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Abstract
The Subgraph Isomorphism problem is of considerable importance in computer science. We

examine the problem when the pattern graph H is of bounded treewidth, as occurs in a variety of
applications. This problem has a well-known algorithm via color-coding that runs in time O(ntw(H)+1)
[Alon, Yuster, Zwick’95], where n is the number of vertices of the host graph G. While there are
pattern graphs known for which Subgraph Isomorphism can be solved in an improved running time
of O(ntw(H)+1−ε) or even faster (e.g. for k-cliques), it is not known whether such improvements are
possible for all patterns. The only known lower bound rules out time no(tw(H)/ log(tw(H))) for any
class of patterns of unbounded treewidth assuming the Exponential Time Hypothesis [Marx’07].

In this paper, we demonstrate the existence of maximally hard pattern graphs H that require
time ntw(H)+1−o(1). Specifically, under the Strong Exponential Time Hypothesis (SETH), a standard
assumption from fine-grained complexity theory, we prove the following asymptotic statement for
large treewidth t:

For any ε > 0 there exists t ≥ 3 and a pattern graph H of treewidth t such that
Subgraph Isomorphism on pattern H has no algorithm running in time O(nt+1−ε).

Under the more recent 3-uniform Hyperclique hypothesis, we even obtain tight lower bounds for
each specific treewidth t ≥ 3:

For any t ≥ 3 there exists a pattern graph H of treewidth t such that for any ε > 0
Subgraph Isomorphism on pattern H has no algorithm running in time O(nt+1−ε).

In addition to these main results, we explore (1) colored and uncolored problem variants (and
why they are equivalent for most cases), (2) Subgraph Isomorphism for tw < 3, (3) Subgraph
Isomorphism parameterized by pathwidth instead of treewidth, and (4) a weighted variant that we
call Exact Weight Subgraph Isomorphism, for which we examine pseudo-polynomial time algorithms.
For many of these settings we obtain similarly tight upper and lower bounds.
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2 Detecting Subgraphs of Bounded Treewidth

1 Introduction

The Subgraph Isomorphism problem is commonly defined as follows: Given a graph H on
k vertices, and a graph G on n vertices, is there a (not necessarily induced) subgraph of G
which is isomorphic to H?

Subgraph Isomorphism generalizes many problems of independent interest, such as the
k-path and k-clique problems. The problem is also of considerable interest when H is less
structured, with applications to discovering patterns in graphs that, for example, arise from
biological processes such as gene transcription or food networks, from social interaction, from
electronic circuits, from neural networks [56], from chemical compounds [66] or from control
flow in programs [26]. In some fields, the problem is sometimes referred to as the search for
“network motifs”, i.e. subgraphs that appear more often than would normally be expected.

In its general form, the problem is NP-hard. We are interested in solving the problem
when the pattern graph H is “tree-like” or “path-like”, i.e. when the treewidth tw(H) or the
pathwidth pw(H) of H is bounded. Such pattern graphs of low treewidth or pathwidth often
arise in practice when considering the structure of chemical compounds, the control flow
of programs, syntactic relations in natural language, or many other graphs from practical
applications (see e.g. [18, 21]). On the theoretical side, many restricted classes of graphs have
bounded treewidth, see also [20]. Restricting NP-hard problems to graphs of bounded tree-
and pathwidth often yields polynomial-time algorithms, and Subgraph Isomorphism is no
exception. Most notably, the classic Color-Coding algorithm by Alon, Yuster and Zwick [12]
solves the problem by a Las Vegas algorithm in expected time O(ntw(H)+1g(k)), or by a
deterministic algorithm in time Õ(ntw(H)+1g(k)), where g is a computable function (and Õ(·)
is used to suppress factors that are polylogarithmic in the input size). In other words, if the
pattern graph H has treewidth bounded by some constant, the problem is fixed-parameter
tractable when parameterized by k. The Color-Coding algorithm is also relevant for practical
purposes: Recently, it has received an efficient implementation, which tested well against
state-of-the-art programs for Subgraph Isomorphism [53].

Many researchers wondered whether the Color-Coding algorithm can be improved. This
question has been studied in many different directions, including the following:

Marx [54] showed that no algorithm solves the Subgraph Isomorphism problem in time
O(no(tw(H)/ log(tw(H)))g(k)) unless the Exponential Time Hypothesis (ETH) fails, and this
even holds when restricted to any class of pattern graphs of unbounded treewidth.
A series of work has improved the computable function g, see e.g. [13, 40, 58].
For many special pattern graphs faster algorithms have been found; the most famous
example is the k-Clique problem, which can be solved in time O(nkω/3g(k)) [57]1.

In this paper, we use a different angle to approach the question whether Color-Coding
can be improved. We ask whether there exist “hard” pattern graphs:

Do there exist pattern graphs H for which Subgraph Isomorphism
cannot be solved in time O(ntw(H)+1−ε) for any constant ε > 0?

To the best of our knowledge, this question has not been previously studied. As our main
result, we (conditionally) give a positive answer to this question. More precisely, we show
that for every t ≥ 3 there exists a pattern graph H with tw(H) = t for which Subgraph
Isomorphism cannot be solved in time O(ntw(H)+1−ε) for any constant ε > 0, assuming

1 This bound assumes that k is divisible by 3; there are similar results for general k [37].



K. Bringmann and J. Slusallek 3

the 3-uniform k-Hyperclique hypothesis; see Section 1.3 for details on this hypothesis. We
also show a slightly weaker statement under the Strong Exponential Time Hypothesis. This
conditionally shows that the Color-Coding algorithm by Alon, Yuster and Zwick cannot be
significantly improved while still working for all pattern graphs.

For the case of tw(H) = 2, an algorithm of Curticapean, Dell and Marx [32] can be
adapted such that it solves Subgraph Isomorphism in time Õ(nωg(k)). We unify this
with the algorithm of Alon, Yuster and Zwick by showing that both time bounds can be
achieved within a simple framework. In particular, we use so-called k-wise matrix products,
an operation which was introduced in its general form in [42] and studied further in [51].

We also study the Subgraph Isomorphism problem when the pathwidth of H is bounded,
and specialize our framework to show slight improvements in running time compared to the
case of bounded treewidth. Here, we use rectangular matrix products, for which faster-than-
naive algorithms are known [41].

In further results, our focus is on the weighted variant Exact Weight Subgraph
Isomorphism, where the subgraph must also have total weight equal to zero. In this work,
we consider both the node-weighted and the edge-weighted variant of this problem, for both
bounded treewidth and bounded pathwidth, allowing the maximum absolute weight W to
appear in the running time (i.e. the pseudopolynomial-time setting). We show that our
algorithms for the unweighted case can be adapted to the weighted case. We also speed up the
weighted algorithms by using the fact that fast convolution (or rather, sumset computation),
a folklore technique that lies at the core of many fast algorithms for problems with weights
(e.g. [27, 24, 48, 46, 22, 15] and [31, exercise 30.1.7]), can easily be adapted to work with
rectangular matrices and tensors. We furthermore show tight conditional lower bounds in
many cases. Last but not least, we show that our algorithms can be slightly improved for
the case of node-weighted instances for which either the pathwidth of H is bounded, or H is
a tree. These algorithms also rely on fast rectangular matrix products.

1.1 Related Work

Additional to the conditional lower bound of O(no(tw(H)/ log(tw(H)))g(k)) by Marx [54], there
is an unconditional lower bound of O(nκ(H)) for the size of any AC0-circuit, for some graph
parameter κ(H) = Ω(tw(H)/ log(tw(H))), which holds even when considering the average
case [50]. Interestingly, the factor of 1/ log(tw(H)) does not seem to be an artefact of the
proof: There is an AC0-circuit of size O(no(tw(H))g(k)) that solves the problem on certain
unbounded-treewidth classes in the average case [62].

In a different direction, Dalirrooyfard et al. [35] design various reductions from k-Clique
to Subgraph Isomorphism, among other results. They also present results on the detection
of induced subgraphs (we focus on non-induced subgraphs).

For the weighted variant of Subgraph Isomorphism, lower bounds under the k-Sum
hypothesis for stars, paths, cycles and some other pattern graphs are presented in [6]. Edge-
weighted triangle detection has a by-now classic O(n3−ε) lower bound under both the 3Sum
hypothesis and the APSP hypothesis [10]. On the other hand, in [7], it is proven that finding
node-weighted k-cliques can be done almost as quickly as finding unweighted k-cliques. We
are not aware of any results on the Exact Weight Subgraph Isomorphism problem
when W may appear in the running time (i.e. a pseudopolynomial-time algorithm), which is
what we focus on here.

In our work, we pose no restrictions on the host graph G. For an extensive classification
of Subgraph Isomorphism with respect to various parameters of both G and H, see [55].
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1.2 Hardness Assumptions
The most standard hypothesis from fine-grained complexity theory is the Strong Exponential
Time Hypothesis (SETH) [43], which postulates that for any ε > 0 there exists k ≥ 3 such
that k-Sat on n variables cannot be solved in time O∗(2(1−ε)n).

More recent is the Hyperclique hypothesis. In the h-uniform k-Hyperclique problem, for
a given h-uniform hypergraph we want to decide whether there exist a set of k vertices such
that every size-h subset of these vertices forms a hyperedge. For any k > 3, the 3-uniform
k-Hyperclique hypothesis postulates that this problem cannot be solved in time O(nk−ε)
for any ε > 0. This hypothesis has also been formulated when replacing 3 with any h < k,
getting progressively more believable with larger h. For a more in-depth discussion of the
believability of this hypothesis we refer to [51, Section 7].

Note that we will also use the h-uniform Hyperclique hypothesis for various h, which is
simply the conjecture that the h-uniform k-Hyperclique hypothesis is true for all k > h.

Related to this is the k-Clique conjecture, which postulates that the k-Clique problem
(which is the 2-uniform k-Hyperclique problem) cannot be solved in time O(nωk/3−ε) for any
constant ε > 0, where ω < 2.373 [49] is the exponent of matrix multiplication.

1.3 Our Results
Unweighted Subgraph Isomorphism with Bounded Treewidth First, consider the case of
the unweighted Subgraph Isomorphism problem for bounded-treewidth pattern graphs
H. As was said, and as we will re-prove with a unified algorithm later, this problem has
an algorithm running in time Õ(ntw(H)+1) for tw(H) ≥ 3. We show tight conditional lower
bounds by proving the following obstacles to faster algorithms, which use the k-clique
hypothesis and the h-uniform k-hyperclique hypothesis. Note that when we say, for some x,
that an algorithm has running time O(nx−ε), what we mean is that the algorithm runs in
time O(nx−ε) for some constant ε > 0.

▶ Theorem 1. The following statements are true.
1. For each t ≥ 3 and each 3 ≤ h ≤ t, there exists a connected, bipartite pattern graph Ht,h

of treewidth t such that there cannot be an algorithm solving the Subgraph Isomorphism
problem on pattern graph Ht,h in time O(nt+1−ε) unless the h-uniform h(t+1)-hyperclique
hypothesis fails.

2. For each t ≥ 2 and each h ≥ 3, there exists a connected, bipartite pattern graph Ht,h of
treewidth t such that there cannot be an algorithm solving the Subgraph Isomorphism
problem on pattern graph Ht,h in time O(nt−ε) unless the h-uniform ht-hyperclique
hypothesis fails.

3. For each t ≥ 2, there exists a connected, bipartite pattern graph Ht of treewidth t such that
there cannot be an algorithm solving the Subgraph Isomorphism problem on pattern
graph Ht in time O(n(t+1)ω/3−ε) unless the (t + 1)-Clique hypothesis fails.

Indeed, with the very same reduction, we also get an obstacle from SETH. However, the
lower bound it provides is not as tight as the above, and in the case of the second part does
not work for each target treewidth t.

▶ Theorem 2. Assuming SETH, the following two statements are true.
1. For any t ≥ 3 and any ε > 0 there exists a pattern graph Ht,ε of treewidth t such that there

cannot be an algorithm solving all instances of Subgraph Isomorphism with pattern
graph Ht,ε in time O(nt−ε).
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2. For any ε > 0 there exists a t ≥ 3 and a pattern graph Hε of treewidth t such that there
cannot be an algorithm solving all instances of Subgraph Isomorphism with pattern
graph Hε in time O(nt+1−ε).

On the algorithmic side, we present an algorithm that achieves matching running times
(as listed in theorem 3 below). As was said, the results in the following theorem are not
new. Part 1 was shown via Color-Coding in [12] and part 2 follows from techniques in [32].
We unify these two results by providing a single, relatively simple algorithmic technique
achieving both, based on k-wise matrix products. These techniques are later expanded to
also work for the weighted version, where they then achieve new results. In the following,
ω < 2.373 [49] is the exponent of matrix multiplication.

▶ Theorem 3. There are algorithms which, given an arbitrary instance ϕ = (H, G) of
Subgraph Isomorphism where H has treewidth tw(H), solve ϕ in
1. time Õ(ntw(H)+1g(k)) when tw(H) ≥ 3,
2. time Õ(nωg(k)) when tw(H) = 2, and
3. time Õ(n2g(k)) when tw(H) = 1,
where k := |V (H)|, n := |V (G)| and g is a computable function.

Semi-Equivalence of Hyperclique and Subgraph Isomorphism We also discuss how our res-
ults not only show a reduction from Hyperclique to Subgraph Isomorphism with bounded
treewidth, but also in the other direction. For this, we show that calculating the boolean
k-wise matrix products, which is the bottleneck in our algorithm for bounded-treewidth
Subgraph Isomorphism, is actually equivalent to the k-uniform (k + 1)-Hypergraph
problem. Hence we have a reduction in the second direction. This gives an interesting
intuition for why the Hyperclique hypothesis is the “correct” conjecture to prove conditional
hardness of Subgraph Isomorphism for bounded treewidth.

We remark that this does not lead to a full equivalence of these problems because the
uniformity (i.e. the size of hyperedges) of the Hyperclique problem we reduce from in the
first reduction is much smaller than the size of the hypercliques we search for. Hence we only
have a reduction from a Hyperclique instance with small edge uniformity to Subgraph
Isomorphism, and a reduction from Subgraph Isomorphism to Hyperclique instances
with large edge uniformity.

Weighted Subgraph Isomorphism with Bounded Treewidth Now consider the weighted
version of Subgraph Isomorphism for bounded-treewidth graphs H. Recall that the
weighted version can be either node- or edge-weighted and is defined such that the weights in
the solution subgraph must have total weight zero. A trivial dynamic programming algorithm
on the tree decomposition achieves a running time of Õ(ntw(H)+1 · W log W ) for tw(H) ≥ 3.

Note that these results show conditional lower bounds even when the maximum weight is
restricted to W = Θ(nγ), for any constant γ > 0.

▶ Theorem 4. For both the node- and edge weighted variant of the problems, the following
statements are true.
1. For each t ≥ 3, each γ ∈ R+ and each 3 ≤ h ≤ t, there exists a connected, bipartite graph

Ht,h,γ of treewidth t such that there cannot be an algorithm solving the Exact Weight
Subgraph Isomorphism problem on pattern graph Ht,h,γ for instances with maximum
weight W = Θ(nγ) in time O(nt+1−εW ), unless the h-uniform Hyperclique hypothesis
fails.
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2. For each t ≥ 1, each γ ∈ R+ and each h ≥ 3, there exists a connected, bipartite graph
Ht,h,γ of treewidth t such that there cannot be an algorithm solving the Exact Weight
Subgraph Isomorphism problem on pattern graph Ht,h,γ for instances with maximum
weight W = Θ(nγ) in time O(nt−εW ), unless the h-uniform Hyperclique hypothesis fails.

3. For each t ≥ 1 and each γ ∈ R+, there exists a connected, bipartite graph Ht,γ of
treewidth t such that there cannot be an algorithm solving the Exact Weight Subgraph
Isomorphism problem on pattern graph Ht,γ for instances with maximum weight W =
Θ(nγ) in time O(n(t+1)ω/3−εW ω/3), unless the Clique hypothesis fails.

Similar lower bounds also hold when trying to reduce the exponent of W instead of n.
Meaning there is also no algorithm of running time O(nt+1W 1−ε) in part 1, etc.

On the algorithmic side, we present an algorithm that achieves matching running times
for tw(H) ≥ 3, and almost matching running times for tw(H) = 1, 2. Note that in terms
of exponents, the first algorithm below is not better than the naive one with running time
O(ntw +1W log W ). However, it avoids a factor of log W in the largest term, and instead
appends it to a smaller term, so in a way it presents an improvement of log W in the running
time. Specifically, we show

▶ Theorem 5. There are algorithms which, given an arbitrary instance ϕ = (H, G, w) of the
Exact Weight Subgraph Isomorphism problem where H has treewidth tw(H), solve ϕ

in
1. time Õ((ntw(H)+1W + ntw(H)W log W )g(k)) when tw(H) ≥ 3,
2. time Õ((nωW + n2W log W )g(k)) when tw(H) = 2, or
3. time Õ((n2W + nW log W )g(k)) when tw(H) = 1,
where n := |V (G)|, k := |V (H)|, g is a computable function, and W is the maximum absolute
weight in the image of w.

Comparing these upper bounds with the lower bounds from Theorem 5, we have a tight
lower bound for the weighted case with tw(H) ≥ 3. For weighted tw(H) = 2, we have a
lower bound which is tight except for the exponent of ω/3 to W ; it is unclear whether this
can be strengthened. The lower bound for weighted graphs with tw(H) = 1 is obviously not
tight: We have an upper bound of Õ(n2W + nW log W ), but our lower bounds only states
that it requires time O(n1−o(1)W 1−o(1)) and O(n2ω/3−o(1)W ω/3−o(1)). Tighter lower bounds
for this case remain an important open problem.

Unweighted Subgraph Isomorphism with Bounded Pathwidth So far we have only looked
at the case of bounded treewidth. However, similar results hold for the case of bounded
pathwidth. Let us start with the unweighted Subgraph Isomorphism problem.

Note that we do not get any lower bounds for the current setting. This is because we
prove all our lower bounds by showing an equivalence of the standard Subgraph Isomorphism
problem to a colored variant (see also Section 3.3), and then proving a lower bound for the
colored version. We do not know how to prove such an equivalence for the current setting,
therefore we do not get lower bounds in this case; we leave this as an open problem.

Since a path decomposition is always also a tree decomposition, we trivially get upper
bounds as in theorem 3 (when replacing treewidth by pathwidth). However, we can do better
by using rectangular matrix multiplication to speed up the computation. For z ∈ R+, let
ω(z) be the smallest real number such that multiplying a n × n matrix with a n × nz matrix
can be done in time O(nω(z)), see Section 5.5 for discussion of this value. We prove the
following upper bounds.
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▶ Theorem 6. There are algorithms which, given an arbitrary instance ϕ = (H, G) of
Subgraph Isomorphism where H has pathwidth p, solve ϕ in
1. time Õ(nω(p−1)g(k)) when p ≥ 2, and
2. time Õ(n2g(k)) when p = 1
where k := |V (H)| and n := |V (G)|.

We certainly have p ≤ ω(p−1) < p+1, so these results represent only a minor improvement,
which is nonetheless important because it “beats” the lower bound for treewidth. Hence the
lower bound for pathwidth cannot be the same as for treewidth.

Weighted Subgraph Isomorphism with Bounded Pathwidth We also analyze the bounded-
pathwidth pattern graph version of Weighted Subgraph Isomorphism. Specifically, we
get the following lower bound.

▶ Theorem 7 (Theorem 4 for pathwidth). Parts 2 and 3 of Theorem 4 also hold when
replacing the treewidth t by the pathwidth p. Part 1 does not hold.

And on the algorithmic side, we can again use rectangular matrix multiplication to improve
on the algorithms from the case of bounded treewidth. Specifically, we get:

▶ Theorem 8. There are algorithms which, given an arbitrary instance ϕ = (H, G, w) of the
Exact Weight Subgraph Isomorphism problem, solve ϕ in
1. time Õ((nω(pw(H)−1)W + npw(H)W log W )g(k)) when pw(H) ≥ 2,
2. time Õ((n2W + nW log W )g(k)) when pw(H) = 1
where n := |V (G)|, k := |V (H)|, and W is the maximum absolute weight in the image of w.

For pw(H) ≥ 3, the lower bounds are therefore obviously not tight (at least for current
algorithms), unless significant advances in matrix multiplication techniques are made. For
pw(H) = 1, 2, the situation is the same as with treewidth, see the discussion of Theorem 5.

Improvements to Special Cases of Weighted Subgraph Isomorphism It is natural to
think that the exponents ω

3 to W in the lower bounds of Theorems 4 and 7 are only artefacts
of the reduction, and that with more advanced methods, this exponent can be improved to
1. However, the following two theorems show that this notion is false for tw(H) = 1 and
pw(H) = 1, 2, at least when considering the node-weighted case. Indeed, for tw(H) = 1 (or
pw(H) = 1) and W = n, these bounds are tight, so further general improvements on the
exponent are impossible.

Specifically, Theorems 9 and 10 show the following improvements of the algorithms from
Theorems 5 and 8 for small tree- or pathwidth. Let MM(n, n, x) be the time in which a n × n

matrix can be multiplied with with a n × x matrix.

