q “ OpT q by our choice of m “ n{

?
T . This finishes the proof.

Remark 14. Our Algorithm 2 is similar to [24, Algorithm 3], which works as follows. For each block pi, jq,
their algorithm selects a random symbol σ and uses the minimum of the frequencies #σpxiq,#σpyjq as the

estimate rLij. It can be shown that this yields ErrLijs “ Mij{p2mq, which is a similar lower bound as provided

by Lemma 8, but only in expectation. The summation
ř

pi,jqPS
rLij over a block sequence S then allows to

apply concentration inequalities to obtain a w.h.p. error guarantee, assuming µ " m2.
However, in the regime µ ď m2 the value µ could be dominated by a single block with Mij « µ. In this

case, we cannot hope to get concentration by summing over many blocks. Thus, picking a random symbol
per block does not suffice to obtain a w.h.p. error guarantee.

Since our improved approximation ratio makes it necessary to use Algorithm 2 in the regime µ ! m2, their
algorithm is not sufficient in our context. Thus, we replace sampling a single symbol by our new Lemma 8.

5.4 Algorithm 3: Large L, Small µ and Large λ

Our next algorithm works well if µ is small (i.e., every block sequence has a small total number of matching
pairs) and λ is large (i.e., on average every block has a large LCS).

Let us start with the intuition. The idea is to pick some diagonal Dd and run the basic approximation
algorithm (Lemma 4) with approximation ratio β “ maxt1, µ{T u on each block along the diagonal. Since
every diagonal is a block sequence, we have

ř
pi,jqPDd

Mij ď µ, which bounds the running time of this

algorithm by rOpn `
ř

pi,jqPDd
Mij{βq “ rOpT q. Moreover, this algorithm produces an estimate rL ď L that

w.h.p. satisfies
rL ě

ÿ

pi,jqPDd

Lij{β.

Since
ř

d

ř
pi,jqPDd

Lij “ ř
i,j Lij “ λ and there are Opn{mq diagonals, on average a diagonal Dd satisfiesř

pi,jqPDd
Lij “ Ωpλm{nq “ Ωpλ{

?
T q. If we pick an above-average diagonal, then we obtain an estimate

rL ě
ÿ

pi,jqPDd

Lij{β “ Ω
´ λ?

Tβ

¯
“ Ω

´
min

! λ?
T
,
λ

?
T

µ

)¯
.

If λ is large and µ is small, then this is a good estimate.

The main difficulty in translating this idea to an actual algorithm is how to pick the diagonal. A natural
approach is to pick a random diagonal, as then the expected LCS sum of the diagonal is sufficiently large.
However, in situations where the diagonal sums are highly unbalanced, so that λ is dominated by very few
diagonals that have a very large LCS sum, a random diagonal is unlikely to have an above-average LCS sum.
In this situation, a random diagonal works only with negligible probability.

Therefore, we need a sampling process that favors diagonals with large LCS sum. To this end, we first
“guess” a value g such that the sum λ is dominated by summands Lij “ Θpgq. We call blocks pi, jq with
Lij “ Ωpgq good. Next we sample a random good block pi0, j0q; for this we simply keep sampling random i, j

until we find a good block. Finally, we pick the diagonal Dd containing the “seed” block pi0, j0q and run the
above algorithm on this diagonal. This sampling procedure favors diagonals with large LCS sum, because
such diagonals contain more good blocks pi, jq to start from, and thus we are more likely to pick the “seed”
pi0, j0q in a diagonal with large LCS sum. This yields the following result.

Theorem 15 (Algorithm 3). We can compute in expected time rOpT q an estimate rL ď L that w.h.p. satisfies

rL “ rΩ
´
min

! λ?
T
,
λ

?
T

µ

)¯
.
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Proof. Note that the theorem statement is trivial if λ ď
?
T . Indeed, in time Opnq we can compute

M “ Mpx, yq. If M “ 0 then L “ λ “ 0 and we return rL “ 0. If M ě 1, then we return rL “ 1. This

ensures rL ď L, since any matching pair gives a common subsequence of length 1. Moreover, in case λ ď
?
T

the returned value rL “ 1 satisfies the approximation guarantee rL “ Ωpλ{
?
T q. Therefore, we can assume

λ ą
?
T . (4)

Algorithm 3 repeats the following procedure Oplog nq times to boost its success probability.

1. Repeat the following for g being any power of two with maxt1, λ̂{p4T qu ď g ď m:

2. Sampling a good block: Pick a random set of blocks R Ď rn{ms2 of size O
`
pgT {λ̂q log2 n

˘
. For

each block pi, jq P R, test whether Lij ě g using our basic decision algorithm (Lemma 5). If no

test was successful, then set rLpgq “ 0 and continue with the next value of g. Otherwise, pick a
random successfully tested block pi0, j0q and proceed to Step 3.

