
Sparse Nonnegative Convolution Is Equivalent to
Dense Nonnegative Convolution∗

Karl Bringmann

Saarland University and Max Planck

Institute for Informatics

Saarland Informatics Campus

Saarbrücken, Germany

Nick Fischer

Saarland University and Max Planck

Institute for Informatics

Saarland Informatics Campus

Saarbrücken, Germany

Vasileios Nakos

Saarland University and Max Planck

Institute for Informatics

Saarland Informatics Campus

Saarbrücken, Germany

ABSTRACT
Computing the convolution𝐴★𝐵 of two length-𝑛 vectors𝐴, 𝐵 is an

ubiquitous computational primitive, with applications in a variety

of disciplines. Within theoretical computer science, applications

range from string problems to Knapsack-type problems, and from

3SUM to All-Pairs Shortest Paths. These applications often come

in the form of nonnegative convolution, where the entries of 𝐴, 𝐵

are nonnegative integers. The classical algorithm to compute 𝐴★𝐵

uses the Fast Fourier Transform (FFT) and runs in time 𝑂 (𝑛 log𝑛).
However, in many cases 𝐴 and 𝐵 might satisfy sparsity condi-

tions, and hence one could hope for significant gains compared to

the standard FFT algorithm. The ideal goal would be an 𝑂 (𝑘 log𝑘)-
time algorithm, where 𝑘 is the number of non-zero elements in

the output, i.e., the size of the support of 𝐴 ★ 𝐵. This problem is

referred to as sparse nonnegative convolution, and has received

a considerable amount of attention in the literature; the fastest

algorithms to date run in time 𝑂 (𝑘 log2 𝑛).
The main result of this paper is the first 𝑂 (𝑘 log𝑘)-time algo-

rithm for sparse nonnegative convolution. Our algorithm is random-

ized and assumes that the length 𝑛 and the largest entry of 𝐴 and 𝐵

are subexponential in 𝑘 . Surprisingly, we can phrase our algorithm

as a reduction from the sparse case to the dense case of nonneg-

ative convolution, showing that, under some mild assumptions,

sparse nonnegative convolution is equivalent to dense nonnegative

convolution for constant-error randomized algorithms. Specifically,

if 𝐷 (𝑛) is the time to convolve two nonnegative length-𝑛 vectors

with success probability 2/3, and 𝑆 (𝑘) is the time to convolve two

nonnegative vectors with output size 𝑘 with success probability 2/3,
then 𝑆 (𝑘) = 𝑂 (𝐷 (𝑘) + 𝑘 (log log𝑘)2).

Our approach uses a variety of new techniques in combination

with some old machinery from linear sketching and structured

linear algebra, as well as new insights on linear hashing, the most

classical hash function.

∗
This work is part of the project TIPEA that has received funding from the Euro-

pean Research Council (ERC) under the European Unions Horizon 2020 research and

innovation programme (grant agreement No. 850979).

STOC ’21, June 21–25, 2021, Virtual, Italy
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8053-9/21/06.
https://doi.org/10.1145/3406325.3451090

CCS CONCEPTS
• Theory of computation → Streaming, sublinear and near
linear time algorithms.

KEYWORDS
Convolution, Sparsity, FFT, Linear Hashing

ACM Reference Format:
Karl Bringmann, Nick Fischer, and Vasileios Nakos. 2021. Sparse Nonneg-

ative Convolution Is Equivalent to Dense Nonnegative Convolution. In

Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Com-

puting (STOC ’21), June 21–25, 2021, Virtual, Italy. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3406325.3451090

1 INTRODUCTION
Computing convolutions is an ubiquitous task across all science

and engineering. Some of its special cases are as fundamental as

the general case; we first introduce the most important problem

variants.

• Boolean Convolution is the problem of computing for

given vectors𝐴, 𝐵 ∈ {0, 1}𝑛 the vector𝐶 = 𝐴⃝★𝐵 ∈ {0, 1}2𝑛−1
defined by𝐶𝑘 =

∨
𝑖 𝐴𝑖 ∧ 𝐵𝑘−𝑖 . This formalizes a situation in

which we split a computational problem into two subprob-

lems, so that in total there is a solution of size 𝑘 if and only

if for some 𝑖 there is a solution of the left subproblem of size

𝑖 and there is a solution of the right subproblem of size 𝑘 − 𝑖 .
Therefore, it is a natural task that frequently arises in algo-

rithm design. Boolean convolution is also equivalent to sum-

set computation, where for given sets 𝐴, 𝐵 ⊆ {0, 1, . . . , 𝑛 − 1}
the task is to compute their sumset 𝐴 + 𝐵 consisting of all

sums𝑎+𝑏 with𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. It therefore frequently comes up

in algorithms for Subset Sum, 3SUM, and similar problems,

see, e.g., [8, 11, 15, 32, 39, 45].

• Nonnegative Convolution is the problem of computing

for given vectors 𝐴, 𝐵 ∈ Z𝑛 with nonnegative entries the

vector 𝐶 = 𝐴★ 𝐵 ∈ Z2𝑛−1 defined by 𝐶𝑘 =
∑
𝑖 𝐴𝑖 · 𝐵𝑘−𝑖 . For

instance, if 𝐴𝑖 and 𝐵𝑖 count the number of size-𝑖 solutions

of the left and right subproblem, then𝐶𝑘 counts the number

of size-𝑘 solutions of the whole problem. It also comes up in

string algorithms when computing the Hamming distance

of a pattern and each sliding window of a text; this connec-

tion was found by Fischer and Paterson [18] and has been

exploited in many string algorithms, see, e.g., [2, 6, 37, 40].

As an operation, nonnegative convolution is frequent also in

computer vision, image processing and computer graphics;

a prototypical such an example is the process of blurring an

1711

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3406325.3451090
https://doi.org/10.1145/3406325.3451090
https://creativecommons.org/licenses/by/4.0/

STOC ’21, June 21–25, 2021, Virtual, Italy Karl Bringmann, Nick Fischer, and Vasileios Nakos

image by a Gaussian kernel in order to remove noise and

detail [1]. Note that nonnegative convolution generalizes

Boolean convolution, as 𝐴 ⃝★ 𝐵 is simply the support of the

nonnegative convolution 𝐴★𝐵. In this paper our focus is on

the nonnegative convolution problem.

• General Convolution, or simply “convolution”, denotes

the general case obtained by dropping the nonnegativity

assumption from the previous problem variant. This prob-

lem is central in signal processing and is also equivalent

to polynomial multiplication, one of the most fundamen-

tal problems of computer algebra, and thus has a wealth

of applications. We remark that general convolution can

be reduced to nonnegative convolution (and thus they are

equivalent), by replacing 𝐴′
𝑖
:= 𝐴𝑖 + 𝑀 and 𝐵′

𝑗
:= 𝐵 𝑗 + 𝑀 ,

which are nonnegative for sufficiently large𝑀 , and noting

that (𝐴★ 𝐵)𝑘 = (𝐴′ ★ 𝐵′)𝑘 mod𝑀 . However, this reduction

destroys the sparsity of the input and output, and thus is not

applicable in the context of this paper.

Algorithms in the Dense Case. The standard algorithm for these

problems uses the Fast Fourier Transform (FFT) and runs in time

𝑂 (𝑛 log𝑛) on the RAM model. This running time is conjectured to

be optimal (at least for general convolution), but proving this is a big

open problem. There is some evidence in favor of this conjecture, for

instance nonnegative convolution can be used to multiply integers

and the latter is connected to the network coding conjecture [3].

For Boolean convolution, the evidence is less clear, since there

exists a Boolean convolution algorithm by Indyk [28] running in

time𝑂 (𝑛) with the guarantee that any fixed output entry is correct

with constant probability (see Theorem 6.2). However, in this paper

we focus on algorithms where the whole output vector is correct

with constant probability, and boosting Indyk’s algorithm to such a

guarantee would again result in running time𝑂 (𝑛 log𝑛). Therefore,
for all three problem variants it is plausible that time 𝑂 (𝑛 log𝑛) is
optimal, even for constant-error randomized algorithms.

Algorithms in the Sparse Case. A long line of work has considered

convolution in a sparse setting, see, e.g., [7, 15, 16, 23, 42, 46, 47,

53, 55, 57]. Here the running time is expressed not only in terms

of 𝑛, but also in terms of the output size 𝑘 , defined as the num-

ber of nonzero entries of 𝐴★ 𝐵. All variants of convolution listed

above admit randomized algorithms running in near-linear time

𝑘 polylog𝑛. This was first achieved by Cole and Hariharan [16] for

nonnegative convolution with a Las Vegas algorithm running in

time𝑂 (𝑘 log2 𝑛 + polylog(𝑛)), in [47] for general convolution with

running time
1 𝑂 (𝑘 log2 𝑛 + polylog(𝑛)). The latter was improved

by Giorgi, Grenet and Perret du Cray [23] to a bit complexity of

𝑂 (𝑘 log𝑛); it seems that on the RAM model their algorithm would

run in time 𝑂 (𝑘 log5 𝑘 polyloglog𝑛).2 Implementations of sparse

convolution algorithms exist in Maple [43, 44] and Magma [56].