▶ Theorem 9. There is an algorithm which, given an arbitrary instance ϕ = (H, G, w) of
the node-weighted Exact Weight Subgraph Isomorphism problem where H is a tree,
solves ϕ in time Õ((MM(n, n, W ) + nW log W )g(k)).

▶ Theorem 10. There is an algorithms which, given an arbitrary instance ϕ = (H, G, w)
of the node-weighted Exact Weight Subgraph Isomorphism problem, solves ϕ in time
Õ(MM(n, n, npw(H)−1W )g(k)).

For W = O(nγ), the running time of Theorem 9 is Õ(nω(γ) poly(k)). Using results
from [41](discussed further in section 5.5), this implies several interesting facts. First, for
γ < 0.31, the node-weighted problem on trees can be solved in time Õ(n2 poly(k)), meaning
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it can be solved in the same running time as the unweighted case. In particular, this applies
to W = polylog(n) or W = O( 4

√
n).

Second, for arbitrary γ we now have a running time of Õ(nω(γ)−γW poly(k)). Trivially,
for any γ > 0, ω(γ) − γ < 2. Indeed, for γ ≥ 5 we have ω(γ) − γ < 1.16 by [41]. This
shows that for node weighted trees, there cannot be a lower bound of n1.16W , let alone n2W .
Indeed, it is known that limγ→∞ ω(γ) − γ = 1 [29], which implies that when restricting to
instances where W = Θ(nγ), there cannot be a lower bound of n1+εW for any ε > 0 that
holds for any constant γ > 0. Similar results hold for bounded-pathwidth graphs.

Structure of the Paper

We begin by giving a simplified view of our two main proofs in Section 2. We then give
formal definitions of key concepts in Section 3 before diving into the full proofs. In Section 4,
we prove all lower bounds. In Section 5, we prove all upper bounds, including improved
algorithms for node-weighted graphs. In Section 6, we prove the semi-equivalence between
Hyperclique and Subgraph Isomorphism on bounded treewidth graphs. Finally, in
Section 7, we prove the equivalences between the colored and uncolored problems which
we use throughout the paper. We conclude by stating several important open problems in
Section 8.

2 Technical Overview of Our Main Results

We now give proof sketches of our two main lower bound results to present the main ideas of
the proofs without giving too much detail. The full details are available in Section 4.

2.1 Lower Bound for Subgraph Isomorphism
Our main result is the existence of the hard pattern graphs for bounded-treewidth Subgraph
Isomorphism. We now prove their existence for treewidth at least 3 under the Hyperclique
hypothesis, i.e. part 1 of Theorem 1.

The exact statement we prove is that for each t ≥ 3 and each 3 ≤ h ≤ t, there exists a
pattern graph of treewidth t such that Subgraph Isomorphism cannot be solved in time
O(nt+1−ε) on that pattern graph unless the h-uniform h(t + 1)-hyperclique hypothesis fails.
Note that the proof actually shows this for the colored variant of Subgraph Isomorphism,
after which we can use Lemma 14 to transfer the lower bound to the uncolored problem.

Proof sketch. See Figure 1 for a sketch of the reduction. Let t ≥ 3 and 3 ≤ h ≤ t be given
and assume that Subgraph Isomorphism can be solved in time O(nt+1−ε) on pattern
graphs of treewidth t. We show that the h-uniform h(t + 1)-hyperclique hypothesis fails.
Construction of H We construct a pattern graph H as a bipartite graph with vertex set

A ∪ B as follows. Writing [c] := {1, . . . , c}, we set A := [t + 1] and B :=
(

A×[h]
h

)
. We

connect a vertex b = ((a1, j1), .., (ah, jh)) in B to a vertex a in A if a = aℓ for some ℓ. Set
k := |A| + |B|.
We show that this pattern has a treewidth of t, via a well-known characterization of
treewidth as a graph-theoretic game: A graph F has treewidth ≤ t if and only if t + 1
cops can catch2 a robber on F [63]. To show the bound on the treewidth of H, initially

2 The game works as follows: The k + 1 cops select their starting vertices in the graph. Then the
robber may choose their starting vertex. The cops can always see the robber and adapt their strategy
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A

B

...

. . .

Corresponds to a choice
of one vertex from each
of the h partitions

Corresponds to a hy-
peredge

Corresponds to h vertex
partitions of the hyper-
clique instance

Corresponds to the set of
hyperedges between its
h defining vertex parti-
tions

The edge exists if and
only if the endpoints are
compatible, i.e. if for
each hyperedge parti-
tion that involves both
endpoints, the vertex
choice on one end agrees
with the vertex of the hy-
peredge on the other

pattern graph H host graph G

Figure 1 A sketch of the reduction we use to prove part 1 of Theorem 1 where h = 3 and t = 4.
Note that this is only a partial sketch of the pattern graph. We use multiedges to signify that for the
endpoints a ∈ A and b = ((a1, j1), . . . , (ah, jh)) ∈ B there exists more than one ℓ such that a = aℓ.

place a cop on each vertex of A. No matter on which vertex of B the robber starts, they
are surrounded by cops. Since every vertex in B has h ≤ t < t + 1 neighbors in A, there
must exist some cop which is not adjacent to the robber, so this cop can catch the robber
in a single step. This concludes the proof that the pattern graph H has treewidth t.

Construction of G Now given a h(t + 1)-partite hypergraph H ′, i.e. an instance of the
h-uniform k′-Hyperclique problem for k′ := h(t + 1), we write the vertex set of H ′ as
U1,1 ∪ . . . ∪ U1,h ∪ . . . ∪ Ut+1,1 ∪ . . . ∪ Ut+1,h. Let NH be the number of vertices vertices
in each partition and nH = O(NH) the number of vertices overall.
We construct a k-partite graph G as follows. For a in A we set Va := Ua,1 × . . . × Ua,h.
For b = ((a1, j1), .., (ah, jh)) in B, we set Vb := E(H ′) ∩ (Ua1,j1 × . . . × Uah,jh

). This
describes the k parts of the k-partite vertex set V (G). Note that each part has size at
most NG := Nh

H . Now we construct the edges. For any a in A and b = ((a1, j1), .., (ah, jh))
in B with (a, b) in E(H), consider an arbitrary u = (u1, .., uh) in Va and u′ = (u′

1, ..., u′
h)

in Vb. We say that u and u′ are "compatible" if for every ℓ with aℓ = a we have u′
ℓ = ujℓ

;
in this case we connect u and u′ by an edge. This finishes the construction of G.

Correctness Note that any colored subgraph isomorphism of H in G chooses vertices va in

accordingly. Similarly, the robber can see the cops. The game now proceeds in steps, where in each
step, one of the cops chooses an arbitrary destination vertex and takes off via helicopter in the direction
of that vertex. While the cop is travelling, the robber sees where they will land and may now move
arbitrarily along edges of the graph, as long as they do not pass through stationary cops. When the
robber has finished moving, the cop lands. The cops win if and only if they are guaranteed to catch the
robber after a finite number of moves, and lose otherwise.
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Va for all a in A. This corresponds to choosing vertices ui,j in Ui,j for all i in [t + 1],
Moreover, the edges of a h(t + 1)-hyperclique are in one-to-one correspondence with the
set B. Since for each b in B the colored subgraph isomorphism of H in G needs to choose
a vertex vb in Vb, which corresponds to an edge between certain vertices ui,j , we indeed
check that the chosen vertices ui,j form an h-uniform h(t + 1)-hyperclique.

Running Time Trivially, the construction time and output size are O(N2h
H ) (actually, it is

slightly better, but this is not important in this proof sketch), and G has n = O(NG) =
O(Nh

H) vertices. Now if we can solve Subgraph Isomorphism in time O(nt+1−ε), we
solve the h-uniform h(t + 1)-Hyperclique instance in time O(N2h

H + (Nh
H)t+1−ε) =

O(Nh(t+1)−hε
H ) = O(Nh(t+1)−ε′

H ) = O(nh(t+1)−ε′

H ).
◀

This shows part 1 of Theorem 1. Part 2 can be shown by the almost the exact same
proof, except that now we choose the size of A to be t instead of t + 1, and we start with
an ht-hyperclique instead of an h(t + 1)-hyperclique. It can be seen that in this case, the
pattern graph still has treewidth t. The third part of the theorem can be seen by simply
taking an instance of (t + 1)-Clique and subdividing the edges in the obvious way to make
the graph bipartite.

Let us also quickly mention how the proof of the slightly weaker bounds under SETH,
i.e. Theorem 2, works. The split-and-list technique from [67] allows one to reduce the
Satisfiability problem to Hyperclique. Using this technique, the following result was shown
in [51, Lemma 9.1].

▶ Lemma 11 ([51]). Assuming SETH, for any ε > 0 there exists h ≥ 3 such that for all
k > h, the h-uniform k-Hyperclique problem is not in time O(nk−ε).

The SETH result now follows by using essentially the same reduction as above, but we prefix
it by the reduction from SAT to Hyperclique.

2.2 Lower Bound for Exact Weight Subgraph Isomorphism
We also give lower bounds for the exact weight variant of the Subgraph Isomorphism
problem. In particular, we prove the existence of hard pattern graphs for the bounded-
treewidth Exact Weight Subgraph Isomorphism problem for any polynomial weight
bound. We give this result for any treewidth which is at least 3, and under the Hyperclique
hypothesis. This is part 1 of Theorem 4.

The exact statement we prove is that for each t ≥ 3, γ ∈ R+ and 3 ≤ h ≤ t, there exists
a pattern graph of treewidth t such that Exact Weight Subgraph Isomorphism with
maximum weight W = Θ(nγ) cannot be solved in time O(nt+1−εW ) unless the h-uniform
Hyperclique hypothesis fails. Again, we show this statement for the colored problem and
transfer the lower bound via Lemma 14.

To do this, we will encode part of a hyperclique instance in the edges of the Exact
Weight Subgraph Isomorphism problem, and the rest of the instance in the weights. To
do the latter, we need to encode certain equality constraints only via weights. This can be
done using so-called k-average free sets3, which we define below.

3 These k-average-free sets are a tool which are very useful for weighted problems, especially when they
have additive elements. Such problems include k-sum, Subset Sum, Bin Packing, various scheduling
problems, Tree Partitioning, Max-Cut, Maximum/Minimum Bisection, a Dominating Set
variant with capacities, and similar [4, 5, 7, 14, 39, 44, 36]. Other uses of k-average-free sets in computer
science include constructions in extremal graph theory, see e.g. [1, 2, 11].
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▶ Definition 12 (k-average free sets). A set S ⊆ Z is called k-average-free if, for any
s1, . . . , sk′+1 ∈ S with k′ ≤ k, we have s1 + . . .+sk′ = k′ ·sk′+1 if and only if s1 = . . . = sk′+1.
In other words, the average of s1, . . . , sk′ ∈ S is in S if and only if all si are equal.

We use the following construction for k-average free sets, originally proven in [16], modified
into a more useful version in [7] and formulated in this form in [4].

▶ Lemma 13. There exists a universal constant c > 0 such that, for all constants ε ∈ (0, 1)
and k ≥ 2, a k-average-free set S of size n with S ⊆ [0, kc/εn1+ε] can be constructed in time
poly(n).

Let us now prove the statement about Exact Weight Subgraph Isomorphism. We
will construct an instance that is node-weighted, however this can easily be converted into
an edge-weighted version by moving the weight of each vertex to all of its incident edges.

Proof sketch. Let t ≥ 3, 3 ≤ h ≤ t and γ ∈ R be given and assume that Exact Weight
Subgraph Isomorphism can be solved in time O(nt+1−εW ) on instances where the pattern
graph has treewidth t and all weights are bounded by W = Θ(nγ). We show that the
h-uniform k-hyperclique hypothesis fails for some large enough k.
Construction of H We construct a pattern graph H as a graph with vertex set (A1 ∪A2)∪B

as follows. We set A1 := [t+1], A2 := [r] (for some r large enough) and B :=
((A1∪A2)×[h]

h

)
.

We connect a vertex b = ((a1, j1), . . . , (ah, jh)) in B to a vertex a in A1 (not in A2) if
a = aℓ for some ℓ. Set k := |A1| + |A2| + |B|. By almost the same proof as in the
unweighted version, it can be shown that this pattern H has treewidth t.

Grouping partitions Now let an instance of the h-uniform k′-Hyperclique problem be
given, and write the vertex set of H ′ as U1 ∪ . . . ∪ Uk. Let NH be the number of vertices
vertices in each partition and nH = O(NH) the number of vertices overall.
We construct the k-partite graph G with at most some number NG of vertices in each
partition as follows. We will encode a β-fraction of the Hyperclique instance in the
weights of the final Exact Weight Subgraph Isomorphism instance, and a (1 − β)-
fraction in the edges, for some β chosen appropriately. To do this, we will choose β such
that βk′

hr , (1−β)k′

h(t+1) ∈ N and then group the sets U1, . . . , Uβk′ into hr groups and the sets
Uβk′+1, . . . , Uk′ into h(t + 1) groups. Specifically, for each (x, y) ∈ [r] × [h], we create the
set U1

x,y = U(xr+y−1) βk′
hr +1 × . . . × U(xr+y) βk′

hr

, and for each (x, y) ∈ [t + 1] × [h], we create
the set U2

x,y = U
βk′+(x(t+1)+y−1) (1−β)k′

h(t+1) +1 × . . . × U
βk′+(x(t+1)+y) (1−β)k′

h(t+1)
.

Vertices of G Now for each a in A1 we set Va := U1
a,1 × . . . × U1

a,h and for each a in A2 we
set Va := U2

a,1 × . . . × U2
a,h. Finally, for each b = ((a1, j1), . . . , (ah, jh)) in B, where for

each ℓ we have aℓ ∈ Aiℓ
, we set Vb := E(H ′) ∩ (U i1

a1,j1
× . . . × U ih

ah,jh
). This describes the

k parts of the k-partite vertex set V (G). We choose r large enough so that the maximum
size of each part is NG := N

(1−β)k′/(t+1)
H .

Edges of G Now we construct the edges and weights of the graph. Let us start with the
edges. The construction here is basically the same as the construction of the edges in the
unweighted proof in the last section. For each a in A2 and b = ((a1, j1), . . . , (ah, jh)) in
B with (a, b) in E(H), consider an arbitrary u = (u1, . . . , uh) in Va and u′ = (u′

1, . . . , u′
h)

in Vb. We say that u and u′ are “compatible” if for every ℓ with aℓ = a we have u′
ℓ = ujℓ

;
in this case we connect u and u′ by an edge. This finishes the construction of the edges
of G.

Weights of G Now we construct the weights. We want to encode the same edge constraints
as we just encoded for A2, but now for A1, and we have to use weights instead of edges.
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To do this, we use |B|-average free sets via the construction of Lemma 28. We simplify
the usage in this shortened proof to avoid dealing with too many variables. We use the
lemma to obtain in polynomial time (which we will treat as negligible here) a |B|-average
free set S of size N

βk′/(hr)
H such that S ⊆ [0, C], where C ≈ O(Nβk′/(hr)

H ) (up to a factor
of (1 + ε) in the exponent, but we will ignore this here for simplicity). From this, we can
construct an arbitrary bijection ϱS : [Nβk′/(hr)

H ] → S.
To simplify our construction, we specify a target weight T (instead of the default target
zero). We can easily get rid of this again later by subtracting T from the weights of
all vertices of some set of the partition. The binary representation of T consists of hr

blocks of ⌈2|B|C⌉ bits, indexed by pairs (i, j) ∈ [r] × [h], each containing the binary
representation of |B|C. The block (i, j) represents the group U1

i,j . The size of the blocks
is large enough to prevent overflow between the blocks. Note that the maximum weight
W now satisfies log2(W ) = Θ(hr log2(2|B|C)) and hence W ≈ O(Nβk′

H ).
Let us now actually specify the weights of the vertices, beginning with the vertices
in Va for a ∈ A1. For each (i, j) ∈ [r] × [h], we relabel the elements of each U1

i,j as
{1, . . . , N

βk′/(hr)
H }. Now we define the weight of the vertex Va ∋ u = (u1, . . . , uh) to

have, for each i ∈ [h], the value |B|C − |N(a)| · ϱS(ui) in the block (a, i) of its binary
representation. Now we move on to the vertices in Vb for b = ((a1, j1), . . . , (ah, jh)). We
define the weight of the vertex Vb ∋ u′ = (u′

1, . . . , u′
h) to have, for each i ∈ [h] such that

ai ∈ A1, the value ϱS(u′
i) in the block (ai, ji) of its binary representation.

All blocks and vertices which have not been assigned a weight yet are assigned a value of
zero. This concludes the construction of G.

Correctness Note that any colored subgraph isomorphism of H in G chooses vertices va in
Va for all a in A1 ∪ A2. This corresponds to choosing vertices ui in Ui for each i ∈ [k′].
Moreover, the edges of a k′-hyperclique are in one-to-one correspondence with the set
B. We simply need to show that the choice of hyperclique vertices induced by the
choice of vertices in A1 ∪ A2 agrees with the choice of hyperclique edges induced by
the choice of vertices in B. For the vertices in A2, this is easily seen to be ensured by
the edges. For the vertices in A1, we need to prove that the weights encode the same
constraint. This, however, is simply the definition of a |B|-average free set: Consider
the block (i, j) (where (i, j) ∈ [r] × [h]) in the binary representation of the total weight
of the subgraph. Suppose that for i ∈ A1 the vertex Vi ∋ u = (u1, . . . , uh) was selected,
and that for each B ∋ b = ((a1, j1), . . . , (ah, jh)) with ∃ℓ : (aℓ, jℓ) = (i, j) the vertex
Vb ∋ u′ = (u′

1, . . . , u′
h) was selected. Then by construction, the total value in the block

(i, j) is the value |B|C − |N(i)|ϱS(uj) (where N(i) is the neighbourhood of i ∈ A1), plus
the value ϱS(u′

ℓ) for all b as above. Note that the latter term has exactly |N(i)| summands,
hence in order for the value in the block to be equal to |B|C as specified by the target
weight, we must have that the value of ϱS(uj) is equal to the value of each of the ϱS(u′

ℓ)
by the definition of |B|-average free sets. Since ϱS is a bijection, this ensures that the
choice of hyperclique vertices in the sets appearing in the Cartesian product defining U1

i,j

– i.e. U(ir+j−1) betak′
hr +1, . . . , U(ir+j) βk′

hr

– agree with the choice of hyperclique edges. This
is true for all i, j and hence for each Uℓ for ℓ ∈ [k′].
The other direction is easy to see via a similar, simpler argument. This concludes the
correctness proof.

Running Time It can be seen that the running time of this reduction is O(N2h
H ), up to the

running time of the algorithm for the construction of the |B|-average free set, which
we will ignore here for sake of simplicity. Now suppose we can solve Exact Weight
Subgraph Isomorphism in time O(nt+1−εW ). We use the reduction above to convert
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a Hyperclique instance with nH = O(NH) nodes to an Exact Weight Subgraph
Isomorphism instance where W ≈ Θ(Nβk′

H ) and n = O(N (1−β)k′/(t+1)
H ). Choosing β

carefully, we get W = Θ(Nγ
H); note that we are ignoring some intricacies in the choice

of β that arise when you consider the running time of the algorithm that constructs
the |B|-average free set – the details are available in Section 4. Now via the algorithm
for Exact Weight Subgraph Isomorphism, we can solve this instance and hence
the original Hyperclique problem in time O(N2h

H + N
((1−β)k′/(t+1))(t+1−ε)
H · Nβk′

H ) =
O(Nk′−ε′

H ) = O(nk′−ε′

H ).
◀

It is easy to see that the same proof also rules out algorithms running in time O(nt+1W 1−ε).
Similar as with the proof for the unweighted problem, basically the same techniques can be
used to prove the other parts of Theorem 4.

3 Preliminaries

3.1 General Notation and Nomenclature
We denote by N the set of positive integers. For p ∈ N, we use [p] to denote the set {1, . . . , p}.
For a statement or predicate P , we define the Iverson bracket [P ] as 1 if [P ] is true, and zero
otherwise. To declutter notation that relies heavily on the Iverson bracket, we will often use
truth values and 0/1 interchangeably, where true will be indicated by 1 and false by 0.

For a function f : A → B and a set S ⊆ A, we denote with f |S : S → B the function
f restricted to S. That is, ∀s ∈ S : f |S(s) = f(s). Furthermore, for u /∈ A and v /∈ B we
define the function extension (f ∪ {u 7→ v}) : A ∪ {u} → B ∪ {v} as

(f ∪ {u 7→ v})(c) :=
{

v if c = u

f(c) otherwise

We use standard notation for graphs. In particular, for a graph G, we let V (G) be its set
of vertices and E(G) its set of edges. For a set X ⊆ V (G), we denote the induced subgraph
by G[X]. For a vertex v ∈ V (G), we denote its neighbourhood as NG(v), or as N(v) when
G is clear from context. We denote the treewidth and pathwidth (see Section 3.4) of G as
tw(G) and pw(G), respectively. All graphs are, unless otherwise stated, simple, undirected
and without self-loops.

We use poly(n) to denote functions which are upper-bounded by O(nc) for some c ∈ N,
and polylog(n) to denote functions upper-bounded by O(logc(n)) for some c ∈ N. In running
times, we use O∗(·) to suppress factors that are polynomial in the input size, and Õ(·) to
suppress factors that are polylogarithmic in the input size.