3. Approximating along a diagonal: Let D be the diagonal containing the block pi0, j0q. For each
pi, jq P D: Run our basic approximation algorithm (Lemma 4) with approximation ratio β “
maxt1, µ̂{T u on xi, yj to obtain an estimate rLij . Finally, rLpgq “ ř

pi,jqPD
rLij is the result of

iteration g.

4. Return rL “ maxg rLpgq.

Upper Bound: Again it is easy to see that rL ď L, since Lemma 4 yields rLij ď Lij .

Approximation Guarantee: Let Bg be the set of all blocks pi, jq with g ď Lij ď 2g.

Claim 16. If λ{2 ď λ̂ ď λ then for some power of two g with maxt1, λ̂{p4T qu ď g ď m we have

g ¨ |Bg| “ Ωpλ{ logmq. (5)

Proof. Write G for the set of all powers of two g with maxt1, λ̂{p4T qu ď g ď m. Note that blocks pi, jq with
Lij ď λ

2T
in total contribute at most λ{2 to λ “ ř

i,i Lij , since the total number of blocks is pn{mq2 “ T .

Hence, the blocks with Lij ą λ
2T

contribute at least λ{2, that is,

λ

2
ď

ÿ

i,j
Lijąλ{p2T q

Lij .

Note that the sets Bg for powers of two g ě maxt1, λ{p4T qu ě maxt1, λ̂{p4T qu cover all blocks with Lij ą λ
2T

.

Moreover, the sets Bg are empty for g ą m. Therefore, the blocks with Lij ą λ
2T

are covered by the sets Bg

with g P G, that is,
λ

2
ď

ÿ

i,j
Lijąλ{p2T q

Lij ď
ÿ

gPG

ÿ

pi,jqPBg

Lij ď
ÿ

gPG
2g|Bg|.

If for all g appearing in the sum on the right hand side we would have g ¨ |Bg| ă λ{p4 logm ` 4q then the
right hand side would be less than λ{2, so we would obtain a contradiction. This proves the claim.

In the following we focus on an iteration of Step 1 in which we pick a value of g as promised by Claim 16.
We call a block pi, jq good if Lij ě g, and bad otherwise. Note that any pi, jq P Bg is good, but not every

good block is in Bg. In Step 2, we claim that the set R w.h.p. contains at least one good block, assuming
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that our guess λ̂ is correct up to constant factors. Indeed, since the set Bg is a subset of the good blocks,
the probability that ΘppgT {λq log2 nq sampled blocks do not contain any good block is at most

ˆ
1 ´ |Bg|

pn{mq2
˙ΘppgT {λq log2 nq p5q

ď
ˆ
1 ´ λ

gT logm

˙ΘppgT {λq log2 nq
ď expp´Θplognqq,

which is negligible. For any bad block pi, jq P R the test Lij ě g is unsuccessful, as Lemma 5 has no false
positives. For any good block pi, jq P R w.h.p. the test is successful, and w.h.p. there is at least one good
block in R. It follows that w.h.p. Step 2 finds a good block pi0, j0q and proceeds to Step 3. Observe that
pi0, j0q is chosen uniformly at random from all good blocks.

We call a diagonal good if it contains at least
|Bg|m
4n

good blocks, and bad otherwise. Since there are
ă 2n{m non-empty diagonals, the number of good blocks contained in bad diagonals is at most |Bg|{2,
which is at most half of all good blocks. Therefore, at least half of all good blocks are contained in good
diagonals. It follows that the uniformly random good block pi0, j0q lies in a good diagonal with probability
at least 1{2.

Hence, with probability at least 1{2´op1q the diagonal D considered in Step 3 is good, that is, it contains

at least
|Bg|m
4n

blocks pi, jq with Lij ě g. Since the approximations rLij computed in Step 3 w.h.p. satisfy
rLij ě Lij{β, we obtain

rL ě rLpgq ě |Bg|m
4n

¨ g
β
.

Inequality (5) and the definitions m “ n{
?
T and β “ maxt1, µ̂{T u now yield

rL “ rΩ
´
min

! λ?
T
,
λ

?
T

µ̂

)¯
.

If our guess µ̂ « µ is correct up to a constant factor, then this yields the claimed approximation guaran-
tee. Returning the maximum over Oplog nq independent repetitions of this algorithm improves the success
probability from 1{2 ´ op1q to w.h.p.

