
Sparse Nonnegative Convolution Is Equivalent to
Dense Nonnegative Convolution∗

Karl Bringmann, Nick Fischer, and Vasileios Nakos

Saarland University and Max Planck Institute for Informatics, Saarland Informatics Campus

Abstract. Computing the convolution A ? B of two length-n vectors A,B is an ubiquitous
computational primitive, with applications in a variety of disciplines. Within theoretical com-
puter science, applications range from string problems to Knapsack-type problems, and from
3SUM to All-Pairs Shortest Paths. These applications often come in the form of nonnegative
convolution, where the entries of A,B are nonnegative integers. The classical algorithm to
compute A ? B uses the Fast Fourier Transform (FFT) and runs in time O(n log n).

However, in many cases A and B might satisfy sparsity conditions, and hence one could
hope for significant gains compared to the standard FFT algorithm. The ideal goal would be
an O(k log k)-time algorithm, where k is the number of non-zero elements in the output, i.e.,
the size of the support of A?B. This problem is referred to as sparse nonnegative convolution,
and has received a considerable amount of attention in the literature; the fastest algorithms to
date run in time O(k log2 n).

The main result of this paper is the first O(k log k)-time algorithm for sparse nonnega-
tive convolution. Our algorithm is randomized and assumes that the length n and the largest
entry of A and B are subexponential in k. Surprisingly, we can phrase our algorithm as a
reduction from the sparse case to the dense case of nonnegative convolution, showing that,
under some mild assumptions, sparse nonnegative convolution is equivalent to dense nonneg-
ative convolution for constant-error randomized algorithms. Specifically, if D(n) is the time
to convolve two nonnegative length-n vectors with success probability 2/3, and S(k) is the
time to convolve two nonnegative vectors with output size k with success probability 2/3, then
S(k) = O(D(k) + k(log log k)2).

Our approach uses a variety of new techniques in combination with some old machinery
from linear sketching and structured linear algebra, as well as new insights on linear hashing,
the most classical hash function.

1 Introduction

Computing convolutions is an ubiquitous task across all science and engineering. Some of its
special cases are as fundamental as the general case; we first introduce the most important problem
variants.

� Boolean Convolution is the problem of computing for given vectors A,B ∈ {0, 1}n the vector
C = A ©? B ∈ {0, 1}2n−1 defined by Ck =

∨
iAi ∧ Bk−i. This formalizes a situation in which

we split a computational problem into two subproblems, so that in total there is a solution of
size k if and only if for some i there is a solution of the left subproblem of size i and there is
a solution of the right subproblem of size k − i. Therefore, it is a natural task that frequently
arises in algorithm design. Boolean convolution is also equivalent to sumset computation, where
for given sets A,B ⊆ {0, 1, . . . , n− 1} the task is to compute their sumset A+B consisting of
all sums a + b with a ∈ A, b ∈ B. It therefore frequently comes up in algorithms for Subset
Sum, 3SUM, and similar problems, see, e.g., [15, 11, 8, 32, 40, 46].

∗This work is part of the project TIPEA that has received funding from the European Research Council (ERC)
under the European Unions Horizon 2020 research and innovation programme (grant agreement No. 850979).

1

ar
X

iv
:2

10
5.

05
98

4v
2

 [
cs

.D
S]

 1
4

M
ay

 2
02

1

� Nonnegative Convolution is the problem of computing for given vectors A,B ∈ Zn with non-
negative entries the vector C = A?B ∈ Z2n−1 defined by Ck =

∑
iAi ·Bk−i. For instance, if Ai

and Bi count the number of size-i solutions of the left and right subproblem, then Ck counts
the number of size-k solutions of the whole problem. It also comes up in string algorithms when
computing the Hamming distance of a pattern and each sliding window of a text; this connec-
tion was found by Fischer and Paterson [18] and has been exploited in many string algorithms,
see, e.g., [2, 6, 38, 41]. As an operation, nonnegative convolution is frequent also in computer
vision, image processing and computer graphics; a prototypical such an example is the process
of blurring an image by a Gaussian kernel in order to remove noise and detail [1]. Note that
nonnegative convolution generalizes Boolean convolution, as A ©? B is simply the support of
the nonnegative convolution A ? B. In this paper our focus is on the nonnegative convolution
problem.

� General Convolution, or simply “convolution”, denotes the general case obtained by dropping
the nonnegativity assumption from the previous problem variant. This problem is central in
signal processing and is also equivalent to polynomial multiplication, one of the most funda-
mental problems of computer algebra, and thus has a wealth of applications. We remark that
general convolution can be reduced to nonnegative convolution (and thus they are equivalent),
by replacing A′i := Ai +M and B′j := Bj +M , which are nonnegative for sufficiently large M ,
and noting that (A ? B)k = (A′ ? B′)k mod M . However, this reduction destroys the sparsity
of the input and output, and thus is not applicable in the context of this paper.

Algorithms in the Dense Case. The standard algorithm for these problems uses Fast Fourier
Transform (FFT) and runs in time O(n log n) on the RAM model. This running time is conjec-
tured to be optimal (at least for general convolution), but proving this is a big open problem.
There is some evidence in favor of this conjecture, for instance nonnegative convolution can be
used to multiply integers and the latter is connected to the network coding conjecture [3]. For
Boolean convolution, the evidence is less clear, since there exists a Boolean convolution algorithm
by Indyk [28] running in time O(n) with the guarantee that any fixed output entry is correct with
constant probability (see Theorem 6.2). However, in this paper we focus on algorithms where the
whole output vector is correct with constant probability, and boosting Indyk’s algorithm to such a
guarantee would again result in running time O(n log n). Therefore, for all three problem variants
it is plausible that time O(n log n) is optimal, even for constant-error randomized algorithms.

Algorithms in the Sparse Case. A long line of work has considered convolution in a sparse setting,
see, e.g., [47, 16, 55, 43, 61, 7, 15, 57, 48, 23]. Here the running time is expressed not only in terms
on n, but also in terms of the output size k, defined as the number of nonzero entries of A ? B.
All variants of convolution listed above admit randomized algorithms running in near-linear time
k polylog n. This was first achieved by Cole and Hariharan [16] for nonnegative convolution with a
Las Vegas algorithm running in time O(k log2 n+ polylog(n)), in [48] for general convolution with
running time1 Õ(k log2 n+ polylog(n)). The latter was improved by Giorgi, Grenet and Perret du
Cray [23] to a bit complexity of Õ(k log n); it seems that on the RAM model their algorithm would
run in time O(k log5 k polyloglog n).2 Implementations of sparse convolution algorithms exist in

1Here we use the notation Õ(T) =
⋃
c>0O(T logc T).

2To determine their running time on the RAM model, from the last paragraph of the proof of their Lemma 4.7
one can infer that the bottleneck of their running time stems from Θ(log2 k) many dense convolutions on vectors
of length Θ(k log(k logn) log(k log logn)) = Θ(k log2 k polyloglogn). Since one dense convolution of length d can be
performed in time O(d log d) on the RAM model, they require time O(k log5 k polyloglog n).

2

Maple [44, 45] and Magma [60].
This research is closely related to the extensively studied sparse Fourier transform problem,

e.g. [19, 21, 25, 29, 30]. Indeed, the same running time of O(k log2 n), albeit with a more complicated
algorithm and under the assumption that complex exponentials can be evaluated at constant time,
can be obtained by combining the state-of-the-art sparse Fourier transform with the semi-equispaced
Fourier transform, see Section 3.1.

In summary, for nonnegative convolution on the RAM model, the state of the art requires time
Ω(k log2 n) or Ω(k log5 k). In view of the conjecture that O(n log n) is optimal for the dense case,
the best running time we could expect for the sparse case would be O(k log k). The driving question
of this work is thus:

Can sparse nonnegative convolution be solved in time O(k log k)?

We note that the need for sparse convolution arises in many different areas of algorithm design,
for example algorithms for the sparse cases of Boolean and nonnegative convolution have been used
for clustered 3SUM and similar problems [15], output-sensitive Subset Sum algorithms [12], pattern
matching on point sets [13], sparse wildcard matching [16], and other string problems [4, 5].

1.1 Results

We present a novel connection between the sparse and dense case of nonnegative convolution, which
can be viewed as work at the intersection of sparse recovery and fine-grained complexity.

We work on the Word RAM model where each cell stores a word consisting of w bits, and
standard operations on w-bit integers can be performed in constant time; this includes addition,
multiplication, and division with remainder. We always assume that the length n of the input
vectors as well as each input entry fit into a word, or more precisely into a constant number of words.
For nonnegative convolution, this means that the input consists of vectors A,B ∈ {0, 1, . . . ,∆}n
with n,∆ ≤ 2O(w). In this machine model, the standard algorithm for dense convolution uses
FFT and runs in time D(n) = O(n log n). In the following, we denote by Dδ(n) the running time
of a randomized algorithm for dense nonnegative convolution with failure probability δ (for any
0 ≤ δ ≤ 1/3). Note that this notation hides the dependence on ∆.

In the sparse setting, we denote the output size by k, i.e., k is the number of nonzero entries
of the convolution A ?B. Also in this setting we will always assume that the length n of the input
vectors as well as the largest input entry ∆ fit into a constant number of words. We will denote by
Sδ(k) the running time of a randomized algorithm for sparse nonnegative convolution with failure
probability δ; this hides the dependence on n and ∆.

The main result of this paper is a novel Monte Carlo algorithm for nonnegative sparse convo-
lution.

Theorem 1.1. The sparse nonnegative convolution problem has a randomized algorithm with run-
ning time O(k log k + polylog(n∆)) and failure probability 2−

√
log k.

Naturally, the same algorithm also can be used for Boolean convolution, where ∆ = 1. For
Boolean convolution, this is the first algorithm that improves upon the dense case’s running time
of O(n log n) for all k = o(n); previous algorithms required k = o(n/ log n). For nonnegative
convolution, the same statement is true assuming that ∆ ≤ 2n

o(1)
. Moreover, this answers our

driving question for k � polylog(n∆), by a randomized algorithm.
In fact, our algorithm can be phrased as a reduction from the sparse case to the dense case of

nonnegative convolution:

3

Theorem 1.2. Any randomized algorithm for dense nonnegative convolution with running time
D1/3(n) can be turned into a randomized algorithm for sparse nonnegative convolution running in
time3

Sδ(k) = O
(
D1/3(k) + k log2(log(k)/δ) + polylog(n∆)

)
.

Here we assume for technical reasons that the function Dδ(n)/n is nondecreasing, as is to be expected
from any natural running time.

Since D1/3(k) = O(k log k), setting δ = 2−
√

log k yields time O(k log k + polylog(n∆)), which
proves Theorem 1.1. Furthermore, any future algorithmic improvement for the dense case automat-
ically yields an improved algorithm for the sparse case by our reduction. In fact, under the mild
conditions that k � polylog(n∆) and that the optimal running time D1/3(k) is Ω(k(log log k)2),
we obtain an asymptotic equivalence with respect to constant-error randomized algorithms:

� S1/3(k) = O(D1/3(k)) holds by Theorem 1.2 and the mild conditions,

� D1/3(n) = O(S1/3(n)) holds since the sparse case trivially is a special case of the dense one.

1.2 Discussion and Open Problems

Our work raises a plethora of open problems that we discuss in the following.

Improving our Reduction. We can ask for improvements of our reduction, specifically of the
parameters of Theorem 1.2:

1. Can the error probability of the reduction be reduced? Specifically, can Theorem 1.1 be
improved from δ = 2−

√
log k to 1/ poly(k) or even 1/ poly(n)?

2. Can the polylog(n∆) term in Theorem 1.2 be removed, to make it work also for very small k?
This would require a quite different approach than the one we take here, since already for
finding a prime field large enough to store n and ∆, or for computing a single multiplica-
tive inverse in such a prime field, the fastest algorithms that we are aware of run in time
O(polylog(n∆)), even for the Word RAM model.

3. Can we obtain further improvements by bit packing, say for Boolean convolution?

General Convolution. Here we focused on nonnegative convolution, what about the general case?

4. Does sparse general (not necessarily nonnegative) convolution have a randomized algorithm
running in time O(k log k + polylog(n∆))?

5. Are sparse general convolution and dense general convolution asymptotically equivalent?

Deterministic Algorithms. Chan and Lewenstein [15] presented a deterministic k · no(1)-time al-
gorithm for sparse nonnegative convolution, assuming that they are additionally given a small
superset of the output.

6. Is there a deterministic algorithm for sparse nonnegative convolution with running time
k polylog(n)?

7. Are sparse and dense nonnegative convolution asymptotically equivalent with respect to de-
terministic algorithms?

3To be precise, we should take the dependence on ∆ (and n) into account. Expressing the running time for
the dense case as Dδ(n,∆) and for the sparse case as Sδ(k, n,∆), our reduction actually shows that Sδ(k, n,∆) =
O(D1/3(k, poly(n∆)) + k log2(log(k)/δ) + polylog(n∆)).

4

Sparse Fourier Transform. Computing convolutions is intimately connected to the Fast Fourier
Transform (FFT). In fact, in the dense case these two problems are known to be equivalent: if one
of these problems can be solved in time T (n) then the other can be solved in time O(T (n)). One
direction of this equivalence follows from the standard algorithm for convolution that uses FFT,
the other direction follows from an old trick invented by Bluestein [10], see also [24, pp. 213–215],
showing how to express the discrete Fourier transform as a convolution.4

The sparse case of Fourier transform, where one has oracle access to x and wants to compute x̂
under a k-sparsity assumption, is also extensively studied [19, 21, 25, 26, 29, 30, 53, 35, 36, 37, 49].
We can ask whether the results presented in this paper also work for computing Fourier transforms:

8. Can we reduce sparse Fourier transform to dense Fourier transform in a fine-grained way?
The algorithm in [25] runs time O(k log(n∆)), but the running time is not dominated by the
calls to FFT.

Note that positive answers to Questions 5 and 8 would, together with the known equivalence of
dense convolution and dense Fourier transform, show an asymptotic equivalence of sparse general
convolution and sparse Fourier transform.

Note that since dense nonnegative convolution is equivalent to general dense convolution (as
mentioned in the introduction), and since the latter is equivalent also to (dense) DFT computation,
our work places sparse nonnegative convolution to the aforementioned equivalent class, under the
assumptions made.

We hope that our work ignites further work on revealing connections between all these funda-
mental problems.

1.3 Organization

This paper is organized as follows. Section 2 starts with some preliminary definitions. In Section 3
we sketch our algorithm and describe some technical difficulties and highlights. The reduction is
split across several sections starting with Section 4 which gathers some algorithmic tools, followed
by the individual steps of the reduction in Sections 5–10; we give an outline for these sections in
Section 3. Finally, in Section 11, we show an improved concentration bound for linear hashing,
which we used as an essential ingredient in our reduction, as well as an almost tight lower bound
against a theorem from [39].

2 Preliminaries

Let Z, N, Q and C to denote the integers, nonnegative integers, rationals, and complex numbers,
respectively. For any nonnegative integer n, let Zn denote the ring of integers modulo n. We set
[n] = {0, 1, . . . , n− 1}. The Iverson bracket [P] ∈ {0, 1} denotes the truth value of a proposition P .
We write log for the base-2 logarithm, poly(n) = nO(1) and polylog(n) = logO(1) n.

We mostly denote vectors by letters A,B,C with Ai referring to the i-th coordinate in A. The
convolution of two length-n vectors A and B is the vector A ? B of length 2n− 1 with

(A ? B)i =
∑

0≤j≤i
AjBi−j .

4As a technical detail, this reduction assumes that terms of the form exp(2πix) can be evaluated in constant time.

5

The cyclic convolution of two length-n vectors A,B is the length-n vector A ?n B with

(A ?n B)i =
∑

0≤j≤n−1

AjB(i−j) mod n.

We let supp(A) = {i ∈ [n] : Ai 6= 0}, ‖A‖0 = | supp(A)| and ‖A‖∞ = maxi |Ai|. Furthermore, we
often write A mod m for the vector with

(A mod m)i′ =
∑

i=i′ (mod m)

Ai,

and more generally, for a function Z→ [m], we write f(A) for the length-m vector with

f(A)i′ =
∑

i:f(i)=i′

Ai.

For sets X,Y , we define the sumset X + Y = {x+ y : (x, y) ∈ X × Y } and some other shorthand
notation: a+X = {a+ x : x ∈ X}, aX = {ax : x ∈ X}, X div a = {bxac : x ∈ X} and X mod a =
{x mod a : x ∈ X}. More generally, for a function defined on X we set f(X) = {f(x) : x ∈ X}.

3 Technical Overview

3.1 Previous Techniques

Possibly the earliest work on sparse convolution is a quite complicated O(k log2 n + polylog(n))-
time5 algorithm due to Cole in Hariharan [16] for the nonnegative case. Their approach builds
on linear hashing and string algorithms in order to identify supp(A ? B), and involves many ideas
such as encoding characters with complex entries before applying convolution. The more recent
approaches [55, 56, 61, 62, 7, 48, 23] (the last two of which can also solve the general convolution
problem) heavily build on hashing modulo a random prime number. This approach suffers from
the loss of one log factor due to the density of the primes given by the Prime Number Theorem.
Therefore, these approaches seem hopeless of getting time O(k log k), or even time o(k log2 k).