In all weighted problems, we assume without further mention that the target weight or
maximum absolute weight is at least 1. This is to avoid special cases with the running time.

3.2 Notation and Nomenclature for Colored Subgraph Isomorphism
We now define some nomenclature for the (Exact Weight) Colored Subgraph Iso-
morphism problem. Not that instead of talking about colors, we will talk about a “color
homomorphism” f . Specifically, the Colored Subgraph Isomorphism is defined as
follows: Given a pattern graph H and a host graph G along with a graph homomorphism
f : V (G) → V (H) , is it possible to pick a set S with exactly one vertex from the preimage of
each v ∈ V (H) such that the subgraph induced by S is isomorphic to H? The homomorphism
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f simulates the colors, with all the vertices in a preimage of f being of equal color (which is
unique over all preimages). The Exact Weight Colored Subgraph Isomorphism is
defined analogously4. The weight function is always be denoted by w.

Fix an instance (G, H, f) or (G, H, f, w). H is the pattern graph which is to be found in
the large graph G when given color homomorphism f : V (G) → V (H) and weight function
w. For a subset I ⊆ V (H), we call a function R : I → f−1(I) a configuration of I if
∀v ∈ I : R(v) ∈ f−1(v). We define Conf(I) ⊆ (I → f−1(I)) to be the set of configurations of
I. A configuration of I is called valid configuration if ∀uv ∈ E(H[I]) : R(u)R(v) ∈ E(G).
Finally, we call a configuration R of I a partial solution of I in J , for some I ⊆ J ⊆ V (H),
if there is a valid configuration S of J such that S|I = R. We may shorten this to R being a
partial solution for J if I is clear from context.

For a valid configuration R of I ⊆ V (H), we call w(R) its weight. The exact definition
of the weight w(R) depends on whether G is node-weighted or edge-weighted. If G is node-
weighted with weight function w : V (G) → Z, we define w(R) :=

∑
u∈I w(f−1(u)). If it is

edge-weighted with weight function w : E(G) → Z, we define w(R) :=
∑

uv∈E(H[I]) w(R(u)R(v)),
where it is guaranteed that R(u)R(v) ∈ E(G) because R is a valid configuration. Furthermore,
we say that a partial solution R of I in J has an extension of weight W ′ if there is a
valid configuration S of J such that S|I = R and the nodes (respectively: the edges) of S
which are not in I have combined weight W ′, i.e. wext(S, R) := w(S) − w(R) = W ′.

For brevity, we further define the following predicates:
ParSol(R; I; J) = R is a partial solution of I in J

ParSolE(R; I; J ; W ) = R is a partial solution of I in J with an extension of weight W

ValConf(R; I) = R is a valid configuration of I

3.3 Equivalence of the Colored and Uncolored Problems
All mentioned algorithms and conditional lower bounds are shown for the restricted problem
of Colored Subgraph Isomorphism, where the nodes of G and H are colored with |V (H)|
colors and the isomorphism must preserve colors, as also studied in [54]. In section 7, we
prove that the standard and the colored variant of Subgraph Isomorphism can be solved
in essentially the same running time in almost all cases. Specifically, we show the following
lemma.

▶ Lemma 14. Let ρ be any graph parameter.
1. If there is a T (n, k, ρ(H)) time algorithm for Colored Subgraph Isomorphism, then

there is a Õ(T (kn, k, ρ(H))g(k)) time algorithm for Subgraph Isomorphism, where g

is some computable function.
2. If there is a T (n, k, ρ(H), W ) time algorithm for Exact Weight Colored Subgraph

Isomorphism, then there is a Õ(T (kn, k, ρ(H), W )g(k)) time algorithm for Exact
Weight Subgraph Isomorphism, where g is some computable function.

3. Let tw(H) ≥ 2. If there is a T (n, k, tw(H)) time algorithm for Subgraph Isomorphism,
then there is a O(T (poly(k)n, poly(k), tw(H)) + poly(k)n2) time algorithm for Colored
Subgraph Isomorphism.

4. If there is a T (n, k, ρ(H), W ) time algorithm for Exact Weight Subgraph Isomorph-
ism, then there is a O(T (2n, 2k, ρ(H), 2kW ) + poly(k)n2) time algorithm for Exact
Weight Colored Subgraph Isomorphism.

4 Depending on whether the instance is node-or edge weighted, we require of the solution subgraph that
the sum of either its node or its edge weights is zero.
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This lemma enables us to prove results for (Exact Weight) Subgraph Isomorphism
while only talking about the more structured colored variants of the problem.

Regarding treewidth, the only case the above lemma does not cover is how to transform an
algorithm for unweighted Subgraph Isomorphism to an algorithm for Colored Subgraph
Isomorphism for tw(H) = 1. For our purposes, this is not a problem, since Subgraph
Isomorphism for trees already has a trivial unconditional lower bound of Ω(n2), which is
tight. Note that for this unconditional lower bound, we must assume that the graph is dense,
i.e. has Θ(n2) edges.

The lemma also cannot transform algorithms for unweighted Subgraph Isomorphism
to algorithms for Colored Subgraph Isomorphism for bounded pathwidth. This means
that we cannot show the same lower bounds for the unweighted Subgraph Isomorphism
problem for bounded pathwidth as we can for the Colored Subgraph Isomorphism
problem. This is a shortcoming of the lemma that we could not fix, and hence we leave it as
an open problem whether the lower bounds for the Subgraph Isomorphism problem for
bounded pathwidth can even be improved.

3.4 Treewidth and Pathwidth
We give a very short introduction to treewidth and pathwidth, and state some auxiliary
definitions and notation used throughout the paper. For an thorough introduction to
treewidth, pathwidth and their many applications, we refer the reader to [34, Chapter 7].

▶ Definition 15 (Tree Decomposition). Let H be a graph. A tree decomposition of H is a
pair T = (T, {Xt}t∈V (T )) consisting of a tree T and along with a set of “bags” Xt ⊆ V (H),
one for each vertex of T . It must satisfy the following properties:
(T1)

⋃
t∈V (T ) Xt = V (H)

(T2) ∀uv ∈ E(H) : ∃t ∈ V (T ) : {u, v} ⊆ Xt

(T3) ∀u ∈ V (H) : The subgraph induced by {t ∈ V (T )|u ∈ Xt} is a connected subtree

▶ Definition 16 (Treewidth). Let T = (T, {Xt}t∈V (T )) be a tree decomposition of H. We
define its width to be maxt∈V (T )|Xt| − 1. We define the treewidth of H to be the minimum
width of all tree decompositions of H and denote it as tw(H).

▶ Definition 17 (Path Decomposition). Let H be a graph. A path decomposition of H is
a tree decomposition where T is a path.

▶ Definition 18 (Pathwidth). The width of path decompositions is defined as for tree
decompositions. The pathwidth of H is defined to be the minimum width of all path
decompositions of H, and is denoted as pw(H).

A classic algorithm by Bodlaender [19] computes an optimal tree decomposition or
path decomposition for an input graph H in time O(f(| tw(H)|)|V (H)|) for a computable
function f . For our purposes, this is almost excessive: For our results, we only need an
algorithm which computes an optimal tree decomposition in time g(|V (H)|), for some
computable function g.

Clearly, the treewidth of a graph is always smaller than or equal to its pathwidth. It
should also be noted that while graphs of treewidth one are exactly the class of tree graphs,
graphs of pathwidth one encompass more than just paths. Rather, they are the class of
graphs where each connected component is a caterpillar graph, i.e. consists of a single path
with arbitrarily many degree-one nodes attached at any node of the path [59]. The latter is
vital for our conditional lower bounds for pathwidth one.
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For a tree or path decomposition with underlying tree T and for u ∈ V (T ), we define Tu

to be the subtree rooted at u. The cone Vu is then defined to be Vu :=
⋃

v∈V (Tu) Xv.

4 Hardness Results

4.1 Twin Water Lilies
We will obtain our lower bounds by reducing hyperclique instances to (un)weighted
Colored Subgraph Isomorphism instances, where the pattern graph H is of a special
form defined below. In other words, the pattern graphs below are the “maximally hard”
pattern graphs for the Subgraph Isomorphism problem. See Figure 2 for an illustration.

▶ Definition 19 (Twin Water Lily). For any h, s1, s2, we define the graph TWL(h, s1, s2)
as follows and call it a h-wide Twin Water Lily of order (s1, s2). The vertex set of
TWL(h, s1, s2) consists of two independent sets S1 and S2 with r1 and r2 vertices, respectively.
Additionally, for every size h subset {(v1, s1), . . . , (vh, sh)) ∈

((S1∪S2)×[h]
h

)
, it has a vertex v

which is connected to all vertices in {v1, . . . , vh} ∩ S2. We define P to be the set of all such
v created in this way.

Note that S1 consists only of isolated vertices, and that H is bipartite.

S2S1

P

...

...

...

. . .

. . .

...

Figure 2 Partial sketch of the 3-wide Twin Water Lily of order (6, 4). The dashed edges are not
actual edges, they just represent which other vertices are in the set {v1, . . . , vh} of the vertex u ∈ P

that they are connected to.

▶ Proposition 20. If a graph H is a h-wide Twin Water Lily of order (s1, s2), then its
treewidth is bounded by

tw(H) ≤

{
s2 − 1 if s2 > h

s2 otherwise

and its pathwidth is bounded by pw(H) ≤ s2.

Proof. There is a very useful characterization of treewidth using a graph-theoretic game: A
graph G has treewidth ≤ k if and only if k + 1 cops can catch5 a visible robber on G [63].

5 See the corresponding footnote in Section 2 for a description of the game.
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To show the bound on the treewidth of H, simply place the cops on all vertices of S2.
No matter where the robber starts, it is surrounded by cops or is on an isolated vertex. If
s2 > h, then there must exist some cop which is not adjacent to the robber, whom we can
use to catch him in a single step. If s2 ≤ h, it is not guaranteed that there is a non-adjacent
cop. However, we have an additional cop which can start at any vertex. As soon as the
robber is positioned, we use the additional cop to capture them.

A similar characterization exists for pathwidth: A graph G has pathwidth ≤ k if and
only if k + 1 cops can catch6 an invisible robber on G [38].

For the pathwidth of H, we again place all cops on the vertices of S2 and have one left
over. We use this cop to go through all vertices not in S2, one in each step. The robber
is always surrounded by the cops in S2 an hence cannot move, so after going through all
vertices with the additional cop, we must have caught him. ◀

4.2 Unweighted Colored Subgraph Isomorphism
▶ Lemma 21 (The Unweighted Lemma). For any h ≥ 3 and any r ≥ 2, if we can solve
Colored Subgraph Isomorphism with pattern graph TWL(h, 0, r) in time O(Nr−ε), then
we can solve h-uniform hr-hyperclique in time O(nhr−ε).

Proof. Let an instance I0 = G0 of h-uniform hr-Hyperclique be given. We convert this
to a Colored Subgraph Isomorphism instance with a Twin Water Lily as pattern graph
in three steps, each of which we explain in detail below: First, we convert it to a Colored
hr-Hyperclique instance in a standard way. Second, we go from hypercliques to Colored
Subgraph Isomorphism by replacing each hyperedge by an intermediate vertex. Finally,
we merge preimages to homogenize preimage sizes.

1. Converting to Colored Hyperclique: We convert I0 to a h-uniform Colored Hyper-
clique instance with hr colors. The converted instance should have a hyperclique where
all vertices has different colors if and only if the old instance has a hyperclique. The new in-
stance have the form I1 = (G1, f1), where the color homomorphism f1 : V (G1) → V (Chr)
assigns each vertex of G1 a vertex in the h-uniform hr-hyperclique Chr.
Let V (Chr) = {1, . . . , hr}. For each i, the preimage f−1

1 (i) is a copy of V (G0). Let
g : V (G1) → V (G0) be a function between sets that indicates which vertex in G0 the
vertex in G1 is a copy of. Now for each set {v1, . . . , vh} ∈

(
V (Chr)

h

)
, we go through all

tuples (w1, . . . , wh) ∈ f−1
1 (v1) × . . . × f−1

1 (vh) and create the edge {w1, . . . , wh} ∈ E(G1)
if and only if {g(w1), . . . , g(wh)} ∈ E(G0).
The correctness of this construction is easy to see.

2. Representing Hyperedges by Intermediate Vertices: We now go from the Colored
Hyperclique instance I1 = (G1, f1) to a (structured) Colored Subgraph Isomorph-
ism instance I2 = (H2, G2, f2). The reduction is done in a standard way: We replace
each hyperedge with a vertex connected to all its endpoints.
Formally, we need to construct H2 and G2. H2 has two sets of vertices S′

2 and P . S′
2

is a copy of V (Chr) from the last step, including its preimages. Accordingly, we write
S′

2 = {1, . . . , hr}. In P , we have one vertex u for every subset {w1, . . . , wh} ∈
(

Chr

h

)
, and

we have ∀ℓ ∈ [h] : uwℓ ∈ E(H2). Now for every hyperedge {w′
1, . . . , w′

h} ∈ E(G1) with

6 The game can be formulated such that it is the same as the one for treewidth, but the cops simply
cannot see the robber and must therefore have a universal strategy for catching him on G. This is also
sometimes referred to as the contamination cleansing or infection cleansing game.
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∀ℓ ∈ [h] : w′
ℓ ∈ f−1

1 (G1), we add a vertex u′ ∈ f−1
2 (u) which is connected to all vertices

w′
1, . . . , w′

h. This concludes the construction of I2.
Correctness of this construction is again easy to see. As for the size, note that preimages
of vertices in S′

2 still have size n. The preimages of vertices in P , however, have at most
nh vertices.

3. Merging Preimages in S′
2: Lastly, we go from I2 = (H2, G2, f2) to the final instance

I3 = (H3, G3, f3) where H3 is a Twin Water Lily of order (0, r). Note that I2 is “almost”
the instance we want, save for the fact that the preimages P are much larger (size up
to nh) than the preimages of S′

2 (size n). We rectify this by merging groups of vertices
within S′

2. These groups have size h.
We split S′

2 into r groups X1, . . . , Xr of size h. In H3, we have for every i ∈ [r] a
vertex xi representing Xi. Each vertex x′

i ∈ f−1
3 (xi) corresponds to a configuration

conf(x′
i) ∈ Conf(Xi). In accordance with the definition of a Twin Water Lily, we define

S1 = ∅ and S2 = {x1, . . . , xr}.
The set P ⊆ V (H3) remains the same as in the preceding step, including its preimages.
For each u ∈ P , we connect u to all xi such that Xi ∩ NH2(u) ̸= ∅ (recall that NH2(u) is
defined to be the neighbourhood of u in H2). Note that each u ∈ P is still connected to at
most h other vertices, but that it can be less if multiple vertices of its neighborhood came
from the same group. Finally, for an edge uxi ∈ E(H3), we connect a vertex u′ ∈ f−1

3 (u)
to a vertex x′

i ∈ f−1
3 (xi) if and only if ∀v ∈ NH2(u) ∩ Xi : u′(conf(x′

i)(v)) ∈ E(G2).
Correctness is easy to see. Note that H3 is an h-wide Twin Water Lily of order (0, r)
now, and all preimages are of size at most N := nh.

This completes the construction of the reduction algorithm. Each of the steps runs in
O(n2h−1) time: In the intermediate-vertex step, each of the vertices u′ in a preimage f−1(u)
represents a hyperedge and is hence only connected to h vertices. After the next step, it
is connected to all vertices which represent compatible configurations. Each vertex of S2
that u is now connected to must represent a non-empty intersection of the neighbourhood of
u. Hence it has cardinality at least 1. Hence there are at most nh−1 compatible vertices in
its preimage. Hence overall, there are at most O(n2h−1) edges, and the graph can also be
constructed in this time.

Now suppose there is an algorithm solving the Colored Subgraph Isomorphism prob-
lem with pattern TWL(h, 0, r) in time O(Nr−ε). Then for any h-uniform hr-Hyperclique
instance, we run the reduction in time O(n2h−1) and then solve the new instance in time
O(Nr−ε) = O(nhr−hε). Since r ≥ 2, the algorithm hence takes total time O(nhr−hε) =
O(nhr−ε′). ◀

We now use the Unweighted Lemma to prove the lower bounds for Colored Subgraph
Isomorphism. In particular, we prove the following theorem, which implies Theorem 1 from
the Results section via the Equivalence Lemma (Lemma 14).

▶ Theorem 22. The following statements are true.
1. For each t ≥ 3 and any 3 ≤ h ≤ t, there exists a connected, bipartite pattern graph Ht,h

of treewidth t such that there cannot be an algorithm solving the Colored Subgraph
Isomorphism problem on pattern graph Ht,h in time O(nt+1−ε) unless the h-uniform
h(t + 1)-hyperclique hypothesis fails.

2. For each t ≥ 2 and any h ≥ 3, there exists a connected, bipartite pattern graph Ht,h

of treewidth t such that there cannot be an algorithm solving the Colored Subgraph
Isomorphism problem on pattern graph Ht,h in time O(nt−ε) unless the h-uniform
ht-hyperclique hypothesis fails.
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3. For each t ≥ 2, there exists a connected, bipartite pattern graph Ht of treewidth t such that
there cannot be an algorithm solving the Colored Subgraph Isomorphism problem on
pattern graph Ht in time O(n(t+1)ω/3) unless the (t + 1)-Clique hypothesis fails.

▶ Theorem 23 (Theorem 22 for pathwidth). Part 2 of Theorem 22 also holds when replacing
the treewidth t by the pathwidth p. Part 3 only holds when replacing t + 1 by p + 1, and the
pattern graph is not bipartite anymore. Part 1 does not hold.

Unfortunately, Lemma 14 cannot be applied to Theorem 23, and hence we have no lower
bounds for the uncolored, unweighted case of bounded pathwidth. We believe it is unlikely
that the techniques used to prove 14 generalize to pathwidth.

We now prove the theorems above.

Proof (of Theorem 22). For the proof of this theorem, we use the Unweighted Lemma.
Part 1: Let t ≥ 3 and 3 ≤ h ≤ t be given. It suffices to apply the Unweighted Lemma

with h′ := h and r := t + 1, and set Ht,h = TWL(h, 0, t + 1). As proven in Proposition 20,
TWL(h, 0, t + 1) has treewidth t since t + 1 > h.

Part 2: Let t ≥ 3 and h ≥ 3 be given. It suffices to apply the Unweighted Lemma with
h′ := h and r := t, and set Ht,h = TWL(h, 0, t + 1). The loss of the +1 in the exponent is
due to the weaker bound in in Proposition 20 for t ≤ h.

Part 3: Let t ≥ 2 be given. We know that by the t + 1-clique hypothesis, Colored
Subgraph Isomorphism on pattern graph Ct+1 cannot be solved in time O(n(t+1)ω/3). We
can make Ct+1 bipartite in the obvious way by subdividing the edges. This subdivided graph
is Ht. ◀

Proof (of Theorem 23). Completely analogous. The deviation in bounds with respect to
Theorem 22 is due to the difference in bounds for treewidth and pathwidth in Proposition 20.

In part 3, we cannot subdivide the edges of Ht without changing the pathwidth, hence
the pattern graph stays a clique and is thus not bipartite. ◀

Indeed, the Unweighted Lemma can also be used to prove the results under SETH. SETH is
beyond doubt the most widely used for conditional lower bounds for problems in P, which
is why the following results are still interesting, even though they only give smaller lower
bounds than the results under the Hyperclique hypothesis. For context on SETH and the
many conditional lower bounds it enables, see e.g. [3, 9, 8, 4, 23, 25, 61].

The following theorem implies Theorem 2 via the Equivalence Lemma (Lemma 14).

▶ Theorem 24. Assuming SETH, the following two statements are true.
1. For any t ≥ 3 and any ε > 0 there exists a pattern graph Ht,ε of treewidth t such that

there cannot be an algorithm solving all instances of Colored Subgraph Isomorphism
with pattern graph Ht,ε in time O(nt−ε).

2. For any ε > 0 there exists a t ≥ 3 and a pattern graph Hε of treewidth t such that there
cannot be an algorithm solving all instances of Colored Subgraph Isomorphism with
pattern graph Hε in time O(nt+1−ε).

Proof. This result also follows via Unweighted Lemma and hence via the hyperclique
problem. Specifically, the split-and-list technique from [67] allows one to reduce the Satis-
fiability problem to Hyperclique. Along the same lines, the following result was shown
in [51, Lemma 9.1].

▶ Lemma 25 ([51]). Assuming SETH, for any ε > 0 there exists h ≥ 3 such that for all
k > h, the h-uniform k-Hyperclique problem is not in time O(nk−ε).
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Using this, we now prove parts 1 and 2 of the theorem.
Part 1: Let t ≥ 3 and ε > 0 be given. We use Lemma 25 to obtain h ≥ 3 such that

h-uniform ht-Hyperclique is not in time O(nht−ε). W.l.o.g. assume h ≥ t. Now it suffices
to apply the Unweighted Lemma with h′ := h and r := t, and set Ht,ε = TWL(h, 0, t). Via
Proposition 20 and the fact that h ≥ t, we know that TWL(h, 0, t) has treewidth exactly t.