Running Time: By Lemma 5, the test Lij ě g runs in expected time rOppm ` MijqLij{g ` m{gq “
rOpm2Lij{g ` m{gq. Note that in expectation for random i, j we have ErLijs “ λ{pn{mq2 “ λ{T . Therefore,
the expected running time of one test is bounded by rO

`
m2λ
gT

` m{g
˘
. As Step 2 performs O

`
pgT {λ̂q log2 n

˘

such tests, its expected running time is rOpm2 ` mT {λq, assuming that our guess λ̂ « λ is correct up to a
constant factor. We now use m2 “ n2{T ď T from n ď T and λ ě

?
T ě n{

?
T “ m from (4) and n ď T ,

to bound the expected running time of Step 2 by rOpT q.
For Step 3, the expected running time is rOpn `

ř
pi,jqPD Mij{βq. Since D is a block sequence, we haveř

pi,jqPD Mij ď µ. Using β ě µ̂{T “ Ωpµ{T q (if our guess µ̂ « µ is correct up to a constant factor) we can

bound the expected time by rOpn ` T q “ rOpT q.
Over the Oplog nq iterations of Step 1 and the Oplog nq repetitions for boosting the success probability,

the expected running time is still rOpT q.

5.5 Algorithm 4: Large L, Small µ, and Small λ

Our next algorithm works well if µ is small (i.e., every block sequence has a small total number of matching
pairs), λ is small (i.e., on average every block has a small LCS), and L is large (i.e., there is a long LCS). The
goal of this algorithm is to detect a sufficiently large random subset of the block sequence G from Lemma 11.
To this end, we first sample a random set of blocks R containing each block pi, jq P rn{ms2 with probability

p. Then we use our basic decision algorithm to detect the blocks pi, jq P R with Lij ě L̂

4
?
T
, and for these
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blocks we set rLij “ L̂

4
?
T
, while for the remaining blocks we set rLij “ 0. Finally, we perform dynamic

programming to determine the maximum
ř

pi,jqPS
rLij over all block sequences S.

Observe that for each block in G X R this algorithm sets rLij “ L̂

4
?
T
, so it detects a random subset of G.

We thus obtain a p-fraction of the LCS guaranteed by the block sequence G.
Note that in this algorithm we may focus on blocks with Mij “ Op µn

L
?
T

q, since this holds for all blocks

in G. Moreover, since λ is small, most blocks outside of G have small LCS Lij . These bounds on Lij and Mij

for the considered blocks allow us to bound the running time of the basic decision algorithm. We elaborate
this algorithm in the following theorem.

Theorem 17 (Algorithm 4). We can compute in expected time rOpT q an estimate rL ď L that w.h.p. satisfies

rL “ Ω
´
min

!L3

n2
,
L3T

λn2
,
L4T

λµn2

)¯
, assuming that

L2T 0.5

n2
,
L2T 1.5

λn2
,
L3T 1.5

λµn2
“ nΩp1q.

Proof. Algorithm 4 works as follows.

1. Run Lemma 6 with q :“ M
T

to compute values ĂMij . Initialize rLij “ 0 for all i, j.

2. Run the preprocessing of the basic decision algorithm (Lemma 5) on each string yj .

3. Sample a set R Ď rn{ms2 by including each block pi, jq independently with probability

p :“ min
! L̂
n
,
L̂T

λ̂n
,
L̂2T

λ̂µ̂n

)
.

4. For each pi, jq P R with ĂMij ď 64µ̂n{pL̂
?
T q: Run the query of the basic decision algorithm (Lemma 5)

to test whether Lij ě L̂

4
?
T
. If this test is successful then set rLij :“ L̂

4
?
T
.

5. Perform dynamic programming over rn{ms2 to determine the maximum
ř

pi,jqPS
rLij over all block

sequences S. Output this maximum value rL.

Upper Bound: Since Lemma 5 has no false positives, we ensure rLij ď Lij and thus rL ď L.

Approximation Guarantee: The values ĂMij computed in Step 1 w.h.p. satisfy Mij{8 ´ q ď ĂMij ď
4Mij . For all blocks pi, jq P G we have Mij ď 8µn

L
?
T

(by Lemma 11) and thus w.h.p. ĂMij ď 32µn

L
?
T
. We may

assume that our guesses L̂, µ̂ satisfy L{2 ď L̂ ď L and µ{2 ď µ̂ ď µ; then we obtain ĂMij ď 64µ̂n

L̂
?
T
.