On the other hand, a quite different O(k log2(n∆)) algorithm, not explicitly written down as
far as we know, is attainable using techniques from the sparse Fourier transform (assuming that
complex exponentials can be evaluated in constant time). It has been established in the celebrated
work of Hassanieh, Indyk, Katabi and Price [25] that one can recover a k-sparse vector x ∈ Cn in
time O(k log(n∆)) by only accessing a small subset of its Fourier transform x̂. This alone might
not seem sufficient, but spelling out the details of [25] reveals that the pattern of accesses to x̂
is a random arithmetic progression of length O(k log(n∆)). In light of this, one can additionally
leverage known techniques from semi-equispaced Fourier transforms [17], [30, Section 12] to obtain
a O(k log2(n∆))-time algorithm. The semi-equispaced Fourier transform is a well-studied subfield
of computational Fourier transforms, and results from that area show that s equally spaced Fourier
coefficients of a length-n and s-sparse vector can be computed in time O(s log(n∆)) [30, Section 12].
Combining this with the algorithm of [25] yields an O(k log2(n∆))-time algorithm for sparse con-
volution. The inherent reason for this logarithmic blow-up is that going back and forth in Fourier
and time domain is more costly in the sparse case than in the dense case. Furthermore, the above
algorithm cannot yield a reduction between the sparse and dense convolution (more generally, the

5The claimed running time in their paper is O(k log2 n), however they need to pick a prime p ∈ [n, 2n], which
requires time polylog(n) (this additive overhead disappears if the algorithm is allowed to hardcode p).

6

approach of [25] cannot yield such an equivalence, as their running time is not dominated by calls
to FFT). It is a very interesting open question in that area to show any equivalence between some
variant of sparse and dense Fourier transform, as well as to achieve O(k log k) running time.

There are other techniques for sparse convolution using polynomial interpolation, see [57], but
they do not seem sufficient in going beyond a O(k polylog n)-time algorithm in any variation of the
problem, owing to the usage of a variety of tools from structured linear algebra which come with
additional polylog factors.

3.2 Our Approach

The goal is to solve the following problem in output-sensitive time:

Problem (SparseConv).
Input: Nonnegative vectors A,B and a parameter δ > 0.
Task: Compute A ? B with success probability 1− δ.

In what follows, we assume that we are given a number k such that ‖A?B‖0 ≤ k, and we want
to recover A ? B in time O(k log k). This assumption will be removed in Section 9 using standard
techniques. For the sake of simplicity, we will focus on how to obtain a constant-error randomized
algorithm for sparse convolution from a deterministic algorithm for dense convolution.

The Obstructions Created by Known Recovery Techniques. So far, hashing-based approaches on
computing sparse convolutions build on either of two well-known hash functions mapping [n]→ [m]:

� g(x) = x mod p, where p is a random prime of appropriate size.

� Linear hashing : h(x) = ((σx + τ) mod p) mod m, where p is a sufficiently large fixed prime
number and σ, τ are random.6

The first hash function satisfies g(x + y) = (g(x) + g(y)) mod m, in particular it is affine, in the
sense that g(x+ y) + g(0) ≡ g(x) + g(y) (mod m). In comparison, the second hash function is only
almost-affine, in the sense that h(x+ y) + h(0)− h(x)− h(y) can only take a constant number of
different values. Although almost-affinity is an amenable issue in many situations, e.g. [51, 14], in
our case it appears to be a more serious obstruction for reasons outlined later.

In turn, the first hash function is only O(log n)-universal. Thus, if we want to hash a size-k set
X using g, such that a fixed x ∈ X is isolated from every other x′ ∈ X, we must pick p = Ω(k log n).
This results in a multiplicative O(log n) overhead on top of the number of buckets. In comparison,
linear hashing is O(1)-universal, so setting m = O(k) suffices for proper isolation.

Before delving deeper, let us sketch how to design an O(k log k)-time algorithm, assuming that
we had an “ideal” hash function ι : [n] → [m] that is O(1)-universal and affine, i.e., combines
the best of g(x) and h(x). Then the hashed convolution could be easily computed as ι(A ? B) =
ι(A)?m ι(B). The next ingredient is the derivative operator from [27]. Defining the vector ∂A with
(∂A)i = i·Ai, and similarly ∂B with (∂B)i = i·Bi, we have that ∂(A?B) = (∂A)?B+A?(∂B), which
when combined with the ideal hash function ι gives ι(∂(A ? B)) = ι(∂A) ?m ι(B) + ι(A) ?m ι(∂B).
The b-th coordinate of this vector is

ι(∂(A ? B))b =
∑

i:ι(i)=b

i · (A ? B)i,

6One can also use h(x) = b((σx+τ) mod p)m/p
⌋

for a sufficiently large prime p, which enjoys similar properties [39].

7

which can be accessed by computing the length-m convolutions ι(∂A) ?m ι(B) and ι(A) ?m ι(∂B)
and adding them together. By setting m = O(k), we can now infer a constant fraction of elements
i ∈ supp(A ? B) by performing the division

ι(∂(A ? B))b
ι((A ? B))b

=

∑
i:ι(i)=b i · (A ? B)i∑
i:ι(i)=b(A ? B)i

for all b ∈ [m]. This yields the locations of all isolated elements in supp(A ? B) under ι. In
particular, we obtain a vector C̃ such that ‖A ? B − C̃‖0 ≤ k/2, say.

Now, a classical linear sketching technique [20] kicks in. The idea is that we can recover the
residual vector A ? B − C̃ by iteratively hashing to a geometrically decreasing number of buckets
and performing the same recovery step as before. The number of buckets in the `-th iteration is
m` = O(k/2`), and the goal is to obtain a sequence of vectors C̃` such that ‖A ? B − C̃`‖0 ≤ k/2`.
The crucial observation is that since ι is affine, we can cancel out the contribution of the found
elements C̃` by the fact that ι(A?B)−ι(C̃`) = ι(A?B−C̃`). Thus, after R = O(log k) iterations [20]
we obtain a vector C̃R such that ‖A?B−C̃R‖0 = 0, recovering A?B. The running time is dominated
by the first iteration, where an FFT over vectors of length O(k) is performed.

Unfortunately, we do not have access to such an ideal function ι. Replacing ι by h or g runs into
issues: If we use h as a substitute, we cannot cancel out the contribution of the found elements,
since h is only almost affine but not affine. Specifically, the sparsity of h(A ? B) − h(C̃`) does
not necessarily decrease in the next iteration, which renders the geometric decreasing number of
buckets impossible and thus precludes iterative recovery. If we use g as a substitute, we need to
pay additional log factors to ensure isolation of most coordinates, even in the very first iteration.

Given this discussion, it seems that the known hash functions reach a barrier on the way to
designing O(k log k)-time algorithms. We show how to remedy this state of affairs.

In the following we describe our approach in five steps.

Step 0: Universe Reduction from Large to Small. The first step is to reduce our problem to a
universe of size U = poly(k). We will refer to this regime of U as a small universe, and say that U
is large if there is no bound on U . Formally, we introduce the following problem.

Problem (SmallUniv-SparseConv).
Input: Nonnegative vectors A,B of length U , an integer k such that ‖A?B‖0 ≤ k and U = poly(k).
Task: Compute A ? B with success probability 1− δ.

We show in Section 10 how to reduce the general problem of computing A?B in a large universe n
to three instances in a small universe U . This makes use of the fact that in this parameter regime
the linear hash function h is perfect with probability 1 − 1/ poly(k). In combination with the
derivative operator ∂, it suffices to compute the three convolutions h(A) ?U h(B), h(∂A) ?U h(B),
h(A) ?U h(∂B). Note that the cyclic convolution ?U can be reduced in the nonnegative case
to the non-cyclic convolution at the cost of doubling the sparsity of the underlying vector, i.e.,
‖h(A) ? h(B)‖0 ≤ 2‖h(A) ?U h(B)‖0 ≤ 2‖A ? B‖0 ≤ 2k. This yields the claimed reduction.

This universe reduction ensures that from now on the function g(x) = x mod p is O(log k)-
universal, i.e., we have removed its undesired dependence on n, which will be important for the
next step. We stress as a subtle detail that this step crucially relies on the fact that we are dealing
with nonnegative convolution, for more details see Section 3.3.

Step 1: Error Correction. In the next step, we show that it suffices to compute the convolution
A ? B up to k/ polylog k errors, since we can correct these errors by iterative recovery with the

8

affine hash function g. More precisely assume that we can somehow recover a vector C̃ such that
‖A ? B − C̃‖0 ≤ k/polylog k. In other words, suppose that we could efficiently solve the following
problem for an appropriate parameter γ (think of γ = 1/ log k).

Problem (SmallUniv-Approx-SparseConv).
Input: Nonnegative vectors A,B of length U , an integer k such that ‖A?B‖0 ≤ k and U = poly(k).
Task: Compute C̃ such that ‖A ? B − C̃‖0 ≤ γk with success probability 1− δ.

If we are able to do so, then the remaining goal is to correct the error between A?B and C̃. We
can access the residual vector via g(A) ?m g(B)− g(C̃) = g(A?B− C̃), for g : [U]→ [O(k)]. Thus,
since the new universe size is a log factor larger than the sparsity of the residual vector, it is possible
to continue in an iterative fashion using g and still be within the O(k log k) time bound. Note that
(i) it is crucial that we have recovered a (1− 1/ log k)-fraction of the coordinates of C̃ rather than
only a constant fraction, and (ii) it can (and will) be the case that supp(C̃) \ supp(A?B) 6= ∅, i.e.,
there are spurious elements, but those spurious elements will be removed upon iterating.

There is one catch: Iterative recovery creates a sequence of successive approximations C̃1, C̃2, . . .
to A ? B, and the time to hash each such vector, i.e., to perform the subtraction g(A) ?m g(B) −
g(C̃`), is O(k). Since there are O(log k) such subtractions, the total cost spent on subtractions
is O(k log k), which suffices for Theorem 1.1 but not for Theorem 1.2. The natural solution is to
reduce the number of successive approximations (iterations), which is closely related to the column
sparsity of linear sketches that allow iterative recovery. More sophisticated iterative loop invariants
exist [31, 54, 22], but these all get Ω(log k) column sparsity. What we observe is that, surprisingly,
a small modification of the iterative loop in [20] finishes in O(log log k) iterations, rather than
O(log k). In the `-th iteration we hash to O(k/`2) buckets, and let k` = ‖A ? B − C̃`‖0. An easy
argument yields that with probability 1−1/`2 we have k`+1 ≤ 1/10·k2

`/k ·`4, which yields kL < 1 for
L = O(log log k). This means that the subtraction is performed O(log log k) times, so the additive
running time overhead is only O(k log log k). A more involved implementation of this idea (due to
the fact that we are interested in o(1) failure probability) appears in Section 8.

An Attempt using Prony’s Method. So far we have reduced to small universe and established
that we can afford k/ polylog k errors. In the following we want to recover a (1−1/ log k)-fraction of
the coordinates “in one shot”. Consider the following line of attack. Fix a parameter T � k and a
linear hash function h : [U]→ [k/T]. We aim to recover, for each bucket b ∈ [k/T], all entries of the
convolution A?B that are hashed to bucket b.7 This corresponds to hashing A?B to k/T buckets;
we expect to have T elements per bucket and thus most buckets contain at most 2T elements,
say. Note that we no longer expect isolated buckets, so we cannot use the derivative operator.
However, we can instead get access to the first 4T Fourier coefficients of each vector (A ? B)h−1(b)

in the following way. Let ω be a U -th root of unity. For each t ∈ [2T], set (ωt • A)i = ωtiAi and
(ωt •B)i = ωtiBi and perform the convolution h(ωt •A) ?k/T h(ωt •B). This yields

(h(ωt •A) ?k/T h(ωt •B))b =
∑

(h(i)+h(j)) mod k/T=b

ωt(i+j) ·AiBj ,

which is essentially the t-th Fourier coefficient of (A ? B)h−1(b).
The time to perform these 4T convolutions is O((k/T) · log(k/T)) · 4T = O(k log k). Now, a

classical algorithm due to Gaspard de Prony in 1796 (rediscovered several times since then, for
decoding BCH codes [64] and in the context of polynomial interpolation [9]) postulates that any

7Here and in the following for ease of exposition we ignore the issue that entries of A?B can be split up, due to h
being only almost-affine.

9

2T -sparse vector can be efficiently reconstructed from its first 4T Fourier coefficients. However,
Prony’s method with finite precision or over a finite field does not have sufficiently fast algorithms
for our needs.

Nevertheless, there is another problem with this approach. Since we want to recover a (1 −
1/ log k)-fraction of elements in A?B, for a (1−1/ log k)-fraction of support elements i ∈ supp(A?B)
it must be the case that |h−1(h(i))| ≤ 2T . This is a necessary condition in order to recover
(A?B)h−1(h(i)) using 4T Fourier coefficients. If h was three-wise independent, a standard argument
using Chebyshev’s inequality would show the desired concentration bound. However, since the
linear hash function h is only pairwise independent, we need to take a closer look at concentration
of linear hashing.

Intermezzo on Linear Hashing. A beautiful paper of Knudsen [39] shows that the linear hash
function h, despite being only pairwise independent, satisfies refined concentration bounds.

Theorem 3.1 (Informal Version of [39, Theorem 5]). Let X ⊆ [U] be a set of k keys. Randomly
pick a linear hash function h that hashes to m buckets, fix a key x 6∈ X and buckets a, b ∈ [m].
Moreover, let y, z ∈ X be chosen independently and uniformly at random. Then:

P(h(y) = h(z) = b | h(x) = a) ≤ 1

m2
+

2O(
√

log k log log k)

mk
. (1)

Using the above theorem and Chebyshev’s inequality, Knudsen arrives at a concentration bound
on the number of elements falling in a fixed bucket, see [39, Theorem 2].8 Up to the factor
2O(
√

log k log log k) = ko(1), this would indeed be the concentration bound satisfied by three-wise
independent hash functions. However, this additional ko(1) factor is crucial for our application.
Moreover, as we show in Section 11, the analysis in [39] is nearly tight. In particular, we show the
existence of a set X such that the ko(1) factor is necessary.

Theorem 3.2 ([39, Theorem 5] is Almost Optimal). Let k and U be arbitrary parameters with
U ≥ k1+ε for some constant ε > 0, and let h be a random linear hash function which hashes to m
buckets. Then there exists a set X ⊆ [U] of k keys, a fixed key x 6∈ X and buckets a, b ∈ [m] such
that for uniformly random y, z ∈ X we have

P(h(y) = h(z) = b | h(x) = a) ≥ 1

mk
exp

(
Ω

(√
min

(
log k

log log k ,
logU

log2 logU

)))
.

This brings us to an unclear situation. The structured linear algebra machinery of Prony’s
method seems inadequate for our purposes and the state of the art concentration bounds of linear
hashing do not seem to be sufficiently strong. However, we show again how to remedy this state of
affairs.

Our first trick (Step 2) is to reduce to a tiny universe of size k polylog k. Note that then
Theorem 3.2 is no longer applicable, and indeed we show improved concentration bounds for linear
hashing as we shall see later. Another technical step is to approximate the support of A ? B (Step
3), which can be done efficiently when the universe is tiny. This replaces the computationally
expensive part of Prony’s method. After that, we are ready to make the attempt work (Step 4).
These steps are described in the following.

8We are referring to the FOCS proceedings version, which differs in an important way from the arXiv version.

10

Step 2: Universe Reduction from Small to Tiny. We further reduce the universe size to U =
k polylog k; let us call this regime of U tiny. This is the smallest universe we can hash to while
ensuring that with constant probability a (1−1/ log k)-fraction of coordinates is isolated under the
hashing. Apart from this difference the reduction is very similar to Step 0. It remains to solve the
following computational problem (again, you may think of γ = 1/ log k). This is done in Section 7.

Problem (TinyUniv-Approx-SparseConv).
Input: Nonnegative vectors A,B of length U , an integer k such that ‖A ? B‖0 ≤ k and U ≤ k/γ2.
Task: Compute C̃ such that ‖A ? B − C̃‖0 ≤ γk with success probability 1− δ.

Step 3: Approximating the Support. Next we want to approximate the support supp(A ? B).
Specifically, we want to recover a set X of size |X| = O(k) such that | supp(A?B)\X| ≤ k/polylog k.
Since supp(A?B) = supp(A) + supp(B), for Y = supp(A), Z = supp(B) we formally want to solve
the following problem.

Problem (TinyUniv-ApproxSupp).
Input: Sets Y,Z ⊆ [U] and an integer k, such that U ≤ k/γ and |Y + Z| ≤ k.
Task: Compute a set X of size O(k) such that |(Y + Z) \X| ≤ γk.

To this end, we create a sequence of successive approximations to Y + Z. Consider the sets

Y` =
{⌊ y

2`

⌋
: y ∈ Y

}
, Z` =

{⌊ z
2`

⌋
: z ∈ Z

}
,

for 0 ≤ ` ≤ log(U/k). For ` ≥ log(U/k), we have Y`, Z` ⊆ [k], and thus we can compute X` :=
Y` + Z` by one Boolean convolution in time O(k log k). Since U is tiny, the number of levels
is just log(U/k) = O(log log k). It remains to argue how to go from level ` + 1 to `, to finally
approximate Y0 + Z0 = Y + Z. We say that a set X` closely approximates Y` + Z` if |X`| = O(k),
and |(Y` + Z`) \X`| ≤ k/ polylog k. Given a set X`+1 which closely approximates Y`+1 + Z`+1, we
want to find a set X` which closely approximates Y` + Z`. It is not hard to see that a candidate
for X` is 2X`+1 + {0, 1, 2}. Hence the main problem is keeping the size of X` small by filtering out
false positives. One way to do so would be to compute h(Y`) + h(Z`), for a random linear hash
function h : [U]→ [O(k)]. We then throw away all coordinates i ∈ 2X`+1 + {0, 1, 2} for which the
bucket h(i) is empty. Naively computing the convolution would lead to time Ω(k log k log log k).
To improve this, we apply an algorithm due to Indyk:

Theorem 3.3 (Randomized Boolean Convolution [28]). There exists an algorithm which takes
as input two sets Y ′, Z ′ ⊆ [U], and in time O(U) outputs a set O ⊆ Y ′ + Z ′, such that for all
x ∈ Y ′ + Z ′ we have P(x ∈ O) ≥ 99

100 .