Part 2: Let ε > 0 be given. Lemma 25 gives a h ≥ 3 such for all k > h, h-uniform
k-Hyperclique is not in time O(nk−ε). We choose t := h and get that h-uniform ht-
Hyperclique is not in time O(nht−ε). Now if suffices to apply the Unweighted Lemma with
h′ := h and r := t + 1 = h + 1 and set Ht,ε = TWL(h, 0, h + 1). Via Proposition 20, we know
that TWL(h, 0, t + 1) has treewidth exactly h = t. ◀

4.3 Exact Weight Colored Subgraph Isomorphism
First, we state the Weighted Lemma. This result enables us to prove lower bounds for Exact
Weight Colored Subgraph Isomorphism.

▶ Lemma 26 (The Weighted Lemma). For any ε ∈ (0, 1) and any constant parameters
h ∈ N \ {1}, r1 ∈ N, r2 ∈ N, β ∈ (0, 1) ∩ Q, there exists a k ∈ N and an algorithm A which
(a) accepts as input an instance I = G of h-uniform k-Hyperclique.
(b) produces an equivalent instance I′ = (H ′, G′, f ′, w′) of Exact Weight Colored

Subgraph Isomorphism, where H ′ is a h-wide Twin Water Lily of order (r1, r2). The
preimages of I′ have size at most max{nβk/r1 , n(1−β)k/r2}, and the maximum weight is
W = Θ(n(1+ε)βk).

(c) runs in time O(n2h−1 + (nβk/(hr1))ĉ) for some universal constant ĉ ∈ N.

Intuitively, the parameter β indicates what percentage of the instance I should be encoded
in which part of the Twin Water Lily. A percentage of β is encoded in the weights, while the
remaining percentage of (1 − β) is encoded in the edges.

We now prove the Weighted Lemma.

Proof. Let an instance I0 = G0 of h-uniform k-Hyperclique be given, where k is chosen
later. We convert this to an Exact Weight Colored Subgraph Isomorphism instance
with a Twin Water Lily as pattern graph in five steps, each of which we explain in detail
below: First, we convert it to a Colored k-Hyperclique instance in a standard way.
Second, we split the instance into the part that we want to encode in the weights and the
part that we want to encode in the edges. In both of these parts, we merge large groups
of preimages such that we are left with only hr1 in the weight part, and hr2 in the edges
part. Third, we go from hypercliques to Colored Subgraph Isomorphism in a standard
way while preserving the preimages. Fourth, we convert the weight part of the instance
into actually using weights by replacing edge constraints by weight constraints, using a
construction known as k-average free sets. Finally, we merge preimages in both parts again
to obtain the final Twin Water Lily instance.
1. Converting to Colored Hyperclique: This step works exactly like step 1 in the proof of

the Unweighted Lemma. As described there, We convert I0 to a h-uniform Colored
Hyperclique instance. The latter has the form I1 = (G1, f1), where the color homo-
morphism f1 : V (G1) → V (Ck) assigns each vertex of G1 a vertex in the k-hyperclique
Ck.

2. Merging Preimages: We now convert I1 to a h-uniform Colored (hr1+hr2)-Hyperclique
instance, by condensing groups of (small) preimages into single (large) preimages. In the
converted instance I2 = (G2, f2) with color homomorphism f2 : V (G2) → V (Cr1+r2), we
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ensure that V (Chr1+hr2) can be divided into two sets H1, H2 such that |H1| = hr1, |H2| =
hr2 and ∀v ∈ H1 : |f−1

2 (v)| = nβk/(hr1), ∀v ∈ H2 : |f−1
2 (v)| = n(1−β)k/(hr2). These two

sets correspond to the two water lilies constructed in later steps.
At this point, we must make our choice of k. We will need that k1 := βk is an integer
and divisible by hr1. Furthermore, k2 := (1 − β)k must also be an integer and divisible
by hr2. Letting β = p

q ∈ (0, 1) ∩ Q where p, q ∈ N, it hence suffices to choose k = hr1r2q.
Now, we split V (Ck) = {1, . . . , k} into two groups V1 = {1, . . . , k1} and V2 = {k1 +
1, . . . , k2}. Going further, we split each of these sets again: V1 is split into hr1 disjoint
groups V1, . . . , Vhr1 of size k1

hr1
each. Analogously, we split V2 into hr2 disjoint groups

Vhr1+1, . . . , Vhr1+hr2 of size k2
hr2

each.
Now define V (Chr1+hr2) = {v1, . . . , vhr1+hr2} and furthermore let S′

1 = {v1, . . . , vhr1}, S′
2 =

{vhr1+1, . . . , vhr1+hr2}. The vertex vi corresponds to Vi, for every i. The vertices in
their preimages represent all the configurations of the sets. In particular, we let every
v′

i ∈ f−1
2 (vi) represent a configuration conf(v′

i) ∈ Conf(Vi). Hence, for vi ∈ S′
1 the

preimage f−1
2 (vi) has size nk1/(hr1), and for vi ∈ S′

2 the preimage f−1
2 (vi) has size

nk2/(hr2).
Now for the edges. For every subset {vi1 , . . . , vih

} ∈
(

S′
1∪S′

2
h

)
, we iterate over all

(v′
i1

, . . . , v′
ih

) ∈ f−1
2 (vi1)×. . . , ×f−1

2 (vih
). We combine the configurations that they repres-

ent by defining R ∈ Conf(Vi1 ∪ . . . Vih
) as ∀ℓ ∈ [h] : ∀v′

iℓ
∈ f−1

2 (viℓ
) : R(v′

iℓ
) := conf(v′

iℓ
).

Now we add {w1, . . . , wh} as a hyperedge to E(G2) if and only if R is a valid configuration.
That is, if the image of R induces a hyperclique in G1.
Again, correctness is easy to see.

3. Representing Hyperedges by Intermediate Vertices: We now go from the Colored
Hyperclique instance I2 = (G2, f2) to a (structured) Colored Subgraph Isomorph-
ism instance I3 = (H3, G3, f3). The reduction is essentially the same as the one in step 2
in the proof of the Unweighted Lemma.
We construct H3 and G3. H3 has three sets of vertices S′

1, S′
2 and P . S′

1 and S′
2

copy S′
1 and S′

2 from the last step, including their preimages. Accordingly, we write
S′

1 = {v1, . . . , vhr1} and S′
2 = {vhr1+1, . . . , vhr1+hr2}. In P , we have one vertex u for

every subset {w1, . . . , wh} ∈
(Chr1+hr2

h

)
, and we have ∀ℓ ∈ [h] : uwℓ ∈ E(H3). For

every hyperedge {w′
1, . . . , w′

h} ∈ E(G2) with ∀ℓ ∈ [h] : w′
ℓ ∈ f−1

2 (G2), we add a vertex
u′ ∈ f−1

3 (u) which is connected to all vertices w′
1, . . . , w′

h. Note here that u′ is only
connected to one vertex from each preimage, which is a property that will be needed in
the fourth step.
Correctness of this construction is easy to see. Note that preimages of vertices in S′

1 and
S′

2 still have size nk1/(hr1) and nk2/(hr2), respectively. The preimages of vertices in P ,
have at most (max{nk1/(hr1), nk2/(hr2)})h = max{nk1/r1 , nk2/r2} vertices.

4. Replacing Some of the Edges with Weights We now come to the crucial step of con-
verting some of the edge constraints to weight constraints. We convert the Colored
Subgraph Isomorphism instance I3 = (H3, G3, f3) of the preceding step into an Exact
Weight Colored Subgraph Isomorphism instance I4 = (H4, G4, f4, w4). To do this,
we will need so-called k-average free sets.
▶ Definition 27 (k-average free sets). A set S ⊆ Z is called k-average-free if, for
any s1, . . . , sk′+1 ∈ S with k′ ≤ k, we have s1 + . . . + sk′ = k′ · sk′+1 if and only if
s1 = . . . = sk′+1. In other words, the average of s1, . . . , sk′ ∈ S is in S if and only if all
si are equal.
We use the following construction for k-average free sets, originally proven in [16], modified
into a more useful version in [7] and formulated in this form in [4].
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▶ Lemma 28. There exists a universal constant c > 0 such that, for all constants ε ∈ (0, 1)
and k ≥ 2, a k-average-free set S of size n with S ⊆ [0, kc/εn1+ε] can be constructed in
time poly(n).
Specifically, we use Lemma 28 with ε′ = ε, k′ = λ := |P | and n′ = nk1/(hr1). Letting
B := λc/εn(1+ε)k1/(hr1), this yields a λ-average free set S ⊆ [0, B] of size nk1/(hr1). From
this, we can construct an arbitrary bijection ϱS : [nk1/(hr1)] → S.
Now, to construct I4, we first copy I3, giving each node a default weight of “infinity” (i.e.
something otherwise unobtainable, e.g. k2W + 1). Now we delete all edges in H3 which
are incident to a vertex in S′

1, along with the corresponding edges in G3. These are the
edges that we replace by weight constraints.
Hence we now describe the weights. To make our construction easier, we specify a target
value T (instead of the default target zero). We can easily get rid of this again by picking
some vertex ŵ ∈ V (H3) and subtracting T from the weights of all of its preimages. The
binary representation of T consists of h · a blocks of ⌈log(2λB)⌉ bits, each containing the
binary representation of λB. The i-th block represents the vertex vi ∈ S′

1.
We move to the weights of the vertices, starting with vertices in the preimages of S′

1.
Somewhat abusing notation, we define ∀i ∈ [hr1] : f−1

4 (vi) = {1, . . . , nk1/(hr1)}. The
weight of vertex v′

i ∈ f−1
4 (vi) has a value of λB − |N(vi)| · ϱS(v′

i) in the i-th block, and
a value of zero in all other blocks. Now for vertices in the preimages ofP . Let u ∈ P

correspond to the set {w1, . . . , wh} ∈
(Chr1+hr2

h

)
. As observed in the preceding step, each

u′ ∈ f−1
3 (u) is connected to exactly one vertex w′

i from each preimage f−1
3 (wi). In the

current step, for each i ∈ [h] with wi ∈ S′
1, we have deleted the edges u′w′

i. To replace
them, for each such i, we give u′ a value of ϱS(w′

i) in the i-th block. We have just changed
the weight of u′ at |N(u) ∩ S′

1| blocks of its binary representation. All other blocks have
a value of zero.
All vertices with so far unspecified weight have weight zero. This concludes the construc-
tion of I4.
We show correctness of this construction. It suffices to show that any configuration R

that is a solution for I3 is also a solution for I4 and vice versa. Hence, suppose R is a
solution for I3. Then all edge constraints of H4 are trivially fulfilled and we need only
show that the total weight is T . For ease of discussion, we denote by α[i] the value
of the i-th block of a weight α. Consider the blocks of the binary representation of
the sum of weights w(R) =

∑
v∈Im(R) w4(v), and let i be fixed. The large block size

prevents overflow, so w(R)[i] =
∑

v∈Im(R) w4(v)[i]. By construction, we have w(R)[i] =
w(R(vi))[i] +

∑
u∈N(vi) w(R(u))[i]. However since R is a valid configuration in I3, we

have that for each u, ∀vj ∈ N(u) : R(u)R(vj) ∈ E(G3). In particular, R(u)R(vi) ∈ E(G3)
and hence by construction w(R(u))[i] = ϱS(vi). We conclude w(R)[i] = λB − |N(vi)| ·
ϱS(R(vi)) +

∑
i∈N(vi) ϱS(R(vi)) = λB = T [i]. Hence w(R) is equal to T in each of its

blocks, which was to be proven.
Conversely, suppose R is a solution for I4. Then all edge constraints in G3[V (G3)\S′

1] are
trivially satisfied and we need only show that ∀vi ∈ S′

1 : ∀u ∈ N(vi) : R(vi)R(u) ∈ E(G3).
Fix vi ∈ S′

1. We have that λB = T [i] = w(R)[i] = w(R(vi))[i] +
∑

u∈N(vi) w(R(u))[i].
Let N(vi) = {u1, . . . , u|N(vi)|}. For each ℓ ∈ |N(vi)|, we have that R(uℓ) is connected
to some vertex v

(ℓ)
i ∈ f−1

3 (vi), and hence that w(R(uℓ))[i] = ϱS(v(ℓ)
i ). Hence we have

that λB = λB − |N(vi)| · ϱS(R(vi)) +
∑

ℓ∈|N(vi)| ϱS(v(ℓ)
i ). Hence |N(vi)| · ϱS(R(vi)) =∑

ℓ∈|N(vi)| ϱS(v(ℓ)
i ). But because the values in the image of the bijection ϱS are a λ-average

free set and N(vi) ⊆ P certainly has size less than |P | = λ, we have that ∀ℓ : v
(ℓ)
i = R(vi).

Thus for all ℓ, R(uℓ) is connected to R(vi), which was to be proven.
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5. Merging Preimages in S′
1 and S′

2: Lastly, we go from I4 = (H4, G4, f4, w4) to the final
instance I5 = (H5, G5, f5, w5) where H5 is a Twin Water Lily of order (r1, r2). This step
is similar to step step 3 of the proof of the Unweighted Lemma.
We merge groups of vertices within S′

1 and S′
2. In both sets, these groups have size h.

We split S′
1 into r1 groups X1, . . . , Xr1 of size h, and we split S′

2 into r2 groups
Xr1+1, . . . , Xr1+r2 of size h. In H5, we have for every i ∈ [r1 +r2] a vertex xi representing
Xi. Each vertex x′

i ∈ f−1
5 (xi) corresponds to a configuration conf(x′

i) ∈ Conf(Xi). The
weight of x′

i is w(conf(x′
i)), i.e. the sum of the weights of the vertices in the image of

the configuration. In accordance with the definition of a Twin Water Lily, we define
S1 = {x1, . . . , xr1} and S2 = {xr1+1, . . . , xr1+r2}.
The set P ⊆ V (H5) remains the same as in the preceding step, including its preimages and
the weights of the vertices in the preimages. For each u ∈ P , we go through the vertices v in
the neighbourhood of u in H4, and connect u to xi such that v ∈ Xi. Note that each u ∈ P

is still connected to at most h other vertices, but that it can be less if multiple vertices of
its neighborhood came from the same group. Finally, we connect a vertex u′ ∈ f−1(u) to
a vertex x′

i ∈ f−1
5 (xi) if and only if ∀v ∈ NH2(u) ∩ Xi : u′(conf(x′

i)(v)) ∈ E(G4).
Correctness is easy to see. Note that H5 is a Twin Water Lily of order (r1, r2) now.
The set S1 has size r1 and S2 has size r2, with respective preimages of size nk1/r1 and
nk2/r2 . The preimages of P still have size max{nk1/r1 , nk2/r2}. Furthermore, the weights
constructed in step 4 have hr1 blocks of ⌈log(2λB)⌉ bits, hence the maximum weight
is Θ(2ζ) where ζ = hr1 · (log(λB) + O(1)) = hr1 · log(|P |1+c/εn(1+ε)k1/(hr1)) + O(1) =
hr1 · log(n(1+ε)k1/(hr1)) + O(1) = (1 + ε)k1 log(n) + O(1), hence as promised in the
statement of the lemma the maximum weight is Θ(n(1+ε)k1).

We have shown a reduction that has properties (b) and (c) from the lemma. We still have
to analyze the running time. It is easy to see that steps 1, 2 and 3 run in time O(n2h−1), just
as in the proof of the unweighted lower bound. In step 4, we need to construct the k-average
free set S, which is done in time poly(nk1/(hr1)) = O((nk1/(hr1))ĉ) for some universal constant
ĉ ∈ Z. The rest of step 4 as well as step 5 can again be done in time O(n2h−1). This
concludes the proof. ◀

We now use this lemma to prove the lower bound for Exact Weight Colored
Subgraph Isomorphism. Note that it only gives node-weighted instances. But as the
following lemma shows, this is enough.. It shows that we can always convert node-weighted
instances to edge-weighted instances, hence showing lower bounds for node-weighted instances
immediately shows lower bounds for edge-weighted instances. It can also be reused later in
the algorithms, as we can then always assume that the instances are edge-weighted.

▶ Proposition 29. Given an instance of Exact Node Weight Colored Subgraph
Isomorphism where each vertex v ∈ V (G) with w(v) ̸= 0 has degree at least one, we can
transform it into an equivalent instance of Exact Edge Weight Colored Subgraph
Isomorphism in such a way that only the weight function changes. Furthermore, this
reduction runs in time linear in the input size.

Proof. We construct a new weight function w′ : E(G) → Z. Initially, w′(e) = 0 for all
e ∈ E(G). The idea is to push the weight of each vertex of non-zero weight in G onto one of
its edges. Hence let v ∈ V (G) with w(v) ̸= 0. Then there must be u ∈ V (G) with uv ∈ E(G).
We add w(v) to w′(uv). This completes the reduction.

It can easily be seen that if there is a solution in the node-weighted instance with w, then
that same solution must work with w′ and vice versa. ◀
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This enables us to prove the following theorem. Note that it implies Theorem 4 via
Lemma 14.

▶ Theorem 30. For both the node- and edge weighted variant of the problems, the following
statements are true.
1. For each t ≥ 3, each γ ∈ R+ and any 3 ≤ h ≤ t, there exists a connected, bipartite graph

Ht,h,γ of treewidth t such that there cannot be an algorithm solving the Exact Weight
Colored Subgraph Isomorphism problem on pattern graph Ht,h,γ for instances with
maximum weight W = Θ(nγ) in time O(nt+1−εW ), unless the h-uniform Hyperclique
hypothesis fails.

2. For each t ≥ 1, each γ ∈ R+ and any h ≥ 3, there exists a connected, bipartite graph
Ht,h,γ of treewidth t such that there cannot be an algorithm solving the Exact Weight
Colored Subgraph Isomorphism problem on pattern graph Ht,h,γ for instances with
maximum weight W = Θ(nγ) in time O(nt−εW ), unless the h-uniform Hyperclique
hypothesis fails.

3. For each t ≥ 1 and each γ ∈ R+, there exists a connected, bipartite graph Ht,γ of
treewidth t such that there cannot be an algorithm solving the Exact Weight Colored
Subgraph Isomorphism problem on pattern graph Ht,γ for instances with maximum
weight W = Θ(nγ) in time O(n(t+1)ω/3−εW ω/3), unless the Clique hypothesis fails.

The following implies Theorem 7 from the results section.

▶ Theorem 31 (Theorem 30 for pathwidth). Parts 2 and 3 of Theorem 30 also hold when
replacing the treewidth t by the pathwidth p. Part 1 does not hold.

We remark that by the algorithm presented in Theorem 38, we cannot hope to obtain a
lower bound as in part 1 of Theorem 30 for the case of pathwidth.

Proof (of theorem 30). Note that by Proposition 29, it suffices to prove lower bounds for
the node-weighted case.

We begin with part 1 of the theorem. Let t ≥ 3 and γ ∈ R+, as well as 3 ≤ h ≤ t be
given. We apply the Weighted Lemma with

some ε′ > 0 chosen later,
some β′ ∈ (0, 1) ∩ Q chosen later,
h′ := h,
r′

2 := t + 1 and
some arbitrary r′

1 ∈ N with
r′

1 > ĉβ′

h (this ensures that the running time O(n2h−1 + nĉβ′k/(hr′
1)) of the reduction is

equal to O(nk−ε) for some ε > 0, and can hence be ignored in the analysis) and
r′

1 > β′(t+1)
1−β′ (this ensures that max{nβ′k/r′

1 , n(1−β′)k/(t+1)} = n(1−β′)k/(t+1)).
This produces a k ∈ N and a reduction algorithm A with the properties from the lemma. In
particular, the reduction algorithm produces instances where the pattern graph H is a Twin
Water Lily of order (r1, r2), which we define to be our graph Ht,γ .

Now suppose there is an algorithm for the Exact Weight Colored Subgraph
Isomorphism problem on pattern graph Ht,γ running in time O(N t+1−εW ) (the case
O(N t+1W 1−ε) is analogous). We show that the h-uniform Hyperclique hypothesis fails by
showing that there is an algorithm for h-uniform k-Hyperclique running in time O(nk−ε)
for some ε > 0.

Given an h-uniform k-Hyperclique instance, we use algorithm A to obtain an equivalent
instance of Exact Weight Colored Subgraph Isomorphism where the pattern graph is a
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Twin Water Lily of order (r′
1, t+1), the preimages have size N = max{nβ′k/r′

1 , n(1−β′)k/(t+1)} =
n(1−β′)k/(t+1), and the maximum weight is W = Θ(n(1+ε′)β′k).