Therefore, each block in G X R satisfies the property checked in Step 4, that is, for each such block we

run the basic decision algorithm. Since for each pi, jq P G we have Lij ě L

4
?
T

ě L̂

4
?
T
, in Step 4 for each

block in G X R w.h.p. we obtain an estimate rLij “ L̂

4
?
T
. Since G is a block sequence, also G X R is a block

sequence, and thus the dynamic programming in Step 5 returns an estimate of

rL ě
ÿ

pi,jqPGXR

rLij “ |G X R| ¨ L̂

4
?
T
.

Note that the size |G X R| is distributed as a binomial random variable Binp|G|, pq, with expectation p|G|.
Assuming that our guesses L̂, λ̂, µ̂ are correct up to constant factors, we have

p|G| “ Ω
´
min

!L
n
,
LT

λn
,
L2T

λµn

)
¨ L

?
T

n

¯
“ Ω

´
min

´L2T 0.5

n2
,
L2T 1.5

λn2
,
L3T 1.5

λµn2

¯¯
“ nΩp1q,
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by the assumption in the theorem statement. By Chernoff bound, we have

Prr|G X R| ă p|G|{2s ď expp´p|G|{8q “ expp´nΩp1qq,

and thus w.h.p. we have |G X R| ě p|G|{2. Plugging this into our lower bound for rL yields w.h.p.

rL ě p|G|L̂
8

?
T

“ Ω
´
min

!L3

n2
,
L3T

λn2
,
L4T

λµn2

)¯
,

assuming that our guesses L̂, λ̂, µ̂ are correct up to constant factors. This shows the claimed lower bound.

Running Time: The expected running time of Step 1 is rOpn`M{qq “ rOpT q since q “ M
T
. Step 2 runs

in time rOp
ř

j |yj |q “ rOpnq. Steps 3 and 5 take time Oppn{mq2q “ OpT q. In the remainder we show that Step

4 also runs in expected time rOpT q, assuming that our guesses L̂, λ̂, µ̂ are correct up to constant factors. Recall

that w.h.p. Mij{8 ´ q ď ĂMij ď 4Mij ; we condition on this event in the following.6 Then ĂMij “ Op µn

L
?
T

q
implies Mij “ Opq ` µn

L
?
T

q. Using inequality (3) we have q “ M
T

ď 2µ?
T

ď 2µn

L
?
T
, so Mij “ Op µn

L
?
T

q. Since

only blocks pi, jq with ĂMij “ Op µn

L
?
T

q are tested, each invocation of the basic approximation algorithm in

Step 4 runs in expected time rOpp|xi| ` MijqLij

?
T {L ` |xi|

?
T {Lq “ rOppm ` µn

L
?
T

qLij

?
T {L ` m

?
T {Lq.

Since each block is tested with probability at most p, Step 4 has an expected running time of

O
´ÿ

i,j

p ¨
´´

m ` µn

L
?
T

¯
Lij

?
T

L
` m

?
T

L

¯¯
“ O

´´ n?
T

` µn

L
?
T

¯pλ
?
T

L
` pnT

L

¯

“ rO
´pλn

L
` pλµn

L2
` pnT

L

¯
.

Note that our choice of p “ ΘpmintL
n
, LT
λn

, L2T
λµn

uq ensures that this running time is rOpT q.

5.6 Combining the Algorithms

Now we combine Algorithms 1-4. We show that w.h.p. at least one of these algorithms computes an estimate
rL “ rΩpLT 0.4{n0.8q. In other words, the combined algorithm has approximation ratio rOpn0.8{T 0.4q with a

running time budget of rOpT q and thus prove Theorem 9.

Theorem 9 (Main Result, Relaxation). Given strings x, y of length n and a time budget T P rn, n2s, in
expected time rOpT q we can compute a number rL such that rL ď L :“ Lpx, yq and w.h.p. rL ě rΩpLT 0.4{n0.8q.

Algorithm 1: Recall from Theorem 10 that Algorithm 1 w.h.p. returns rL ě mintL,
a
LT {nu. If

rL ě L then we solved the problem exactly, so we only need to consider the case rL ě
a
LT {n “ L

a
T {pLnq.

Assuming that L ď n0.6T 0.2, we obtain the claimed approximation guarantee rL ě LT 0.4{n0.8. Hence, from
now on we can assume

L ą n0.6T 0.2. (6)

Algorithm 2: Recall from Theorem 13 that Algorithm 2 w.h.p. returns rL “ Ωpµ
?
T {nq. Assuming

that µ ě Ln0.2{T 0.1, we obtain the claimed approximation guarantee rL “ ΩpLT 0.4{n0.8q. Hence, from now
on we can assume

µ ă Ln0.2

T 0.1
. (7)

6In the error event we bound the running time of Step 4 by Opn2q. This has a negligible contribution to the expected
running time of Step 4.
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Algorithm 3: Recall from Theorem 15 that Algorithm 3 w.h.p. returns rL “ rΩ
`
min

 
λ?
T
, λ

?
T

µ

(˘
.