Since Indyk’s algorithm has a small probability of not reporting an element in the sumset, this
leads to losing some of the elements in supp(A) + supp(B), but we are fine with k/ polylog k errors.
On the positive side, compared to standard Boolean convolution this reduces the running time by a
factor log k. Putting everything together carefully, we show that supp(A?B) can be approximated
in time O(k(log log k)2). For the complete proof we refer to Section 6.

Step 4: Approximate Set Query. With all reductions and preparations discussed so far, it remains
to solve the following problem to finish our algorithm, for details see Section 5.

Problem (TinyUniv-Approx-SetQuery).
Input: Nonnegative vectors A,B of length U , an integer k such that ‖A ? B‖0 ≤ k and U ≤ k/γ2,

and a set X with |X| = O(k) and | supp(A ? B) \X| ≤ o(γ2k).
Task: Compute C̃ such that ‖A ? B − C̃‖0 ≤ γk with success probability 1− δ.

11

This is the last step of the algorithm. As in the approach using Prony’s method that we discussed
above, we pick a parameter T , hash to k/T buckets, and get access to h(ωt • A) ?k/T h(ωt • B).
Here, ω is an appropriate element in Z×q for q a sufficiently large prime. The surprising observation
is that in a tiny universe U the lower bound on the concentration bound of linear hashing does not
apply, and in fact a much stronger concentration bound is attainable. In particular, we obtain the
analogue of (1) where the term 2O(

√
log k log log k) is replaced by polylog k, see Section 11. This can

be proved using the machinery established in [39] as well as some elementary number theory, and
is actually simpler than the complete analysis of [39].

Furthermore, we can now circumvent the computationally expensive part of Prony’s method,
since we have knowledge of most of the support supp(A?B). It turns out that we only need to solve
O(k/T) transposed Vandermonde systems of size O(T) × O(T) over Zq. The part of the support
we do not know might mess up some the estimates due to collisions, but it is such a small fraction
that cannot make us misestimate more than a 1/polylog k-fraction of the coordinates in X (and
the errors that will be introduced due to misestimation will be cleaned up by the iterative recovery
loop in Step 2). Using the improved concentration bound for linear hashing, a fast transposed
Vandermonde solver [42], and some additional tricks to compute all h(ωt • A) simultaneously, we
can pick T = polylog k and arrive at a O(k log k)-time algorithm, that is also a reduction from
sparse to dense convolution.

One last detail is that Vandermonde system solvers compute multiplicative inverses, which cost
time Ω(log q) = Ω(log(n∆)) each, and thus account for time Ω(k log(n∆)) in total. We observe
that, since we are solving several (in particular, k/T) Vandermonde systems, we can run all of
them in parallel and batch the inversions across calls. We can then simulate k/T inversions using
O(k/T) multiplications and just one division, see Lemma 4.3. This yields O(k log k) running time
and, as claimed in Theorem 1.2, an additive polylog(n∆) term (which is already present, only for
choosing the prime q).

3.3 What Makes General Convolution Harder?

The reader may ask whether general convolution can be attacked using our techniques. We want
to stress that a linear hash function, which is one of our building blocks and at the core of almost
all the steps of the algorithm, seems not to be suited for general convolution, due to the fact that
it is almost-affine, but not affine. For an element x ∈ [n] consider the quantities

c1 =
∑

y+z=x,
h(y)+h(z)≡h(0)+h(x)

AyBz,

c2 =
∑

y+z=x,
h(y)+h(z)≡h(0)+h(x)+p

AyBz,

c3 =
∑

y+z=x,
h(y)+h(z)≡h(0)+h(x)−p

AyBz,

where, for convenience we write ≡ for equality modulo m, and p,m are parameters of the linear
hash function. By the almost-affinity of linear hashing we have (A ? B)x = c1 + c2 + c3 (see
Lemma 4.1). In general, it can happen that (A ? B)x = 0, not contributing at all to the output
size, whereas c1, c2, c3 6= 0. This means that what is hashed to m buckets is a vector with sparsity
much larger than k. Handling the presence of cancellations in A ? B is a significant obstruction to
an O(k log k) general convolution algorithm. Note that even Step 0 is non-trivial to implement for
general convolution.

12

Unless one can somehow handle this issue, we can only work with g(x) = x mod p, which comes
with additional log factor losses. We believe that a very different approach is needed to obtain time
O(k log k) in the general case, which is a very interesting open question.

4 Tools

4.1 Linear Hashing

In many of our algorithms, the goal is to reduce the dimension of some vectors in a convolution-
preserving way. To that end, we often use the classic textbook hash function

h(x) = ((σx+ τ) mod p) mod m.

In our case p is always some (fixed) prime, m ≤ p is the (fixed) number of buckets and σ, τ ∈ [p]
are chosen uniformly and independently at random. We say that h is a linear hash function with
parameters p and m. We start with some well-known fundamental properties of linear hashing:

Lemma 4.1 (Linear Hashing Basics). Let h be a linear hash function with parameters p and m
drawn uniformly at random. Then the following properties hold:

Universality: For distinct keys x, y and a ∈ [m]:
| P(h(x) = h(y) + a (mod m))− 1

m | ≤
3
p ≤

3
m .

Pairwise Independence: For distinct keys x, y and arbitrary buckets a, b ∈ [m]:
| P(h(x) = a ∧ h(y) = b)− 1

m2 | ≤ 3
mp ≤

3
m2 .

Almost-Affinity: For arbitrary keys x, y there exists one out of three possible offsets o ∈ {−p, 0, p}
such that h(x) + h(y) = h(0) + h(x+ y) + o (mod m).

Proof. Universality follows directly from pairwise independence, so we start proving pairwise inde-
pendence. Let h(x) = π(x) mod m, where π(x) = (σx+ τ) mod p for uniformly random σ, τ ∈ [p].
The first step is to prove that P(π(x) = a′ ∧ π(y) = b′) = 1/p2 for distinct keys x, y and arbi-
trary a′, b′ ∈ [p]. Note that the event π(x) = a′ and π(y) = b′ can be rewritten as π(x) = a′ and
π(y) − π(x) = b′ − a′ (mod p) and the claim follows immediately by observing that the random
variables π(x) and π(y)− π(x) = σ(y − x) (mod p) are independent.

We get back to h. Clearly, P(h(x) = a∧ h(y) = b) =
∑

a′,b′ P(π(x) = a′ ∧ π(y) = b′), where the
sum is over all a′, b′ ∈ [p] with a = a′ mod m and b = b′ mod m. As there are at least bp/mc and at
most dp/me such values a′ and b′, respectively, we conclude that the desired probability is at least
bp/mc2/p2 ≥ (p/m− 1)2/p2 ≥ 1

m2 − 2
mp and at most dp/me2/p2 ≤ (p/m+ 1)2/p2 ≤ 1

m2 + 3
mp .

Finally, we prove that h is almost-affine. It is clear that π(x) +π(y) = π(0) +π(x+y) (mod p).
As each side of the equation is a nonnegative integer less than 2p, it follows that π(x) + π(y) =
π(0) + π(x+ y) + o, where o ∈ {−p, 0, p}. By taking residues modulo m, the claim follows. �

In our reduction we also crucially rely on the following improved concentration bound for linear
hashing, which we prove in Section 11.

Corollary 11.3 (Overfull Buckets). Let X ⊆ [U] be a set of k keys. Randomly pick a linear hash
function h with parameters p > 4U2 and m ≤ U , fix a key x 6∈ X and buckets a, b ∈ [m]. Moreover,
let F =

∑
y∈X [h(y) = b]. Then:

E(F | h(x) = a) = E(F) =
k

m
±Θ(1),

13

and, for any λ > 0,

P(|F −E(F)| ≥ λ
√
E(F) | h(x) = a) ≤ O

(
U logU

λ2k

)
.

4.2 Algebraic Computations

On more than one occasion we need to efficiently perform algebraic computations such as computing
powers or inverses. The next two lemmas describe how to easily obtain improved algorithms for
bulk-evaluation.

Lemma 4.2 (Bulk Exponentiation). Let R be a ring. Given an element x ∈ R, and a set of non-
negative exponents e1, . . . , en ≤ e, we can compute xe1 , . . . , xen in time O(n logn e) using O(n logn e)
ring operations.

The naive way to implement exponentiations is via repeated squaring in time O(n log e). There
are methods [65, 52] improving the dependence on e, but for our purposes this simple algorithm
suffices.

Proof. First, compute the base-n representations of all exponents ei =
∑

j ei,jn
j ; then ei,j ∈ [n]

where j = 0, . . . , dlogn ee. We will precompute all powers xin
j

for i = 1, . . . , n and j = 0, . . . , dlogn ee
using the rules xn

j+1
= (xn

j
)n and x(i+1)nj = xin

j
xn

j
. Finally, every output xei can be computed

as a product of dlogn ee numbers
∏
j x

ei,jn
j
. The correctness is immediate and it is easy to check

that every step takes time O(n logn e). �

Lemma 4.3 (Bulk Division). Let F be a field. Given n field elements a1, . . . , an ∈ F , we can
compute their inverses a−1

1 , . . . , a−1
n ∈ F in time O(n) using O(n) multiplications and a single

inversion.

Proof. First, we compute the n prefix products bj = a1 · · · ai. It takes a single inversion to com-
pute b−1

n . Then, for i = n, n − 1, . . . , 2, we compute a−1
i = b−1

i bi−1 and b−1
i−1 = b−1

i ai. Finally,
a−1

1 = b−1
1 . As claimed, this algorithm takes time O(n) and it uses O(n) multiplications and a

single inversion. �

Finally, a crucial ingredient to our core algorithm is the following theorem about solving trans-
posed Vandermonde systems.

Theorem 4.4 (Transposed Vandermonde Systems). Let F be a field. Let a, x ∈ Fn be vectors
with pairwise distinct entries ai, and let

V =

1 1 · · · 1
a1 a2 · · · an
a2

1 a2
2 · · · a2

n
...

...
. . .

...

an−1
1 an−1

2 · · · an−1
n

.

Then V x and V −1x can be computed in time O(n log2 n) using at most O(n log2 n) ring operations
(additions, subtractions and multiplications) and at most 1 division.

This algorithm has been discovered several times [34, 42, 50]. Although none of these sources
pays attention to the number of divisions, one can check that applying the bulk division strategy
from Lemma 4.3 suffices to obtain the claimed bound. For the sake of completeness, we give a full
proof of Theorem 4.4 in Appendix A.

14

5 Set Queries in a Tiny Universe

As the first step in our chain of reductions, the goal of this section is to give an efficient algorithm
for the TinyUniv-Approx-SetQuery problem:

Problem (TinyUniv-Approx-SetQuery).
Input: Nonnegative vectors A,B of length U , an integer k such that ‖A ? B‖0 ≤ k and U ≤ k/γ2,

and a set X with |X| = O(k) and | supp(A ? B) \X| ≤ o(γ2k).
Task: Compute C̃ such that ‖A ? B − C̃‖0 ≤ γk with success probability 1− δ.

Lemma 5.1. Let log k ≤ 1/γ ≤ poly(k) and let 1/δ ≤ poly(k). There is an algorithm for the
TinyUniv-Approx-SetQuery problem running in time

O(D(k) + k log2(1/γ) + k log(1/δ) + polylog(k, ‖A‖∞, ‖B‖∞)).

We proceed in three steps. In Section 5.1 we give two important preliminary lemmas. In
Section 5.2 we present and analyze the algorithm which proves Lemma 5.1. Finally, in Section 5.3,
we will strengthen Lemma 5.1 and show that we can in fact achieve the same running time with
D1/3(k) in place of D(k), i.e., it suffices to assume that we only have black-box access to an efficient
dense convolution algorithm with constant error probability.

5.1 Folding & Unfolding

For a vector A and a scalar ω, let ω •A denote the vector defined by (ω •A)i = ωiAi. A straightfor-
ward calculation reveals that the •-product commutes nicely with taking (non-cyclic) convolutions:

Proposition 5.2. Let A,B be vectors and let ω be a scalar. Then (ω •A) ? (ω •B) = ω • (A ? B).

Proof. For any coordinate x:

((ω •A) ? (ω •B))x =
∑
y+z=x

(ω •A)y(ω •B)z =
∑
y+z=x

ωy+zAyBz = (ω • (A ? B))x. �

The goal of this section is to show that the we can efficiently evaluate, and under certain
restrictions also invert, the following map:

A −→ (ω0 •A) mod m, . . . , (ωT−1 •A) mod m.

We will vaguely refer to these two directions as folding and unfolding, respectively. For the remain-
der of this subsection we assume as before that A is an arbitrary length-U vector with sparsity k.
We further assume that A is over some finite field Zq in order avoid precision issues in the under-
lying algebraic machinery. We also need the technical assumption that ω ∈ Z×q has multiplicative
order at least U .

Lemma 5.3 (Folding). Let m be a parameter and let T = d2k/me. There is a deterministic algo-
rithm Fold computing (ω0 •A) mod m, . . . , (ωT−1 •A) mod m in time O(k log2(k/m) + k logk U +
polylog q).

Let us postpone the proof of Lemma 5.3 and instead outline how to (approximately) invert the
folding. A crucial assumption is that we are given a close approximation X of supp(A). The quality
of the recovery is controlled by the following measure: The flatness of X modulo m is defined as

Fm(X) =
∑
x∈X

[∑
x′∈X

[
x = x′ (mod m)

]
>

2|X|
m

]
,

15

and we say that X is α-flat modulo m if Fm(X) ≤ α. Some intuition about this definition: Recall
that when hashing a set X into m buckets, the average bucket receives |X|/m elements. Therefore,
the flatness is the number of elements falling into overfull buckets under the very simple hash
function x mod m.

Lemma 5.4 (Unfolding). Let m be a parameter and let T = d2k/me. There is a deterministic
algorithm Unfold which, given (ω0 •A) mod m, . . . , (ωT−1 •A) mod m and a size-k set X ⊆ [U],
computes a vector Ã such that

‖A− Ã‖0 ≤ T · | supp(A) \X|+ Fm(X).

The algorithm runs in time O(k log2(k/m) + k logk U + polylog q).

We will next prove Lemmas 5.3 and 5.4.

Proof of Lemma 5.3. Given a k-sparse vector A the goal is to simultaneously compute A0 = (A •
ω0) mod m, . . . , AT−1 = (A•ωT−1) mod m. We first precompute all powers ωx for x ∈ X = supp(A)
using the bulk exponentiation algorithm (Lemma 4.2).

Next, we partition X into several chunks Xi,j . We start with Xi = {x ∈ X : x mod m = i}
and then greedily subdivide every part Xi into chunks Xi,1, Xi,2, . . . such that all chunks have size
|Xi,j | ≤ T . In fact, all chunks except for the last one have size exactly T . We note that in this way
we have constructed at most O(m) chunks: On the one hand, there can be at most m chunks of
size exactly T since A has sparsity k = Θ(mT). On the other hand, there can be at most m chunks
of size less than T by the way the greedy algorithm works.

Now focus on an arbitrary chunk Xi,j ; for simplicity assume that |Xi,j | = T and let x1, . . . , xT
denote the elements of Xi,j in an arbitrary order. We set up the following transposed Vandermonde
system with indeterminate yi,j ∈ ZTq :

yi,j =

1 1 · · · 1
ωx1 ωx2 · · · ωxT

ω2x1 ω2x2 · · · ω2xT

...
...

. . .
...

ω(T−1)x1 ω(T−1)x2 · · · ω(T−1)xT

Ax1
Ax2

...
AxT

 .

Since ω has multiplicative order at least U , the coefficients ωx1 , . . . , ωxT are distinct and we can
apply Theorem 4.4 to compute y. It remains to return the vectors (ωt • A) mod m for all t ∈ [T],
computed as ((ωt •A) mod m)i =

∑
j y

i,j
t . It is easy to check that yi,jt equals ((ωt • A′) mod m)i

for A′ the vector obtained from A by restricting the support to Xi,j . The correctness of the whole
algorithm follows immediately.

Finally, we analyze the running time. Precomputing the powers of ω using Lemma 4.2 accounts
for time O(k logk U). The construction of the chunks takes time O(mT) = O(k), and also writing
down all vectors (ωt • A) mod m takes time O(k) given the yi,j ’s. The dominant step is to solve a
Vandermonde system for every chunk. Since there are O(m) chunks in total and the running time
for solving a single system is bounded by O(T log2 T) (by Theorem 4.4), the total running time is
O(mT log2 T) plus O(mT log2 T) ring operations and O(mpolylog(T)) divisions in Zq.