1
Here we use the notation𝑂 (𝑇) = ⋃

𝑐>0𝑂 (𝑇 log
𝑐 𝑇) .

2
To determine their running time on the RAM model, from the last paragraph

of the proof of their Lemma 4.7 one can infer that the bottleneck of their run-

ning time stems from Θ(log2 𝑘) many dense convolutions on vectors of length

Θ(𝑘 log(𝑘 log𝑛) log(𝑘 log log𝑛)) = Θ(𝑘 log
2 𝑘 polyloglog𝑛) . Since one dense con-

volution of length 𝑑 can be performed in time𝑂 (𝑑 log𝑑) on the RAM model, they

require time𝑂 (𝑘 log
5 𝑘 polyloglog𝑛) .

This research is closely related to the extensively studied sparse

Fourier transform problem, e.g. [19, 21, 25, 29, 30]. Indeed, the

same running time of 𝑂 (𝑘 log2 𝑛), albeit with a more complicated

algorithm and under the assumption that complex exponentials can

be evaluated at constant time, can be obtained by combining the

state-of-the-art sparse Fourier transform with the semi-equispaced

Fourier transform, see Section 3.1.

In summary, for nonnegative convolution on the RAM model,

the state of the art requires time Ω(𝑘 log2 𝑛) or Ω(𝑘 log5 𝑘). In view

of the conjecture that 𝑂 (𝑛 log𝑛) is optimal for the dense case, the

best running time we could expect for the sparse case would be

𝑂 (𝑘 log𝑘). The driving question of this work is thus:

Can sparse nonnegative convolution be solved in time 𝑂 (𝑘 log𝑘)?

We note that the need for sparse convolution arises in many

different areas of algorithm design, for example algorithms for the

sparse cases of Boolean and nonnegative convolution have been

used for clustered 3SUM and similar problems [15], output-sensitive

Subset Sum algorithms [12], pattern matching on point sets [13],

sparse wildcard matching [16], and other string problems [4, 5].

1.1 Results
We present a novel connection between the sparse and dense case

of nonnegative convolution, which can be viewed as work at the

intersection of sparse recovery and fine-grained complexity.

We work on the Word RAM model where each cell stores a word

consisting of 𝑤 bits, and standard operations on 𝑤-bit integers

can be performed in constant time; this includes addition, multipli-

cation, and division with remainder. We always assume that the

length 𝑛 of the input vectors as well as each input entry fit into

a word, or more precisely into a constant number of words. For

nonnegative convolution, this means that the input consists of vec-

tors𝐴, 𝐵 ∈ {0, 1, . . . ,Δ}𝑛 with 𝑛,Δ ≤ 2
𝑂 (𝑤)

. In this machine model,

the standard algorithm for dense convolution uses FFT and runs

in time 𝐷 (𝑛) = 𝑂 (𝑛 log𝑛). In the following, we denote by 𝐷𝛿 (𝑛)
the running time of a randomized algorithm for dense nonnegative

convolution with failure probability 𝛿 (for any 0 ≤ 𝛿 ≤ 1/3). Note
that this notation hides the dependence on Δ.

In the sparse setting, we denote the output size by 𝑘 , i.e., 𝑘 is

the number of nonzero entries of the convolution 𝐴 ★ 𝐵. Also in

this setting we will always assume that the length 𝑛 of the input

vectors as well as the largest input entry Δ fit into a constant

number of words. We will denote by 𝑆𝛿 (𝑘) the running time of a

randomized algorithm for sparse nonnegative convolution with

failure probability 𝛿 ; this hides the dependence on 𝑛 and Δ.

The main result of this paper is a novel Monte Carlo algorithm

for nonnegative sparse convolution.

Theorem 1.1. The sparse nonnegative convolution problem has a

randomized algorithm with running time 𝑂 (𝑘 log𝑘 + polylog(𝑛Δ))
and failure probability 2

−
√
log𝑘

.

Here and throughout the paper we implicitly mean Monte Carlo

randomization. Naturally, the same algorithm also can be used for

Boolean convolution, where Δ = 1. For Boolean convolution, this

is the first algorithm that improves upon the dense case’s running

time of 𝑂 (𝑛 log𝑛) for all 𝑘 = 𝑜 (𝑛); previous algorithms required

1712

Sparse Nonnegative Convolution Is Equivalent to Dense Nonnegative Convolution STOC ’21, June 21–25, 2021, Virtual, Italy

𝑘 = 𝑜 (𝑛/log𝑛). For nonnegative convolution, the same statement is

true assuming that Δ ≤ 2
𝑛𝑜 (1)

. Moreover, this answers our driving

question for 𝑘 ≫ polylog(𝑛Δ), by a randomized algorithm.

In fact, our algorithm can be phrased as a reduction from the

sparse case to the dense case of nonnegative convolution:

Theorem 1.2. Any randomized algorithm for dense nonnegative

convolution running in time𝐷
1/3 (𝑛) can be turned into a randomized

algorithm for sparse nonnegative convolution running in time
3

𝑆𝛿 (𝑘) = 𝑂
(
𝐷
1/3 (𝑘) + 𝑘 log2 (log(𝑘)/𝛿) + polylog(𝑛Δ)

)
.

Here we assume for technical reasons that the function 𝐷𝛿 (𝑛)/𝑛 is

nondecreasing, as is to be expected from any natural running time.

Since 𝐷
1/3 (𝑘) = 𝑂 (𝑘 log𝑘), setting 𝛿 = 2

−
√
log𝑘

yields time

𝑂 (𝑘 log𝑘 + polylog(𝑛Δ)), which proves Theorem 1.1. Furthermore,

any future algorithmic improvement for the dense case automat-

ically yields an improved algorithm for the sparse case by our

reduction. In fact, under the mild conditions that 𝑘 ≫ polylog(𝑛Δ)
and that the optimal running time 𝐷

1/3 (𝑘) is Ω(𝑘 (log log𝑘)2), we
obtain an asymptotic equivalence with respect to constant-error

randomized algorithms:

• 𝑆
1/3 (𝑘) = 𝑂 (𝐷

1/3 (𝑘)) holds by Theorem 1.2 and the mild

conditions,

• 𝐷
1/3 (𝑛) = 𝑂 (𝑆

1/3 (𝑛)) holds since the sparse case trivially is

a special case of the dense one.

1.2 Discussion and Open Problems
Our work raises a plethora of open problems that we discuss in the

following.

Improving our Reduction. We can ask for improvements of our

reduction, specifically of the parameters of Theorem 1.2:

(1) Can the error probability of the reduction be reduced? Specif-

ically, can Theorem 1.1 be improved from 𝛿 = 2
−
√
log𝑘

to

1/poly(𝑘) or even 1/poly(𝑛)?
(2) Can the polylog(𝑛Δ) term in Theorem 1.2 be removed, to

make it work also for very small 𝑘? This would require a

quite different approach than the one we take here, since

already for finding a prime field large enough to store 𝑛 and

Δ, or for computing a single multiplicative inverse in such a

prime field, the fastest algorithms that we are aware of run

in time 𝑂 (polylog(𝑛Δ)), even for the Word RAM model.

(3) Can we obtain further improvements by bit packing, say for

Boolean convolution?

General Convolution. Here we focused on nonnegative convolu-

tion, what about the general case?

(4) Does sparse general (not necessarily nonnegative) convolu-

tion have a randomized algorithm running in time𝑂 (𝑘 log𝑘+
polylog(𝑛Δ))?

(5) Are sparse general convolution and dense general convolu-

tion asymptotically equivalent?

3
To be precise, we should take the dependence on Δ (and 𝑛) into account. Express-

ing the running time for the dense case as 𝐷𝛿 (𝑛,Δ) and for the sparse case as

𝑆𝛿 (𝑘,𝑛,Δ) , our reduction actually shows that 𝑆𝛿 (𝑘,𝑛,Δ) = 𝑂 (𝐷
1/3 (𝑘, poly(𝑛Δ)) +

𝑘 log
2 (log(𝑘)/𝛿) + polylog(𝑛Δ)) .

Deterministic Algorithms. Chan and Lewenstein [15] presented

a deterministic 𝑘 · 𝑛𝑜 (1) -time algorithm for sparse nonnegative

convolution, assuming that they are additionally given a small

superset of the output.

(6) Is there a deterministic algorithm for sparse nonnegative

convolution with running time 𝑘 polylog(𝑛)?
(7) Are sparse and dense nonnegative convolution asymptotically

equivalent with respect to deterministic algorithms?

Sparse Fourier Transform. Computing convolutions is intimately

connected to the Fast Fourier Transform (FFT). In fact, in the dense

case these two problems are known to be equivalent: if one of these

problems can be solved in time 𝑇 (𝑛) then the other can be solved

in time 𝑂 (𝑇 (𝑛)). One direction of this equivalence follows from

the standard algorithm for convolution that uses FFT, the other

direction follows from an old trick invented by Bluestein [10], see

also [24, pp. 213–215], showing how to express the discrete Fourier

transform as a convolution.
4

The sparse case of Fourier transform, where one has oracle access

to 𝑥 and wants to compute 𝑥 under a 𝑘-sparsity assumption, is also

extensively studied [19, 21, 25, 26, 29, 30, 34–36, 48, 51]. We can ask

whether the results presented in this paper also work for computing

Fourier transforms:

(8) Are sparse Fourier transform and dense Fourier transform

asymptotically equivalent? The algorithm in [25] runs time

𝑂 (𝑘 log(𝑛Δ)), but the running time is not dominated by the

calls to FFT.