Assuming that λ ě L2T 0.7{n1.4, we have

rL “ rΩ
´
min

!L2T 0.2

n1.4
,
L2T 1.2

µn1.4

)¯
.

Bounding one factor L by (6) and µ by (7) yields

rL “ rΩ
´
min

!LT 0.4

n0.8
,
LT 1.3

n1.6

)¯
.

It remains to see that T 1.3{n1.6 ě T 0.4{n0.8, which is equivalent to T 0.9 ě n0.8 and thus follows from T ě n.

Hence, Algorithm 3 satisfies the claimed approximation guarantee rL “ rΩpLT 0.4{n0.8q, under our assumption
on λ. We can thus from now on assume

λ ă L2T 0.7

n1.4
. (8)

Algorithm 4: We first verify that (6), (7), and (8) imply the assumptions of Theorem 17:

L2T 0.5

n2
,
L2T 1.5

λn2
,
L3T 1.5

λµn2
“ nΩp1q.

Indeed, we have
L2T 0.5

n2

p6q
ą T 0.9

n0.8
ě n0.1 “ nΩp1q,

where we used T ě n. Similarly, we have

L2T 1.5

λn2

p8q
ą T 0.8

n0.6
ě n0.2 “ nΩp1q,

and
L3T 1.5

λµn2

p8q
ą LT 0.8

µn0.6

p7q
ą T 0.9

n0.8
ě n0.1 “ nΩp1q.

As these assumptions hold, Theorem 17 shows that Algorithm 4 w.h.p. returns rL “ ΩpmintL3

n2 ,
L3T
λn2 ,

L4T
λµn2 uq.

We verify that assuming (6), (7), and (8) this yields the claimed approximation guarantee. Indeed, we have

L3

n2

p6q
ą LT 0.4

n0.8
.

Similarly, we have
L3T

λn2

p8q
ą LT 0.3

n0.6
ě LT 0.4

n0.8
,

since T ď n2. Finally, we have
L4T

λµn2

p7q
ą L3T 1.1

λn2.2

p8q
ą LT 0.4

n0.8
.

In all cases we obtain a lower bound of rL “ rΩpLT 0.4{n0.8q.
In summary, we proved that w.h.p. at least one of the Algorithms 1-4 satisfies the desired approximation

guarantee of rL “ rΩpLT 0.4{n0.8q. This concludes the proof of Theorem 9.

Acknowledgements. We thank an anonymous reviewer for suggesting how to turn the near-linear-time
algorithm that we obtained in a previous version of this paper into a linear-time algorithm.
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A Hunt and Szymanski’s LCS Algorithm

In this section we provide a proof sketch of Theorem 2.

Theorem 2 (Hunt and Szymanski [27]). We can preprocess a string y in time rOp|y|q. Given a string x and

a preprocessed string y, we can compute their LCS in time rOp|x| ` Mq.

Proof. Since this algorithm is typically stated as running in time rOpn ` Mq, here for convenience we sketch
the algorithm and show how to split it into preprocessing and query phase.

In the preprocessing phase, given string y we compute the set Σpyq of symbols occuring in y, and for
each σ P Σpyq we compute a sorted array Aσ containing the positions at which σ appears in y.

In the query phase, we are given a string x and a preprocessed string y. The algorithm builds a dynamic
programming table T of length |x| `1, maintaining the following invariant: After the i-th round, T rks stores
the minimum j such that Lpxr1..is, yr1..jsq “ k (or 8 if not such j exists).

Initially, corresponding to round i “ 0, the table T is computed by setting T r0s “ 0 and T rks “ 8 for
any k P r|x|s. Then in round i the goal is to match xris. Therefore, we iterate over all j P Axris in decreasing
order; note that this enumerates all positions j in y that match xris. For each such j, we binary search for
a value of k with T rk ´ 1s ă j ď T rks, and we set T rks “ j. This can be seen to maintain the invariant. In
the end, the largest k with T rks ‰ 8 is equal to Lpx, yq. In pseudocode, this algorithm does the following.

1. Preprocessing: Compute for each symbol σ P Σpyq an array Aσ listing the positions at which σ appears
in y, in sorted order.