Additions, subtractions and multiplications take constant time each on a random-access ma-
chine and can therefore by counted into the time bound. However, divisions in a prime field are
computationally more expensive. The common way is to implement inversions by Euclid’s algo-
rithm in time O(log q) and so the naive time bound becomes O(mpolylog(T) · log q). This can be
optimized by exploiting Lemma 4.3: Recall that we are executing Theorem 4.4 m times in parallel,

16

and each call requires up to polylog(T) inversions. Therefore, we can apply Lemma 4.3 to replace m
inversions by O(m) multiplications and a single inversion in time O(m+log q). In that way, it takes
time O(polylog(T) · (m+ log q)) = O(mpolylog(T) + polylog(q)) to deal with all divisions and the
total running time is O(mT log2 T + polylog(q)) = O(k log2(m/k) + polylog(q)). �

Proof of Lemma 5.4. Given A0 = (A • ω0) mod m, . . . , AT−1 = (A • ωT−1) mod m, the goal is to
recover a good approximation Ã of A, provided that an approximation X of supp(A) is given. As
before, we partition X into buckets Xi = {x ∈ X : x mod m = i}. We say that the bucket Xi

is overfull if |Xi| > T . In contrast to Fold, we can afford to ignore all overfull buckets here, so
focus on an arbitrary bucket Xi with |Xi| ≤ T . Letting x1, . . . , xT denote the elements in Xi in
an arbitrary order (and assuming for the sake of simplicity that there are exactly T of these), it
suffices to solve the following Vandermonde system with indeterminates Ãx1 , . . . , ÃxT :

A0
i

A1
i

A2
i

...

AT−1
i

 =

1 1 · · · 1
ωx1 ωx2 · · · ωxT

ω2x1 ω2x2 · · · ω2xT

...
...

. . .
...

ω(T−1)x1 ω(T−1)x2 · · · ω(T−1)xT

Ãx1
Ãx2

...

ÃxT

 .

The running time can be analyzed in the same way as before, so let us focus on proving that
‖A − Ã‖0 is small. We say that a bucket Xi is successful if (i) it is not overfull, and if (ii) there
exists no support element x ∈ supp(A) \ X with x mod m = i. The claim is that whenever Xi

is successful, then Ãx = Ax for all x ∈ Xi. Indeed, for any successful bucket one can verify by
the definition of the •-product that the equation system is valid for Ax in place of Ãx, and as the
Vandermonde matrix has full rank this is the unique solution.

Therefore, it suffices to bound the total size of all non-successful buckets: On the one hand, the
number of elements in buckets for which condition (i) holds but (ii) fails is at most T · | supp(A)\X|.
On the other hand, the contribution of elements in buckets for which condition (i) fails is exactly the
flatness of X modulo m, by definition. Together, these yield the claimed bound on ‖A− Ã‖0. �

5.2 The Algorithm

We are ready to prove Lemma 5.1 by analyzing the pseudo-code given in Algorithm 1. The analysis
is split into three parts corresponding to the three parts in Algorithm 1. The first step is to prove
that the loop in Part 1 quickly terminates.

Lemma 5.5 (Analysis of Part 1). With probability 1 − δ/2, the loop in Lines 2–6 terminates in
time O(k log(1/δ)).

Proof. We prove that a single iteration of the loop succeeds with constant probability. Having
established that fact, it is clear that the loop is left after at most O(log(1/δ)) independent iterations
with probability at least 1− δ/2. Recall that the loop ends if X̃ is γk/2-flat modulo m, that is,

∑
x∈X̃

∑
x′∈X̃

[
x = x′ (mod m)

]
>

2|X̃|
m

 ≤ γk

2
. (2)

Since by definition X̃ = π(X) + {0, p}, we may fix offsets o, o′ ∈ {0, p} and instead bound

∑
x∈X

[∑
x′∈X

[
h(x) + o = h(x′) + o′ (mod m)

]
>

2|X|
m

]
≤ γk

4
, (3)

17

Algorithm 1. TinyUniv-Approx-SetQuery(A,B,U, k,X)

Input: � Nonnegative vectors A,B of length U ≤ k/γ2

� An integer k such that ‖A ? B‖0 ≤ k
� A set X ⊆ [U] of size O(k) such that | supp(A ? B) \X| ≤ o(γ2k)

Output: A vector C̃ such that ‖A ? B − C̃‖0 ≤ γk with probability 1− δ
(Part 1: Find a suitable linear hash function)

1: Let m = Θ(γk), let T = b2|X|/mc and let p ≥ 4U2 be a prime
2: repeat
3: Pick σ, τ ∈ [p] uniformly at random
4: Let π(x) = (σx+ τ) mod p
5: X̃ ← π(X) + {0, p}
6: until X̃ is γk/2-flat modulo m

(Part 2: Set up a sufficiently large finite field)
7: Let q > U3‖A‖∞‖B‖∞ be a prime; the following calculations are over Zq
8: Pick ω ∈ Z×q uniformly at random

(Part 3: Fold – Convolve – Unfold)
9: A0, . . . , AT−1 ← Fold(π(A), ω)

10: B0, . . . , BT−1 ← Fold(π(B), ω)
11: for t← 0, . . . , T − 1 do
12: Ct ← At ?m Bt (using the dense convolution algorithm)
13: R̃← Unfold(C0, . . . , CT−1, ω, X̃)
14: C̃ ← π−1(R̃)
15: return C̃ (cast back to an integer vector)

where h(x) = π(x) mod m is a linear hash function with parameters p and m. Indeed, if the latter
event happens (simultaneously for all offsets o, o′), then also the former event happens. Fix o, o′

and fix any x ∈ X. Then:

P

(∑
x′∈X

[
h(x) + o = h(x′) + o′ (mod m)

]
>

2|X|
m

)

=
∑
a∈[m]

P(h(x) = a) ·P

(∑
x′∈X

[
h(x′) = (a+ o− o′) mod m

]
>

2|X|
m

∣∣∣∣∣ h(x) = a

)

This is where our concentration bounds come into play: Observe that the conditional probability can
be bounded by Corollary 11.3 with buckets a and b = (a+o−o′) mod m. Let F =

∑
x′∈X [h(x′) = b],

then E(F) = |X|/m+O(1). It follows that:

=
∑
a∈[m]

P(h(x) = a) ·P
(
F >

2|X|
m

∣∣∣∣ h(x) = a

)
,

=
∑
a∈[m]

P(h(x) = a) ·P
(
F −E(F) >

|X|
m
−O(1)

∣∣∣∣ h(x) = a

)
,

18

≤
∑
a∈[m]

P(h(x) = a) ·O
(
mU logU

|X|2

)

= O

(
mU logU

|X|2

)
where for the inequality we applied Corollary 11.3 with λ =

√
|X|/m−O(1). We choose m = εγk

for some small constant ε > 0, then:

= O

(
εγkU logU

k2

)
= O

(
εγk(k/γ2) log(k/γ2)

k2

)
= O

(
ε log k

γ

)
= O(ε).

Here we used the assumption log k ≤ 1/γ ≤ poly(k). By setting ε small enough, this probability
becomes less than 1/12. Then, by a union bound over the three possible values of o − o′ and by
Markov’s inequality, we conclude that the event in (3) (and thereby the event in (2)) happens with
probability at least 1/2.

As we just proved, with probability 1− δ/2 the loop in Lines 2–6 runs for at most O(log(1/δ))
iterations. Moreover, each execution of the loop body takes time O(k), and thus the loop terminates
in time O(k log(1/δ)). �

Lemma 5.6 (Analysis of Part 2). With probability 1− 1/ poly(k) and in polylog(k, ‖A‖∞, ‖B‖∞)
time we correctly compute q and ω such that ω has multiplicative order at least U in Z×q .

Proof. Computing q takes time polylog(k, ‖A‖∞, ‖B‖∞) and succeeds with high probability. The
interesting part is to show that ω is as claimed. It is well-known that Z×q is isomorphic to the cyclic
group Zq−1 and thus our problem is equivalent to finding an element in Zq−1 with (additive) order at
least U . In a cyclic group there can be at most i elements with order i (the only possible candidates
are multiples of (q− 1)/i) and thus there are at most

∑
i≤U i ≤ U2 elements with order at most U .

Hence, the probability of sampling ω as claimed is at least 1−U2/q ≥ 1−1/U ≥ 1−1/ poly(k). �

Lemma 5.7 (Analysis of Part 3). With probability 1−1/ poly(k), Part 3 correctly outputs a vector C̃
with ‖A ? B − C̃‖0 ≤ γk and runs in time O(D(k) + k log2(1/γ) + polylog(k, ‖A‖∞, ‖B‖∞)).

Proof. In the event that the previous parts succeeded the technical condition of Lemmas 5.3 and 5.4
is satisfied (namely that ω has large multiplicative order) and we may apply Fold and Unfold. In
Lines 9 and 10 we thus correctly compute At = (ωt•π(A)) mod m, for all t ∈ [T], and similarly forB.
As we are assuming (for now) that the dense convolution algorithm succeeds with probability 1, in
Line 12 we correctly compute the cyclic convolutions Ct = At ?m Bt.

The interesting step is to analyze the unfolding in Line 13. By Proposition 5.2 and some
elementary identities about cyclic convolutions we have

Ct = At ?m Bt

= (ωt • π(A)) ?m (ωt • π(B))

= ((ωt • π(A)) ? (ωt • π(B))) mod m

= (ωt • (π(A) ? π(B))) mod m,

i.e. it holds that Ct = (ωt •R) mod m for R = π(A)?π(B). For that reason, Lemma 5.4 guarantees
that the call to Unfold will approximately recover R and the approximation quality is bounded
by

‖R− R̃‖0 ≤ T · | supp(R) \ X̃|+ Fm(X̃).

19

By the loop guard in Line 6 we can assume that Fm(X̃) ≤ γk/2. We can put the same bound
on the term T · | supp(R) \ X̃|. Indeed, note that since supp(R) ⊆ π(supp(A ? B)) + {0, p} and
X̃ = X + {0, p}, we must have that | supp(R) \ X̃| ≤ 2| supp(A ? B) \X|. It follows that

T · | supp(R) \ X̃| ≤ 2T · | supp(A ? B) \X| ≤ o(γ2k2)

m
,

which becomes γk/2 for sufficiently large k since we picked m = Θ(γk). All in all, this shows that
‖R− R̃‖0 ≤ γk as claimed.

The remaining steps are easy to analyze: Since p is a prime, the function π(x) = (σx+τ) mod p
is invertible on [p] (assuming that σ 6= 0, which happens with high probability). As π(A ? B) = R
and as A ? B is a vector of length U < p it follows that A ? B = π−1(R). In the same way, we
obtain for C̃ = π−1(R̃) that ‖A ? B − C̃‖0 ≤ γk. In the final step we use that q is large enough
(larger than any entry in the convolution A?B), so we can safely cast C̃ back to an integer vector.

Let us finally bound the running time of Part 3. The calls to Fold and Unfold take time
O(k log2(k/m) + k logk U + polylog(q)) = O(k log2(1/γ) + polylog(k, ‖A‖∞, ‖B‖∞)). Computing
T = O(1/γ) convolutions of vectors of length m = O(γk) takes time at most

O

(
1

γ
·D(γk)

)
= O

(
γk

γ
· D(γk)

γk

)
= O

(
k · D(k)

k

)
= O(D(k)),

assuming that D(n)/n is nondecreasing. Summing the two contributions yields the claimed running
time. �

In combination, Lemmas 5.5, 5.6 and 5.7 show that Algorithm 1 is correct and runs in the
correct running time with probability at least 1− δ/2− 1/ poly(k) ≥ 1− δ. This finishes the proof
of Lemma 5.1.

5.3 Corrections for Randomized Dense Convolution

In the previous subsection, we assumed that we have black-box access to a deterministic algorithm
computing the dense convolution of two length-n vectors in time D(n). We will now prove that it
suffices to assume that the black-box algorithm errs with constant probability, say 1/3.

Lemma 5.8. Let log k ≤ 1/γ ≤ poly(k) and let 1/δ ≤ poly(k). There is an algorithm for the
TinyUniv-Approx-SetQuery problem running in time

O(D1/3(k) + k log2(1/γ) + k log(1/δ) + polylog(k, ‖A‖∞, ‖B‖∞)).

The idea is simple: Every call to the randomized dense convolution algorithm is followed by
a call to the verifier presented in Lemma 5.9. If a faulty output is detected, then we repeat the
convolution (with fresh randomness) and test again.

Lemma 5.9 (Dense Verification). Given three vectors A,B,C of length U , there is a randomized
algorithm running in time O(U + polylog(U, ‖A‖∞, ‖B‖∞)), which checks whether A?B = C. The
algorithm fails with probability at most 1/ poly(U).

The proof of Lemma 5.9 is by a standard application of the classical Schwartz-Zippel lemma;
in Section 9 we prove a more general statement about a sparse verifier. We also need the following
tail bound on the sum of geometric random variables [33]:

Theorem 5.10 ([33, Theorem 2.1]). Let X1, . . . , Xn be independent, identically distributed geo-
metric random variables, and let X =

∑
iXi. Then, for any λ ≥ 1:

P(X > λE(X)) ≤ exp(−n(λ− 1− lnλ)).

20

Proof of Lemma 5.8. The overall proof is exactly as for Lemma 5.1, we merely substitute the black-
box calls to the dense convolution algorithm. The only place where this algorithm is directly called
is in the proof of Lemma 5.7, where we compute T = O(1/γ) convolutions of length m = O(γk).
Each such call is replaced by a test-and-repeat loop using the verifier in Lemma 5.9. As the failure
probability of the verifier is at most 1/ poly(m) = 1/ poly(k), we can afford a union bound and
assume that the verifier never fails, i.e., we uphold the assumption that dense convolution succeeds.

It remains to bound the running time overhead. A single iteration of the test-and-repeat loop
takes time O(D1/3(m) +m) = O(D1/3(m)). To bound the number of iterations X =

∑
iXi, let Xi

model the number of iterations caused by the i-th dense convolution call. Observe that Xi is
geometrically distributed with parameter p = 2/3 and thus E(X) = 3T/2. By Theorem 5.10 with,
say, λ = 4, it follows that P(X > 4E(X)) ≤ exp(−T) ≤ exp(−Ω(1/γ)). Using that log k ≤ 1/γ, the
number of iterations is bounded by 6T with high probability 1− 1/ poly(k) and therefore the total
running time to answer all dense convolution queries is bounded byO(TD1/3(m)) = O(D1/3(k)). �

6 Approximating the Support Set

This section is devoted to finding a set X which closely approximates supp(A?B). To that end, our
goal is to solve the following problem, which is later applied with Y = supp(A) and Z = supp(B).

Problem (TinyUniv-ApproxSupp).
Input: Sets Y,Z ⊆ [U] and an integer k, such that U ≤ k/γ and |Y + Z| ≤ k.
Task: Compute a set X of size O(k) such that |(Y + Z) \X| ≤ γk.

Lemma 6.1. There is an O(k log(1/γ) log(1
γδ))-time algorithm for the TinyUniv-ApproxSupp

problem.

A key ingredient to the algorithm is the following routine to approximately compute sumsets,
which we shall refer to as Indyk’s algorithm.

Theorem 6.2 (Randomized Boolean Convolution [28]). There exists an algorithm which takes as
input two sets Y,Z ⊆ [U], and in time O(U) outputs a set O ⊆ Y +Z, such that for all x ∈ Y +Z
we have P(x ∈ O) ≥ 99

100 .

The algorithm claimed in Lemma 6.1 is given in Algorithm 2. For the remainder of this section,
we will analyze this algorithm in several steps. We shall call the iterations of the outer loop levels
and call an element x a witness at level ` if x ∈ Y` +Z`. Otherwise, we say that x is a non-witness.
Fix a level ` and consider a single iteration of the inner loop (Lines 8–13). The voting probability
of x at level ` is the probability that x is given a vote in Line 13. Recall that in every such iteration,
we pick a random linear hash function h : [U]→ [m] using fresh randomness. The following lemmas
prove that witnesses have large voting probability and non-witnesses have small voting probability.

Lemma 6.3 (Witnesses have Large Voting Probability). At any level `, the voting probability of
a witness x is at least 99

100 .

Proof. Recall that if x is a witness at level `, then x = y + z for some y ∈ Y` and z ∈ Z`. By the
almost-affinity of linear hashing (Lemma 4.1), it holds that h(y) +h(z) = h(x) +h(0) + o (mod m)
for some offset o ∈ {−p, 0, p}. It follows that (h(x) + h(0) + o) mod m is an element of the sumset
(h(Y`) + h(Z`)) mod m. However, in order for x to gain a vote, this condition must be true for the
set O returned by Indyk’s algorithm. By the guarantee of Theorem 6.2, O contains every element
of h(Y`) + h(Z`) with probability at least 99

100 , which yields the claim. �

21

Algorithm 2. TinyUniv-ApproxSupp(Y, Z, U, k)

Input: Sets Y, Z ⊆ [U] over a universe U ≤ k/γ such that |Y + Z| ≤ k
Output: A set X ⊆ [U] of size O(k) such that |(Y + Z) \X| ≤ γk
1: Let m = 40k and pick a prime p ≥ U
2: Let L = dlog(1/γ)e
3: XL ← {0, 1, . . . , dU/2`e}
4: for `← L− 1, . . . , 1, 0 do
5: Y` ← Y div 2`

6: Z` ← Z div 2`

7: M ← 2X`+1 + {0, 1, 2}
8: repeat R = Θ(log(1/γ) + log(1/δ)) times
9: Randomly pick a linear hash function h with parameters p and m

10: O ← output of Indyk’s algorithm (Theorem 6.2) with input h(Y`), h(Z`)
11: for x ∈M do
12: if (h(0) + h(x) + o) mod m ∈ (O mod m) for some o ∈ {−p, 0, p} then
13: Give a vote to x
14: X` ← all elements in M that have gathered at least 3R/4 votes
15: return X = X0

Lemma 6.4 (Non-Witnesses have Small Voting Probability). At any level `, the voting probability
of a non-witness x is at most 1/2.