First, we make sure that W = Θ(Nγ) by choosing β′ and ε′ accordingly. Substituting,
we get n(1+ε′)β′k = Θ(nγ(1−β′)k/(t+1)), which is true if and only if

(1 + ε′)β′k = γ(1 − β′)k
t + 1 ⇐⇒ β′

1 − β′ = γ

(t + 1)(1 + ε′) ⇐⇒ ε′ = γ(1 − β′)
(t + 1)β′ − 1

Hence we choose ε′ as such. However, to apply the Weighted Lemma, we must have ε′ ∈ (0, 1).
Hence we get the following two constraints for β′:

γ(1 − β′)
(t + 1)β′ − 1 > 0 ⇐⇒ β′ <

γ

(t + 1) + γ

γ(1 − β′)
(t + 1)β′ − 1 < 1 ⇐⇒ β′ >

γ

2(t + 1) + γ

We incorporate these constraints later.
Now we need to ensure that the new running time we get is also small. We solve the

Exact Weight Colored Subgraph Isomorphism instance in time O(N t+1−εW ) =
O(N t+1+γ−ε) = O(n(t+1+γ−ε)(1−β′)k/(t+1)). Hence we get the following additional constraints
on β′:

(t + 1 + γ − ε)(1 − β′)
t + 1 < 1 ⇐⇒ 1 − β′ <

t + 1
t + 1 + γ − ε

⇐⇒ β′ >
γ − ε

(t + 1) + γ − ε

Combining these three constraints on β′, we get

max
{

γ − ε

(t + 1) + γ − ε
,

γ

2(t + 1) + γ

}
< β′ <

γ

(t + 1) + γ

Clearly, it is always possible to choose a β′ ∈ (0, 1) ∩ Q such that this is true.
Part 2 of the theorem is very much analogous. Note that the loss of the 1 in the exponent

is due to the weaker bound in Proposition 20.
Part 3 is completely analogous for the case t ≥ 2; we simply always choose h = 2. The

ω/3 in the bound comes from the Clique hypothesis.
However, a small trick has to be used for the case t = 1, since a 2-wide Twin Water Lily

of order (r1, 2) has treewidth 2, not 1. To get the better lower bound, we have to slightly
modify the proof of the Weighted Lemma for h = 2 in step 3. Instead of replacing the
edges between vertices of S2 by intermediate vertices, we simply leave them as-is. Now the
resulting graph is not a Twin Water Lily anymore, but does always have treewidth r2. The
rest of the proof is analogous.

◀

Finally, we prove the same theorem for pathwidth.

Proof (of Theorem 31). Proving part 2 is exactly analogous to part 2 of the theorem for
treewidth.

Now remember that we needed a slight modification of the proof of the Weighted Lemma
for part 3 of the theorem for treewidth for t = 1. For part 3 of the theorem for pathwidth,
we actually need that modification for all t, i.e. we always leave S2 as-is in step 3. The rest
of the proof is analogous. ◀
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4.3.1 Subset Sum
We remark that with basically the same technique as is used to prove the Weighted Lemma,
we can also prove a lower bound on the Subset Sum problem7.

▶ Theorem 32. For no ε > 0 can there be an algorithm which solves Subset Sum in time
O(T 1−ε poly(n)) unless the h-uniform Hyperclique hypothesis fails for all h ≥ 3.

In [4], a slightly better lower bound for Subset Sum is proven under SETH: They prove
that unless SETH fails, Subset Sum cannot have an algorithm running in time O(T 1−ε2o(n)).

We briefly discuss other current algorithms and lower bounds for Subset Sum. The
Subset Sum problem has a well-known O(Tn) time algorithm using dynamic program-
ming [60]. Very recently, suprising new algorithms with running time Õ(

√
nT ) [46, 47] and

Õ(T + n) [24] have been shown, the latter matching several conditional lower bounds from
SETH [4], Set Cover [33], k-clique (observed in [24] via techniques from [7]), and now
from Hyperclique. The algorithm in [24] is slightly simplified in [45], with improvements
in the log factors of the running time. The Subset Sum problem is closely related to the
k-Sum problem (see also Appendix A.1).

There are two ways to see why Theorem 32 is true, and they both more or less lead to the
same reduction. Both involve first reducing a Hyperclique instance to a k-Sum instance,
after wich a well-known reduction from k-Sum to Subset Sum can be used. We describe
the latter reduction formally in Appendix A.1.

The first way to see the result is a generalization of the reduction from k-Clique to
k-Sum described by [7]. Instead of encoding edges with only two endpoints in the weights,
we encode hyperedges. The second way to see the result (as stated, they lead to the same
reduction) is via a slight modification of the Weighted Lemma to encode everything in the
weighted part. We give details for the second way in Appendix A.2.

5 Algorithmic Results

5.1 k-Wise Matrix Products
In our algorithms, the following generalization of matrix multiplication to tensors is both
a crucial building block and a bottleneck. It was defined in its general form in [42] and
explored further algorithmically in [51].

Given k tensors A1, . . . , Ak of order k with dimensions
k times︷ ︸︸ ︷

n × . . . × n, we define the k-wise
matrix product MPk(A1, . . . , Ak) to be the tensor given by

MPk(A1, . . . , Ak)[i1, . . . , ik] :=
∑
ℓ∈[n]

A1[ℓ, i2, . . . , ik] ·A2[i1, ℓ, i3, . . . , ik] · · · Ak[i1, . . . , ik−1, ℓ]

Clearly, for k = 2 this product is exactly matrix multiplication. There is also a boolean
version of this generalized matrix product, just as there is a boolean version of the standard
matrix product. In this boolean version, the tensors contain truth values (or equivalently
0/1 values) and the sum is replaced by an OR, while the products are replace by ANDs.

We briefly discuss the computational complexity of k-wise matrix products. They can
trivially be computed in time O(nk+1) for all k, and in time O(nω) for k = 2 via techniques

7 Defined as: Given a set A ⊆ N of n numbers and a target T ∈ N, determine whether ∃B ⊆ A :
∑

b∈B
b =

T .
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originating from Strassen [65] (for a history and introduction, see Bläser [17]). Unfortunately,
as Lincoln, Williams and Williams observe in [51], it is impossible that faster Strassen-like
algorithms with running time O(nk+1−ε) with ε > 0 exist for k ≥ 3: Just as the operation
of n × n by n × n matrix multiplication has a corresponding order 3 tensor of dimensions
n× . . .×n, there is an order k + 1 tensor of dimension n× . . .×n corresponding to the k-wise
matrix product. For k ≥ 3, this tensor has border rank nk+1, i.e. it cannot be expressed as
the limit of a sequence of tensors of rank smaller than nk+1.

5.2 k-Wise Tree Decompositions
In our algorithms, we use a structured form of tree decompositions that allow us to apply
k-wise matrix products very easily to solve the Colored Subgraph Isomorphism problems
(either weighted or unweighted) on them. Any tree decomposition can be converted to this
structured form without changing its width. Its definition is very loosely based on the
structured tree decompositions that [32] describes for treewidth 2 graphs. See figure 3 for a
partial illustration of the structured form in the context of the algorithm for the unweighted
problem.

▶ Definition 33. We call a tree decomposition T = (T, {Xt}t∈V (T )) a k-wise tree decom-
position if it satisfies the following requirements. T must be a rooted tree, and each of its
nodes has one of three types: It is either an intermediate-result node, a k-wise node, or
a merge node. Intermediate-result and merge nodes have bags of size k, while k-wise nodes
have bag size k + 1. We require the root to be an intermediate-result node, and all leaves to
be merge nodes. Finally, the three types of nodes are defined as follows:

(i) If t ∈ V (T ) is an intermediate-result node, it has two children: a k-wise node and a
merge node t′ with Xt = Xt′ .

(ii) If t ∈ V (T ) is a k-wise node, its parent par(t) is an intermediate-result node and its
set of children children(t) consists of exactly k merge nodes. Furthermore, we can
rename the nodes in its bag to Xt = {v, u1, . . . , uk} such that Xt = Xpar(t) ∪ {v} and
∀i ∈ [k] : ∃c(i) ∈ children(t) : Xt = Xc(i) ∪ {ui}.

(iii) If t ∈ V (T ) is a merge node, it has arbitrarily many children which must all be
intermediate-result nodes. Furthermore, for each child t′ we have Xt = Xt′ .

We call intermediate-result and merge nodes helper nodes, and define help(T ) ⊆ V (T ) to
be the set of all helper nodes.

Note that in particular, a k-wise tree decomposition has width k.

▶ Lemma 34. Let H be a graph and let T = (T, {Xt}t∈V (T )) be a tree decomposition of H

that has width width(T). Then we can convert T into a width(T)-wise tree decomposition
T′ = (T ′, {Xt}t∈V (T ′)). Furthermore, |V (T ′)| = poly(|V (T )|) · width(T) and the conversion
can be done in time O(poly(|V (T )|) · poly(width(T))).

Proof. First, we go from the input tree decomposition T to one where all bags have size
width(T) + 1, and where for any adjacent nodes t, t′ ∈ V (T ), we have Xt ∩ Xt′ = width(T).
To do this, we roughly follow the outline of an algorithm that [32] describes for treewidth 2
graphs. First, we merge adjacent nodes t, t′ ∈ V (T ) with Xt = Xt′ . If there exists a node
t with |Xt| ≤ width(T) + 1 and a neighbor t′ such that Xt′ ̸⊆ Xt, then we simply add an
element of Xt′ \ Xt to Xt. Applying this rule exhaustively, we obtain a tree decomposition
where all bags have exactly width(T) + 1. Applying this rule exhaustively, the resulting tree
decomposition has the desired properties. Now we take any adjacent nodes t, t′ ∈ V (T ) with
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|Xt ∩ Xt′ | < width(T) and, letting u ∈ Xt \ Xt′ and v ∈ Xt′ \ Xt, insert a vertex with bag
(Xt ∪ {v}) \ {u} between them.

Now we root T in an arbitrary node. For any t ∈ V (T ) and any t′ ∈ children(t), we
subdivide the edge tt′, and give the new node the bag Xt ∩ Xt′ . We call the newly inserted
vertices small, and all other vertices large. The root node r′ must be a large node. We give
it a small parent by selecting an arbitrary subset X ⊆ Xr′ of size width(T), adding a new
root r to T with bag X and making r′ a child of r.

We now iterate over the large nodes in T (as it is now) in depth-first search order. For each
large vertex t, we (temporarily) rename the vertices of its bag to Xt = {v, u1, . . . , uwidth(T)}
such that its (small) parent has bag Xpar(t) = {u1, . . . , uwidth(T)}. Furthermore, for each i,
let Ci ⊆ children(t) be the (possibly empty) set of all children t′ such that Xt′ = Xt \ {ui}.
We add a node c(i) with bag Xt \{ui} to V (T ) and connect all children t′ ∈ Ci to c(i) instead
of t. Finally, we make c(i) a child of t. We do something analogous for v, namely letting
Cv ⊆ children(t) be the (possibly empty) set of all children t′ such that Xt′ = Xt \ {v}, we
add a node c(v) with bag Xt \ {v} to V (T ) and connect all children t′ ∈ Cv to c(v) instead
of t. However, we make c(v) a child of par(t), not t. Now we are done: The newly added
vertices c(i) (for all i) and c(v) are merge nodes, their children are intermediate-result nodes,
and the large nodes t are k-wise nodes. Note also that because we allowed the sets Ci (for
all i) and Cv to be empty, we now have that all leaves are merge nodes.

This concludes the construction. It is easily seen that the number of nodes of the new
tree decomposition is poly(|V (T )|) · width(T), and that this conversion algorithm works in
time O(poly(|V (T )|) · poly(width(T))). ◀

5.3 Colored Subgraph Isomorphism for Bounded Treewidth
We begin by looking at the unweighted version of Colored Subgraph Isomorphism. As
was previously mentioned for Theorem 3, these results essentially follow from [12] and [32],
but are now unified via a single technique.

▶ Theorem 35. There is an algorithm which, given an arbitrary instance ϕ = (H, G, f) of
Colored Subgraph Isomorphism, solves ϕ in time
1. O(ntw(H)+1 poly(k) + g(k)) when tw(H) ≥ 3,
2. O(nω poly(k) + g(k)) when tw(H) = 2, where ω is the exponent of matrix multiplication,

and
3. O(n2 poly(k) + g(k)) when tw(H) = 1.
where k := |V (H)|, n is the size of the preimages of f , and g is a computable function.

Obviously, a proof of this theorem suffices to prove Theorem 3, since we can simply plug
the algorithm into Lemma 14.

Proof (of part 1 of Theorem 35). We describe an algorithm which, given G, H and f :
V (G) → V (H), first calculates an optimal tree decomposition Tinitial of width tw(H) for H

in time g(k) (via the algorithm by Bodlaender [19], see also Section 3.4), then finds a solution
via dynamic programming over the tree decomposition. The algorithm that computes the
optimal tree decomposition also ensures that its tree graph Tinitial has size |Tinitial| = poly(k).
By assumption, tw(H) ≥ 3. We shorten tw(H) to tw in the following. We use a slightly
more complicated framework than necessary, because it generalizes nicely to a proof of part
2 and to a proof of parts 1 and 2 of Theorem 36.

To make our algorithm as easy as possible, we begin by applying Lemma 34 to convert
our tree decomposition into a tw-wise tree decomposition T = (T, {Xt}t∈V (T )). Since
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|Tinitial| = poly(k), the time this conversion takes is certainly negligible. Furthermore,
|T | = poly(|Tinitial|) · poly(width(Tinitial)) = poly(poly(k)) · tw = poly(k).

We now do dynamic programming over the tw-wise tree decomposition. Using notation
and nomenclature from Section 3.2, we only store values for each configuration of the bags of
helper nodes, not for k-wise nodes. In particular, for each helper node t ∈ help(T ) we store
the following function of finite domain from configurations of Xt to truth values. Remember
that ParSol(S; I; J) is true if and only if S is a partial solution of I in J , for I ⊆ J ⊆ V (H).

dt : Conf(Xt) → {true, false}
dt(R) := ParSol(R; Xt; Vt) (1)

i.e. we store for each configuration whether it is a partial solution of Xt in the cone Vt. We
call these functions DP functions (where DP stands for dynamic programming). Since there
are ntw many configurations for Xt, each DP function dt can be specified using ntw many
bits.

We calculate the DP functions dt for all t ∈ help(T ) in a bottom-up manner. The overall
picture of the algorithm is very simple: At a merge node t, we take the DP functions of all
children and do a pointwise AND. At an intermediate-vertex node t, we first calculate a
tw-wise matrix product for its tw-wise node child, then AND the result with the DP function
of its merge node child. See figure 3 for a conceptual illustration.

intermediate-result

tw-wise

merge

intermediate-result

tw

...
...

· · · · · ·

Figure 3 Partial sketch of the tree T of the tw-wise tree decompositions. Colored arrows represent
operations of the algorithms, with red indicating that the result of the tw-wise node is calculated via
a tw-wise matrix product, and green indicating that the result of that subtree is ANDed pointwise
with the result of all other subtrees.

We now describe the algorithm in detail. We begin with the leaves of T , which must be
merge nodes. Hence let t be a merge node with no children. Since Xt = Vt, any configuration
of Xt is a configuration of Vt. Thus, to calculate dt(R) as in equation 1, we simply have
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to check whether R is a valid configuration. The latter can be done in time poly(k), which
leads to a total time of O(ntw poly(k)) per leaf.

Now let t ∈ help(T ) be an inner node of T . There are two cases: either t is an intermediate-
result node, or t is a merge node.
t is a merge node: Let t be a merge node. We continue to denote the set of children of t by

children(t). For each configuration R we have

dt(R) = ParSol(R; Xt; Vt) = ParSol

R; Xt;
⋃

c∈children(t)

Vc


=

∧
c∈children(t)

ParSol(R; Xt; Vc) =
∧

c∈children(t)

dc(R)

Since t has at most poly(k) children, and since there are at most ntw many possible
configurations R, this can be done in time O(ntwpoly(k)) per merge node.

t is an intermediate-result node: Let t be an intermediate-result node with tw-wise child
node t′ and merge node t′′. By definition we have Xt = Xt′′ . Furthermore | children(t′)| =
tw, and we can rename the nodes in Xt′ to Xt′ = {v, u1, . . . , utw} such that Xt′ = Xt ∪{v}
and ∀i ∈ [k] : ∃c(i) ∈ children(t′) : Xt′ = Xc(i) ∪ {ui}. We have that

dt(R) = ParSol(R; Xt; Vt)
= ParSol(R; Xt′′ ; Vt′′) ∧

∃v′ ∈ f−1(v) : ∀i ∈ [tw] : ParSol((R ∪ {v 7→ v′})|Xc(i) ; Xc(i); Vc(i))
= dt′′(R) ∧ ∃v′ ∈ f−1(v) : ∀i ∈ [tw] : dc(i)((R ∪ {v 7→ v′})|Xc(i)) (∗)

We show how to calculate the values of dt via a tw-wise boolean matrix product with 0-1-
tensors of dimension n×. . .×n. Note that we will use truth values and 0/1 interchangeably
to declutter notation. True is interchangeable with 1, false with 0.
For convenience, all tensors from this point onward are indexed via configurations, where
each dimension is indexed by a single vertex. Formally, we call a tensor A indexed
by configurations of X = {v1, . . . , vh} ⊆ V (H) with ordering (vi1 , . . . , vih

) (where
{vi1 , . . . , vih

} = {v1, . . . , vh}) when it is an order h tensor of dimension n × . . . × n.
Abusing notation, we rename the vertices of f−1(vi) for each vi ∈ X to {1, . . . , n}
and use them as if they were numbers. Now for a configuration R of X we define
A[R] = A[R(vi1), . . . , R(vih

)].
For our tw-wise matrix product, we have tw input tensors, specifically one tensor pi

for each i ∈ [tw]. pi is indexed by configurations of Xc(i) = Xt′ \ {ui} with order-
ing (u1, . . . , ui−1, v, ui+1, . . . , utw). Specifically, for a configuration R of Xc(i) we define
pi[R] := dc(i)(R) (it is still a 0-1-tensor, remember that truth values and 0/1 are inter-
changeable).
Now we calculate the tw-wise matrix product pres := MPtw(p1, . . . , ptw), which we use
as a tensor indexed by configurations of Xt with ordering (u1, . . . , utw). Hence, for a
configuration R of Xt, we have

pres[R] = MPtw(p1, . . . , ptw)[R(u1), . . . , R(utw)]

=
∨

ℓ∈[n]

p1[ℓ, R(u2), . . . , R(utw)] ∧ . . . ∧ ptw[R(u1), . . . , R(utw −1), ℓ]

= ∃v′ ∈ f−1(v) : ∀i ∈ [tw] : pi[R(u1), . . . , R(ui−1), v′, R(ui+1), . . . , R(utw)]
= ∃v′ ∈ f−1(v) : ∀i ∈ [tw] : dc(i)((R ∪ {v 7→ v′})|Xc(i))
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From this, we can directly calculate dt(R) via equation (∗): We have dt(R) = dt′′(R) ∧
pres[R]. Indeed, this gives a very simple algorithm for computing dt. The tw-wise matrix
product for pres can be done in time O(ntw +1), and after that calculating dt is a simple
pointwise AND with dt′′ , which takes time O(ntw). Hence overall we have running time
O(ntw +1).

Since the tree decomposition has poly(k) nodes, the overall time the algorithm takes is
O(ntw +1 poly(k)). Now we simply have to extract the answer from DP function of the root
node. Let r be the root node. We have that dr(R) is true if and only if there is a partial
solution of Xr in the cone Vr = V (H). Hence it is true only if R can be expanded to a
solution. Thus, the input is a YES-instance for Colored Subgraph Isomorphism if and
only if there is an R such that dr(R) is true. ◀

So far, we have only looked at the case that tw(H) ≥ 3. However, this exact algorithm
also achieves the second result.

Proof (of part 2 of Theorem 35). Note that in the algorithm for part 1, all steps run in
time O(ntw(H) poly(k)), except for the tw(H)-wise matrix product, which can be done in
time O(ntw(H)+1). However, for tw(H) = 2, tw(H)-wise matrix product is exactly matrix
multiplication, which runs in time O(nω). Thus we obtain our second result. ◀

The third result with tw(H) = 1 cannot be achieved by this algorithm directly. We
shortly outline why. Rooting H in some arbitrary node, consider the tree decomposition that
takes exactly the edges of H as bags, and constructs T such that two nodes are connected
by an edge if and only if their bags have a non-empty intersection. Now consider a graph
H which contains nodes u, v, w such that u is the parent of v and v is the parent of w. Let
t, t′ ∈ T be such that Xt = {u, v}, Xt′ = {v, w}. But now the edge vw is not covered by any
of the subsets Xt′ \ {v} or Xt′ \ {w} and is thus not considered in the algorithm at all. This
leads to the algorithm failing. For tw(H) ≥ 2, this does not happen, since any pair of nodes
is contained in a bag Xt of size ≥ 3, hence there is some u such that the edge is covered by
the subset Xt \ {u}.

Thus, to obtain our third result, we must employ a different technique. However, this
part of the theorem turns out to be easy.

Proof (of part 3 of Theorem 35). We only sketch the result, since it is easy to see. It
suffices to employ the trivial dynamic programming solution on the tree G, which already
has a running time of O(n2 poly(k)). ◀

5.4 Exact Weight Colored Subgraph Isomorphism for Bounded
Treewidth

We now move on to the weighted version of Colored Subgraph Isomorphism. Specifically,
we show how to solve the Exact Weight Colored Subgraph Isomorphism problem
for bounded-treewidth pattern graphs using dynamic programming. Remember that the
instances we consider here may be either node- or edge-weighted.

We also remark that the restriction of the target weight T to zero in the Exact Weight
Subgraph Isomorphism problems is simply for ease of discussion. We use this version to
both simplify our algorithms and circumvent any problems that might arise from having T

be part of the input. Trivially, all of our results also hold for the problem where a target
T = O(W ) is given.
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▶ Theorem 36. There is an algorithm which, given an arbitrary instance ϕ = (H, G, f, w)
of the Exact Weight Colored Subgraph Isomorphism problem, solves ϕ in time
1. O((ntw(H)+1W + ntw(H)W log W ) poly(k) + g(k)) when tw(H) ≥ 3,
2. O((nωW + n2W log W ) poly(k) + g(k)) when tw(H) = 2, and
3. O((n2W + nW log W ) poly(k) + g(k)) when tw(H) = 1.
where k := |H|, n is the size of the preimages of f , and W is the maximum absolute weight
in the image of w.