Note that positive answers to Questions 5 and 8 would, together

with the known equivalence of dense convolution and dense Fourier

transform, show an asymptotic equivalence of sparse general con-

volution and sparse Fourier transform. Currently, reductions among

these problems that lose one log-factor are known, see also Sec-

tion 3.1.

Note that since dense nonnegative convolution is equivalent to

general dense convolution (as mentioned in the introduction), and

since the latter is equivalent also to (dense) DFT computation, our

work places sparse nonnegative convolution to the aforementioned

equivalent class, under the assumptions made.

We hope that our work ignites further work on revealing con-

nections between all these fundamental problems.

1.3 Organization
This paper is organized as follows. Section 2 starts with some prelim-

inary definitions. In Section 3 we sketch our algorithm and describe

some technical difficulties and highlights. The detailed reduction is

split across several sections starting with Section 4 which gathers

some algorithmic tools, followed by the two most interesting steps

of the reduction in Sections 5 and 6. Due to space constraints we

omitted some reduction steps in this version of the paper.

2 PRELIMINARIES
Let Z, N, Q and C to denote the integers, nonnegative integers,

rationals, and complex numbers, respectively. For any nonnegative

integer 𝑛, let Z𝑛 denote the ring of integers modulo 𝑛. We set

4
As a technical detail, this reduction assumes that terms of the form exp(2𝜋𝑖𝑥) can
be evaluated in constant time.

1713

STOC ’21, June 21–25, 2021, Virtual, Italy Karl Bringmann, Nick Fischer, and Vasileios Nakos

[𝑛] = {0, 1, . . . , 𝑛 − 1}. The Iverson bracket [𝑃] ∈ {0, 1} denotes the
truth value of a proposition 𝑃 . We write log for the base-2 logarithm,

poly(𝑛) = 𝑛𝑂 (1) and polylog(𝑛) = log
𝑂 (1) 𝑛.

We mostly denote vectors by letters 𝐴, 𝐵,𝐶 with 𝐴𝑖 referring to

the 𝑖-th coordinate in 𝐴. The convolution of two length-𝑛 vectors 𝐴

and 𝐵 is the vector 𝐴★ 𝐵 of length 2𝑛 − 1 with

(𝐴★ 𝐵)𝑖 =
∑︁

0≤ 𝑗≤𝑖
𝐴 𝑗𝐵𝑖−𝑗 .

The cyclic convolution of two length-𝑛 vectors 𝐴, 𝐵 is the length-𝑛

vector 𝐴★𝑛 𝐵 with

(𝐴★𝑛 𝐵)𝑖 =
∑︁

0≤ 𝑗≤𝑛−1
𝐴 𝑗𝐵 (𝑖−𝑗) mod 𝑛 .

We let supp(𝐴) = {𝑖 ∈ [𝑛] : 𝐴𝑖 ≠ 0}, ∥𝐴∥0 = | supp(𝐴) | and
∥𝐴∥∞ = max𝑖 |𝐴𝑖 |. Furthermore, we often write 𝐴 mod𝑚 for the

vector with

(𝐴 mod𝑚)𝑖′ =
∑︁

𝑖=𝑖′ (mod 𝑚)
𝐴𝑖 ,

and more generally, for a function Z→ [𝑚], we write 𝑓 (𝐴) for the
length-𝑚 vector with

𝑓 (𝐴)𝑖′ =
∑︁

𝑖:𝑓 (𝑖)=𝑖′
𝐴𝑖 .

For sets 𝑋,𝑌 , we define the sumset 𝑋 +𝑌 = {𝑥 +𝑦 : (𝑥,𝑦) ∈ 𝑋 ×𝑌 }
and some other shorthand notation: 𝑎 + 𝑋 = {𝑎 + 𝑥 : 𝑥 ∈ 𝑋 },
𝑎𝑋 = {𝑎𝑥 : 𝑥 ∈ 𝑋 }, 𝑋 div 𝑎 = {⌊ 𝑥𝑎 ⌋ : 𝑥 ∈ 𝑋 } and 𝑋 mod 𝑎 =

{𝑥 mod 𝑎 : 𝑥 ∈ 𝑋 }. More generally, for a function defined on 𝑋 we

set 𝑓 (𝑋) = {𝑓 (𝑥) : 𝑥 ∈ 𝑋 }.

3 TECHNICAL OVERVIEW
3.1 Previous Techniques
Possibly the earliest work on sparse convolution is a quite com-

plicated 𝑂 (𝑘 log2 𝑛 + polylog(𝑛))-time
5
algorithm due to Cole in

Hariharan [16] for the nonnegative case. Their approach builds on

linear hashing and string algorithms in order to identify supp(𝐴★𝐵),
and involves many ideas such as encoding characters with com-

plex entries before applying convolution. The more recent ap-

proaches [7, 23, 47, 53, 54, 57, 58] (the last two of which can also

solve the general convolution problem) heavily build on hashing

modulo a random prime number. This approach suffers from the

loss of one log factor due to the density of the primes given by

the Prime Number Theorem. Therefore, these approaches seem

hopeless of getting time 𝑂 (𝑘 log𝑘), or even time 𝑜 (𝑘 log2 𝑘).
On the other hand, a quite different 𝑂 (𝑘 log2 (𝑛Δ)) algorithm,

not explicitly written down as far as we know, is attainable us-

ing techniques from the sparse Fourier transform (assuming that

complex exponentials can be evaluated in constant time). It has

been established in the celebrated work of Hassanieh, Indyk, Katabi

and Price [25] that one can recover a 𝑘-sparse vector 𝑥 ∈ C𝑛
in

time 𝑂 (𝑘 log(𝑛Δ)) by only accessing a small subset of its Fourier

transform 𝑥 . This alone might not seem sufficient, but spelling

out the details of [25] reveals that the pattern of accesses to 𝑥 is a

random arithmetic progression of length 𝑂 (𝑘 log(𝑛Δ)). In light of

5
The claimed running time in their paper is𝑂 (𝑘 log

2 𝑛) , however they need to pick a

prime 𝑝 ∈ [𝑛, 2𝑛], which requires time polylog(𝑛) (this additive overhead disappears
if the algorithm is allowed to hardcode 𝑝).

this, one can additionally leverage known techniques from semi-

equispaced Fourier transforms [17], [30, Section 12] to obtain a

𝑂 (𝑘 log2 (𝑛Δ))-time algorithm. The semi-equispaced Fourier trans-

form is a well-studied subfield of computational Fourier transforms,

and results from that area show that 𝑠 equally spaced Fourier coef-

ficients of a length-𝑛 and 𝑠-sparse vector can be computed in time

𝑂 (𝑠 log(𝑛Δ)) [30, Section 12]. Combining this with the algorithm

of [25] yields an 𝑂 (𝑘 log2 (𝑛Δ))-time algorithm for sparse convo-

lution. The inherent reason for this logarithmic blow-up is that

going back and forth in Fourier and time domain is more costly

in the sparse case than in the dense case. Furthermore, the above

algorithm cannot yield a reduction between the sparse and dense

convolution (more generally, the approach of [25] cannot yield such

an equivalence, as their running time is not dominated by calls to

FFT). It is a very interesting open question in that area to show

any equivalence between some variant of sparse and dense Fourier

transform, as well as to achieve 𝑂 (𝑘 log𝑘) running time.

There are other techniques for sparse convolution using poly-

nomial interpolation, see [55], but they do not seem sufficient in

going beyond a 𝑂 (𝑘 polylog𝑛)-time algorithm in any variation of

the problem, owing to the usage of a variety of tools from structured

linear algebra which come with additional polylog factors.

3.2 Our Approach
The goal is to solve the following problem in output-sensitive time:

Problem (SparseConv).

Input: Nonnegative vectors 𝐴, 𝐵 and a parameter 𝛿 > 0.

Task: Compute 𝐴★ 𝐵 with success probability 1 − 𝛿 .

In what follows, we assume that we are given a number 𝑘 such

that ∥𝐴★𝐵∥0 ≤ 𝑘 , and we want to recover𝐴★𝐵 in time𝑂 (𝑘 log𝑘).
This assumption will can removed using standard techniques. For

the sake of simplicity, we will focus on how to obtain a constant-

error randomized algorithm for sparse convolution from a deter-

ministic algorithm for dense convolution.

The Obstructions Created by Known Recovery Techniques. So far,

hashing-based approaches on computing sparse convolutions build

on either of two well-known hash functions mapping [𝑛] → [𝑚]:
• 𝑔(𝑥) = 𝑥 mod 𝑝 , where 𝑝 is a random prime of appropriate

size.