Proof. Given the fact that Indyk’s algorithm never returns a false positive, it suffices to prove
that none of the three values (h(0) + h(x) + {−p, 0, p}) mod m is contained in the sumset (h(Y`) +
h(Z`)) mod m, with sufficiently large probability. By the almost-affinity of h, we have

h(Y`) + h(Z`) mod m ⊆ (h(0) + h(Y` + Z`) + {−p, 0, p}) mod m.

So fix some offsets o, o′ ∈ {−p, 0, p} and some witness x′ ∈ Y` +Z`. As x is not a witness, we must
have x 6= x′. It suffices to bound the following bound the probability:

P(h(0) + h(x) + o = h(0) + h(x′) + o′ mod m) = P(h(x) = (h(x′) + o′ − o) mod m) ≤ 4

m
,

where in the last step we applied the universality of h (Lemma 4.1). By a union bound over the
five possible values of o′ − o and over all witnesses x′, we conclude that the voting probability of x
is at most 20|Y` + Z`|/m ≤ 20k/m ≤ 1/2. �

We are now ready to prove Lemma 6.1. We shall do it in two steps: First we bound the running
time and the number of false positives, i.e. |X \ (Y +Z)|, and second the number of false negatives,
i.e. |(Y + Z) \X|.

Lemma 6.5 (Running Time of Algorithm 2). With probability 1−δ/2, Algorithm 2 outputs a set X
of size O(k), and its running time is O(k log(1/γ) log(1

γδ)).

Proof. Fix any level `. By Lemma 6.4 we know that the voting probability of any non-witness x is
at most 1/2. Thus, by an application of Chernoff’s bound, the probability that x receives more than
3R/4 votes over all R = Ω(logL+ log(1/δ)) rounds is at most 2−Ω(R) ≤ δ/(12L) by appropriately
choosing the constant in the definition of R (in the upcoming Lemma 6.6 we will see why R is even

22

slightly larger). By Markov’s inequality, we obtain that with probability 1− δ/(2L) the number of
non-witness elements in M which will be inserted in X` is at most |M |/6 ≤ 3|X`+1|/6. By a union
bound over all levels, with probability 1− δ/2 we get that

|X`| ≤ k +
1

2
|X`+1|,

for all ` ∈ [L]. As initially |XL| ≤ k it follows by induction that |X`| ≤ (
∑∞

i=0 1/2i)k = 2k. In
particular we have that |X| = |X0| = O(k), as claimed.

The total running time of the algorithm can be split into two parts: (i) the time spent on
running Indyk’s algorithm in Line 10, and (ii) the time needed to iterate over all elements x ∈ M
across all levels and assign them votes (Line 13). The former is O(mLR) = O(kLR) (recall that
Indyk’s algorithm runs for sets over the universe [m]) and also the latter is∑

`∈[L]

O(|X`|R) =
∑
`∈[L]

O(kR) = O(kLR).

Together, we obtain the desired bound on the running time O(kLR) = O(k log(1/γ) log(1
γδ)). �

Lemma 6.6 (Correctness of Algorithm 2). With probability 1− δ/2, Algorithm 2 correctly outputs
a set X with |(Y + Z) \X| ≤ γk.

Proof. Fix any y ∈ Y, z ∈ Z and define y` = b y
2`
c, z` = b z

2`
c and x` = y` + z`. The first step is to

prove that x` ∈ 2{x`+1}+ {0, 1, 2}. Indeed, from the basic inequalities 2bac ≤ b2ac ≤ 2bac+ 1, for
all rationals a, it follows directly that

x` − 2x`+1 =
⌊ y

2`

⌋
+
⌊ z

2`

⌋
− 2

⌊ y

2`+1

⌋
− 2

⌊ z

2`+1

⌋
≤ 2,

and in the same way x` − 2x`+1 ≥ 0.
Coming back to the algorithm, we claim that with probability 1−δγ/2, x = y+z will participate

in X. It suffices to show that with the claimed probability, for all levels ` the element x` belongs
toX`. Note that trivially xL ∈ XL. Fix a specific level `. Conditioning on x`+1 ∈ X`+1, it will be the
case that x` is inserted into M = 2X` + {0, 1, 2} in Line 7, by the fact that x` ∈ 2{x`+1}+ {0, 1, 2}.
Moreover, recall that x` is a witness at level ` and thus, by Lemma 6.3, its voting probability is at
least 99

100 . Therefore it receives more than 3R/4 votes and is inserted into X` with probability at
least 1− 2−Ω(R) ≥ 1− δγ/(2L). Taking a union bound over all levels we obtain that x is contained
in X with probability 1− δγ/2, and hence we can apply Markov’s inequality to conclude that with
probability 1− δ/2 it is the case that |(Y + Z) \X| ≤ γk. �

This finishes the proof of Lemma 6.1. Putting together the results from the previous section
(Lemma 5.8) and this section (Lemma 6.1 with γ′ = o(γ2)), we have established an efficient algo-
rithm to approximate convolutions in a tiny universe:

Lemma 6.7. Let log k ≤ 1/γ ≤ poly(k) and let 1/δ ≤ poly(k). There is an algorithm for the
TinyUniv-Approx-SparseConv problem running in time

O(D1/3(k) + k log(1/γ) log(1
γδ) + polylog(k, ‖A‖∞, ‖B‖∞)).

7 Universe Reduction from Small to Tiny

The goal of this section is to prove that approximating convolutions in a small universe (that is, a
universe of size U = poly(k)) reduces to approximating convolutions in a tiny universe.

23

Algorithm 3. SmallUniv-Approx-SparseConv(A,B,U, k)

Input: Nonnegative vectors A,B of length U , an integer k such that ‖A?B‖0 ≤ k and U = poly(k)
Output: A vector C̃ with ‖A ? B − C̃‖0 ≤ δk, with probability 1− δ
1: Let p > U be a prime and let m = d320k/δ2e
2: Randomly pick a linear hash function with parameters p and m

(Approximate V = h(A) ?m h(B))
3: Ṽ 1 ← TinyUniv-Approx-SparseConv(h(A), h(B),m, k) with parameter δ/6
4: Ṽ ← Ṽ 1 mod m

(Approximate W = h(∂A) ?m h(B) + h(A) ?m h(∂B))
5: W̃ 1 ← TinyUniv-Approx-SparseConv(h(∂A), h(B),m, k) with parameter δ/6
6: W̃ 2 ← TinyUniv-Approx-SparseConv(h(A), h(∂B),m, k) with parameter δ/6
7: W̃ ← (W̃ 1 + W̃ 2) mod m

8: C̃ ← 0
9: for i ∈ supp(Ṽ) do

10: x← W̃i/Ṽi
11: if x is an integer then
12: C̃x ← C̃x + Ṽi
13: return C̃

Problem (SmallUniv-Approx-SparseConv).
Input: Nonnegative vectors A,B of length U , an integer k such that ‖A?B‖0 ≤ k and U = poly(k).
Task: Compute C̃ such that ‖A ? B − C̃‖0 ≤ γk with success probability 1− δ.

For the rest of the reduction we will set γ = δ.

Lemma 7.1. Let log k ≤ 1/δ = 1/γ. There is an algorithm for the SmallUniv-Approx-Sparse-
Conv problem running in time O(D1/3(k) + k log2(1/δ) + polylog(k, ‖A‖∞, ‖B‖∞)).

Our goal is to drastically reduce the universe size from poly(k) to k/δ2, while being granted to
introduce up to δk errors in the output. The idea is to use linear hashing to reduce the universe
size. Then, to recover a vector in the original universe, we use a trick first applied by Huang [27].
For a vector A, let ∂A denote the vector with (∂A)i = iAi (there is an analogy to derivatives of
polynomials, hence the symbol). In essence we exploit the following familiar identity.

Proposition 7.2 (Product Rule). Let A,B be vectors. Then ∂(A ? B) = ∂A ? B +A ? ∂B.

Proof. For any coordinate x:

(∂A ? B +A ? ∂B)x =
∑
y+z=x

(∂A)yBz +Ay(∂B)z =
∑
y+z=x

(y + z)AyBz = (∂(A ? B))x. �

For the remainder of this section we analyze the procedure in Algorithm 3. Let h be a random
linear hash function with parameters p and m. We say that an index x ∈ supp(A ? B) is isolated
if there is no other index x′ ∈ supp(A ? B) with h(x′) ∈ (h(x) + {−2p,−p, 0, p, 2p}) mod m.

Lemma 7.3 (Most Indices are Isolated). With probability 1 − δ/2, the number of non-isolated
indices x ∈ supp(A ? B) is at most δk/8.

Proof. For any fixed integer o, the probability that h(x′) = h(x) + o (mod m) is at most 4/m
by the universality of linear hashing (Lemma 4.1). By taking a union bound over the five values

24

o ∈ {−2p,−p, 0, p, 2p} and the | supp(A ? B)| ≤ k values of x′, the probability that x is isolated is
at least 1 − 20k/m. As m = 320k/δ2, any index x ∈ supp(A ? B) is isolated with probability at
least 1− δ2/16. The statement follows by an application of Markov’s inequality. �

Recall that V = h(A) ?m h(B) and W = h(∂A) ?m h(B) + h(A) ?m h(∂B).

Lemma 7.4 (Isolated Indices are Recovered). Let x be isolated. Then
∑

i Vi = (A ? B)x, where i
runs over (h(0) + h(x) + {−p, 0, p}) mod m. Furthermore, for any such i it holds that Wi = xVi.

Proof. Let x ∈ supp(A?B) be isolated and let y ∈ supp(A) and z ∈ supp(B) be such that x 6= y+z.
We claim that h(y) + h(z) 6= h(0) + h(x) + o (mod m) for all o ∈ {−p, 0, p}. Assume the contrary,
then by almost-affinity (Lemma 4.1) we have that h(y) + h(z) = h(0) + h(y + z) + o′ (mod m)
for some o′ ∈ {−p, 0, p} and thus h(y + z) = h(x) + o − o′ (mod m). This is a contradiction as
y + z ∈ supp(A ? B) and o− o′ ∈ {−2p,−p, 0, p, 2p} but x is assumed to be isolated.

Recall that V = h(A) ?m h(B), and let i ∈ (h(0) + h(x) + {−p, 0, p}) mod m. For convenience,
we write ≡ to denote equality modulo m. From the previous paragraph it follows that

Vi =
∑
y,z

h(y)+h(z)≡i

AyBz =
∑
y+z=x

h(y)+h(z)≡i

AyBz.

By another application of almost-affinity it is immediate that
∑

i Vi =
∑

y+z=xAxBy = (A ? B)x.
Moreover, we can express Wi in a similar way: By repeating the previous argument twice, once
with ∂A in place of A and once with ∂B in place of B, we obtain that

Wi =
∑
y+z=x

h(y)+h(z)≡i

(∂A)yBz +
∑
y+z=x

h(y)+h(z)≡i

Ay(∂B)z =
∑
y+z=x

h(y)+h(z)≡i

(y + z)AyBz = xVi. �

Lemma 7.5 (Correctness of Algorithm 3). With probability 1− δ, Algorithm 3 correctly outputs a
vector C̃ with ‖A ? B − C̃‖0 ≤ O(δk).

Proof. We call an iteration i ∈ supp(Ṽ) good if (i) Vi = Ṽi, (ii) Wi = W̃i, and (iii) for some isolated
element x ∈ supp(A ? B) it holds that i ∈ (h(0) + h(x) + {−p, 0, p}) mod m. Otherwise, i is bad.
We start analyzing the algorithm with the unrealistic assumption that all iterations are good.

Focus on an arbitrary iteration i. By assumption (iii) there exists some element x ∈ supp(A?B)
such that i ∈ (h(0)+h(x)+{−p, 0, p}) mod m. Moreover, by Lemma 7.4 and assumptions (i), (ii) we
have the algorithm correctly detects x = W̃i/Ṽi = Wi/Vi, and hence, over the course of the at most
three iterations with i ∈ (h(0)+h(x)+{−p, 0, p}) mod m we correctly assign C̃x ←

∑
i Vi = (A?B)x

in Line 12. Under the unrealistic assumption it follows that C̃ = A ? B after all iterations.
We will now remove the unrealistic assumption. Clearly there is no hope of recovering the

non-isolated elements, but Lemma 7.3 proves that there are at most δk/8 non-isolated elements
with probability 1 − δ/2. Any isolated element will be recovered if it happens to show up in a
good iteration as shown in the previous paragraph. It suffices to prove that the number of bad
iterations is at most 7δk/8. Then, as any iteration modifies C̃ in at most one position, it follows
that ‖A ? B − C̃‖0 ≤ δk.

On the one hand, with probability 1− δ/2, all three calls to the TinyUniv-Approx-Sparse-
Conv algorithm succeed and we have that ‖V − Ṽ ‖0 ≤ δk/6 and similarly ‖W − W̃‖0 ≤ δk/3. So
there can be at most δk/2 iterations for which either assumption (i) or (ii) fails. On the other
hand, we assumed that there are at most δk/8 non-isolated indices and any non-isolated index
leads to at most three iterations for which (iii) fails. It follows that in total there are at most
δk/2 + 3δ/8 = 7δ/8 bad iterations. �

25

It is easy to see that the running time of Algorithm 3 is dominated by the calls to TinyUniv-
Approx-SparseConv and thus bounded by O(D1/3(k) + k log2(1/δ) + polylog(k, ‖A‖∞, ‖B‖∞)),
see Lemma 6.7. This completes the proof of Lemma 7.1.

8 Error Correction

In the previous sections, the goal was design algorithms to approximate convolutions. In this step,
we show how to clean up the errors and turn the approximations into exact convolutions. Formally,
we give an algorithm for the following problem:

Problem (SmallUniv-SparseConv).
Input: Nonnegative vectors A,B of length U , an integer k such that ‖A?B‖0 ≤ k and U = poly(k).
Task: Compute A ? B with success probability 1− δ.

Lemma 8.1. Let log2 k ≤ 1/δ. There is an algorithm for the SmallUniv-SparseConv problem
running in time O(D1/3(k) + k log2(1/δ) + polylog(k, ‖A‖∞, ‖B‖∞)).

This is the only part of the reduction for which we cannot use linear hashing, as the recovery
loop crucially relies on certain cancellations to take place. The problem is that linear hashing is
only almost – not perfectly – affine. Instead, we use a simpler hash function: Let g(x) = x mod p,
where p is a random prime in some specified range. The following basics are well-known and much
simpler in comparison to linear hashing (cf. Lemma 4.1).

Lemma 8.2 (Hashing Modulo a Random Prime). Let g(x) = x mod p where p is a random prime
in the range [m, 2m]. Then the following properties hold:

Universality: For distinct keys x, y ∈ [U]: P(g(x) = g(y)) ≤ 2 log(U)/m.

Affinity: For arbitrary keys x, y: g(x) + g(y) = g(x+ y) (mod p).

Proof. The affinity property is obvious, so focus on universality and fix two distinct keys x, y ∈ [U].
It holds that g(x) = g(y) if and only if p divides x− y. Since |x− y| ≤ U , x− y has at most logm U
distinct prime factors in the range [m, 2m]. On the other hand, by a quantitative version of the
Prime Number Theorem [58, Corollary 3], there are at least 3m

5 lnm primes in the range [m, 2m] (for
sufficiently large m). Hence, the probability that p divides x−y is at most 5 logm(U) ln(m)/(3m) ≤
2 log(U)/m. �

We analyze Algorithm 4. We shall refer to iterations of the outer loop as levels `. An element
x ∈ supp(A ?B −C`−1) is isolated at level ` if there exists no x′ ∈ supp(A ?B −C`−1) with x 6= x′

and g(x) = g(x′), where g is the function picked at the `-th level.

Lemma 8.3 (Most Indices are Isolated). Let ` be any level. If

‖A ? B − C`−1‖0 ≤
2−1.5`−1

k

log2(k)
,

then with probability 1− δ/(2L), there will be at most

2−1.5`k

2 log2(k)

non-isolated elements at level `.

26

Algorithm 4. SmallUniv-SparseConv(A,B,U, k)

Input: Nonnegative vectors A,B of length U , an integer k such that ‖A?B‖0 ≤ k and U = poly(k)
Output: C = A ? B with probability 1− δ
1: Let m = 8k log(U)

log2(k)
2: C0 ← SmallUniv-Approx-SparseConv(A,B,U, k) with parameter δ/2
3: for `← 1, . . . , L = O(log log k) do
4: repeat d2 log(2L/δ)/1.5`−1e times
5: Randomly pick a prime p ∈ [m, 2m] and let g(x) = x mod p
6: V ← g(A) ?p g(B)− g(C`−1) using FFT
7: W ← g(∂A) ?p g(B) + g(A) ?p g(∂B)− g(∂C`−1) using FFT
8: Keep g, V,W for which ‖V ‖0 is maximized
9: C` ← C`−1

10: for i ∈ supp(V) do
11: x←Wi/Vi
12: if x is an integer then
13: C`x ← C`x + Vi
14: return C = CL

Proof. We will prove the statement in three steps. First: A random hash function g achieves that
there are at most 2−1.5`k log−2(k)/4 non-isolated elements with probability at least 1 −

√
2−1.5`−1.