Again, note that this implies Theorem 5 via a simple application of Lemma 14 to the
resulting algorithm.

Before we prove this, we establish an important lemma, showing that you can basically do
the k-wise matrix product of tensors of polynomials faster than naively by utilizing the Fast
Fourier Transform. Recall that a Laurent polynomial p ∈ C[X, X−1] is simply a polynomial
which may have negative powers of the X.

▶ Lemma 37. Let q ∈ N tensors A1, . . . , Aq of order q be given, each of dimensions n×. . .×n

and such that each of their entries Ai
j1,...,jq

∈ C[Z, Z−1] (i ∈ [q] and ∀ℓ ∈ [q] : jℓ ∈ [n]) is a
Laurent polynomial of degree bounded by W in both the positive and negative direction. Then
their q-wise matrix product can be computed in time
1. O(nq+1W + qnqW log W ) for q ≥ 3 and
2. O(nωW + n2W log W ) for q = 2.

Proof. It suffices to prove the result for standard polynomials of degree bounded by 2W , since
we can shift the exponents of the polynomials such that they only have positive exponents,
do the q-wise matrix product, then shift back.

We assume for now that q ≥ 3. Our algorithm is a generalization of the Fast Fourier
Transform algorithm for standard polynomials (e.g. [28]). Specifically, we evaluate each
Ai at the set S of the 2W -th roots of unity, obtaining q · |S| tensors with complex entries.
Since each entry of Ai is a polynomial, this can be done separately for each entry. Then, for
each s ∈ S, we compute MPq(A1(s), . . . , Aq(s)), obtaining |S| tensors with complex entries.
Obviously, these are exactly the evaluations of MPq(A1, . . . , Aq) at S. At this point we can
use interpolation via the inverse Fast Fourier Transform separately for each entry to recover
the result.

Evaluating all entries of the tensors Ai at the roots of unity can be done using the
classic Fast Fourier Transform algorithm. Since there are q · nq such entries, each with
polynomials of degree bounded by W , this runs in time O(qnqW log W ). Similarly, the
interpolation of the result can be done by the inverse Fast Fourier Transform algorithm.
Since there are nq entries to interpolate, each with a degree bound of O(W ), this runs in time
O(qnqW log W ). Finally, computing the q-wise matrix products for each root of unity can be
done in |S| · nq+1 = O(nq+1W ). Thus, our total running time is O(nq+1W + qnqW log W ).

For the case that q = 2, note that in the above algorithm, all steps except for the q-wise
matrix product run in time O(nqW log W ). For q = 2, the q-wise matrix product is exactly
matrix multiplication, which can be done in O(nω). Thus the O(W ) matrix multiplications
can be done in O(nωW ). ◀

We use this lemma as an important tool in our proof of Theorem 36. The framework of
the proof is somewhat analogous to that of Theorem 35, but instead of storing values for every
configuration of bags of nodes in help(T ), they we store the values for each configuration
and each achievable weight. The computation of the dynamic programming table entries is
slightly more complex, with some shifting of the entries being required.
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Proof (of part 1 of Theorem 36). Due to Proposition 29, we only need to consider the case
of edge weights. We describe an algorithm which takes as inputs G, H, f : V (G) → V (H) and
a weight function w describing the edge weights. It calculates an optimal tree decomposition
T1 := (T1, {Xt}t∈V (T1)) for H in time g(k) and then computes a solution via dynamic
programming over the tree decomposition. By assumption, tw := tw(H) ≥ 3. We continue
using the notation and terminology (e.g. “configuration”) as described in Section 3.2.

We apply Lemma 34 to convert the tree decomposition into a tw-wise tree decomposition
T2 = (T2, {Xt}t∈V (T2)). Since |T1| = poly(k), the time this conversion takes is certainly
negligible. Furthermore, |T2| = poly(k). To simplify our algorithm further, we also modify
T2 further. Specifically, we introduce a new type of helper node, a binary-merge node,
which replaces merge nodes. It is a node that has either zero or two children, both with the
same bag as itself. Those children are either binary-merge nodes or intermediate-result nodes.
We convert T2 into a new tree decomposition T := (T, {Xt}t∈V (T )) that has binary-merge
nodes instead of merge nodes by repeatedly taking any remaining merge node t with more
than two children, splitting its set of children into two non-empty sets A and B, creating two
new children t′ and t′′ of t and making the vertices from A children of t′ and the vertices of
B children of t′′. For any merge node t with only a single child, we create a new leaf with
the same bag and let it be a child of t. Correctness and negligibility of the conversion time
is immediate, and the new tree decomposition still has size poly(k). We now do dynamic
programming over T.

In deviation from the proof of Theorem 35, our dynamic programming table is structured
differently. Instead of having only a single function of finite domain for each helper node t, we
have one function for each t and each achievable weight. Since the instance is edge-weighted,
the achievable weights must all lie in W := {−k2W, . . . , k2W}.

Specifically, for each helper node t ∈ help(T ) and each weight W ′ ∈ W we store the
following function of finite domain from configurations of Xt to truth values. Remember that
ParSolE(R; I; J ; W ) is true if and only if R is a partial solution of I in J with an extension
of weight W .

dt,W ′ : Conf(Xt) → {true, false}
dt,W ′(R) := ParSolE(R; Xt; Vt; W ′)

i.e. we store for each configuration whether it is a partial solution of Xt in the cone Vt that
has an extension of weight W ′. We call these functions DP functions (where DP stands for
dynamic programming). Since there are ntw many configurations for Xt, each DP function
dt,W ′ can be specified using ntw many bits.

We calculate the DP functions dt for all t ∈ help(T ) in a bottom-up manner. The overall
picture of the algorithm is as follows: At a non-leaf binary-merge node t, we take the DP
functions of both children and do a boolean convolution. At an intermediate-vertex node t,
we first convert the DP functions of the children of its tw-wise child to tensors with Laurent
polynomials as entries, calculate their tw-wise matrix product, convert it back to a DP
function and then do a boolean convolution with the DP function of its merge node child.

We now describe the algorithm in detail, beginning with the leaves of T . Hence t be a
merge node with no children. Since Xt = Vt, we have that dt,W ′(R) is true if and only if R

is a valid configuration and W ′ = 0. Clearly this takes total time at most O(ntwW poly(k)).
Now let t ∈ help(T ) be an inner node of T . There are two cases: either t is an intermediate-

result node, or t is a merge node.

t is a binary-merge node: Let t be a binary-merge node with children t′ and t′′. For each
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configuration R we have

dt,W ′(R) = ParSolE(R; Xt; Vt; W ′) = ParSolE(R; Xt; Vt′ ∪ Vt′′ ; W ′)
= ∃W1 : ParSolE(R; Xt′ ; Vt′ ; W1) ∧ ParSolE(R; Xt′′ ; W ′ − W1)
= ∃W1 : dt′,W1(R) ∧ dt′′,W ′−W1(R)

This can be calculated using a boolean convolution for each configuration. Specifically, for
each configuration R we define the finitely supported functions fR, gR : Z → {true, false}
as fR(x) := dt′,x(R) if x ∈ W and false otherwise, and analogously gR(x) := dt′′,x(R)
if x ∈ W and false otherwise. We now use the boolean convolution of these functions,
defined as (fR ∗ gR)(x) :=

∨∞
z=−∞ fR(z) ∧ gR(x − z). We have that (fR ∗ gR)(W ′) =

(∃W1 : fR(W1) ∧ gR(W ′ − W1)) = dt,W ′(R). Since fR and gR only have non-zero values
in a range of size O(W poly(k)), the boolean convolution fR ∗ gR can be calculated in
time O(W log W poly(k))8.
Since there are at most ntw many possible configurations R, dt,W ′ can be calculated for
all W ′ in time O(ntwW log W poly(k)). Hence this is the maximum running time we need
per binary-merge node.

t is an intermediate-result node: Let t be an intermediate-result node with tw-wise child
node t′ and merge node t′′. By definition we have Xt = Xt′′ . Furthermore | children(t′)| =
tw, and we can (temporarily) rename the nodes in Xt′ to Xt′ = {v, u1, . . . , utw} such that
Xt′ = Xt ∪ {v} and ∀i ∈ [k] : ∃c(i) ∈ children(t′) : Xt′ = Xc(i) ∪ {ui}.
First, we deal with calculating the weight of an extension for a configuration of the bag
of the tw-wise node. Let R be a partial solution of Xt′ in Vt′ and let S be an extension
of R (i.e. a compatible configuration of Vt). Notice that we get the following formula for
the weight of the extension S:

wext(S, R) def.= w(S)−w(S|Xt′ ) =

 ∑
i∈[tw]

wext(S|Vc(i) , S|Xc(i))


︸ ︷︷ ︸

Part A

+ wext(S|Xt′ , S|Xt′ \{v})︸ ︷︷ ︸
Part B

Part A is the combined weight of the edges which are not in Xt′ . Compared to the left hand
side, it is missing the weight of all edges going from v to Xt′ \ {v}, which is exactly what
is then added in Part B. Recall that wext(S|Xt′ , S|Xt′ \{v}) =

∑
u∈Xt′ \{v} w(S(v)S(u)).

Hence we can calculate the DP function for t as follows for each configuration R:

dt,W ′(R) = ParSolE(R; Xt; Vt; W ′)
= ∃Wv : ParSolE(R; Xt′′ ; Vt′′ ; Wv) ∧ ∃W1, . . . , Wtw : ∃v′ ∈ f−1(v) :

wext((R ∪ {v 7→ v′}), R) +
tw∑

i=1
Wi = W ′ − Wv ∧

∀i ∈ [tw] : ParSolE((R ∪ {v 7→ v′})|Xc(i) ; Xc(i); Vc(i); Wi)
= ∃Wv : dt′′,Wv

(R) ∧ ∃W1, . . . , Wtw : ∃v′ ∈ f−1(v) :

wext((R ∪ {v 7→ v′}), R) +
tw∑

i=1
Wi = W ′ − Wv ∧

∀i ∈ [tw] : dc(i),Wi
((R ∪ {v 7→ v′})|Xc(i)) (†)

8 This is a standard result which can be achieved e.g. by using the Fast Fourier Transform.
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We show how to calculate the values of dt,W ′ for all W ′ via a tw-wise matrix product
of Laurent polynomials. We continue using the notation and nomenclature for indexing
tensors via configurations, as described in the proof of part 1 of Theorem 35, and continue
using truth values and 0/1 interchangeably.
We now define one 0-1-tensors pi,W ′ for each i ∈ [tw] and W ′ ∈ W, which is indexed by
configurations of Xc(i) = Xt′ \ {ui} with ordering (u1, . . . , ui−1, v, ui+1, . . . , utw). For a
configuration R of Xc(i) we define

pi,W ′ [R] :=


d

c(1),W ′−
∑tw

i=2
w(R(v)R(ui))(R) if i = 1

dc(2),W ′−w(R(v)R(u1))(R) if i = 2
dc(i),W ′(R) otherwise

Note that the weight of the part B above is now encoded in these tensors, specifically in
the ones for i = 1 and i = 2. In particular, we can expand equation (†) as

= ∃Wv : dt′′,Wv
(R) ∧ ∃W1, . . . , Wtw :

tw∑
i=1

Wi = W ′ − Wv ∧

∃v′ ∈ f−1(v) : ∀i ∈ [tw] : pi,Wi((R ∪ {v 7→ v′})|Xc(i))

Analogously to the computation of pres[R] in the proof of part 1 of Theorem 35, we have

= ∃Wv : dt′′,Wv
(R) ∧ ∃W1, . . . , Wtw :

tw∑
i=1

Wi = W ′ − Wv ∧ MPtw(p1,W1 , . . . , ptw,Wtw)[R]

We now show how to compute tensors DW ′ for each W ′ ∈ W such that DW ′(R) =
∃W1, . . . , Wtw :

∑tw
i=1 Wi = W ′−Wv ∧MPtw(p1,W1 , . . . , ptw,Wtw)[R], which would simplify

the above to

= ∃Wv : dt′′,Wv
(R) ∧ DW ′−Wv

(R)

and hence make it computable via a boolean convolution in time O(ntwW log W poly(k))
(given the tensors DW ′).
We want to compute D

W̃
for each W̃ ∈ W. Note how, when defining the OR of tensors

to be calculated entrywise, we have

DW ′ =
∨

W1,...,Wtw∈W

W1+...+Wtw=W ′

MPtw(p1,W1 , . . . , ptw,Wtw(H))

Indeed, the right-hand side can be calculated using a single tw-wise matrix product of
tensors with polynomials as entries. Let Ttw be the group of order-tw(H) tensors of
dimensions n × . . . × n with entries from {true, false}. Define Ttw[X, X−1] as the group
of Laurent polynomials with elements of Ttw(H) as coefficients. Note how elements of
Ttw[X, X−1] may also be viewed as tensors with Laurent polynomials as entries, or as
functions f : {0, 1} → Ttw(H) when using the usual definition of scalar-tensor AND.
We define pi(X) :=

∑
j∈W pi,j · Xj ∈ Ttw(H)[X, X−1] for all i. Viewing them as

tensors of polynomials, we may calculate their tw(H)-wise matrix product. Viewing
MPtw(p1, . . . ptw) as polynomial again, it can be easily seen that the coefficient tensor for
XW ′ is exactly∑

W1,...,Wtw∈W

W1+...+Wtw=W ′

MPtw(p1,W1 , . . . , ptw,Wtw)
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Thus, to compute DW ′ for all W ′, it suffices to compute MPtw(p1, . . . , ptw).
Hence, we have reduced the problem of calculating the tensors D

W̃
to computing the

tw(H)-wise matrix product of tensors whose entries are Laurent polynomials of degree
bounded (in both directions) by O(W poly(k)). By Lemma 37, this can be done in time
O((ntw(H)+1W + ntw(H)W log W )poly(k)).
Hence we have an overall running time of O((ntw(H)+1W + ntw(H)W log W )poly(k)) per
intermediate-result node.

Again, since the tree decomposition has poly(k) nodes, the overall time the algorithm
takes is O((ntw(H)+1W + ntw(H)W log Wpoly(k)).

After calculating dt′,W ′ for each t′ ∈ T, W ′ ∈ W, outputting the result is simple. We
simply extract the answer from the DP function of the root node. Let r be the root of T .
We output YES if and only if ∃R : dr,−w(R)(R) = true. By the definition of dt′,−w(R), this is
the case if and only if R is a partial solution of Xr in the cone Vr = V (H) with an extension
of weight −w(R). This is the case if and only if R can be expanded to a configuration for all
of V (H) such that its total weight is −w(R) + w(R) = 0. Hence, ∃R : dt′,−w(R)(R) = true if
and only if the instance has a solution. Checking whether such an R exists can obviously be
done in time O(ntw(H) poly(k)).

◀

We now consider the second part of the theorem. Similarly to the weighted case, it suffices
to employ the algorithm from part 1.

Proof (of part 2 of Theorem 36). In the algorithm for part 1, all running times except for
the tw(H)-wise matrix product are bounded by O(ntwW log W poly(k)). For tw = 2, the
tw-wise matrix product is simply matrix multiplication, which can be done in O(nω). Thus,
for tw = 2 the running time is O(nωW poly(k) + n2W log W poly(k)). ◀

Finally, we come to the third part of the theorem. For reasons outlined in the proof of the
previous theorem, the algorithm from part 1 does not work for tw(H) = 1. Again, however,
the result turns out to be quite simple for this case.

Proof (of part 3 of Theorem 36). Again, we only sketch the result, since it is easy to see.
A simple dynamic programming algorithm on trees can be applied, storing for each node
which configurations together with which weights can be achieved.

◀

5.5 Colored Subgraph Isomorphism for Bounded Pathwidth
Surprisingly, Colored Subgraph Isomorphism can be solved slightly faster on graphs of
bounded pathwidth. This algorithm leverages rectangular matrix multiplication.

We briefly discuss (rectangular) matrix multiplication and current algorithms solving it.
Multiplication of n × n by n × n matrices is perhaps the most ubiquitous open problem in
computer science, with the central question being whether it can be done in O(n2) time. The
matrix multiplication exponent ω has been slowly inching toward, but not quite reaching, a
value of 2 over the last few decades. In our algorithms, however, we also multiply rectangular
matrices. It turns out that the techniques used in these fast algorithms for square matrix
multiplication can also be generalized to the rectangular case. In the following, let MM(s, r, t)
denote the time needed to multiply a matrix of size r × s with a matrix of size s × t. We are
mostly interested in the case that s = n, r = n and t = nk for some k ∈ R+.
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A simple, well-known result is that MM is both convex and symmetrical in its arguments
(see e.g. [52, 64]). In particular, we have ∀x ∈ R+ : MM(n, n, nk+x) ≤ nx · MM(n, n, nk)
and MM(n, n, nk) = MM(n, nk, n). Letting ω(k) := logn MM(n, n, nk), we immediately get
∀k ≥ 1 : ω(k) < k + 1.373 via the current bounds of ω(1) = ω < 2.373 [49].

We can, however, do better: Le Gall [41] has shown that there are faster algorithms based
on the Coppersmith-Winograd method [30, 49] used for square matrix multiplication. Among
other values, he shows ω(0.31) = 2, ω(2) < 3.26, ω(3) < 4.2, ω(4) < 5.18 and ω(5) < 6.16
(see [41] for an extensive table of such values).

We now show how rectangular matrix multiplication can be used for bounded-pathwidth
pattern graphs.

▶ Theorem 38. There is an algorithm which, given an arbitrary instance ϕ = (H, G, f) of
Colored Subgraph Isomorphism, solves ϕ in time
1. O(nω(pw(H)−1) poly(k) + g(k)) when pw(H) ≥ 2, and
2. O(n2 poly(k)) + g(k) when pw(H) = 1
where k := |H|, n is the size of the preimages of f , and g is a computable function.

This theorem implies Theorem 6 from the results section.

Proof. Part 2 of the theorem is trivial, since for any graph, its treewidth is smaller than its
pathwidth. Hence, by application of Theorem 35, we achieve the desired running time.

For part 1, let G, H and f : V (G) → V (H) be given. The algorithm first computes an
optimal path decomposition P = (P, {Xt}t∈V (T )) of H in time g(k) (see preliminaries), then
does dynamic programming over P.

To unify nomenclature and notation with the case of treewidth, we talk about a path as
a tree rooted at one of its endpoints. As in the proof of Theorem 35, we modify the path
decomposition P to satisfy certain properties. Specifically, we wish to obtain the following
properties:
1. The bags of the root and leaf of the path have size pw(H), and every other bag has size

pw(H) + 1
2. For every t ∈ V (P ) with child t′, we have |Xt ∩ Xt′ | = pw(H)
These properties can be obtained with similar techniques as described in the proof of part 1
of Theorem 35.

We now do dynamic programming on this modified path decomposition. We only store
values for each configuration of the separators Xt ∩ Xt′ . In particular, let t′ be a node other
than the root, and let t be its parent. As in Theorem 35, we only store

dt′ : Conf(Xt ∩ Xt′) → {true, false}
dt′(R) := ParSol(R; Xt ∩ Xt′ ; Vt′) (1)

We calculate these functions bottom-up. The case that t′ is the leaf is analogous to the
corresponding case in Theorem 35, taking time O(npw(H) poly(k)).

Now let t′ with parent t and child t′′ be an inner node of P . We define v̂ to be the unique
element with v̂ ∈ Xt′ \ Xt and similarly, ŵ ∈ Xt′ \ Xt′′ (or, if we would have v̂ = ŵ, we
take ŵ to be some vertex from Xt′ \ {v̂} instead), and finally E := Xt′ \ {v̂, ŵ}. Now if
v̂ŵ /∈ E(H), the calculation is easy. Hence assume v̂ŵ ∈ E(H). For a configuration R of
Xt ∩ Xt′ , we get the following alternate characterization of dt′(R):

dt′(R) = ValConf(R; {ŵ} ∪ E) ∧
∃v′ ∈ f−1(v̂) : ParSol((R ∪ {v̂ 7→ v′})|Xt′ \{ŵ}; {v̂} ∪ E; Vt′′) ∧ v′R(w) ∈ E(G)
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We describe how to calculate dt′ via rectangular matrix multiplication. Much like in
Theorem 35, the matrices are indexed by configurations. In contrast to the former, however,
one of the two dimensions of the matrix might correspond to the configuration of multiple
vertices. Formally, for a vertex subset Y ⊆ V (H) and a vertex x ∈ V (H), x /∈ Y , we call a
matrix A indexed by configurations of (x, Y ) when it is of dimensions n × n|Y |. We use
two arbitrary bijections g{x} : Conf({x}) → [n] and gY : Conf(Y ) → [n|Y |] which will help
us map configurations of x and Y to indices of the matrix. Hence, for a configuration R of
{x} ∪ Y , we define A[R] := A[gx(R|{x}), gY (R|Y )].