• Linear hashing: ℎ(𝑥) = ((𝜎𝑥 + 𝜏) mod 𝑝) mod𝑚, where 𝑝 is

a sufficiently large fixed prime number and 𝜎, 𝜏 are random.
6

The first hash function satisfies 𝑔(𝑥 +𝑦) = (𝑔(𝑥) +𝑔(𝑦)) mod𝑚, in

particular it is affine, in the sense that 𝑔(𝑥 +𝑦) +𝑔(0) ≡ 𝑔(𝑥) +𝑔(𝑦)
(mod 𝑚). In comparison, the second hash function is only almost-

affine, in the sense that ℎ(𝑥 +𝑦) +ℎ(0) −ℎ(𝑥) −ℎ(𝑦) can only take

a constant number of different values. Although almost-affinity is

an amenable issue in many situations, e.g. [14, 49], in our case it

appears to be a more serious obstruction for reasons outlined later.

In turn, the first hash function is only 𝑂 (log𝑛)-universal. Thus,
if we want to hash a size-𝑘 set 𝑋 using 𝑔, such that a fixed 𝑥 ∈ 𝑋
is isolated from every other 𝑥 ′ ∈ 𝑋 , we must pick 𝑝 = Ω(𝑘 log𝑛).
This results in a multiplicative 𝑂 (log𝑛) overhead on top of the

6
One can also use ℎ (𝑥) = ⌊ ((𝜎𝑥 + 𝜏) mod 𝑝)𝑚/𝑝

⌋
for a sufficiently large prime 𝑝 ,

which enjoys similar properties [38].

1714

Sparse Nonnegative Convolution Is Equivalent to Dense Nonnegative Convolution STOC ’21, June 21–25, 2021, Virtual, Italy

number of buckets. In comparison, linear hashing is𝑂 (1)-universal,
so setting𝑚 = 𝑂 (𝑘) suffices for proper isolation.

Before delving deeper, let us sketch how to design an𝑂 (𝑘 log𝑘)-
time algorithm, assuming that we had an “ideal” hash function

] : [𝑛] → [𝑚] that is 𝑂 (1)-universal and affine, i.e., combines

the best of 𝑔(𝑥) and ℎ(𝑥). Then the hashed convolution could be

easily computed as] (𝐴 ★ 𝐵) =] (𝐴) ★𝑚] (𝐵). The next ingredient
is the derivative operator from [27]. Defining the vector 𝜕𝐴 with

(𝜕𝐴)𝑖 = 𝑖 · 𝐴𝑖 , and similarly 𝜕𝐵 with (𝜕𝐵)𝑖 = 𝑖 · 𝐵𝑖 , we have that
𝜕(𝐴★𝐵) = (𝜕𝐴)★𝐵+𝐴★(𝜕𝐵), which when combined with the ideal

hash function] gives] (𝜕(𝐴★ 𝐵)) =] (𝜕𝐴) ★𝑚] (𝐵) +] (𝐴) ★𝑚] (𝜕𝐵).
The 𝑏-th coordinate of this vector is

] (𝜕(𝐴★ 𝐵))𝑏 =
∑︁

𝑖:] (𝑖)=𝑏
𝑖 · (𝐴★ 𝐵)𝑖 ,

which can be accessed by computing the length-𝑚 convolutions

] (𝜕𝐴) ★𝑚] (𝐵) and] (𝐴) ★𝑚] (𝜕𝐵) and adding them together. By

setting𝑚 = 𝑂 (𝑘), we can now infer a constant fraction of elements

𝑖 ∈ supp(𝐴★ 𝐵) by performing the division

] (𝜕(𝐴★ 𝐵))𝑏
] ((𝐴★ 𝐵))𝑏

=

∑
𝑖:] (𝑖)=𝑏 𝑖 · (𝐴★ 𝐵)𝑖∑
𝑖:] (𝑖)=𝑏 (𝐴★ 𝐵)𝑖

for all 𝑏 ∈ [𝑚]. This yields the locations of all isolated elements in

supp(𝐴★ 𝐵) under]. In particular, we obtain a vector 𝐶 such that

∥𝐴★ 𝐵 −𝐶 ∥0 ≤ 𝑘/2, say.
Now, a classical linear sketching technique [20] kicks in. The

idea is that we can recover the residual vector 𝐴 ★ 𝐵 −𝐶 by iter-

atively hashing to a geometrically decreasing number of buckets

and performing the same recovery step as before. The number of

buckets in the ℓ-th iteration is𝑚ℓ = 𝑂 (𝑘/2ℓ), and the goal is to ob-

tain a sequence of vectors 𝐶ℓ
such that ∥𝐴 ★ 𝐵 − 𝐶ℓ ∥0 ≤ 𝑘/2ℓ .

The crucial observation is that since] is affine, we can cancel

out the contribution of the found elements 𝐶ℓ
by the fact that

] (𝐴 ★ 𝐵) −] (𝐶ℓ) =] (𝐴 ★ 𝐵 − 𝐶ℓ). Thus, after 𝑅 = 𝑂 (log𝑘) iter-
ations [20] we obtain a vector 𝐶𝑅

such that ∥𝐴 ★ 𝐵 − 𝐶𝑅 ∥0 = 0,

recovering 𝐴★ 𝐵. The running time is dominated by the first itera-

tion, where an FFT over vectors of length 𝑂 (𝑘) is performed.

Unfortunately, we do not have access to such an ideal function].

Replacing] by ℎ or 𝑔 runs into issues: If we use ℎ as a substitute, we

cannot cancel out the contribution of the found elements, since ℎ is

only almost affine but not affine. Specifically, the sparsity of ℎ(𝐴★

𝐵)−ℎ(𝐶ℓ) does not necessarily decrease in the next iteration, which
renders the geometric decreasing number of buckets impossible

and thus precludes iterative recovery. If we use 𝑔 as a substitute,

we need to pay additional log factors to ensure isolation of most

coordinates, even in the very first iteration.

Given this discussion, it seems that the known hash functions

reach a barrier on the way to designing𝑂 (𝑘 log𝑘)-time algorithms.

We show how to remedy this state of affairs.

In the following we describe our approach in five steps.

Step 0: Universe Reduction from Large to Small. The first step is

to reduce our problem to a universe of size 𝑈 = poly(𝑘). We will

refer to this regime of𝑈 as a small universe, and say that𝑈 is large

if there is no bound on 𝑈 . Formally, we introduce the following

problem.

Problem (SmallUniv-SparseConv).

Input: Nonnegative vectors 𝐴, 𝐵 of length 𝑈 = poly(𝑘), an integer 𝑘

such that ∥𝐴★ 𝐵∥0 ≤ 𝑘 .

Task: Compute 𝐴★ 𝐵 with success probability 1 − 𝛿 .
We sketch how to reduce the general problem of computing𝐴★𝐵

in a large universe 𝑛 to three instances in a small universe𝑈 . The

main observation is that in this parameter regime the linear hash

function ℎ is perfect with probability 1− 1/poly(𝑘). In combination

with the derivative operator 𝜕, it suffices to compute the three

convolutionsℎ(𝐴)★𝑈 ℎ(𝐵), ℎ(𝜕𝐴)★𝑈 ℎ(𝐵),ℎ(𝐴)★𝑈 ℎ(𝜕𝐵). Note that
the cyclic convolution ★𝑈 can be reduced in the nonnegative case

to the non-cyclic convolution at the cost of doubling the sparsity of

the underlying vector, i.e., ∥ℎ(𝐴) ★ℎ(𝐵)∥0 ≤ 2∥ℎ(𝐴) ★𝑈 ℎ(𝐵)∥0 ≤
2∥𝐴★ 𝐵∥0 ≤ 2𝑘 . This yields the claimed reduction.

This universe reduction ensures that from now on the function

𝑔(𝑥) = 𝑥 mod 𝑝 is 𝑂 (log𝑘)-universal, i.e., we have removed its

undesired dependence on 𝑛, which will be important for the next

step. We stress as a subtle detail that this step crucially relies on the

fact that we are dealing with nonnegative convolution, for more

details see Section 3.3.

Step 1: Error Correction. In the next step, we show that it suffices

to compute the convolution𝐴★𝐵 up to 𝑘/polylog𝑘 errors, since we

can correct these errors by iterative recovery with the affine hash

function 𝑔. More precisely assume that we can somehow recover

a vector 𝐶 such that ∥𝐴 ★ 𝐵 −𝐶 ∥0 ≤ 𝑘/polylog𝑘 . In other words,

suppose that we could efficiently solve the following problem for

an appropriate parameter 𝛾 (think of 𝛾 = 1/log𝑘).
Problem (SmallUniv-Approx-SparseConv).

Input: Nonnegative vectors 𝐴, 𝐵 of length 𝑈 = poly(𝑘), an integer 𝑘

such that ∥𝐴★ 𝐵∥0 ≤ 𝑘 .