2. Initialization of T : T r0s Ð 0, T rks Ð 8 for any k P r|x|s.

3. For each i in r|x|s: For each j in Axris in decreasing order:

4. Find k such that T rk ´ 1s ă j ď T rks, and set T rks “ j.

5. Return the largest k such that T rks ‰ 8.

It is easy to see that the preprocessing can be implemented in time Op|y| lognq and the rest of the algorithm
runs in time Opp|x| ` Mq lognq.
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B Pseudocodes

In this section we provide pseudocode for our algorithms.

B.1 New Basic Tools

We start by providing the pseudocodes for the basic tools that are required to design our main algorithm
for approximating the LCS of the input strings.

B.1.1 Basic Approximation Algorithm

Algorithm 5 [Lemma 3] Basic Approximation Algorithm: Query px, y, βq
Require: String x and preprocessed string y of length n; parameter β ě 1
Ensure: Computes subsequence rL of x, y satisfying rL ą L

β
´ 1 w.h.p.

1: x1 Ð an empty string
2: if β ě 1

8c logn
then

3: rL Ð compute LCSpx, yq using the query phase of Theorem 2
4: else
5: p Ð 8c logn

β

6: q Ð Geoppq
7: while q ď n do
8: append xrqs to x1

9: q Ð q ` Geoppq
10: rL Ð compute LCSpx1, yq using the query phase of Theorem 2

11: return rL

The function Geoppq samples a geometric random variable from t1, 2, 3, ...u in constant time, see e.g. [18].

Algorithm 6 [Lemma 4] Generalised Basic Approximation Algorithm: Query px, y, βq
Require: String x and preprocessed string y of length n; parameter β ě 1
Ensure: Computes subsequence rL of x, y satisfying rL ě L

β
w.h.p.

1: rL Ð Querypx, y, βq of Algorithm 5
2: M Ð result of Algorithm 8 on px, yq
3: if M ą 0 then
4: rL Ð maxtrL, 1u
5: return rL

Algorithm 7 [Lemma 5] Basic Decision Algorithm: Query px, y, ℓq
Require: String x and preprocessed string y of length n; parameter 1 ď ℓ ď n

Ensure: Decides whether L ě ℓ w.h.p.
1: for β “ n, n{2, . . . , 1 do

2: rL Ð Querypx, y, βq of Algorithm 5

3: if rL ď ℓ{β ´ 1 then
4: return 0
5: if rL ě ℓ then
6: return 1
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B.1.2 Approximating the Number of Matching Pairs

Algorithm 8 Counting Matching Pairs px, yq
Require: Strings x, y of length n

Ensure: Computes the number of matching pairs M “ Mpx, yq
1: M Ð 0
2: Σ Ð Compute the set of symbols appearing in x, y

3: Compute the frequencies #σpxq for all σ P Σ by one linear scan over x
4: Compute the frequencies #σpyq for all σ P Σ by one linear scan over y
5: for σ P Σ do
6: M Ð M ` #σpxq ¨ #σpyq
7: return M

Algorithm 9 Graph Construction px1, . . . , xn{m, y1, . . . , yn{mq
Require: Strings x1, . . . , xn{m, y1, . . . , yn{m of length m

Ensure: Constructs a three-layered graph G

1: Σ Ð Compute the set of symbols appearing in x1, . . . , xn{m, y1, . . . , yn{m
2: for i P rn{ms do
3: Compute the frequencies #σpxiq for all σ P Σ by one linear scan over xi

4: Compute the frequencies #σpyiq for all σ P Σ by one linear scan over yi
5: L Ð t1, . . . , n{mu
6: R Ð t1, . . . , n{mu
7: U Ð tpσ, ℓ, rq | σ P Σ, 0 ď ℓ, r ď logmu
8: V Ð L Y U Y R

9: E1 Ð tpi, pσ, ℓ, rqq P L ˆ U | #σpxiq P r2ℓ, 2ℓ`1qu
10: E2 Ð tpj, pσ, ℓ, rqq P R ˆ U | #σpyjq P r2r, 2r`1qu
11: E Ð E1 Y E2

12: return G “ pV,Eq
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Algorithm 10 [Lemma 6] Approximating Matching Pairs px1, . . . , xn{m, y1, . . . , yn{m, qq
Require: Strings x1, . . . , xn{m, y1, . . . , yn{m of length m over alphabet Σ; a parameter q ą 0

Ensure: For each i, j P rn{ms computes ĂMij satisfying Mij{8 ´ q ď ĂMij ď 4Mij w.h.p.