Indeed, for any fixed x ∈ supp(A ?B −C`−1) there are at most ‖A ?B −C`−1‖0 other elements x′

that x could collide with. For fixed x, x′ the collision probability is at most

P(g(x) = g(x′)) ≤ 2 log(U)

m
≤ 2 log(U) log2(k)

8k log(U)
=

log2(k)

4k

by universality, see Lemma 8.2. By taking a union bound over all elements x′, we obtain that x
is non-isolated with probability at most ‖A ? B − C`−1‖0 · log2(k)/4k and we thus expect at most
‖A ? B − C`−1‖20 · log2(k)/4k non-isolated elements. By Markov’s inequality, the probability that

there are there are more than 2−1.5`k log−2(k)/4 non-isolated elements is at most

‖A ? B − C`−1‖20 ·
log2(k)

4k

2−1.5`k
4 log2(k)

≤ (2−1.5`−1
)2

2−1.5`
=
√

2−1.5`−1 .

Second: With probability 1−δ/(2L), running d2 log(2L/δ)/1.5`−1e independent trials will result

in at least one function g under which there are at most 2−1.5`k log−2(k)/4 non-isolated elements
I.e., at some time during the execution of the inner loop in Lines 4–7 we find a good hash function g.
Indeed, the failure probability is at most(√

2−1.5`−1
)2 log(2L/δ)/1.5`−1

=
δ

2L
.

Third: If there are at most r non-isolated elements then ‖V ‖0 ≥ ‖A ? B − C`−1‖0 − r and
conversely, if ‖V ‖0 ≥ ‖A ? B − C`−1‖0 − r then there can be at most 2r non-isolated elements.
Recall that by affinity (Lemma 8.2) the algorithm exactly computes V = g(A ? B − C`−1). As
every isolated element x is the unique element in its bucket i = g(x) it follows directly that

27

‖V ‖0 ≥ ‖A ? B − C`−1‖0 − r without accounting for the non-isolated elements. For the converse
direction we note that there is a way of “ignoring” r elements x ∈ supp(A ? B − C`−1) such that
all other elements become isolated. The number of non-isolated elements is thus at most r (the
ignored elements) plus r (the number elements colliding with one of the ignored elements).

The statement follows by combining the second and third intermediate claims: By the second
claim, the inner loop (Lines 4–7) will eventually discover some hash function g under which we

have at most 2−1.5`k log−2(k)/4 non-isolated elements and thus, by the third claim, ‖V ‖0 ≥ ‖A ?

B − C`−1‖0 − 2−1.5`k log−2(k)/4. As the algorithm selects the function which maximizes ‖V ‖0,

the third claim proves that whatever function is kept in Line 8 leads to at most 2−1.5`k log−2(k)/2
non-isolated elements. �

Lemma 8.4 (Isolated Indices are Recovered). Denoting the umber of non-isolated elements at
level ` by r, we have ‖A ? B − C`‖0 ≤ 2r.

Proof. Focus on arbitrary `, and assume that we already picked a hash function g in Lines 4–8.
By the affinity of g it holds that V = g(A ? B − C`−1) and, by additionally using the product rule
(Proposition 7.2), W = g(∂(A ? B − C`−1)).

Now focus on an arbitrary iteration i ∈ supp(V) of the second inner loop in Lines 10–13. There
must exist some x ∈ supp(A ? B − C`−1) with g(x) = i. If x is isolated then we will correctly
set C`x = (A ? B)x. Indeed, from the isolation of x it follows that Vi = (A ? B − C`−1)x and
Wi = (∂(A?B−C`−1))x = xVi. Thus x is correctly detected in Line 11 and in Line 13 we correctly
assign C`x ← C`−1

x + Vi = (A ? B)x.
The previous paragraph shows that if at level ` all elements were isolated, we would compute

C` = A?B. We analyze how this guarantee is affected by the bad iterations i for which there exist
several (non-isolated) elements x ∈ supp(A ? B − C`−1) with g(x) = i. Clearly we cannot hope
to correctly assign the r entries C`x for which x is non-isolated. Additionally, there are at most r
bad iterations, each of which potentially modifies C` in at most one position. We conclude that
‖A ? B − C`‖0 ≤ 2r. �

Lemma 8.5 (Correctness of Algorithm 4). With probability 1 − δ, Algorithm 4 correctly outputs
C = A ? B.

Proof. We show that with probability 1− δ it holds that ‖A ? B − C`‖0 ≤ 2−1.5`k log−2(k) for all
levels `. In particular, at the final level L = log1.5 log k = O(log log k) we must have ‖A?B−C`‖0 = 0
and thus A ? B = C` = C.

The proof is by induction on ` ∈ [L + 1]. For ` = 0, the statement is true assuming that
the SmallUniv-Approx-SparseConv algorithm with parameter δ/2 ≤ log−2(k)/2 succeeds.
For ` > 1, we appeal to the previous lemmas: By the induction hypothesis we assume that ‖A?B−
C`−1‖0 ≤ 2−1.5`−1

k log−2(k). Hence, by Lemma 8.3, the algorithm picks a hash function g under

which only 2−1.5`k log−2(k)/2 elements are non-isolated at level `. By Lemma 8.4 it follows that

‖A ? B − C`‖0 ≤ 2−1.5`k log−2(k), which is exactly what we intended to show.
Let us analyze the error probability: For ` = 0, the error probability is δ/2. For any other

level (there are at most L such), the error probability is 1− δ/(2L) by Lemma 8.3. Taking a union
bound over these contributions yields the claimed error probability of 1− δ. �

Lemma 8.6 (Running Time of Algorithm 4). The running time of Algorithm 4 is bounded by
O(D1/3(k) + k log2(1/δ) + polylog(k, ‖A‖∞, ‖B‖∞)).

Proof. We invoke SmallUniv-Approx-SparseConv a single time with parameter δ/2 which
takes time exactly as claimed, see Lemma 7.1. After that, the running is O(k log(1/δ)) mostly due

28

to the inner loop in Lines 4–7: A single execution of the loop body takes time O(k) for hashing
the six vectors A, ∂A,B, ∂B,C`−1, ∂C`−1 and for computing three convolutions of vectors of length
m = O(k/ log k) using FFT. It remains to bound the number of iterations:

L∑
`=1

⌈
2 log(2L/δ)

1.5`−1

⌉
≤ L+

L∑
`=1

2 log(2L/δ)

1.5`−1
= O(L+ log(L/δ)) = O(log(1/δ)). �

This finishes the proof of Lemma 8.1.

9 Estimating k

In this section we remove the assumption that an estimate k ≥ ‖A ? B‖0 is given as part of the
input. Let us redefine the meaning of k as k = ‖A ? B‖0 and refer to the estimate as k∗ ≥ k.

Lemma 9.1. Let log2 k ≤ 1/δ. There is an algorithm for the restricted SmallUniv-SparseConv
problem which does not expect a bound k∗ ≥ ‖A ? B‖0 as part of the input, running in time
O(D1/3(k) + k log2(1/δ) + polylog(k, ‖A‖∞, ‖B‖∞)).

The idea is to use exponential search to guess some k∗ ≥ ‖A ? B‖0. We need the following
subroutine:

Lemma 9.2 (Sparse Verification). Given three vectors A,B,C of length U = poly(k) and sparsity
at most k, there is a randomized algorithm running in time O(k+ polylog(k, ‖A‖∞, ‖B‖∞)), which
checks whether A ? B = C. The algorithm fails with probability at most 1/ poly(k).

The idea is standard: We can view A, B and C as polynomials via A =
∑

iAix
i and similarly

for B and C. In that viewpoint, the role of the convolution operator is taken by polynomial
multiplication, i.e. it suffices to check whether AB = C. This is a polynomial identity testing
problem which can be classically solved by the Schwartz-Zippel lemma.

Proof. First check whether ‖C‖∞ > k‖A‖∞‖B‖∞ and reject in this case. Otherwise compute a
prime p > kU + k‖A‖∞‖B‖∞. We view A, B and C as polynomials over Zp, by interpreting
A =

∑
iAix

i and similarly for B and C. Next, sample a random point x ∈ Zp. We use the bulk
exponentiation algorithm (Lemma 4.2) to precompute all relevant powers xi and then evaluate
A(x), B(x) and C(x) at x. If A(x)B(x) = C(x), then we accept (confirming that A ? B = C),
otherwise we reject.

If A ? B = C, then this algorithm is always correct. So suppose that A ? B 6= C, and let
D = AB − C. Over the integers it is clear that D is not the zero polynomial, and since p is large
enough it also holds that D is nonzero over Zp. The algorithm essentially evaluates D at a random
point x ∈ Zp and accepts if and only if D(x) = 0. The error event is that D(x) = 0 despite D
being nonzero as a polynomial. Recall that D has degree at most U , so it has at most U zeros.
Therefore, the probability of hitting a zero is at most U/p < 1/k.

Finally, we analyze the running time. Computing p takes time polylog(k, ‖A‖∞, ‖B‖∞). Pre-
computing the powers of x takes time O(k logk U) = O(k) by Lemma 4.2, and also evaluat-
ing A, B and C at x takes time O(k). Note that all arithmetic operations carried out in these
steps are over Zp and since a single element of Zp can be written down using a constant num-
ber of machine words, each ring operation takes constant time. As claimed, the total time is
O(k + polylog(k, ‖A‖∞, ‖B‖∞)). �

Proof of Lemma 9.1. The algorithm is simple: Let k0 = ‖A‖0+‖B‖0 and loop through all estimates
k∗ ← 20k0, 2

1k0, 2
2k0, For every such k∗, run the SmallUniv-SparseConv algorithm with

29

estimate k∗ to compute a vector C, followed by a call to the sparse verifier (Lemma 9.2) which
checks whether indeed A ? B = C.

We write k = ‖A?B‖0 for the actual sparsity of the convolution. After dlog(k/k0)e iterations we
cross the threshold k ≤ k∗. At this point, the SmallUniv-SparseConv algorithm is guaranteed
to be correct with probability, say, δ/2. We claim that also the verifier is correct in every iteration:
By the trivial bound k ≤ ‖A‖0 · ‖B‖0 ≤ k2

0 it follows that the verifier fails with probability at
most 1/ poly(k∗) ≤ 1/ poly(k0) ≤ 1/ poly(k). By a union bound over the O(log k) iterations it
follows that with probability 1/ poly(k) the verifier never errs. The total error probability is thus
1− δ/2− 1/ poly(k) ≤ 1− δ.

It remains to bound the running time. We can assume that each call to our sparse convolution
algorithm runs in time O(D1/3(k∗) + k∗ log2(1/δ) + polylog(k∗, ‖A‖∞, ‖B‖∞)) even if we provide
a wrong estimate k∗. This assumption can be guaranteed by counting the number of computation
steps and aborting after the algorithm exceeds this time budget. Therefore, the total running time
is

dlog(k/k0)e∑
i=0

O(D1/3(k/2i) + k/2i log2(1/δ) + polylog(k/2i, ‖A‖∞, ‖B‖∞))

≤ O

(∞∑
i=0

D1/3(k/2i)

)
+O(k log2(1/δ) + polylog(k, ‖A‖∞, ‖B‖∞)).

Recall that we assume that D1/3(n)/n is a nondecreasing function, hence the first term can be
bounded by

O

(∞∑
i=0

k

2i
D1/3(k/2i)

k/2i

)
= O

(∞∑
i=0

k

2i
D1/3(k)

k

)
= O(D1/3(k)). �

10 Universe Reduction from Large to Small

The final step in our chain of reductions is to reduce from an arbitrarily large universe to a small
universe (that is, a universe of size U = poly(k)). We thereby solve the SparseConv problem and
complete the proof of Theorem 1.2.

Problem (SparseConv).
Input: Nonnegative vectors A,B and a parameter δ > 0.
Task: Compute A ? B with success probability 1− δ.

Lemma 10.1. Let log2 k ≤ 1/δ. There is an algorithm for the SparseConv problem running in
time O(D1/3(k) + k log2(1/δ) + polylog(U, ‖A‖∞, ‖B‖∞)).

We will prove Lemma 10.1 by analyzing Algorithm 5, which in essence is a simpler version of
Algorithm 3. For that reason, we will be brief in this section. Recall that we cannot assume to
have an estimated upper bound k∗ on k = ‖A ? B‖0.

As in Section 7, we call x ∈ supp(A?B) isolated if there exists no other index x′ ∈ supp(A?B)
with h(x′) ∈ (h(x) + {−2p,−p, 0, p, 2p}) mod m.

Lemma 10.2 (All Indices are Isolated). With probability 1−1/poly(k), all indices x ∈ supp(A?B)
are isolated.

Proof. The probability that h(x′) = h(x)+o (modm) is at most 4/m, for any distinct keys x, x′ and
any fixed integer o, by the universality of linear hashing (Lemma 4.1). By taking a union bound over

30

Algorithm 5. SparseConv(A,B,U)

Input: Nonnegative vectors A,B of length U
Output: C = A ? B, with probability 1− δ
1: Let m = (‖A‖0 · ‖B‖0)3 and let p > Um be a prime
2: Randomly pick a linear hash function with parameters p and m

(Compute V = h(A) ?m h(B))
3: V 1 ← SparseUniv-SparseConv(h(A), h(B),m) with parameter δ/6
4: V ← V 1 mod m

(Compute W = h(∂A) ?m h(B) + h(A) ?m h(∂B))
5: W 1 ← SmallUniv-SparseConv(h(∂A), h(B),m) with parameter δ/6
6: W 2 ← SmallUniv-SparseConv(h(A), h(∂B),m) with parameter δ/6
7: W ← (W 1 +W 2) mod m

8: C ← (0, . . . , 0) ∈ ZU

9: for i ∈ supp(V) do
10: x←Wi/Vi
11: if x is an integer then
12: Cx ← Cx + Vi
13: return C

the five values o ∈ {−2p,−p, 0, p, 2p} and the k2 values of (x, x′), the probability that all indices x
are isolated is at least 1− 20k2/m. The statement follows since m = (‖A‖0 · ‖B‖0)3 ≥ k3. �

Proof of Lemma 10.1. To use the SmallUniv-SparseConv algorithm, we only have to guarantee
that the hashed vectors have length at most poly(k), which is true by m = (‖A‖0 · ‖B‖0)3 ≤ k6.
Therefore, with probability 1 − δ/2 it holds that V and W are correctly computed. And, by
Lemma 10.2, with probability 1 − 1/poly(k) we have that all indices x are isolated. Both events
happen simultaneously with probability at least 1− δ, so for the rest for the proof we condition on
both these events. By exactly the same proof as Lemma 7.4 we get that

(A ? B)x =
∑
i

Vi,

where i runs over (h(0) + h(x) + {−p, 0, p}) mod m, and, for any such i it holds that Wi = xVi. In
particular, in Line 10 we correctly identify x = Wi/Vi and thus correctly assign Cx =

∑
i Vi over

the course of the at most three iterations i.
As the recovery loop in Lines 9–12 takes time O(k), the total running time is dominated by the

convolutions in a small universe taking time O(D1/3(k) + k log2(1/δ) + polylog(U, ‖A‖∞, ‖B‖∞)),
as shown in Lemma 8.1. Here, in contrast to before, we cannot replace U by k in the additive term
polylog(U, ‖A‖∞, ‖B‖∞), since the entries of ∂A are as large as U‖A‖∞. �

11 Concentration Bounds for Linear Hashing

In this section we sharpen the best-known concentration bounds for the most classic textbook hash
function

h(x) = ((σx+ τ) mod p) mod m,

31

for a certain range of parameters. Here, p is some (fixed) prime, m ≤ p is the (fixed) number of
buckets and σ, τ ∈ [p] are chosen uniformly and independently at random. We say that h is a linear
hash function with parameters p and m.

Our main goal is to prove the following Theorem 11.2, which is essential for the analysis of
our sparse convolution algorithm and which we believe to be of independent interest. The result is
based on the machinery established by Knudsen [39]. In that work [39], Knudsen gives the following
improved concentration bounds for h, similarly (but also crucially different from) the ones achieved
by three-wise independent hash functions. For completeness we repeat some of Knudsen’s proofs.

Theorem 11.1 (Close to Three-Wise Independence [39, Theorem 5]). Let X ⊆ [U] be a set of k
keys. Randomly pick a linear hash function h with parameters p > 4U2 and m ≤ U , fix a key x 6∈ X
and buckets a, b ∈ [m]. Moreover, let y, z ∈ X be chosen independently and uniformly at random.
Then:

P(h(y) = h(z) = b | h(x) = a) ≤ 1

m2
+

2O(
√

log k log log k)

mk
.

Unfortunately, as we will prove later, there is no hope of improving the 2O(
√

log k log log k)-overhead
by much in general. Fortunately, we prove that there is a loop hole: In small universes U , tighter
bounds are possible:

Theorem 11.2 (Closer to Three-Wise Independence in Small Universes). Let X ⊆ [U] be a set
of k keys. Randomly pick a linear hash function h with parameters p > 4U2 and m ≤ U , fix a key
x 6∈ X and buckets a, b ∈ [m]. Moreover, let y, z be chosen independently and uniformly at random.
Then:

P(h(y) = h(z) = b | h(x) = a) ≤ 1

m2
+O

(
U logU

mk2

)
.

Our result improves upon Theorem 11.1 when U ≤ k · 2o(
√

log k log log k). For U ≤ k polylog k and
m ≈ k (which is the relevant case for us), Theorem 11.2 provides a bound which is worse only by
a poly-logarithmic factor in comparison to a truly three-wise independent hash function. (Indeed,
for a truly three-wise independent hash function, the above probability is exactly 1/m2.) We apply
Theorem 11.2 by means of the following corollary.