Task: Compute𝐶 such that ∥𝐴★𝐵−𝐶 ∥0 ≤ 𝛾𝑘 with success probability

1 − 𝛿 .
If we are able to do so, then the remaining goal is to correct the

error between 𝐴★ 𝐵 and 𝐶 . We can access the residual vector via

𝑔(𝐴) ★𝑚 𝑔(𝐵) − 𝑔(𝐶) = 𝑔(𝐴★ 𝐵 −𝐶), for 𝑔 : [𝑈] → [𝑂 (𝑘)]. Thus,
since the new universe size is a log factor larger than the sparsity of

the residual vector, it is possible to continue in an iterative fashion

using 𝑔 and still be within the 𝑂 (𝑘 log𝑘) time bound. Note that

(i) it is crucial that we have recovered a (1− 1/log𝑘)-fraction of the

coordinates of𝐶 rather than only a constant fraction, and (ii) it can

(and will) be the case that supp(𝐶) \ supp(𝐴★𝐵) ≠ ∅, i.e., there are
spurious elements, but those spurious elements will be removed

upon iterating.

There is one catch: Iterative recovery creates a sequence of suc-

cessive approximations𝐶1,𝐶2, . . . to𝐴★𝐵, and the time to hash each

such vector, i.e., to perform the subtraction 𝑔(𝐴)★𝑚 𝑔(𝐵) −𝑔(𝐶ℓ), is
𝑂 (𝑘). Since there are𝑂 (log𝑘) such subtractions, the total cost spent
on subtractions is 𝑂 (𝑘 log𝑘), which suffices for Theorem 1.1 but

not for Theorem 1.2. The natural solution is to reduce the number

of successive approximations (iterations), which is closely related to

the column sparsity of linear sketches that allow iterative recovery.

More sophisticated iterative loop invariants exist [22, 31, 52], but

these all get Ω(log𝑘) column sparsity. What we observe is that,

surprisingly, a small modification of the iterative loop in [20] fin-

ishes in 𝑂 (log log𝑘) iterations, rather than 𝑂 (log𝑘). In the ℓ-th

1715

STOC ’21, June 21–25, 2021, Virtual, Italy Karl Bringmann, Nick Fischer, and Vasileios Nakos

iteration we hash to 𝑂 (𝑘/ℓ2) buckets, and let 𝑘ℓ = ∥𝐴★ 𝐵 −𝐶ℓ ∥0.
An easy argument yields that with probability 1 − 1/ℓ2 we have
𝑘ℓ+1 ≤ 1/10 · 𝑘2

ℓ
/𝑘 · ℓ4, which yields 𝑘𝐿 < 1 for 𝐿 = 𝑂 (log log𝑘).

This means that the subtraction is performed𝑂 (log log𝑘) times, so

the additive running time overhead is only 𝑂 (𝑘 log log𝑘). A more

involved implementation of this idea (due to the fact that we are

interested in 𝑜 (1) failure probability) appears in the full version of

this paper.

An Attempt using Prony’s Method. So far we have reduced to

small universe and established that we can afford𝑘/polylog𝑘 errors.

In the following we want to recover a (1 − 1/log𝑘)-fraction of the

coordinates “in one shot”. Consider the following line of attack. Fix

a parameter 𝑇 ≪ 𝑘 and a linear hash function ℎ : [𝑈] → [𝑘/𝑇].
We aim to recover, for each bucket 𝑏 ∈ [𝑘/𝑇], all entries of the
convolution 𝐴★ 𝐵 that are hashed to bucket 𝑏.7 This corresponds

to hashing 𝐴 ★ 𝐵 to 𝑘/𝑇 buckets; we expect to have 𝑇 elements

per bucket and thus most buckets contain at most 2𝑇 elements,

say. Note that we no longer expect isolated buckets, so we cannot

use the derivative operator. However, we can instead get access to

the first 4𝑇 Fourier coefficients of each vector (𝐴★ 𝐵)ℎ−1 (𝑏) in the

following way. Let 𝜔 be a 𝑈 -th root of unity. For each 𝑡 ∈ [2𝑇],
set (𝜔𝑡 • 𝐴)𝑖 = 𝜔𝑡𝑖𝐴𝑖 and (𝜔𝑡 • 𝐵)𝑖 = 𝜔𝑡𝑖𝐵𝑖 and perform the

convolution ℎ(𝜔𝑡 •𝐴) ★𝑘/𝑇 ℎ(𝜔𝑡 • 𝐵). This yields

(ℎ(𝜔𝑡 •𝐴) ★𝑘/𝑇 ℎ(𝜔𝑡 • 𝐵))𝑏 =
∑︁

(ℎ (𝑖)+ℎ (𝑗)) mod 𝑘/𝑇=𝑏
𝜔𝑡 (𝑖+𝑗) · 𝐴𝑖𝐵 𝑗 ,

which is essentially the 𝑡-th Fourier coefficient of (𝐴★ 𝐵)ℎ−1 (𝑏) .
The time to perform these 4𝑇 convolutions is𝑂 ((𝑘/𝑇) log(𝑘/𝑇))·

4𝑇 = 𝑂 (𝑘 log𝑘). Now, a classical algorithm due to Gaspard de Prony

in 1796 (rediscovered several times since then, for decoding BCH

codes [59] and in the context of polynomial interpolation [9]) pos-

tulates that any 2𝑇 -sparse vector can be efficiently reconstructed

from its first 4𝑇 Fourier coefficients. However, Prony’s method is

known to be unstable with finite precision arithmetic as it solves a

polynomial equation (even if it was, we do not know how to com-

pute the evaluations ℎ(𝜔𝑡 •𝐴) in the desired time bound when 𝜔

is a root of unity), and alternatives working with finite precision or

over a finite field are not available, to the best of our knowledge.

Nevertheless, there is another serious problem with this ap-

proach. Since we want to recover a (1 − 1/log𝑘)-fraction of el-

ements in 𝐴 ★ 𝐵, for a (1 − 1/log𝑘)-fraction of support elements

𝑖 ∈ supp(𝐴★𝐵) it must be the case that |ℎ−1 (ℎ(𝑖)) | ≤ 2𝑇 . This is a

necessary condition in order to recover (𝐴★ 𝐵)ℎ−1 (ℎ (𝑖)) using 4𝑇
Fourier coefficients. If ℎ was three-wise independent, a standard

argument using Chebyshev’s inequality would show the desired

concentration bound. However, since the linear hash function ℎ

is only pairwise independent, we need to take a closer look at

concentration of linear hashing.

Intermezzo on Linear Hashing. A beautiful paper of Knudsen [38]

shows that the linear hash function ℎ, despite being only pairwise

independent, satisfies refined concentration bounds.

Theorem 3.1 (Informal Version of [38, Theorem 5]). Let 𝑋 ⊆
[𝑈] be a set of 𝑘 keys. Randomly pick a linear hash function ℎ that

7
Here and in the following for ease of exposition we ignore the issue that entries of

𝐴★𝐵 can be split up, due to ℎ being only almost-affine.

hashes to𝑚 buckets, fix a key 𝑥 ∉ 𝑋 and buckets 𝑎, 𝑏 ∈ [𝑚]. Moreover,

let 𝑦, 𝑧 ∈ 𝑋 be chosen independently and uniformly at random. Then:

P(ℎ(𝑦) = ℎ(𝑧) = 𝑏 | ℎ(𝑥) = 𝑎) ≤ 1

𝑚2
+ 2

𝑂 (
√
log𝑘 log log𝑘)

𝑚𝑘
. (1)

Using the above theorem and Chebyshev’s inequality, Knud-

sen arrives at a concentration bound on the number of elements

falling in a fixed bucket, see [38, Theorem 2].
8
Up to the factor

2
𝑂 (
√
log𝑘 log log𝑘) = 𝑘𝑜 (1) , this would indeed be the concentration

bound satisfied by three-wise independent hash functions. However,

this additional 𝑘𝑜 (1) factor is crucial for our application. Moreover,

as we show in the full version, the analysis in [38] is nearly tight.

In particular, we show the existence of a set 𝑋 such that the 𝑘𝑜 (1)

factor is necessary.

Theorem 3.2 ([38, Theorem 5] is Almost Optimal). Let 𝑘 and𝑈

be arbitrary parameters with𝑈 ≥ 𝑘1+𝜖 for some constant 𝜖 > 0, and

let ℎ be a random linear hash function which hashes to𝑚 buckets.

Then there exists a set 𝑋 ⊆ [𝑈] of 𝑘 keys, a fixed key 𝑥 ∉ 𝑋 and

buckets 𝑎, 𝑏 ∈ [𝑚] such that for uniformly random 𝑦, 𝑧 ∈ 𝑋 we have

P(ℎ(𝑦) = ℎ(𝑧) = 𝑏 | ℎ(𝑥) = 𝑎)

≥ 1

𝑚𝑘
exp

(
Ω

(√︂
min

(
log𝑘

log log𝑘
,

log𝑈

log
2
log𝑈

)))
.

This brings us to an unclear situation. The concentration bounds

for linear hashing seem to leave small room for improvement, and

additionally the structured linear algebra machinery of Prony’s

method does not seem be sufficiently strong. However, we show

again how to remedy this state of affairs.