1: rU Ð H
2: for i P rn{ms do
3: for j P rn{ms do
4: rUij Ð H
5: M̄ij Ð 0
6: G Ð GraphConstructionpx1, . . . , xn{m, y1, . . . , yn{mq
7: we have G “ pV,Eq with V “ L Y U Y R

8: for pσ, ℓ, rq P U do
9: pℓ,r Ð mint1, 2ℓ`r`3{qu

10: qℓ,r Ð 1 with probability pℓ,r and 0 otherwise
11: if qℓ,r “ 1 then

12: rU Ð rU Y tpσ, ℓ, rqu
13: for pσ, ℓ, rq P rU do
14: Lpσ,ℓ,rq “ ti P L | pi, pσ, ℓ, rqq P Eu
15: Rpσ,ℓ,rq “ tj P R | pj, pσ, ℓ, rqq P Eu
16: for pσ, ℓ, rq P rU do
17: for i P Lpσ,ℓ,rq do
18: for j P Rpσ,ℓ,rq do

19: rUij Ð rUij Y tpσ, ℓ, rqu
20: for i P rn{ms do
21: for j P rn{ms do
22: for pσ, ℓ, rq P rUij do
23: M ij Ð M ij ` 2ℓ`r{pℓ,r
24: ĂMij Ð repeat steps 1 ´ 23 for c logn times and find the median of all M ij for each i, j

25: return ĂMij for each i, j

B.1.3 Single Symbol Approximation Algorithm

Algorithm 11 [Lemma 7] Single Symbol Approximation px, yq
Require: Strings x, y of length n

Ensure: Computes a common subsequence rL of x, y satisfying M
2n

ď rL ď L

1: Σ Ð Compute the set of symbols appearing in x, y

2: Compute the frequencies #σpxq for all σ P Σ by one linear scan over x
3: Compute the frequencies #σpyq for all σ P Σ by one linear scan over y

4: rL Ð maxσPΣ mint#σpxq,#σpyqu
5: return rL
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Algorithm 12 [Lemma 8] Single Symbol Approximation Var px1, . . . , xn{m, y1, . . . , yn{m, qq
Require: Strings x1, . . . , xn{m, y1, . . . , yn{m of length m and a parameter q ą 0

Ensure: For each i, j P rn{ms computes rLij satisfying
Mij´q

16m
ď rLij ď Lij w.h.p.

1: Repeat steps 1 ´ 19 of Algorithm 10
2: for i P rn{ms do
3: for j P rn{ms do
4: L̄ij Ð maxpσ,ℓ,rqP rUij

2mintℓ,ru

5: rLij Ð repeat steps 1 ´ 4 for c logn times and find the median of all L̄ij for each i, j

6: return rLij for each i, j

B.2 Main Algorithm

In this section we describe the pseudocode for the main algorithm and it’s four subparts.

Algorithm 13 [Theorem 9] ApproxLCS px, y, T q
Require: Strings x, y of length n; parameter T P rn, n2s
Ensure: Computes a common subsequence rL of x, y satisfying rL “ rΩpLT 0.4{n0.8q w.h.p.

1: rL1 Ð result of Algorithm 1 on px, y, T q
2: rL2 Ð result of Algorithm 2 on px, y, T q
3: rL3 Ð result of Algorithm 14 on px, y, T q
4: rL Ð maxtrL1, rL2, rL3u
5: return rL

B.2.1 Algorithm 1: Small L

Algorithm 1 [Theorem 10] Small L px, y, T q
Require: Strings x, y of length n; parameter T P rn, n2s
Ensure: Computes a common subsequence rL of x, y satisfying rL ě mintL,

a
LT {nu w.h.p.

1: M Ð result of Algorithm 8 on px, yq
2: rL1 Ð result of Algorithm 11 on px, yq
3: rL2 Ð Querypx, y,maxt1, M

2T
uq of Algorithm 6

4: rL Ð maxtrL1, rL2u
5: return rL
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B.2.2 Parameter Guessing

Algorithm 14 Parameter Guessing px, y, T q
Require: Strings x, y of length n; parameter T P rn, n2s
Ensure: Computes a common subsequence rL of x, y.
1: rL Ð 0
2: for 0 ď i ď logn do
3: for 0 ď j ď 2 logn do
4: for 0 ď k ď 2 logn do
5: L̂ Ð 2i

6: λ̂ Ð 2j

7: µ̂ Ð 2k

8: L1 Ð result of Algorithm 3 on px, y, T, L̂, λ̂, µ̂q, abort after running for time rOpT q
9: L2 Ð result of Algorithm 4 on px, y, T, L̂, λ̂, µ̂q, abort after running for time rOpT q

10: rL Ð maxtrL,L1, L2u
11: return rL

B.2.3 Algorithm 2: Large L, Large µ

Algorithm 2 [Theorem 13] Large L, Large µ px, y, T q
Require: Strings x, y of length n; parameter T P rn, n2s
Ensure: Computes a common subsequence rL of x, y satisfying rL ě µ

?
T

32n
w.h.p.