For our rectangular matrix product, we define a n × npw(H)−1 matrix Bt′ indexed by
configurations of (v̂, E). For a configuration R′ of {v̂} ∪ E, we define

Bt′ [R′] := dt′′(R′) = ParSol(R′; {v̂} ∪ E; Vt′′)

Now consider the adjacency matrix Adjv̂,ŵ of f−1(v̂) and f−1(ŵ), indexed by configurations
of (ŵ, {v̂}). We make sure that the indexing bijection g{v̂} as defined above is the same
for both Adjv̂,ŵ and Bt′ and then calculate the matrix product Adjv̂,ŵ · Bt′ . Naturally, the
product is indexed by configurations of (ŵ, E) and can be expressed as

(Adjv̂,ŵ · Bt′)[R′]
= ∃v′ ∈ f−1(v̂) : ParSol((R′ ∪ {v̂ 7→ v′})|Xt′ \{ŵ}; {v̂} ∪ E; Vt′′) ∧ v′R(w) ∈ E(G)

Hence, we may write dt′(R) as

dt′(R) = ValConf(R; {ŵ} ∪ E) ∧ (Adjv̂,ŵ · Bt′)[R] (1)

The algorithm to calculate dt′ is immediate. First, we calculate the rectangular matrix
product of Adjv̂,ŵ and Bt′ in time O(nω(pw(H)−1)), then calculate dt′ via formula 1. Checking
whether R is a valid configuration of {ŵ} ∪ E can be done in time poly(pw(H)) ≤ poly(k),
giving us a total time of at most O(nω(pw(H)−1) poly(k)) per inner node.

To output the answer, consider the child r′ of the root r. We have by definition that
dr′(R) is 1 if and only if R is a partial solution for Xr in V (H). Thus, the input is a
YES-instance for Colored Subgraph Isomorphism if and only if there is an R such that
dr′(R) is 1.

Since there is only a single leaf and poly(k) inner nodes, total running time of the dynamic
programming algorithm is O(nω(pw(H)−1) poly(k)). ◀

5.6 Exact Weight Colored Subgraph Isomorphism for Bounded
Pathwidth

The techniques of using rectangular matrix multiplication for the case of pathwidth can also
be applied to the weighted case, and they lead to improvements in the expected way. Again,
the instances may be either node- or edge-weighted.

▶ Theorem 39. There is an algorithm which, given an arbitrary instance ϕ = (H, G, f, w)
of the Exact Weight Colored Subgraph Isomorphism problem, solves ϕ in time
1. O((nω(pw(H)−1)W + npw(H)W log W ) poly(k) + g(k)) when pw(H) ≥ 2, and
2. O((n2W + nW log W ) poly(k) + g(k)) when pw(H) = 1
where k := |V (H)|, n is the size of the preimages of f , W is the maximum absolute weight
in the image of w, and g is a computable function.

From this, Theorem 8 from the results section follows directly via Lemma 14.
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▶ Lemma 40. Let two matrices A, B of dimensions r × s and s × t be given, such that each
of their entries Ai,j , Bj,k ∈ C[X, X−1] (for all i ∈ [r], j ∈ [s], k ∈ [t]) is a Laurent polynomial
of degree bounded by W in both the positive and the negative direction. Then their product
can be computed in time O(MM(r, s, t)W + (rs + st)W log W )

Proof. Analogous to Lemma 37. ◀

Proof (of theorem 39). Again, we only need to prove an algorithm for the edge-weighted
case due to Proposition 29.

Part 2 is a corollary of Theorem 36, since for any graph, its treewidth is smaller than its
pathwidth.

For part 1, we only sketch the proof, since it is a straightforward combination of the
techniques used in the proofs of Theorems 36 and 38. We use notation and phrasing from
both of those proofs without further mention.

Given G, H and f , we compute an optimal path decomposition (P, {Xt}t∈V (P )) for H

and do dynamic programming on the modified path decomposition as described in the proof
of Theorem 38. For each non-root node t′ ∈ P with parent t, for each weight W ′ ∈ W and
for each configuration R of Xt ∩ Xt′ , we store

dt′,W ′ := ParSolE(R; Xt ∩ Xt′ ; Vt′ ; W ′)

The case that t′ is a leaf is clear. For the case that t′ is an inner node with parent t and
child t′′, let v̂, ŵ be the unique elements with v̂ ∈ Xt′ \ Xt, ŵ ∈ Xt′ \ Xt′′ (or, if we would
have v̂ = ŵ, we take ŵ to be some vertex from Xt′ \ {v̂} instead) and E = Xt′ \ {v̂, ŵ}. If
v̂ŵ /∈ E(H), the calculation is easy, hence assume v̂ŵ ∈ E(H). For each weight W ′, we build
a rectangular matrix AW ′

t′ indexed by (v̂, E). The entry corresponding to a configuration
R of {v̂} ∪ E tells us whether R has an extension of weight W ′ + x, where x is the weight
contributed by v̂ in {v̂} ∪ E. In particular x :=

∑
û∈E w(R|{û,v̂}).

We also use, for each weight W ′, an adjacency matrix AdjW ′

v̂,ŵ defined for node-weighted
instances as

AdjW ′

v̂,ŵ[v′, w′] = v′w′ ∈ E(G) ∧ w(v′w′) = W ′

We then create two Laurent polynomials of degree |W|, one with the matrices AdjW ′

v̂,ŵ as
coefficients, one with the matrices AW ′

t′ . These can also be seen as matrices with Laurent
polynomials as entries. Using Lemma 40, we then calculate their matrix product, which
tells us for each weight W ′ and each configuration R of {ŵ} ∪ E if R is a potential solution
of {ŵ} ∪ E in Vt′ with an extension of weight W ′, potentially missing edges between the
preimage of w and the preimages of E. The latter can be checked for each entry. This leads
to the desired running time.

◀

5.7 Improvements for the Node-Weighted Case
In the case of node weights instead of edge weights, some of the algorithms can be slightly
improved using rectangular matrix multiplication. However, these improvements only work
for the case that that the treewidth of H is 1 and for the case of bounded pathwidth.

Specifically, we show the following two results, which imply Theorems 9 and 10 from the
results section.
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▶ Theorem 41. There is an algorithm which, given an arbitrary instance ϕ = (H, G, f, w)
of the node-weighted Exact Weight Colored Subgraph Isomorphism problem where
H is a tree, solves ϕ in time O(MM(n, n, W ) poly(k) + nW log W poly(k)).

▶ Theorem 42. There is an algorithm which, given an arbitrary instance ϕ = (H, G, f, w)
of the node-weighted Exact Weight Colored Subgraph Isomorphism problem, solves
ϕ in time O(MM(n, n, npw(H)−1W ) poly(k) + g(k)).

Proof (of Theorem 41). Let G, f : V (G) → V (H) and w : V (G) → Z be given. All
achievable total weights must lie in W := {−kW, . . . , kW}.

We do dynamic programming on the tree H. Rooting H in an arbitrary vertex, we define
Tu to be the subtree rooted at a node u ∈ H. For each weight W ∈ W, each node v ∈ H, we
store the following function of finite domain:

dv,W : Conf({v}) → {true, false}
dv,W (R) := ParSolE(R; {v}; Tv; W )

We calculate the entries of these functions bottom-up, starting at the leaves of H. If v is
a leaf, dv,W (R) is 1 if and only if W = 0. Now suppose v is a non-leaf node of H with
set of children Cv. For each child u ∈ Cv, we construct a rectangular matrix pu

v . This
matrix is indexed by w and W. Formally, we call a matrix A indexed by w and W if
it has dimensions n × |W|. We use two arbitrary bijections g{v} : Conf({v}) → [n] and
gW : W → [|W|] to help us map weights from W and configurations of v to indices of A.
Correspondingly, we define A[R, W ] := A[gv(R), gW (W )].

We define pu
v as

pu
v [R, W ] := ParSolE(R; {v}; {v} ∪ Tu; W )

We may calculate this as follows. Let Adj{v,u} be the adjacency matrix of f−1(v) and f−1(u)
indexed by (v, {u}) (as defined in the proof of Theorem 38), and let d̃u be the rectangular
matrix indexed by u and W and defined as d̃u[R, W ] := du,W −w(R)(R). We make sure that
the indexing bijection g{u} as defined above is the same for both Adjv,u and d̃u and then
calculate the matrix product Adjv,u · d̃u. The product is indexed by configurations of v and
W and can be expressed as

(Adjv,u · d̃u)[R, W ] = ∃u′ ∈ f−1(u) : R(v)u′ ∈ E(G) ∧ ParSolE(R; {u}; Tu; W − w(u′))
= ParSolE(R; {v}; {v} ∪ Tu; W )
= pu

v [R, W ]

Writing Cv = {u1, . . . , uc} with c = |Cv|, the function dv,W may then be expressed as

dv,W (R) = ∃W1, . . . , Wc :
c∑

i=1
Wi = W ∧ ∀i : pui

v [R, Wi]

Similarly to the proof of Theorem 36, this may be calculated using a boolean convolu-
tion. Accordingly, we define for each configuration R of v the finitely supported functions
f1

v,R, . . . , f c
v,R : Z → {true, false} as f i

v,R(x) := pui
v (R) if x ∈ W, and 0 otherwise. By a

simple calculation, we get dv,W (R) = (f1
v,R ∗ . . . ∗ f c

v,R)(W ).
Finally, after having calculated all values of dt′,W (R) for all t′, W and R, we wish to

output the result. Let r be the root of H. By definition of dr,W , there is some configuration
R of r such that dr,−w(R)(R) = true if and only if the instance has a solution.
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It remains to analyze the running time. For the leaves of H, the calculation takes time
O(nW ). For inner nodes, the calculation of the matrix product Adj{v,u} · d̃u takes time
MM(n, n, W ). Finally, calculating the discrete convolutions takes time O(nW log W ), since
any vertex of v is involved as a child in at most one discrete convolution. Hence, we arrive at
the running time from the theorem. ◀

Proof (of Theorem 42). The proof uses a combination of the techniques from the proofs of
Theorem 41 and Theorem 38.

Let G, H, f : V (G) → V (H) and w : V (G) → Z be given. We compute an optimal path
decomposition in time g(k), modify it as described in Theorem 38, obtaining a modified path
decomposition P = (P, {Xt}t∈P ), and then do dynamic programming on P. Note that all
achievable weights must lie in W := {−kW, . . . , kW}.

We store, for each non-root node t′ with parent t of P , the following function of finite
domain:

dt′,W (R) := ParSolE(R; Xt ∩ Xt′ ; Vt′ ; W )

For t′ a leaf, the calculations is clear. Let t′ be an inner node with parent t and child t′′

and define v̂ to be the unique element with v̂ ∈ Xt′ \ Xt and similarly ŵ ∈ Xt′ \ Xt′′ (or, if we
would have v̂ = ŵ, we take ŵ to be some arbitrary vertex from Xt′ \ {v} instead) and finally
E := Xt′ \ {v̂, ŵ}. If v̂ŵ /∈ E(H), the calculation is easy, hence assume v̂ŵ ∈ E(H). For a
configuration R of Xt ∩ Xt′ , we get the following alternate characterization of dt′,W (R):

dt′,W (R) = ValConf(R; {ŵ} ∪ E) ∧ ∃v′ ∈ f−1(v̂) : v′R(ŵ) ∈ E(G) ∧
ParSolE((R ∪ {v̂ 7→ v′})|Xt′ \{ŵ}; {v̂} ∪ E; Vt′′ ; W − w(v′))

We now set up our rectangular matrix product. For a vertex x ∈ V (H), x /∈ E, we call
a matrix A indexed by x, E and W if it has dimensions n × n|E||W|. We use two arbitrary
bijections g{x} : Conf({x}) → [n] and gE,W : Conf(E) × W) → [n|E||W|] to help index the
matrix and define, for a configuration R of {x} ∪ E, A[R, W ] := A[gx(R|x), gE,W(R|E , W )].

We define the n × npw(H)−1|W| matrix Bt′ , which is to be indexed by v̂, E and W, as
follows:

Bt′ [R′, W ′] := dt′,W ′−w(R′|v̂)(R′)

As in the proof of Theorem 38, we also use the adjacency matrix Adjv̂,ŵ indexed by configur-
ations of (ŵ, {v̂}). Ensuring that the indexing bijections g{v̂} are the same for both Bt′ and
Adjv̂,ŵ, we calculate Adjv̂,ŵ · Bt′ and obtain a matrix indexed by ŵ, E and W. Its entries
can be expressed as

(Adjv̂,ŵ · Bt′)[R′, W ′] =∃v′ ∈ f−1(v̂) : v′R′(w) ∈ E(G) ∧
ParSolE((R′ ∪ {v̂ 7→ v′})|Xt′ \{ŵ}; {v̂} ∪ E; Vt′′ ; W ′ − w(v′))

Thus, dt′(R) can be expressed as

dt′,W (R) = ValConf(R; {ŵ} ∪ E) ∧ (Adjv̂,ŵ · Bt′)[R, W ]

This concludes the description of the computation of dt′,W . For the computation of the
answer, consider the child r′ of the root r. By definition of dr′,W (R), we have that there
exists a configuration R such that dt′,−w(R|Xr

(R) = true if and only if the instance has a
solution.

By a simple argument, this dynamic programming algorithm has a running time of
O(MM(n, n, npw(H)−1W ) poly(k)).

◀
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6 Interconnections Between Subgraph Isomorphism, Boolean k-Wise
Matrix Products and Hyperclique

We have seen in the proof of the conditional lower bound for the unweighted Colored
Subgraph Isomorphism problem that for any t ∈ N there is a polynomial-time reduction
from h-uniform h(t + 1)-Hyperclique with n nodes to Colored Subgraph Isomorphism
on pattern graphs of treewidth t with nh nodes. Hence we have the following corollary, which
follows directly from the Unweighted Lemma.

▶ Corollary 43. If there is a t ≥ 3 such that the Colored Subgraph Isomorphism problem
for pattern graphs of treewidth t can be solved in time O(nt+1−ε) (for some ε > 0), then
for any 3 ≤ h ≤ t the h-uniform h(t + 1)-Hyperclique problem can be solved in time
O(nh(t+1)−ε′) (for some ε′ > 0).

But what about the other direction? Can we also provide a conditional lower bound for
Hyperclique under the hypothesis that Colored Subgraph Isomorphism cannot be
solved faster, hence proving an equivalence? Indeed we can! However, the “equivalence” we
get is not as strong as one might hope.

Specifically, it turns out that the algorithm we described for Colored Subgraph
Isomorphism already gives a Turing reduction from Colored Subgraph Isomorphism
with treewidth t to the Boolean t-wise Matrix Product problem9. Indeed, it can also
be seen that the Boolean t-wise Matrix Product problem is equivalent to the t-uniform
(t + 1)-Hyperclique problem. More formally, we have the following two lemmas.

▶ Lemma 44. For any t ≥ 3, if the Boolean t-wise Matrix Product problem can be
solved in time O(nt+1−ε), then Colored Subgraph Isomorphism problem on pattern
graphs of treewidth t can be solved in time O(nt+1−ε).

Proof. As was already mentioned in the algorithms for Colored Subgraph Isomorphism
(see the proof of Theorem 35), the boolean tw(H)-wise matrix product is the bottleneck
for the running time. All other operations run in time O(ntw(H) poly(|V (H)|)). Hence
a O(nt+1−ε) algorithm for Boolean t-wise Matrix Product translates directly to a
O(nt+1−ε) algorithm for Colored Subgraph Isomorphism with tw(H) = t. ◀

▶ Lemma 45. If the t-uniform (t+1)-Hyperclique problem can be solved in time O(nt+1−ε)
(for some ε > 0), then the Boolean t-wise Matrix Product problem can be solved in
time O(nt+1−ε′) (for some ε′ > 0).

We defer the proof of Lemma 45 to Appendix B.2. Indeed, in appendix B, we also show the
other direction, i.e. we show that the existence of fast algorithms for these two problems is
actually equivalent. This is a natural generalization of methods from [68], where this result
is proven for combinatorial algorithms for the case t = 2.
Composing these two lemmas, we get the following theorem.

▶ Theorem 46. If the t-uniform (t + 1)-Hyperclique problem can be solved in time
O(nt+1−ε) (for some ε > 0), then the Colored Subgraph Isomorphism problem on
pattern graphs of treewidth t can be solved in time O(nt+1−ε′) (for some ε′ > 0).

9 Defined as: Given t tensors A1, . . . , At of order t with dimensions n × . . . × n, calculate their boolean
t-wise matrix product MPt(A1, . . . , At).
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Looking at Corollary 43 and Theorem 46, we have reductions in both directions, but they
do not give a full equivalence. This is because the reduction from Corollary 43 only gives an
algorithm for h-uniform h(t + 1)-Hyperclique (for any h ≥ 3), but Theorem 46 needs an
algorithm for the much “denser” t-uniform (t + 1)-Hyperclique problem.

7 The Colored Problems are Equivalent to the Uncolored Problems

We now show Lemma 14 from the preliminaries (restated in a modified form below),
which shows that the (Exact Weight) Subgraph Isomorphism and (Exact Weight)
Colored Subgraph Isomorphism problems are essentially equivalent with respect to
running times. Hence, for most of our purposes, we can treat them as equal, which simplifies
both the proofs of the algorithms and the lower bounds since the colored version is much
more structured.

The reductions from (Exact Weight) Subgraph Isomorphism to (Exact Weight)
Colored Subgraph Isomorphism and the reduction from Exact Weight Colored
Subgraph Isomorphism to Exact Weight Subgraph Isomorphism leaves H unmodified.
The reduction from Colored Subgraph Isomorphism to Subgraph Isomorphism,
however, modifies H in such a way that preserves treewidth, but may modify pathwidth.

We say that Subgraph Isomorphism or Colored Subgraph Isomorphism have
a T (n, k, ρ(H)) algorithm (for some graph parameter ρ) if there is an algorithm A which
decides a given instance ϕ = (H, G, f) of either problem in time T (n, k, ρ(H)). Analogously,
we define the phrase that Exact Weight Subgraph Isomorphism or Exact Weight
Colored Subgraph Isomorphism has a T (n, k, ρ(H), W ) algorithm, the only difference
being that ϕ = (H, G, f, w). W denotes the maximum absolute value of the weight function
w.

Parts 1 and 2 of the lemma follows directly from the Color Coding technique [12].

▶ Lemma 47 (reformulation of Lemma 14). Let ρ be any graph parameter.
1. If there is a T (n, k, ρ(H)) time deterministic algorithm for Colored Subgraph Iso-

morphism, then there is a O(T (kn, k, ρ(H))g(k)) expected time algorithm and furthermore
a Õ(T (kn, k, ρ(H))g(k)) time deterministic algorithm for Subgraph Isomorphism, for
some computable function g.

2. If there is a T (n, k, ρ(H), W ) time deterministic algorithm for Exact Weight Colored
Subgraph Isomorphism, then there is a O(T (kn, k, ρ(H), W )g(k)) expected time al-
gorithm and furthermore a Õ(T (kn, k, ρ(H), W )g(k)) time deterministic algorithm for
Exact Weight Subgraph Isomorphism, for some computable function g.

3. Let tw(H) ≥ 2. If there is a T (n, k, tw(H)) time algorithm for Subgraph Isomorphism,
then there is a O(T (poly(k)n, poly(k), tw(H)) + poly(k)n2) time algorithm for Colored
Subgraph Isomorphism.

4. If there is a T (n, k, ρ(H), W ) time algorithm for Exact Weight Subgraph Isomorph-
ism, then there is a O(T (2n, 2k, ρ(H), 2kW ) + poly(k)n2) time algorithm for Exact
Weight Colored Subgraph Isomorphism.

Proof (of Lemma 14). We start by showing part 1 and part 2. As mentioned, this follows
directly from a standard application of the Color Coding technique [12]. Briefly speaking,
they use random colorings of the vertices of G to make the potential solution subgraph
multicolored with some probability depending only on k. In our case, we may then try all k!
mappings from colors to vertices of H to obtain the randomized algorithm; we delete any
monochromatic edges to make sure that f is a homomorphism. The authors of [12] also
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explain how to derandomize the algorithm using k-perfect hash functions, which results in
the deterministic algorithm with an additional factor of 2O(k) log(n).

The factor of k in front of n in T (kn, k, tw(H)) comes from the fact that in the Colored
Subgraph Isomorphism problem, we consider n to be the size of the preimages of f , while
in the Subgraph Isomorphism problem, we consider it to be the size of V (G).

Now we show part 3. Given an instance ϕ of Colored Subgraph Isomorphism,
where H has k vertices, with preimages in G of n vertices each, we construct an equivalent
Subgraph Isomorphism instance ϕ′. This is done in two steps. First, we modify ϕ into an
equivalent, but more structured Colored Subgraph Isomorphism instance ϕ̃, which we
then reduce to ϕ′. See Figure 4 for an example of this reduction.

Subdividing all edges: In the first step, we construct H̃, which consists of a subdivided copy
of H, where each vertex has a unique “signature” structure attached to it. These signatures
have a triangle as a key component. Abusing notation, we write V (H) = {1, . . . , k} and
use the vertices as numbers. First, for each i ∈ V (H), we add a vertex ĩ to H̃. Then, for
each edge ij ∈ E(H) with i < j, we add a vertex x̃ij and create two edges ĩx̃ij and x̃ij j̃,
hence subdividing the edge ij. This ensures that for now, the new graph has no triangles.
In G̃, we populate the preimages as follows: For each i ∈ V (H), let f−1(i) = {a1

i , . . . , an
i }

and add n vertices {ã1
i , . . . , ãn

i } to f−1(̃i). For each ℓ, the vertex ãℓ
i corresponds to aℓ

i .
The preimages of x̃ij are populated with n vertices {b1

ij , . . . , bn
ij} via f̃ . For each edge

ij ∈ E(H) with i < j, we add an edge aℓ
ib

ℓ
ij for every ℓ ∈ [n]. We also go through each

edge aℓ
ia

m
j ∈ E(G) and add a corresponding edge bℓ

ij ãm
j to E(G̃).