Our first trick (Step 2) is to reduce to a tiny universe of size

𝑘 polylog𝑘 . Note that then Theorem 3.2 is no longer applicable, and

indeed we show improved concentration bounds for linear hashing

as we shall see later. Another technical step is to approximate the

support of 𝐴★ 𝐵 (Step 3), which can be done efficiently when the

universe is tiny. This replaces the computationally expensive part

of Prony’s method. After that, we are ready to make the attempt

work (Step 4). These steps are described in the following.

Step 2: Universe Reduction from Small to Tiny. We further reduce

the universe size to 𝑈 = 𝑘 polylog𝑘 ; let us call this regime of 𝑈

tiny. This is the smallest universe we can hash to while ensuring

that with constant probability a (1 − 1/log𝑘)-fraction of coordi-

nates is isolated under the hashing. Apart from this difference the

reduction is very similar to Step 0. It remains to solve the following

computational problem (again, you may think of 𝛾 = 1/log𝑘).

Problem (TinyUniv-Approx-SparseConv).

Input: Nonnegative vectors 𝐴, 𝐵 of length 𝑈 ≤ 𝑘/𝛾2, an integer 𝑘

such that ∥𝐴★ 𝐵∥0 ≤ 𝑘

Task: Compute𝐶 such that ∥𝐴★𝐵−𝐶 ∥0 ≤ 𝛾𝑘 with success probability

1 − 𝛿 .

8
We are referring to the FOCS proceedings version, which differs in an important way

from the arXiv version.

1716

Sparse Nonnegative Convolution Is Equivalent to Dense Nonnegative Convolution STOC ’21, June 21–25, 2021, Virtual, Italy

Step 3: Approximating the Support. Next we want to approximate

the support supp(𝐴★𝐵). Specifically, we want to recover a set 𝑋 of

size |𝑋 | = 𝑂 (𝑘) such that | supp(𝐴 ★ 𝐵) \ 𝑋 | ≤ 𝑘/polylog𝑘 . Since
supp(𝐴★ 𝐵) = supp(𝐴) + supp(𝐵), for 𝑌 = supp(𝐴), 𝑍 = supp(𝐵)
we formally want to solve the following problem.

Problem (TinyUniv-ApproxSupp).

Input: Sets𝑌, 𝑍 ⊆ [𝑈] and𝑘 ∈ N, such that𝑈 ≤ 𝑘/𝛾 and |𝑌 +𝑍 | ≤ 𝑘 .

Task: Compute a set 𝑋 of size 𝑂 (𝑘) such that | (𝑌 + 𝑍) \ 𝑋 | ≤ 𝛾𝑘 .

To this end, we create a sequence of successive approximations

to 𝑌 + 𝑍 . Consider the sets

𝑌ℓ =

{⌊ 𝑦
2
ℓ

⌋
: 𝑦 ∈ 𝑌

}
, 𝑍ℓ =

{⌊ 𝑧
2
ℓ

⌋
: 𝑧 ∈ 𝑍

}
,

for 0 ≤ ℓ ≤ log(𝑈 /𝑘). For ℓ ≥ log(𝑈 /𝑘), we have 𝑌ℓ , 𝑍ℓ ⊆ [𝑘],
and thus we can compute 𝑋ℓ := 𝑌ℓ + 𝑍ℓ by one Boolean convo-

lution in time 𝑂 (𝑘 log𝑘). Since 𝑈 is tiny, the number of levels

is just log(𝑈 /𝑘) = 𝑂 (log log𝑘). It remains to argue how to go

from level ℓ + 1 to ℓ , to finally approximate 𝑌0 + 𝑍0 = 𝑌 + 𝑍 . We

say that a set 𝑋ℓ closely approximates 𝑌ℓ + 𝑍ℓ if |𝑋ℓ | = 𝑂 (𝑘), and
| (𝑌ℓ + 𝑍ℓ) \ 𝑋ℓ | ≤ 𝑘/polylog𝑘 . Given a set 𝑋ℓ+1 which closely ap-

proximates 𝑌ℓ+1 + 𝑍ℓ+1, we want to find a set 𝑋ℓ which closely

approximates 𝑌ℓ +𝑍ℓ . It is not hard to see that a candidate for 𝑋ℓ is

2𝑋ℓ+1 + {0, 1, 2}. Hence the main problem is keeping the size of 𝑋ℓ

small by filtering out false positives. One way to do so would be to

computeℎ(𝑌ℓ)+ℎ(𝑍ℓ), for a random linear hash functionℎ : [𝑈] →
[𝑂 (𝑘)]. We then throw away all coordinates 𝑖 ∈ 2𝑋ℓ+1 + {0, 1, 2} for
which the bucket ℎ(𝑖) is empty. Naively computing the convolution

would lead to time Ω(𝑘 log𝑘 log log𝑘). To improve this, we apply

an algorithm due to Indyk:

Theorem 3.3 (Randomized Boolean Convolution [28]). There

exists an algorithm which takes as input two sets 𝑌 ′, 𝑍 ′ ⊆ [𝑈], and
in time𝑂 (𝑈) outputs a set O ⊆ 𝑌 ′ +𝑍 ′, such that for all 𝑥 ∈ 𝑌 ′ +𝑍 ′
we have P(𝑥 ∈ O) ≥ 99

100
.

Since Indyk’s algorithm has a small probability of not reporting

an element in the sumset, this leads to losing some of the elements

in supp(𝐴) + supp(𝐵), but we are fine with 𝑘/polylog𝑘 errors. On

the positive side, compared to standard Boolean convolution this

reduces the running time by a factor log𝑘 . Putting everything

together carefully, we show that supp(𝐴★𝐵) can be approximated in

time𝑂 (𝑘 (log log𝑘)2). For the complete proof we refer to Section 6.

Step 4: Approximate Set Query. With all reductions and prepara-

tions discussed so far, it remains to solve the following problem to

finish our algorithm, for details see Section 5.

Problem (TinyUniv-Approx-SetQuery).

Input: Nonnegative vectors 𝐴, 𝐵 of length 𝑈 ≤ 𝑘/𝛾2, an integer 𝑘

such that ∥𝐴★𝐵∥0 ≤ 𝑘 and a set 𝑋 with |𝑋 | = 𝑂 (𝑘) and | supp(𝐴★

𝐵) \ 𝑋 | ≤ 𝑜 (𝛾2𝑘).
Task: Compute𝐶 such that ∥𝐴★𝐵−𝐶 ∥0 ≤ 𝛾𝑘 with success probability

1 − 𝛿 .

This is the last step of the algorithm. As in the approach using

Prony’s method that we discussed above, we pick a parameter 𝑇 ,

hash to 𝑘/𝑇 buckets, and get access to ℎ(𝜔𝑡 • 𝐴) ★𝑘/𝑇 ℎ(𝜔𝑡 • 𝐵).
Here, 𝜔 is an appropriate element in Z×𝑞 for 𝑞 a sufficiently large

prime. The surprising observation is that in a tiny universe𝑈 the

lower bound on the concentration bound of linear hashing does

not apply, and in fact a much stronger concentration bound is

attainable. In particular, we obtain the analogue of (1) where the

term 2
𝑂 (
√
log𝑘 log log𝑘)

is replaced by polylog𝑘 . This can be proved

using the machinery established in [38] as well as some elementary

number theory, and is actually simpler than the complete analysis

of [38].

Furthermore, we can now circumvent the computationally ex-

pensive part of Prony’s method, since we have knowledge of most

of the support supp(𝐴★ 𝐵). It turns out that we only need to solve

𝑂 (𝑘/𝑇) transposed Vandermonde systems of size 𝑂 (𝑇) × 𝑂 (𝑇)
over Z𝑞 . The part of the support we do not know might mess up

some the estimates due to collisions, but it is such a small fraction

that cannot make us misestimate more than a 1/polylog𝑘-fraction
of the coordinates in 𝑋 (and the errors that will be introduced

due to misestimation will be cleaned up by the iterative recovery

loop in Step 2). Using the improved concentration bound for lin-

ear hashing, a fast transposed Vandermonde solver [41], and some

additional tricks to compute all ℎ(𝜔𝑡 •𝐴) simultaneously, we can

pick 𝑇 = polylog𝑘 and arrive at a 𝑂 (𝑘 log𝑘)-time algorithm, that

is also a reduction from sparse to dense convolution.

One last detail is that Vandermonde system solvers compute

multiplicative inverses, which cost time Ω(log𝑞) = Ω(log(𝑛Δ))
each, and thus account for time Ω(𝑘 log(𝑛Δ)) in total. We observe

that, since we are solving several (in particular, 𝑘/𝑇) Vandermonde

systems, we can run all of them in parallel and batch the inversions

across calls. We can then simulate 𝑘/𝑇 inversions using 𝑂 (𝑘/𝑇)
multiplications and just one division, see Lemma 4.4. This yields

𝑂 (𝑘 log𝑘) running time and, as claimed in Theorem 1.2, an additive

polylog(𝑛Δ) term (which is already present, only for choosing the

prime 𝑞).