Corollary 11.3 (Overfull Buckets). Let X ⊆ [U] be a set of k keys. Randomly pick a linear hash
function h with parameters p > 4U2 and m ≤ U , fix a key x 6∈ X and buckets a, b ∈ [m]. Moreover,
let F =

∑
y∈X [h(y) = b]. Then:

E(F | h(x) = a) = E(F) =
k

m
±Θ(1),

and, for any λ > 0,

P(|F −E(F)| ≥ λ
√
E(F) | h(x) = a) ≤ O

(
U logU

λ2k

)
.

We remark that the same concentration bounds can be obtained for the related family of hash
functions x 7→

⌊ ((σx+τ) mod p)m
p

⌋
.

The remainder of this section is structured as follows: In Section 11.1 we recap some basic
definitions from [39] and prove – as the key step – a certain number-theoretic bound. In Section 11.2
we then give proofs of Theorem 11.2 and Corollary 11.3 closely following Knudsen’s proof outline.
Finally, in Section 11.3 we prove that the concentration bound in Theorem 11.1 is almost optimal
by giving an almost matching lower bound.

32

11.1 Heights

We start with some definitions. Let p be a prime. There is a natural way to embed Z into Zp via
ι(x) = x mod p. As we often switch from Z to Zp, we introduce some shorthand notation: For
x ∈ Z, we use boldface symbols to abbreviate x = ι(x).

The central concept of this proof is an arithmetic measure called the height H(x) of a nonzero
rational number x ∈ Q, which is defined as max(|a|, |b|) if x can be written as a

b for coprime
integers a, b. We also define a similar height measure for Zp: The height Hp(x) of x ∈ Z×p is
defined as

Hp(x) = min
{

max(|a|, |b|) : a, b ∈ Z,x = ab−1
}
.

Lemma 11.4 (Equivalence of Heights [39, Lemma 2]).

� Let x, y be nonzero integers with |x|, |y| <
√
p/2. Then H(xy) = Hp(xy

−1).

� For all x, Hp(x) <
√
p.

Proof. We start with the first item. It is clear that Hp(xy
−1) ≤ H(xy) as whenever we can write

x
y = a

b for integers a, b, then we also have xy−1 = ab−1.
Next, we prove that H(xy) ≤ Hp(xy

−1). Recall that we have Hp(xy
−1) ≤ max(|x|, |y|) <

√
p/2.

Suppose that xy−1 = ab−1 for some a, b ∈ Z×p such that max(|a|, |b|) = Hp(xy
−1) <

√
p/2. Then

xb− ya must be an integer divisible by p, but |a|, |b|, |x|, |y| <
√
p/2. It follows that |xb− ya| < p

and thus xb− ya = 0. Finally, x
y = a

b and H(xy) ≤ max(|a|, |b|) = Hp(xy
−1).

It remains to prove the second item. Let r = b√pc and let S = {jx : j ∈ {0, . . . , r}}. Observe
that S contains r + 1 distinct elements. Let 0 = s0 < · · · < sr < p denote the unique integers such
that S = {s0, . . . , sr}, and let sr+1 = p. Then we have

∑r
i=0 si+1 − si = p, and thus there exists

some index i with si+1 − si ≤ p
r+1 <

√
p. By the definition of S we can write x = (si+1 − si)j−1

for some j ∈ {1, . . . , r} and hence Hp(x) ≤ max(si+1 − si, r) <
√
p. �

The next lemma constitutes the heart of our concentration bound. Knudsen [39, Corollary 4]
shows that for any set X the sum

∑
x,y∈X 1/H(x/y) can be bounded by k2O(

√
log k log log k) regardless

of the universe size U ; in our setting (where U is as small as k polylog k) the following bound is
significantly sharper.

Lemma 11.5 (Sum of Inverse Heights). Let X ⊆ {−U, . . . , U} be a set of nonzero integers. Then:∑
x,y∈X

1

H(xy)
≤ O(U logU).

Proof. Let us assume that X contains only positive integers; in the general case the sum can be
at most four times larger since H(xy) = H(−x

y). We start with the following simple observation:
If x, y are positive integers, then H(xy) = max(x, y)/ gcd(x, y). Therefore, the goal is to bound∑

x,y∈X

1

H(xy)
=
∑
x,y∈X

gcd(x, y)

max(x, y)
≤ 2

∑
x∈X

1

x

∑
y∈X
x≥y

gcd(x, y).

Fix x and focus on the sum
∑

y gcd(x, y). Let g be a divisor of x. Then there can be at most x/g
values y ≤ x which are divisible by g. It follows that |{y ≤ x : gcd(x, y) = g}| ≤ x/g. Thus:∑

y∈X
x≥y

gcd(x, y) ≤
∑
g|x

g · x
g

= x · d(x),

33

where d(x) denotes the number of divisors of x. Combining these previous equations, we obtain∑
x,y∈X

1

H(xy)
≤ 2

∑
x∈X

d(x) ≤ 2
∑

x∈{1,...,U}

d(x).

To bound the right hand side by O(U logU), it suffices to check that the average number in [U]
has O(logU) divisors. More precisely: Any integer g ∈ [U] divides at most U/g elements in [U]
and therefore

∑
x d(x) ≤

∑
g U/g = O(U logU). �

11.2 Proof of Theorem 11.2

We need some technical lemmas proved in [39]; for the sake of completeness we also give short
proofs. Let us call a set I = {a+ ib : i ∈ [r]} ⊆ Zp an arithmetic progression, and if b = 1 then we
call I an interval. For a set X ⊆ Zp, we define the discrepancy as

disc(X) = max
I interval

∣∣∣∣ |X ∩ I| − |X| |I|p

∣∣∣∣ .
Lemma 11.6 ([39, Lemma 3]). Let x, y be coprime integers with |x|, |y| < √p and let X be an
interval of length |x|. Then disc(yx−1X) ≤ 2.

Proof. For simplicity assume that x, y are positive (the other cases are symmetric) and also assume
that X = {i : i ∈ [x]} (which is enough, since the discrepancy is invariant under shifts). We
first show that x−1X is evenly distributed in the following strong sense: x−1X = Y , where
Y = {ι(djp/xe) : j ∈ [x]}. Since x−1X and Y are finite sets of the same size, it suffices to prove
the inclusion x−1X ⊆ Y . So fix any i ∈ [x]; we show that ix−1 ∈ Y . Let j ∈ [x] be the unique
integer such that x divides jp + i. Then ι((jp + i)/x) = ix−1 and djp/xe = (jp + i)/x and hence
ix−1 ∈ Y .

The next step is to show that also yx−1X is distributed evenly. From the previous paragraph
we know that yx−1X = {ι(jpy/x+ εjy) : j ∈ [x]} for some rational values εj = djp/xe− jp/x < 1.
The key insight is that since x and y are coprime integers, the set [x] is invariant under the dilation
with y, that is, {jy mod x : j ∈ [x]} = [x]. It follows that yx−1X = {ι(jp/x + δj) : j ∈ [x]} for
some δj ’s with 0 ≤ δj < y < p/x.

We point out how to conclude that disc(yx−1X) ≤ 2. First, it is obvious that all intervals of
the form {i : djp/xe ≤ i < d(j+ 1)p/xe} intersect yx−1X in exactly one point. As every interval I
can be decomposed into several such segments plus two smaller parts of size less than p/x at the
beginning and the end, respectively, a simple calculation confirms that disc(yx−1X) ≤ 2. �

Lemma 11.7 ([39, Lemma 4]). Let x,y ∈ Zp and let I ⊆ Zp be an arithmetic progression. Then,
for σ ∈ Zp chosen uniformly at random:

P((σx,σy) ∈ I2) ≤ |I|
2

p2
+O

(
1

Hp(xy−1)
· |I|
p

+
1

p

)
,

Proof. First, observe that I = zJ for some interval J and some nonzero z. As (σx,σy) ∈ I2

holds if and only if (σxz−1,σyz−1) ∈ J2, we may replace x,y by xz−1,yz−1 and assume that
I is an interval. Note that Hp(xy

−1) is invariant under this exchange. We may further scale and
possibly exchange x and y to ensure that Hp(xy

−1) = x ≥ |y|, where x, y are integers such that
ι(x) = x and ι(y) = y with x positive and x, y coprime.

34

Pick σ ∈ Zp uniformly at random, and let S = {σ + ix−1 : i ∈ [x]}. Instead of bounding the
probability P((σx,σy) ∈ I2) directly, by linearity of expectation we may instead bound

P((σx,σy) ∈ I2)

=
1

x
E

(∑
s∈S

[(sx, sy) ∈ I2]

)

≤ 1

x
E(min(|I ∩ xS|, |I ∩ yS|))

Recall that I is an interval and note that yS is exactly of the form yx−1X for coprime integers x, y
and an intervalX of size x. Therefore, it follows by Lemma 11.6 that |I∩yS| ≤ |I|·|yS|p +2 = x|I|

p +2:

≤ 1

x
E

(
min

(
|I ∩ xS|, x|I|

p
+ 2

))
Next, since both I and xS are intervals, there are less than |xS|+ |I| = x+ |I| choices of σ such
that I ∩ xS is non-empty. We conclude that:

≤ x+ |I|
px

(
|I|x
p

+ 2

)
≤ |I|

2

p2
+

3|I|
px

+
2

p
,

recalling that x = Hp(xy
−1) <

√
p (by Lemma 11.4). The claim follows. �

We are finally ready to prove Theorem 11.2 and Corollary 11.3. The proofs are analogous to
[39, Theorems 5 and 6].

Proof of Theorem 11.2. Fix y, z ∈ X. We will later unfix y and z and consider them to be random
variables. Let I = {i ∈ [p] : i mod m = a} and define J similarly with b in place of a; clearly I and
J are arithmetic progressions in Zp. Let h(x) = σx+ τ be a random linear function on Zp. Then:

P(h(y) = h(z) = b | h(x) = a)

= P((h(y),h(z)) ∈ J2 | h(x) ∈ I)

=
1

|I|
∑
u∈I

P((h(y),h(z)) ∈ J2 | h(x) = u).

The last equality is by conditioning on h(x) taking some fixed value u. As h(x) and h(y)−h(x) =
σ(y − x) are independent, we can omit the condition and apply Lemma 11.7:

P((h(y),h(z)) ∈ J2 | h(x) = u)

= P((σ(y − x),σ(z − x)) ∈ (J − u)2)

≤ |J |
2

p2
+O

(
1

Hp(
y−x
z−x)

· |J |
p

+
1

p

)

By the definition of J we have |J | ≤ d pme ≤
p
m + 1 and thus:

≤ 1

m2
+O

(
1

Hp(
y−x
z−x)

· 1

m
+

1

p

)
.

35

Now we unfix y, z and consider y, z ∈ X to be chosen uniformly at random. By averaging over the
previous inequalities we get:

P(h(y) = h(z) = b | h(x) = a)

=
1

m2
+O

 1

k2m

∑
y,z∈X

1

Hp(
y−x
z−x)

+
1

p

 .

As y−x and z−x are nonzero integers of magnitude at most U <
√
p/2, we can apply Lemma 11.4

to replace Hp by H. The remaining sum can be bounded using Lemma 11.5:∑
y,z∈X

1

Hp(
y−x
z−x)

=
∑
y,z∈X

1

H(y−xz−x)
= O(U logU),

and the claim follows. (The +1
p term can be omitted as we are assuming that p = Ω(U2).) �

Proof of Corollary 11.3. Fix buckets a, b ∈ [m], and let F denote the number of keys in X hashed
to b. By the pairwise independence of h (see Lemma 4.1), we have that

E(F | h(x) = a) = E(F) =
k

m
±Θ

(
k

p

)
=

k

m
±Θ(1).

In particular, since p > m2 it holds that E(F) ≥ k/m− O(k/p) ≥ Ω(k/m). By Theorem 11.2, we
additionally have

E(F 2 | h(x) = a) =
k2

m2
+O

(
U logU

m

)
.

It follows that

Var(F | h(x) = a) = O

(
U logU

m

)
,

and finally, by an application of Chebyshev’s inequality we have

P(|F −E(F)| ≥ λ
√

E(F) | h(x) = a) ≤ Var(F | h(x) = a)

λ2 E(F)
= O

(
U logU

λ2k

)
,

for all λ > 0. �

11.3 An Almost-Matching Lower Bound Against Theorem 11.1

In this section we prove the following statement which shows that Theorem 11.1 (Theorem 5 in [39])
is almost optimal in the case where U is polynomial in k.

Theorem 11.8 (Theorem 11.1 is Almost Optimal). Let k and U be arbitrary parameters with
U ≥ k1+ε for some constant ε > 0, and let h be a random linear hash function with arbitrary
parameters p > U and m ≤ U . Then there exists a set X ⊆ [U] of k keys, a fixed key x 6∈ X and
buckets a, b ∈ [m] such that

P(h(y) = h(z) = b | h(x) = a) ≥ 1

mk
exp

(
Ω

(√
min

(
log k

log log k ,
logU

log2 logU

)))
,

where y, z ∈ X are uniformly random.

36

We first describe the construction of X. By the Prime Number Theorem, for any n ∈ N, there
are n primes p0, . . . , pn−1 in the range [n log n,Cn log n] for some absolute constant C > 1. Let

n = min

(
ε logU

(1 + ε)C log logU
, log k

)
,

and define

X ′ =

{
s
∏
i∈I

pi : I ⊆ [n], |I| = n

2
, 1 ≤ s ≤ S

}
,

where 1 ≤ S ≤ k is chosen in such a way that k/2 ≤ |X ′| ≤ k. There exists indeed such a value of S,
since S ≤ |X ′| ≤ S ·2n and 2n ≤ k. We then construct X ⊇ X ′ by adding arbitrary (small) elements
to X until |X| = k. One can check that X ⊆ [U] as the largest number in X ′ has magnitude less
than

S(Cn log n)n ≤ k(logU)
ε logU

(1+ε) log logU = kU
ε

1+ε ≤ U
1

1+εU
ε

1+ε = U.

The first step towards proving that X is an extreme instance is to give the following lower bound:

Lemma 11.9. It holds that

∑
x,y∈X

1

H(xy)
= k exp

(
Ω

(√
min

(
log k

log log k ,
logU

log2 logU

)))
.

Proof. We only need a lower bound, so we will ignore all elements in X \ X ′. Fix any element
x = s

∏
i∈I pi ∈ X ′; we prove a lower bound against

∑
y∈X′ 1/H(xy). We call an element y good if it

has the form y = s
∏
i∈J pi, where both x and y have the same factor s and the symmetric difference

of I and J has size exactly 2r (i.e., |I \J | = |J \I| = r) for some parameter r to be specified soon. In
the fraction x

y only the factors s and
∏
i∈I∩J pi cancel and therefore H(xy) = Θ(n log n)r. Moreover,

the number of good elements y is exactly
(
n/2
r

)
2, and thus

∑
y∈X′

1

H(xy)
≥

(
n/2
r

)2
O(n log n)r

≥
(n2r)2r

O(n log n)r
= Ω

(
n

r2 log n

)r
.

Choosing r = Θ(
√
n/ log n) yields

∑
y∈X′

1

H(xy)
≥ exp(Ω(r)) = exp

(
Ω

(√
min

(
log k

log log k ,
logU

log2 logU

)))
.

Recall that x ∈ X ′ was arbitrary and thus the claim follows by summing over all x ∈ X ′. �

Proof of Theorem 11.8. Let X be as before, choose x = 0 and choose a = b = 0. For now we also
fix y, z ∈ X but we will later in the proof unfix y, z and treat them as random variables. The first
steps are quite similar to the proof of Theorem 11.2. Let I = {i ∈ [p] : i mod m = 0}. Then I is
an arithmetic progression in Zp. For h(x) = σx+ τ a random linear function on Zp, we obtain:

P(h(y) = h(z) = b | h(x) = a)

= P((h(y),h(z)) ∈ I2 | h(x) ∈ I)

37

=
1

|I|
∑
u∈I

P((h(y),h(z)) ∈ I2 | h(x) = u).

We continue to bound every term in the sum from below, so fix some value u ∈ I. As h(x) = τ
and h(y)− h(x) = σy are independent, we can omit the condition and it suffices to bound

P((h(y),h(z)) ∈ I2 | h(x) = u)

= P((σy,σz) ∈ (I − u)2)

Let T = b p
2mc and observe that either J = {im : i ∈ [T]} or {−im : i ∈ [T]} is contained in I −u.

In both cases we may replace I − u by J (in the latter case we replace also σ by −σ which does
not change the probability):

≥ P((σy,σz) ∈ J2)

=
|y−1J ∩ z−1J |

p

=
1

p

∑
i,j∈[T]

[
iy−1m = jz−1m

]
=

1

p

∑
i,j∈[T]

[
ij−1 = yz−1

]
We claim that there are at least Ω(T/H(yz)) solutions i, j ∈ [T] to the equation ij−1 = yz−1.
Indeed, consider the reduced fraction y′

z′ = y
z (i.e., y′ and z′ are coprime and 0 < y′, z′ ≤ H(yz) by

definition). For any t < T/H(yz) we may pick i = ty′ and j = tz′. On the one hand we have that i
and j have the correct size since i = ty′ < (T/H(yz)) ·H(yz) = T and on the other hand the equation
is satisfied by ij−1 = ty′t−1z′−1 = yz−1. Hence:

≥ Ω

(
T

pH(yz)

)
= Ω

(
1

mH(yz)

)
.