Signatures: We now add the signatures. For each i ∈ [k], we add a new vertex t̃i and a
new triangle ũiṽiw̃i to H̃, and connect t̃i to both ũi and ĩ from V (H̃). Furthermore,
we connect ṽi to i + 1 other newly created vertices ỹ1

i , . . . ỹi+1
i . Let the set of all newly

created vertices t̃i, ũi, ṽi, w̃i, ỹℓ
i (i ∈ [n], ℓ ∈ [i + 1]) be named X. In G̃, we populate the

preimages of these new vertices by adding n vertices {z1, . . . , zn} to V (G̃) for each vertex
v ∈ X, with ∀i ∈ [n] : f̃(zi) = v. Now, for each u ∈ X, we pick an arbitrary node from
f−1(u) and call it active. Furthermore, for all ĩ ∈ V (H̃), we call all vertices of f−1(i)
active. Now for each v ∈ X, we connect its active vertex in f−1(v) to all active vertices
from the neighbourhood f−1(N(v)). Note that of the vertices in f−1(X), only the active
ones have edges at all. Indeed, for each i ∈ [k], G̃ contains exactly one triangle such that
one of its vertices has degree i + 3.

We set ϕ̃ to be the instance (H̃, G̃, f̃). This concludes the construction of ϕ̃.
Clearly, the new instance ϕ̃ has a solution if and only if ϕ has one, and the size of the

new instance is only a poly(k) factor larger than the size of ϕ. We must also show that
the reduction preserves treewidth. Note that H̃ is obtained from H via two operations:
Subdividing edges and connecting a graph of smaller or equal treewidth via a single edge. It
is easy to see that both operations do not change the treewidth.

Now, to construct ϕ′, we simply get rid of the mapping f̃ . In other words, ϕ′ = (H̃, G̃).
Obviously, if ϕ̃ has a solution, then ϕ′ has one. For the other direction, suppose ϕ′ has a
solution, i.e. a subgraph S′ of G̃ along with an isomorphism h : V (H̃) → V (G[S′]) of G̃.
Since both H̃ and G̃ have, for each i, exactly one triangle with a vertex of degree i, h must
map these triangles to their respective counterparts in G̃. In particular, each of the vertices
in X is mapped to the active vertex in its preimage. Since the active node in f−1(t̃i) is
connected only to nodes of f−1(̃i) (apart from the active node of f−1(ũi), which is already in
the image of h(ũi)), we know that h(̃i) ∈ f−1(̃i). Analogously, h(x̃ij) ∈ f−1(xij). Hence, S′

takes exactly one vertex from each preimage of vertices from H̃. Thus, ϕ̃ also has a solution.
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We thus obtain a way to reduce ϕ to ϕ′ with a size factor of only poly(k). The reduction
obviously runs in O(poly(k)n2) time. This shows part 3.

Finally, we show part 4. We begin with the node-weighted version. Given an instance ϕ

of Exact Weight Colored Subgraph Isomorphism where the pattern graph H has k

vertices, we create an instance ϕ′ of Exact Weight Subgraph Isomorphism by simply
dropping f and modifying the weights. We have to ensure that a solution of ϕ′ takes exactly
one node from each preimage of H. To do this, we encode a checklist in the weights of the
nodes. Again, let V (H) = {1, . . . , k}. Let u ∈ f−1(i) for i ∈ V (H), and consider its weight
w(u). We modify it by multiplying it with 2k and adding 2i. We call the added weight its
“signature”. Now, since any solution must pick exactly k vertices, the only way that the
signatures of the solution vertices sum up to 2k − 1 is to pick vertices which have a sum of
weight 0 according to the original weight function and furthermore have exactly one vertex
with added weight 2i for each i = 1, . . . , k. To complete our reduction, we pick an arbitrary
vertex v ∈ V (G) and subtract 2k − 1 from all vertices in f−1(v), making the new target
zero. This reduction does not alter G or H, and instead only modifies the weight function,
resulting in the stated time bounds.

For the edge-weighted version, we can use essentially the same construction as for the
node-weighted version. Again, all weights are multiplied by 2k, and each vertex of H has a
unique “signature”. However, this time, we have to add the signatures to the edge weights.
Consequently, for each i ∈ V (H) = {1, . . . , k}, we pick an arbitrary incident edge e ∈ E(H).
Let e = {i, j}. We add the signature 2i to every edge in the preimage of e. That is, to every
edge {e′ ∈ E(G) | e′ = {u, v} and f(u) = i and f(v) = j}. This way, we must still pick a
node from each preimage to ensure that the signatures sum to T := 2k − 1. Again, we pick
an arbitrary edge e ∈ E(H) and subtract T from all edges in its preimage. This almost
completes the proof. However, we still have to handle nodes of degree 0 in H, since we
cannot pick an incident edge for them. However, an isolated vertex i in H may be mapped
to any vertex in G. Hence, we may simply skip the signature of i. We also have to modify
the target T to be T − 2i. ◀

8 Open Problems

In this paper we discussed many different variants of the Subgraph Isomorphism problem.
For some of these variants we leave gaps, which gives rise to several open problems:

1. Can the algorithms for weighted trees be improved? We have shown that some improve-
ments can be made for node-weighted trees (see Theorem 9), but are these optimal?
What about edge-weighted trees?

2. Are there fast algorithms for unweighted Subgraph Isomorphism on graphs of bounded
pathwidth that do not use rectangular matrix multiplication? Can the gap between
exponent ω(p − 1) and exponent p be closed? Similar questions apply to the weighted
case; see Theorems 6 and 8.

3. Relatedly, are there good lower bounds for unweighted Subgraph Isomorphism on
graphs of bounded pathwidth? These could be attained via a modification of the proof of
part 2 of Lemma 14 for pathwidth (though we see no way to do this), or with completely
new techniques.

We conclude with some more general open problems:

1. Do our algorithms and lower bounds also work for other types of graph homomorphisms,
and for counting the number of solutions? It seems like techniques from [32] should apply.
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2. In this work we demonstrated the existence of maximally hard patterns for which Subgraph
Isomorphism requires time ntw(H)+1−o(1). Can we classify which (classes of) patterns are
maximally hard?

3. Changing our focus from hard patterns to easy patterns, we can ask: do classes of patterns
of unbounded treewidth exist for which Subgraph Isomorphism can be solved in time
no(tw(H))? Recall that a conditional lower bound rules out no(tw(H)/ log tw(H)) [54].
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A Proof of the Conditional Lower Bound for Subset Sum

In Section 4.3.1, we stated Theorem 32, which gives the following lower bound on Subset
Sum:

For no ε > 0 can there be an algorithm which solves Subset Sum in time
O(T 1−ε poly(n)) unless the h-uniform Hyperclique hypothesis fails for all h ≥ 3.

We now prove this.

A.1 Reduction from k-Sum to Subset Sum
Before proving the result, we need a lemma that shows that we can reduce k-sum to Subset
Sum with minimal overhead. This theorem is already known, but we could not find a formal
proof of it in the literature. Therefore we provide one here.

▶ Lemma 48 (Reducing k-Sum to Subset Sum). There is an algorithm B which, given as
input a k-sum instance with N values from [0, D] per set, as well as a target T , constructs
an equivalent Subset Sum instance with k · N values in [0, Dg(k)] and a target T ′ bounded
by Tg(k) for a computable function g. Furthermore, for constant k, B runs in time linear in
the input size.

Proof. The values of the Subset Sum instance are the union of the k sets. However, we
modify the weights and target as follows. At the front of the binary representation of the
weights and the target, we add a buffer of ⌈log(k)⌉ zero bits to avoid overflow, then another
k bits constituting a “checklist”, then in front of that another buffer of ⌈log(k)⌉ zero bits
and finally another ⌈log(k)⌉ bits which contains a counter for the number of nodes of the
solution.

The target T has the binary representation of k in the counter bits and only ones in the
checklist bits. Each weight has the binary representation of 1 in the counter bits, ensuring
that we take exactly k weights. Furthermore, if the weight comes from the i-th set of the
k-sum instances, its checklist bits is zero except for the i-th position.

Now if one picks more than 2⌈log(k)⌉ values, the counter at the front overflows the length
of the target, so that selection cannot be a solution. Since 2⌈log(k)⌉ < 2k and since there is a
buffer of ⌈log(k)⌉ bits, the checklist cannot overflow into the counter. Hence any solution
must pick exactly k weights. Hence, the only way to achieve all ones in the checklist bits of
a sum of k weights is to pick exactly one weight from each of the k sets. This completes the
reduction.

Since we add 3⌈log(k)⌉ + k bits to the weights and the target, their value is multiplied by
at most 2k · 23 · k3. Choosing g(k) = 2k+3k3, we obtain the bounds from the lemma. ◀

A.2 Modifying the Weighted Lemma to Prove the Lower Bound
To prove the theorem above, we modify the Weighted Lemma by adding a special case
of parameters: All parameters are as before, but β = 1 and r2 = 0. In this case, the
preimages in the resulting instance I′ instead have size nk/r1 , and the maximum weight is
W = Θ(n(1+ε)k).

To prove this special case of the Weighted Lemma, we can almost use the reduction from
its proof. We must simply purge all parts of the construction that relate to the edges part.
That is, no construction of V2 in step 2, no construction of S′

2 in steps 3 and no construction
of S2 in step 5. The reduction then yields an instance I′ as described above.
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We now prove the theorem about Subset Sum. Essentially, the instances we get from
the special case of the Weighted Lemma are k-sum instances that we can then reduce to
Subset Sum via the lemma in Appendix A.1 above.

Proof (of Theorem 32). Let h be given. Suppose there is an algorithm solving Subset
Sum in time O(T 1−εNz) for some z ∈ N. We use the special case of the Weighted Lemma
with

some ε′ chosen later,
h′ := h, and
some arbitrary r1 ∈ N such that

r1 > ĉ
h (this ensures, again, that the running time O(n2h−1 +nĉk/(hr1)) of the reduction

is equal to O(n2h−1 + nk−ε) for some ε > 0, and can hence be ignored in the analysis),
and
r1 > zε′ (this ensures that nzk/r1 < nε′k).

This yields a k ∈ N and a reduction algorithm A with the properties from the description
of the special case above. In particular, the reduction algorithm produces an Exact Weight
Colored Subgraph Isomorphism where H consists only of isolated vertices with preimages
of size O(nk/r1) and maximum absolute weight W = Θ(n(1+ε)k). We make all weights positive
by adding a large number to each, such that the target is T = Θ(n(1+ε)k). Note that this
instance is also a (r1 +

(
hr1
h

)
)-sum instance, with each set of numbers being the set of weights

in a preimage.
We now use the algorithm B from Lemma 48 to convert this to a Subset Sum instance

with N = O(nk/r1) values in [0, Θ(n(1+ε′)k)] and target T = Θ(n(1+ε′)k).
We can now solve the instance in time O(n(1−ε)(1+ε′)knzk/r1) = O(n((1−ε)(1+ε′)+ε′)k).

Hence it suffices to choose ε′ such that

(1 − ε)(1 + ε′) + ε′ < 1 ⇐⇒ ε′ <
ε

2 − ε

Since ε ∈ (0, 1) and hence ε
2−ε ∈ (0, 1), this is always possible.

◀

B Hyperclique and Boolean k-Wise Matrix Product are Equivalent

In this section, we show that k-uniform (k + 1)-Hyperclique has a fast algorithm if and
only if the k-Wise Matrix Product problem has a fast algorithm. More formally:

▶ Theorem 49. The k-uniform (k + 1)-Hyperclique problem has an algorithm running in
time O(nk+1−ε) (for some ε > 0) if and only if the k-wise Matrix Product problem has
an algorithm running in time O(nk+1−ε′) (for some ε′ > 0).

In the proofs of both directions, we will reduce from and to the Colored Hyperclique
problem instead of the Hyperclique problem. This is because these problems are equivalent:
In the one direction, we can use the reduction in step 1 in the proof of the Unweighted
Lemma (Section 4.2). In the other direction, a trivial argument shows that simply throwing
away the color homomorphism is enough.

Reducing from and to the Colored Hyperclique problem simplifies the proofs of both
directions. Both are a straightforward generalization of the known proof that the standard
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boolean matrix product and the triangle problem10 are subcubically equivalent11 with
respect to combinatorial algorithms. This was proven in [68] for the more general result
of subcubic equivalence of the (min, +) matrix product12 and the Negative Triangle
problem13 and is a fundamental result in Fine-Grained Complexity Theory.

B.1 From Hyperclique to Boolean k-Wise Matrix Product
▶ Lemma 50. If the k-wise Matrix Product problem has an algorithm running in time
O(nk+1−ε) (for some ε > 0), then the k-uniform (k + 1)-Hyperclique problem has an
algorithm running in time O(nk+1−ε′) (for some ε′ > 0).

Proof. First, recall that in the proof of theorem 35 we defined how to index tensors via
configurations. We re-use this definition here.

Given a hyperclique instance (G, f) where G is a k-uniform hypergraph and f : V (G) →
V (Ck+1) is a color homomorphism to the k-uniform (k+1)-hyperclique Ck+1, we solve it via a
single application of the k-wise matrix product. To do this, we create k tensors A1, . . . , Ak of
order k with dimensions n × . . . × n. We initialize them with zeroes as entries. The tensor Ai

will be indexed by configurations of V (Ck+1)\{i} with ordering (1, . . . , i−1, k+1, i+1, . . . , k).
For each i and each configurations R of V (Ck+1) \ {i}, we set Ai[R] to one if and only if
R(1) . . . R(i − 1)R(i + 1) . . . R(k + 1) ∈ E(G). We use truth values and 0/1 interchangeably
to declutter notation.

Now let A(R) := MPk(A1, . . . , Ak). Then for a configuration R of V (Ck+1) \ {k + 1}, we
have that

A[R] =
∨

ℓ∈[n]

A1[ℓ, R(2), . . . , R(k)] ∧ . . . ∧ Ak[R(1), . . . , R(k), ℓ]

= ∃v′ ∈ f−1(k + 1) : ∀i ∈ [k] : Ai[R(1), . . . , R(i − 1), v′, R(i + 1), . . . , R(k)]
= ∃v′ ∈ f−1(k + 1) : ∀i ∈ [k] : R(1) . . . R(i − 1)R(i + 1) . . . R(v)v′ ∈ E(G) (†)

But now note that there is a hyperclique in G if and only if there exists a configuration
R of V (Ck+1) \ {k + 1} such that (†) is true and R(1) . . . R(k) ∈ E(G). Hence we simply
calculate A[R] via the fast k-wise matrix product algorithm, then check if such a configuration
exists by iterating through every possible configuration. This takes time O(nk+1−ε + nk) =
O(nk+1−ε). ◀

B.2 From Boolean k-Wise Matrix Product to Hyperclique
▶ Proposition 51. Let T (n) = O(nc) for some c ≥ 1. If there is a T (n) time algorithm for
the k-uniform (k + 1)-Hyperclique problem running in time T (n), then there is an O(T (n))
time algorithm solving the k-uniform (k + 1)-Hyperclique problem which also outputs the
vertices of the (k + 1)-hyperclique (if one exists).

Proof. The proof is a straightforward binary-search-like algorithm. Let Ck+1 be the k-
uniform (k + 1)-hyperclique and define V (Ck+1) = {1, . . . , k + 1}. For each i ∈ [k + 1], we

10 Given a 3-colored graph, check if it contains a triangle. Note that this is the colored k-uniform
(k + 1)-Hyperclique problem for k = 2.

11 Meaning one problem has a O(n3−ε) algorithm if and only if the other has one.
12 This is the standard matrix product, but addition is replaced by min and multiplication is replaced by

addition.
13 Given a 3-colored graph with edge weights, check if it contains a triangle of negative total weight.
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split the preimage f−1(i) into two equal parts of size n/2. Now for each of the 2k+1 possible
(k + 1)-tuples of halves from different preimages, we check if there exists a (k + 1)-hyperclique
between these halves in time T (n/2). If no tuple has a hyperclique, we return no. If at
least one tuple has a hyperclique, we recurse on one of them, with the new preimages being
the halves selected in the tuple. The base case is reached if there is a single vertex in each
preimage, which we then return.

The running time of this recursive algorithm is S(n) = 2k+1T (n/2)+S(n/2) = 2k+1(T (n/2)+
T (n/4) + T (n/8) + . . .). Since T (n) = O(nc) for c ≥ 1, we have S(n) = O(T (n)). ◀

Hence if we can check if a hyperclique exists, we can also find it in essentially the same
time. We now use this to prove the second direction, which we already stated in lemma 45.
Recall that the statement of lemma 45 is the following:

If the k-uniform (k + 1)-Hyperclique problem has an algorithm running in time
O(nk+1−ε) (for some ε > 0), then the k-wise Matrix Product problem

has an algorithm running in time O(nk+1−ε′) (for some ε′ > 0).

Proof. In this proof, we again use the definition of indexing tensors via configurations from
the proof of theorem 35 (also used above).

Let the input tensors A1, . . . , Ak, each of order k and dimensions n × . . . × n be given.
Now consider the k-uniform (k + 1)-hyperclique Ck+1 and define V (Ck+1) = {1, . . . , k + 1}.
We let G be the graph with n vertices per preimage of Ck+1, with no hyperedges (yet). In the
following, we construct the edges of G and the color homomorphism f : V (G) → V (Ck+1).

For each i ∈ [k + 1], we let the tensor Ai be indexed by configurations of V (Ck+1) \ {i}
with ordering (1, . . . , i − 1, k + 1, i + 1, . . . , k). Now for each configuration R of V (Ck+1) \ {i},
we add the hyperedge R(1) . . . R(i − 1)R(i + 1) . . . R(k + 1) to G if and only if Ai[R] = 1.
Hence we are encoding the i-th input tensor in the hyperedges between the preimages of
V (Ck+1) \ {i}.

Finally, in V (Ck+1)\{k+1}, we encode the all-ones tensor. That is, for each configuration
R of V (Ck+1) \ {k + 1}, we add the hyperedge R(1) . . . R(k) to G.

We now show how to take advantage of the fast algorithm for k-uniform (k + 1)-
Hyperclique to calculate the k-wise matrix product by using it repeatedly on subinstances
of this new hyperclique instance. Let Ares be the output tensor, initialized to all-zeroes. Now
take g ∈ N (chosen later). For each i ∈ [k + 1], we split the preimage f−1(i) into g parts (i.e.
subsets of vertices) (f−1(i))1, . . . , (f−1(i))g, each of size n/g up to rounding.

For any (k + 1)-tuple (i(1), . . . , i(k + 1)) ∈ [g]k+1, we do the following: (⋆) While
there is a hyperclique between the parts (f−1(1))i(1), . . . , (f−1(k + 1))i(k+1) (which can
be checked via the fast algorithm in time O((n/g)k+1−ε)), we find this hyperclique in
time O((n/g)k+1−ε) via the algorithm from Proposition 51. Let the vertices of the found
hyperclique be j(1), . . . , j(k + 1). Then we set Ares[j(1), . . . , j(k)] to one and delete the edge
j(1) . . . j(k) from G.

After having gone through all (k + 1)-tuples, we output Ares.
We argue correctness. We use truth values and 0/1 interchangeably. Let the correct

output be Acor := MPk(A1, . . . , Ak). We want to prove Acor = Ares. Let Acor and Ares
be indexed by configurations of V (Ck+1) \ {k + 1} with ordering (1, . . . , k). Then for a
configuration R of V (Ck+1) \ {k + 1}, we have that Acor[R] also satisfies the equation (†)
from the proof of lemma 50.

Now suppose Ares[R] = 1. Then certainly (†) is true, so Acor[R] = 1. Conversely, suppose
that Acor[R] = 1 and hence that (†) is true. Then when we will find a hyperclique for the
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tuple (i(1), . . . , i(k)) such that ∀j : R(j) ∈ (f−1(i))i(j). When we find it, the hyperedge
R(1) . . . R(k) either still exists (in which case we set Acor[R] to one) or it does not, in which
case it must have been deleted in a previous iteration where we must have then already set
Acor[R] to one.

Let us analyze the running time. For each successful check in the while loop (⋆), we
delete an edge in E(G). Hence there are at most O(nk) successful checks. In each successful
check, we take time O((n/g)k+1−ε) for the check itself and another O((n/g)k+1−ε) for the
execution of the while loop content. As for unsuccessfull while loop checks, we have at most
one per (k + 1) tuple of parts, so gk+1. Each of these also takes O((n/g)k+1−ε).

Hence the overall running time is O(nk(n/g)k+1−ε + gk+1(n/g)k+1−ε). Choosing gk+1 =
nk and hence g = nk/(k+1), we have a running time of O(nkn(1−k/(k+1))(k+1−ε)), which works
out to O(nk+1−ε/(k+1)). ◀
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