3.3 What Makes General Convolution Harder?
The reader may ask whether general convolution can be attacked

using our techniques. We want to stress that a linear hash function,

which is one of our building blocks and at the core of almost all the

steps of the algorithm, seems not to be suited for general convolu-

tion, due to the fact that it is almost-affine, but not affine. For an

element 𝑥 ∈ [𝑛] consider the quantities

𝑐1 =
∑︁

𝑦+𝑧=𝑥,
ℎ (𝑦)+ℎ (𝑧)≡ℎ (0)+ℎ (𝑥)

𝐴𝑦𝐵𝑧 ,

𝑐2 =
∑︁

𝑦+𝑧=𝑥,
ℎ (𝑦)+ℎ (𝑧)≡ℎ (0)+ℎ (𝑥)+𝑝

𝐴𝑦𝐵𝑧 ,

𝑐3 =
∑︁

𝑦+𝑧=𝑥,
ℎ (𝑦)+ℎ (𝑧)≡ℎ (0)+ℎ (𝑥)−𝑝

𝐴𝑦𝐵𝑧 ,

where, for convenience we write ≡ for equality modulo𝑚, and 𝑝,𝑚

are parameters of the linear hash function. By the almost-affinity

of linear hashing we have (𝐴★ 𝐵)𝑥 = 𝑐1 + 𝑐2 + 𝑐3 (see Lemma 4.1).

In general, it can happen that (𝐴★ 𝐵)𝑥 = 0, not contributing at all

to the output size, whereas 𝑐1, 𝑐2, 𝑐3 ≠ 0. This means that what is

hashed to𝑚 buckets is a vector with sparsity much larger than 𝑘 .

Handling the presence of cancellations in 𝐴 ★ 𝐵 is a significant

1717

STOC ’21, June 21–25, 2021, Virtual, Italy Karl Bringmann, Nick Fischer, and Vasileios Nakos

obstruction to an 𝑂 (𝑘 log𝑘) general convolution algorithm. Note

that even Step 0 is non-trivial to implement for general convolution.

Unless one can somehow handle this issue, we can only work

with𝑔(𝑥) = 𝑥 mod 𝑝 , which comes with additional log factor losses.

We believe that a very different approach is needed to obtain time

𝑂 (𝑘 log𝑘) in the general case, which is a very interesting open

question.

4 TOOLS
4.1 Linear Hashing
In many of our algorithms, the goal is to reduce the dimension

of some vectors in a convolution-preserving way. To that end, we

often use the classic textbook hash function

ℎ(𝑥) = ((𝜎𝑥 + 𝜏) mod 𝑝) mod𝑚.

In our case 𝑝 is always some (fixed) prime, 𝑚 ≤ 𝑝 is the (fixed)

number of buckets and 𝜎, 𝜏 ∈ [𝑝] are chosen uniformly and inde-

pendently at random. We say that ℎ is a linear hash function with

parameters 𝑝 and𝑚. We start with some well-known fundamental

properties of linear hashing:

Lemma 4.1 (Linear Hashing Basics). Let ℎ be a linear hash

function with parameters 𝑝 and𝑚 drawn uniformly at random. Then

the following properties hold:

• Universality: For distinct keys 𝑥,𝑦 and 𝑎 ∈ [𝑚]:
P(ℎ(𝑥) = ℎ(𝑦) + 𝑎 (mod 𝑚)) ≤ 1

𝑚 +
3

𝑝 ≤
4

𝑚 .

• Pairwise Independence: For distinct keys 𝑥,𝑦 and arbitrary

buckets 𝑎, 𝑏 ∈ [𝑚]:
P(ℎ(𝑥) = 𝑎 ∧ ℎ(𝑦) = 𝑏) ≤ 1

𝑚2
+ 3

𝑚𝑝 ≤
4

𝑚2
.

• Almost-Affinity: For arbitrary keys 𝑥,𝑦 there exists one out

of three possible offsets 𝑜 ∈ {−𝑝, 0, 𝑝} such that ℎ(𝑥) + ℎ(𝑦) =
ℎ(0) + ℎ(𝑥 + 𝑦) + 𝑜 (mod 𝑚).

Proof. Universality follows directly from pairwise indepen-

dence, so we start proving pairwise independence. Let ℎ(𝑥) =

𝜋 (𝑥) mod𝑚, where 𝜋 (𝑥) = (𝜎𝑥 + 𝜏) mod 𝑝 for uniformly random

𝜎, 𝜏 ∈ [𝑝]. The first step is to prove that P(𝜋 (𝑥) = 𝑎′ ∧ 𝜋 (𝑦) =
𝑏 ′) = 1/𝑝2 for distinct keys 𝑥,𝑦 and arbitrary 𝑎′, 𝑏 ′ ∈ [𝑝]. Note
that the event 𝜋 (𝑥) = 𝑎′ and 𝜋 (𝑦) = 𝑏 ′ can be rewritten as

𝜋 (𝑥) = 𝑎′ and 𝜋 (𝑦) − 𝜋 (𝑥) = 𝑏 ′ − 𝑎′ (mod 𝑝) and the claim

follows immediately by observing that the random variables 𝜋 (𝑥)
and 𝜋 (𝑦) − 𝜋 (𝑥) = 𝜎 (𝑦 − 𝑥) (mod 𝑝) are independent.

We get back to ℎ. It clearly holds that P(ℎ(𝑥) = 𝑎 ∧ ℎ(𝑦) =
𝑏) = ∑

𝑎′,𝑏′ P(𝜋 (𝑥) = 𝑎′ ∧ 𝜋 (𝑦) = 𝑏 ′), where the sum is over all

𝑎′, 𝑏 ′ ∈ [𝑝] with 𝑎 = 𝑎′ mod𝑚 and 𝑏 = 𝑏 ′ mod𝑚. As there are at

most 𝑝/𝑚 + 1 such values 𝑎′ and 𝑏 ′, respectively, we conclude that
the desired probability is at most (𝑝/𝑚 + 1)2/𝑝2 ≤ 1

𝑚2
+ 3

𝑚𝑝 .

Finally, we prove that ℎ is almost-affine. It is clear that 𝜋 (𝑥) +
𝜋 (𝑦) = 𝜋 (0) + 𝜋 (𝑥 + 𝑦) (mod 𝑝). As each side of the equation is a

nonnegative integer less than 2𝑝 , it follows that 𝜋 (𝑥)+𝜋 (𝑦) = 𝜋 (0)+
𝜋 (𝑥 + 𝑦) + 𝑜 , where 𝑜 ∈ {−𝑝, 0, 𝑝}. By taking residues modulo𝑚,

the claim follows. □

In our reduction we also crucially rely on the following improved

concentration bound for linear hashing, which we prove in the full

version of the paper.

Theorem 4.2 (Overfull Buckets). Let 𝑋 ⊆ [𝑈] be a set of 𝑘

keys. Randomly pick a linear hash function ℎ with parameters 𝑝 >

4𝑈 2
and𝑚 ≤ 𝑈 , fix a key 𝑥 ∉ 𝑋 and buckets 𝑎, 𝑏 ∈ [𝑚]. Moreover,

let 𝐹 =
∑

𝑦∈𝑋 [ℎ(𝑦) = 𝑏]. Then:

E(𝐹 | ℎ(𝑥) = 𝑎) = E(𝐹) = 𝑘

𝑚
+𝑂 (1),

and, for any _ > 0,

P(|𝐹 − E(𝐹) | ≥ _
√︁
E(𝐹) | ℎ(𝑥) = 𝑎) ≤ 𝑂

(
𝑈 log𝑈

_2𝑘

)
.

4.2 Algebraic Computations
Onmore than one occasion we need to efficiently perform algebraic

computations such as computing powers or inverses. The next two

lemmas describe how to easily obtain improved algorithms for

bulk-evaluation.

Lemma 4.3 (Bulk Exponentiation). Let 𝑅 be a ring. Given an

element 𝑥 ∈ 𝑅, and a set of nonnegative exponents 𝑒1, . . . , 𝑒𝑛 ≤ 𝑒 , we

can compute 𝑥𝑒1 , . . . , 𝑥𝑒𝑛 in time 𝑂 (𝑛 log𝑛 𝑒) using 𝑂 (𝑛 log𝑛 𝑒) ring
operations.

The naive way to implement exponentiations is via repeated

squaring in time 𝑂 (𝑛 log 𝑒). There are methods [50, 60] improving

the dependence on 𝑒 , but for our purposes this simple algorithm

suffices.