We now unfix y, z and consider them as random variables. By averaging over the previous inequality
and by applying Lemma 11.9 we finally obtain:

P(h(y) = h(z) = b | h(x) = a)

≥ Ω

 1

mk2

∑
y,z∈X

1

H(yz)

≥ 1

mk
exp

(
Ω

(√
min

(
log k

log log k ,
logU

log2 logU

)))
. �

References

[1] Gaussian smoothing. https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm.

38

https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

[2] Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051, 1987.

[3] Peyman Afshani, Casper B. Freksen, Lior Kamma, and Kasper G. Larsen. Lower bounds
for multiplication via network coding. In Proceedings of the 46th International Colloquium
Automata, Languages, and Programming, ICALP ’19, pages 10:1–10:12. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2019.

[4] Amihood Amir, Ayelet Butman, and Ely Porat. On the relationship between histogram index-
ing and block-mass indexing. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 372, 2014.

[5] Amihood Amir, Oren Kapah, and Ely Porat. Deterministic length reduction: Fast convolution
in sparse data and applications. In Proceedings of the 18th Symposium on Combinatorial
Pattern Matching, CPM ’07, pages 183–194. Springer, 2007.

[6] Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching with
k mismatches. J. Algorithms, 50(2):257–275, 2004.

[7] Andrew Arnold and Daniel S. Roche. Output-sensitive algorithms for sumset and sparse
polynomial multiplication. In Proceedings of the 40th International Symposium on Symbolic
and Algebraic Computation, ISSAC ’15, pages 29–36. ACM, 2015.

[8] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Saeed Seddighin, and Cliff Stein.
Fast algorithms for knapsack via convolution and prediction. In Proceedings of the 50th ACM
Symposium on Theory of Computing, STOC ’18, pages 1269–1282. ACM, 2018.

[9] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate poly-
nomial interpolation. In Proceedings of the 20th ACM Symposium on Theory of Computing,
STOC ’88, pages 301–309. ACM, 1988.

[10] Leo I. Bluestein. A linear filtering approach to the computation of discrete Fourier transform.
IEEE Transactions on Audio and Electroacoustics, 18(4):451–455, 1970.

[11] Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Proceed-
ings of the 28th ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pages 1073–1084.
SIAM, 2017.

[12] Karl Bringmann and Vasileios Nakos. Top-k-convolution and the quest for near-linear output-
sensitive subset sum. In Proceedings of the 52nd ACM Symposium on Theory of Computing,
STOC ’20, pages 982–995. ACM, 2020.

[13] David E. Cardoze and Leonard J. Schulman. Pattern matching for spatial point sets. In
Proceedings of the 39th IEEE Annual Symposium on Foundations of Computer Science, FOCS
’98, pages 156–165. IEEE Computer Society, 1998.

[14] Timothy M. Chan and Qizheng He. Reducing 3SUM to convolution-3SUM. In Proceedings of
the 3rd Symposium on Simplicity in Algorithms, SOSA ’20, pages 1–7. SIAM, 2020.

[15] Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combinatorics.
In Proceedings of the 47th ACM Symposium on Theory of Computing, STOC ’15, pages 31–40.
ACM, 2015.

39

[16] Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse and wildcard
matching. In Proceedings of the 34th ACM Symposium on Theory of Computing, STOC ’02,
pages 592–601. ACM, 2002.

[17] A. Dutt and Vladimir Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM J.
Comput., 14(6):1368–1393, 1993.

[18] Michael J. Fischer and Michael S. Paterson. String matching and other products. Complexity
of Computation, 7:113–125, 1974.

[19] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, S. Muthukrishnan, and Martin J. Strauss. Near-
optimal sparse Fourier representations via sampling. In Proceedings of the 34th ACM Sympo-
sium on Theory of Computing, STOC ’02, pages 152–161. ACM, 2002.

[20] Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss. Approximate sparse recovery:
Optimizing time and measurements. In Proceedings of the 42nd ACM Symposium on Theory
of Computing, STOC ’10, pages 475–484. ACM, 2010.

[21] Anna C. Gilbert, S. Muthukrishnan, and Martin J. Strauss. Improved time bounds for near-
optimal space Fourier representations. Proceedings of SPIE – The International Society for
Optical Engineering, 2005.

[22] Anna C. Gilbert, Hung Q. Ngo, Ely Porat, Atri Rudra, and Martin J. Strauss. L2/L2-foreach
sparse recovery with low risk. In Proceedings of the 40th International Colloquium Automata,
Languages, and Programming, ICALP ’13, pages 461–472. Springer, 2013.

[23] Pascal Giorgi, Bruno Grenet, and Armelle Perret du Cray. Essentially optimal sparse poly-
nomial multiplication. In Proceedings of the 45th International Symposium on Symbolic and
Algebraic Computation, ISSAC ’20, pages 202–209. ACM, 2020.

[24] Bernard Gold and Charles M. Rader. Digital processing of signals. Krieger, 1969.

[25] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly optimal sparse Fourier
transform. In Proceedings of the 44th ACM Symposium on Theory of Computing, STOC ’12,
pages 563–578. ACM, 2012.

[26] Ishay Haviv and Oded Regev. The restricted isometry property of subsampled Fourier matrices.
In Geometric aspects of functional analysis, pages 163–179. Springer, 2017.

[27] Qiao-Long Huang. Sparse polynomial interpolation over fields with large or zero characteristic.
In Proceedings of the 44th International Symposium on Symbolic and Algebraic Computation,
ISSAC ’19, pages 219–226. ACM, 2019.

[28] Piotr Indyk. Faster algorithms for string matching problems: matching the convolution bound.
In Proceedings of the 39th IEEE Annual Symposium on Foundations of Computer Science,
FOCS ’98, pages 166–173. IEEE Computer Society, 1998.

[29] Piotr Indyk and Michael Kapralov. Sample-optimal Fourier sampling in any constant di-
mension. In Proceedings of the 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS ’14, pages 514–523. IEEE Computer Society, 2014.

[30] Piotr Indyk, Michael Kapralov, and Eric Price. (Nearly) sample-optimal sparse Fourier trans-
form. In Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms, SODA ’14,
pages 480–499. SIAM, 2014.

40

[31] Piotr Indyk, Eric Price, and David P. Woodruff. On the power of adaptivity in sparse recovery.
In Proceedings of the 52nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS ’11, pages 285–294. IEEE Computer Society, 2011.

[32] Klaus Jansen and Lars Rohwedder. On integer programming and convolution. In Proceedings of
the 10th Innovations in Theoretical Computer Science Conference, ITCS ’19, pages 43:1–43:17.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

[33] Svante Janson. Tail bounds for sums of geometric and exponential variables. Statistics &
Probability Letters, 135:1–6, 2018.

[34] Erich Kaltofen and Yagati N. Lakshman. Improved sparse multivariate polynomial interpola-
tion algorithms. In Proceedings of the 13th International Symposium on Symbolic and Algebraic
Computation, ISAAC ’88, pages 467–474. Springer, 1988.

[35] Michael Kapralov. Sparse Fourier transform in any constant dimension with nearly-optimal
sample complexity in sublinear time. In Proceedings of the 48th ACM Symposium on Theory
of Computing, STOC ’16, pages 264–277. ACM, 2016.

[36] Michael Kapralov. Sample efficient estimation and recovery in sparse FFT via isolation on
average. In Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS ’17, pages 651–662. IEEE Computer Society, 2017.

[37] Michael Kapralov, Ameya Velingker, and Amir Zandieh. Dimension-independent sparse Fourier
transform. In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms, SODA
’19, pages 2709–2728. SIAM, 2019.

[38] Howard J. Karloff. Fast algorithms for approximately counting mismatches. Inf. Process. Lett.,
48(2):53–60, 1993.

[39] Mathias B. T. Knudsen. Linear hashing is awesome. In Proceedings of the 57th IEEE Annual
Symposium on Foundations of Computer Science, FOCS ’16, pages 345–352. IEEE Computer
Society, 2016.

[40] Konstantinos Koiliaris and Chao Xu. Faster pseudopolynomial time algorithms for subset sum.
ACM Trans. Algorithms, 15(3):40:1–40:20, 2019.

[41] Tsvi Kopelowitz and Ely Porat. A simple algorithm for approximating the text-to-pattern
hamming distance. In Proceedings of the 1st Symposium on Simplicity in Algorithms, SOSA
’18, pages 10:1–10:5. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

[42] Lei Li. On the arithmetic operational complexity for solving Vandermonde linear equations.
Japan Journal of Industrial and Applied Mathematics, 17, 2000.

[43] Michael Monagan and Roman Pearce. Parallel sparse polynomial multiplication using heaps.
In Proceedings of the 34th International Symposium on Symbolic and Algebraic Computation,
ISSAC ’09, pages 263–270. ACM, 2009.

[44] Michael Monagan and Roman Pearce. POLY: A new polynomial data structure for Maple 17.
In Computer Mathematics, pages 325–348. Springer, 2014.

[45] Michael Monagan and Roman Pearce. The design of Maple’s sum-of-products and POLY
data structures for representing mathematical objects. ACM Communications in Computer
Algebra, 48(3/4):166–186, 2015.

41

[46] Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. A subquadratic approximation
scheme for partition. In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’19, pages 70–88. SIAM, 2019.

[47] Shanmugavelayutham Muthukrishnan. New results and open problems related to non-standard
stringology. In Proceedings of the 6th Symposium on Combinatorial Pattern Matching, CPM
’95, pages 298–317. Springer, 1995.

[48] Vasileios Nakos. Nearly optimal sparse polynomial multiplication. IEEE Trans. Inf. Theory,
66(11):7231–7236, 2020.

[49] Vasileios Nakos, Zhao Song, and Zhengyu Wang. (Nearly) sample-optimal sparse Fourier
transform in any dimension; RIPless and filterless. In Proceedings of the 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS ’19, pages 1568–1577. IEEE Computer
Society, 2019.

[50] Victor Pan. Structured matrices and polynomials: Unified superfast algorithms. 2001.

[51] Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC ’10, pages 603–610. ACM, 2010.

[52] Nicholas Pippenger. On the evaluation of powers and monomials. SIAM J. Comput., 9(2):230–
250, 1980.

[53] Eric Price and Zhao Song. A robust sparse Fourier transform in the continuous setting. In
Proceedings of the 56th IEEE Annual Symposium on Foundations of Computer Science, FOCS
’15, pages 583–600. IEEE Computer Society, 2015.

[54] Eric Price and David P. Woodruff. Applications of the Shannon-Hartley theorem to data
streams and recovery. In Proceedings of the 45th IEEE International Symposium on Informa-
tion Theory, ISIT ’12, pages 2446–2450. IEEE, 2012.

[55] Daniel S. Roche. Adaptive polynomial multiplication. Proceedings of Milestones in Computer
Algebra, pages 65–72, 2008.

[56] Daniel S. Roche. Chunky and equal-spaced polynomial multiplication. Journal of Symbolic
Computation, 46(7):791–806, 2011.

[57] Daniel S. Roche. What can (and can’t) we do with sparse polynomials? In Proceedings of
the 43rd International Symposium on Symbolic and Algebraic Computation, ISSAC ’18, pages
25–30. ACM, 2018.

[58] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime
numbers. Illinois J. Math., (1):64–94, 1962.

[59] Atri Rudra. (Dense structured) matrix vector multiplication, lecture notes. https://cse.

buffalo.edu/faculty/atri/courses/matrix/matrix-vect-notes.pdf, 2020.

[60] Allan Steel. Multivariate polynomial rings. http://magma.maths.usyd.edu.au/magma/

handbook/text/223#1924, 2018.

[61] Joris Van Der Hoeven and Grégoire Lecerf. On the complexity of multivariate blockwise
polynomial multiplication. In Proceedings of the 37th International Symposium on Symbolic
and Algebraic Computation, ISSAC ’12, pages 211–218. ACM, 2012.

42

https://cse.buffalo.edu/faculty/atri/courses/matrix/matrix-vect-notes.pdf
https://cse.buffalo.edu/faculty/atri/courses/matrix/matrix-vect-notes.pdf
http://magma.maths.usyd.edu.au/magma/handbook/text/223#1924
http://magma.maths.usyd.edu.au/magma/handbook/text/223#1924

[62] Joris Van Der Hoeven and Grégoire Lecerf. On the bit-complexity of sparse polynomial and
series multiplication. Journal of Symbolic Computation, 50:227–254, 2013.

[63] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge Univer-
sity Press, 3 edition, 2013.

[64] Jack K. Wolf. Decoding of Bose-Chaudhuri-Hocquenghem codes and Prony’s method for curve
fitting. IEEE Transactions on Information Theory, 13(4):608–608, 1967.

[65] Andrew Chi-Chih Yao. On the evaluation of powers. SIAM J. Comput., 5(1):100–103, 1976.

A Computations with Transposed Vandermonde Matrices

The goal of this section is prove the following theorem:

Theorem 4.4 (Transposed Vandermonde Systems). Let F be a field. Let a, x ∈ Fn be vectors
with pairwise distinct entries ai, and let

V =

1 1 · · · 1
a1 a2 · · · an
a2

1 a2
2 · · · a2

n
...

...
. . .

...

an−1
1 an−1

2 · · · an−1
n

.

Then V x and V −1x can be computed in time O(n log2 n) using at most O(n log2 n) ring operations
(additions, subtractions and multiplications) and at most 1 division.

Throughout, let V = V (a) be as in the statement and let W = W (a) = V (a)T denote its
transpose, i.e. a Vandermonde matrix. The proof of Theorem 4.4 is by the so-called transposition
principle: First, classic algorithms show thatWx andW−1x can be computed by efficient arithmetic
circuits (Lemma A.1). Second, whenever Ax can be computed efficiently by an arithmetic circuit,
then also ATx can be computed similarly efficiently (Lemma A.2).

See [59, 63] for a definition of arithmetic circuits. For our purposes it suffices to only consider
addition, subtraction and multiplication gates.

Lemma A.1 (Polynomial Evaluation and Interpolation). There exists an algorithm A which, given
a ∈ Fn with pairwise distinct entries ai, computes arithmetic circuits C and D such that:

� A runs in time O(n log2 n),
� A uses at most O(n log2 n) ring operations and at most 1 division,
� On input x ∈ Fn, the circuit C computes C(x) = W (a)x and D computes D(x) = W (a)−1x.

Proof sketch. For C, note that evaluating C(x) = W (a)x is exactly the problem of evaluating the
polynomial

∑
i xiX

i ∈ F [X] at the points a1, . . . , an. Hence, we can use the classical O(n log2 n)-
time algorithm for polynomial multi-point evaluation, see e.g. [63, Algorithm 10.7]. This algorithm
can be interpreted to compute the arithmetic circuit C rather than computing the multi-point
evaluation directly. As this algorithm works over rings, it does not use any divisions.

For D, observe that computing D(x) = W (a)−1x corresponds to polynomial interpolation,
which again has a classical O(n log2 n)-time algorithm [63, Algorithm 10.11]. This time however,
we have to pay attention to the number of divisions performed in the process. Note that [63,
Algorithm 10.11] only computes divisions in the second step, all of which can be bulked together by

43

Lemma 4.3, and moreover all inputs to these divisions only depend on a and can thus be performed
by the algorithm A, rather than by the arithmetic circuit D. This proves the claim. �

Next, we need the following lemma which can be proven in several ways, for instance via the
Baur-Strassen Theorem; see [59, Theorem 4.3.1].

Lemma A.2 (Transposition Principle). If for some matrix A ∈ Fn×n, the function x 7→ Ax is
computed by an arithmetic circuit C of size s, then the function x 7→ ATx is computed by an
arithmetic circuit C ′ of size O(s+ n). Moreover, one can compute C ′ from C in time O(s+ n).

Proof of Theorem 4.4. First, we run the algorithm A from Lemma A.1 to compute arithmetic
circuits C and D of size s = O(n log2 n). Recall that A uses O(n log2 n) ring operations plus a single
division. The circuits compute C(x) = W (a)x and D(x) = W (a)−1x, respectively. Second, use the
transposition principle (Lemma A.2) to compute circuits C ′ and D′ with C ′(x) = W (a)Tx = V (a)x
and D′(x) = (W (a)−1)Tx = V (a)−1x. By Lemma A.2, C ′ and D′ also have size O(s + n) =
O(n log2 n) and we can compute both in the same running time. Finally, we evaluate C ′ and D′

at x, which again takes time O(n log2 n) and uses only ring operations. �

44

	1 Introduction
	1.1 Results
	1.2 Discussion and Open Problems
	1.3 Organization

	2 Preliminaries
	3 Technical Overview
	3.1 Previous Techniques
	3.2 Our Approach
	3.3 What Makes General Convolution Harder?

	4 Tools
	4.1 Linear Hashing
	4.2 Algebraic Computations

	5 Set Queries in a Tiny Universe
	5.1 Folding & Unfolding
	5.2 The Algorithm
	5.3 Corrections for Randomized Dense Convolution

	6 Approximating the Support Set
	7 Universe Reduction from Small to Tiny
	8 Error Correction
	9 Estimating k
	10 Universe Reduction from Large to Small
	11 Concentration Bounds for Linear Hashing
	11.1 Heights
	11.2 Proof of Theorem 11.2
	11.3 An Almost-Matching Lower Bound Against Theorem 11.1

	A Computations with Transposed Vandermonde Matrices