1: X Ð tx1, . . . , xn{mu where xi “ xrpi ´ 1qm ` 1, imsu
2: Y Ð ty1, . . . , yn{mu where yi “ yrpi ´ 1qm ` 1, imsu
3: M Ð result of Algorithm 8 on px, yq
4: q Ð M

4T

5: trLijui,jPrn{ms Ð result of Algorithm 12 on pX ,Y, qq
6: for 0 ď i ď n{m do
7: Dri, 0s “ 0
8: Dr0, is “ 0
9: for i P rn{ms do

10: for j P rn{ms do
11: Drisrjs Ð maxtrLij ` Dri ´ 1, j ´ 1s, Dri ´ 1, js, Dri, j ´ 1su
12: return Drn{m,n{ms
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B.2.4 Algorithm 3: Large L, Small µ, Large λ

Algorithm 3 [Theorem 15] Large L, Small µ, Large λ px, y, T, L̂, λ̂, µ̂q
Require: Strings x, y of length n; parameter T P rn, n2s and parameters L̂, λ̂, µ̂

Ensure: Computes a common subsequence rL of x, y with the guarantees of Theorem 15.
1: X Ð tx1, . . . , xn{mu where xi “ xrpi ´ 1qm ` 1, imsu
2: Y Ð ty1, . . . , yn{mu where yi “ yrpi ´ 1qm ` 1, imsu
3: L̄ Ð 0
4: α Ð maxt1, λ̂{p4T qu
5: for logα ď i ď logm do
6: g Ð 2i

7: S Ð H
8: p Ð cgTm2 log2 n

λ̂n2

9: for i P rn{ms do
10: for j P rn{ms do
11: q Ð 1 with probability p and 0 otherwise
12: if q “ 1 then
13: f Ð Querypxi, yj, gq of Algorithm 7
14: if f “ 1 then
15: S Ð S Y tpi, jqu
16: if S ‰ H then
17: pi0, j0q Ð select a block uniformly at random from S

18: d Ð i0 ´ j0
19: D Ð tpi, jq P rn{ms2 | i ´ j “ du
20: β Ð maxt1, µ̂{T u
21: for pi, jq P D do

22: rLij Ð result of Algorithm 6 on pxi, yj, βq
23: rLpgq Ð

ř
pi,jqPD

rLij

24: L̄ Ð maxtrL, rLpgqu
25: rL Ð repeat steps 5 ´ 24 for b logn times and compute the maximum of all L̄
26: return rL
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B.2.5 Algorithm 4: LargeL, Small µ, Small λ

Algorithm 4 [Theorem 17] Large L, Small µ, Small λ px, y, T, L̂, λ̂, µ̂q
Require: Strings x, y of length n; parameter T P rn, n2s and parameters L̂, λ̂, µ̂

Ensure: Computes a common subsequence rL of x, y with the guarantees of Theorem 17.
1: X Ð tx1, . . . , xn{mu where xi “ xrpi ´ 1qm ` 1, imsu
2: Y Ð ty1, . . . , yn{mu where yi “ yrpi ´ 1qm ` 1, imsu
3: M Ð result of Algorithm 8 on px, yq
4: q Ð M

T

5: tĂMijui,jPrn{ms Ð result of Algorithm 10 on pX ,Y, qq
6: for i P rn{ms do
7: for j P rn{ms do
8: rLij Ð 0
9: for j P rn{ms do

10: Run the preprocessing of basic decision algorithm (Lemma 5) on yj

11: p Ð min
!

L̂
n
, L̂T

λ̂n
, L̂2T

λ̂µ̂n

)

12: for i P rn{ms do
13: for j P rn{ms do
14: q Ð 1 with probability p and 0 otherwise
15: if q “ 1 then
16: if ĂMij ď 64µ̂n{pL̂

?
T q then

17: f Ð Querypxi, yj ,
L̂

4
?
T

q of Algorithm 7

18: if f “ 1 then

19: rLij Ð L̂

4
?
T

20: for 0 ď i ď n{m do
21: Dri, 0s “ 0
22: Dr0, is “ 0
23: for i P rn{ms do
24: for j P rn{ms do
25: Drisrjs Ð maxtrLij ` Dri ´ 1, j ´ 1s, Dri ´ 1, js, Dri, j ´ 1su
26: return Drn{m,n{ms
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