Proof. First, compute the base-𝑛 representations of all expo-

nents 𝑒𝑖 =
∑

𝑗 𝑒𝑖, 𝑗𝑛
𝑗
; then 𝑒𝑖, 𝑗 ∈ [𝑛] where 𝑗 = 0, . . . , ⌈log𝑛 𝑒⌉. We

precompute all powers 𝑥𝑖𝑛
𝑗
for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 0, . . . , ⌈log𝑛 𝑒⌉

using the rules 𝑥𝑛
𝑗+1

= (𝑥𝑛 𝑗)𝑛 and 𝑥 (𝑖+1)𝑛
𝑗
= 𝑥𝑖𝑛

𝑗
𝑥𝑛

𝑗
. Finally, ev-

ery output 𝑥𝑒𝑖 can be computed as a product of ⌈log𝑛 𝑒⌉ numbers∏
𝑗 𝑥

𝑒𝑖,𝑗𝑛
𝑗
. The correctness is immediate and it is easy to check that

every step takes time 𝑂 (𝑛 log𝑛 𝑒). □

Lemma 4.4 (Bulk Division). Let 𝐹 be a field. Given 𝑛 field ele-

ments 𝑎1, . . . , 𝑎𝑛 ∈ 𝐹 , we can compute their inverses 𝑎−1
1
, . . . , 𝑎−1𝑛 ∈ 𝐹

in time 𝑂 (𝑛) using 𝑂 (𝑛) multiplications and a single inversion.

Proof. First, we compute the 𝑛 prefix products 𝑏 𝑗 = 𝑎1 · · ·𝑎𝑖 .
It takes a single inversion to compute 𝑏−1𝑛 . Then, for 𝑖 = 𝑛, 𝑛 −
1, . . . , 2, we compute 𝑎−1

𝑖
= 𝑏−1

𝑖
𝑏𝑖−1 and 𝑏−1

𝑖−1 = 𝑏−1
𝑖
𝑎𝑖 . Finally,

𝑎−1
1

= 𝑏−1
1
. As claimed, this algorithm takes time 𝑂 (𝑛) and it uses

𝑂 (𝑛) multiplications and a single inversion. □

Finally, a crucial ingredient to our core algorithm is the following

theorem about solving transposed Vandermonde systems by Li [41].

By carefully inspecting the algorithm one can reduce the number

of necessary divisions to polylog(𝑛); we give more details in the

full version of this paper.

Theorem 4.5 (Transposed Vandermonde Systems [41]). Let 𝐹

be a field. Given𝑎,𝑦 ∈ 𝐹𝑛 with pairwise distinct entries𝑎𝑖 , the solution

𝑥 ∈ 𝐹𝑛 to the system of equations

𝑦 =

1 1 · · · 1

𝑎1 𝑎2 · · · 𝑎𝑛
𝑎2
1

𝑎2
2
· · · 𝑎2𝑛

.

.

.
.
.
.

. . .
.
.
.

𝑎𝑛−1
1

𝑎𝑛−1
2

· · · 𝑎𝑛−1𝑛

𝑥

1718

Sparse Nonnegative Convolution Is Equivalent to Dense Nonnegative Convolution STOC ’21, June 21–25, 2021, Virtual, Italy

can be computed in time 𝑂 (𝑛 log2 𝑛) using at most 𝑂 (𝑛 log2 𝑛) ring
operations (additions, subtractions, multiplications) and using at most

polylog(𝑛) divisions. Furthermore, given 𝑎 and 𝑥 , the matrix-vector

product 𝑦 can be computed in the same running time.

5 SET QUERIES IN A TINY UNIVERSE
As the first step in our chain of reductions, the goal of this section is

to give an efficient algorithm for the TinyUniv-Approx-SetQuery

problem:

Problem (TinyUniv-Approx-SetQuery).

Input: Nonnegative vectors 𝐴, 𝐵 of length 𝑈 ≤ 𝑘/𝛾2, an integer 𝑘

such that ∥𝐴★𝐵∥0 ≤ 𝑘 and a set 𝑋 with |𝑋 | = 𝑂 (𝑘) and | supp(𝐴★

𝐵) \ 𝑋 | ≤ 𝑜 (𝛾2𝑘).
Task: Compute𝐶 such that ∥𝐴★𝐵−𝐶 ∥0 ≤ 𝛾𝑘 with success probability

1 − 𝛿 .

Lemma 5.1. Let log𝑘 ≤ 1/𝛾 ≤ poly(𝑘) and let 1/𝛿 ≤ poly(𝑘).
There is an algorithm for the TinyUniv-Approx-SetQuery problem

running in time

𝑂 (𝐷 (𝑘) + 𝑘 log2 (1/𝛾) + 𝑘 log(1/𝛿) + polylog(𝑘, ∥𝐴∥∞, ∥𝐵∥∞)) .

We proceed in three steps. In Section 5.1 we give two important

preliminary lemmas. In Section 5.2 we present and analyze the

algorithm which proves Lemma 5.1. Finally, in Section 5.3, we will

strengthen Lemma 5.1 and show that we can in fact achieve the

same running time with 𝐷
1/3 (𝑘) in place of 𝐷 (𝑘), i.e., it suffices to

assume that we only have black-box access to an efficient dense

convolution algorithm with constant error probability.

5.1 Folding & Unfolding
For a vector 𝐴 and a scalar 𝜔 , let 𝜔 •𝐴 denote the vector defined

by (𝜔 •𝐴)𝑖 = 𝜔𝑖𝐴𝑖 . A straightforward calculation reveals that the

•-product commutes nicely with taking (non-cyclic) convolutions:

Proposition 5.2. Let 𝐴, 𝐵 be vectors and let 𝜔 be a scalar. Then

(𝜔 •𝐴) ★ (𝜔 • 𝐵) = 𝜔 • (𝐴★ 𝐵).

Proof. For any coordinate 𝑥 :

((𝜔 •𝐴) ★ (𝜔 • 𝐵))𝑥 =
∑︁

𝑦+𝑧=𝑥
(𝜔 •𝐴)𝑦 (𝜔 • 𝐵)𝑧

=
∑︁

𝑦+𝑧=𝑥
𝜔𝑦+𝑧𝐴𝑦𝐵𝑧 = (𝜔 • (𝐴★ 𝐵))𝑥 . □

The goal of this section is to show that the we can efficiently

evaluate, and under certain restrictions also invert, the following

map:

𝐴 −→ (𝜔0 •𝐴) mod𝑚, . . . , (𝜔𝑇−1 •𝐴) mod𝑚.

We will vaguely refer to these two directions as folding and unfold-

ing, respectively. For the remainder of this subsection we assume

as before that 𝐴 is an arbitrary length-𝑈 vector with sparsity 𝑘 . We

further assume that 𝐴 is over some finite field Z𝑞 in order avoid

precision issues in the underlying algebraic machinery. We also

need the technical assumption that 𝜔 ∈ Z×𝑞 has multiplicative order

at least𝑈 .

Lemma 5.3 (Folding). Let𝑚 be a parameter and let 𝑇 = ⌈2𝑘/𝑚⌉.
There is a deterministic algorithm Fold computing (𝜔0 •𝐴) mod𝑚,

. . . , (𝜔𝑇−1•𝐴) mod𝑚 in time𝑂 (𝑘 log2 (𝑘/𝑚)+𝑘 log𝑘 𝑈 +polylog𝑞).

Let us postpone the proof of Lemma 5.3 and instead outline how

to (approximately) invert the folding. A crucial assumption is that

we are given a close approximation 𝑋 of supp(𝐴). The quality of

the recovery is controlled by the following measure: The flatness

of 𝑋 modulo𝑚 is defined as

𝐹𝑚 (𝑋) =
∑︁
𝑥 ∈𝑋

[∑︁
𝑥 ′∈𝑋

[
𝑥 = 𝑥 ′ (mod 𝑚)

]
>

2|𝑋 |
𝑚

]
,

and we say that 𝑋 is 𝛼-flat modulo𝑚 if 𝐹𝑚 (𝑋) ≤ 𝛼 . Some intuition

about this definition: Recall that when hashing a set 𝑋 into 𝑚

buckets, the average bucket receives |𝑋 |/𝑚 elements. Therefore,

the flatness is the number of elements falling into overfull buckets

under the very simple hash function 𝑥 mod𝑚.

Lemma 5.4 (Unfolding). Let 𝑚 be a parameter and let 𝑇 =

⌈2𝑘/𝑚⌉. There is a deterministic algorithm Unfold which, given

(𝜔0 • 𝐴) mod𝑚, . . . , (𝜔𝑇−1 • 𝐴) mod𝑚 and a size-𝑘 set 𝑋 ⊆ [𝑈],
computes a vector 𝐴 such that

∥𝐴 −𝐴∥0 ≤ 𝑇 · | supp(𝐴) \ 𝑋 | + 𝐹𝑚 (𝑋).
The algorithm runs in time 𝑂 (𝑘 log2 (𝑘/𝑚) + 𝑘 log𝑘 𝑈 + polylog𝑞).

We will next prove Lemmas 5.3 and 5.4.

Proof of Lemma 5.3. Given a 𝑘-sparse vector 𝐴 the goal is to

simultaneously compute 𝐴0 = (𝐴 • 𝜔0) mod𝑚, . . . , 𝐴𝑇−1 = (𝐴 •
𝜔𝑇−1) mod𝑚. We first precompute all powers 𝜔𝑥

for 𝑥 ∈ 𝑋 =

supp(𝐴) using the bulk exponentiation algorithm (Lemma 4.3).

Next, we partition 𝑋 into several chunks 𝑋𝑖, 𝑗 . We start with

𝑋𝑖 = {𝑥 ∈ 𝑋 : 𝑥 mod𝑚 = 𝑖} and then greedily subdivide every

part 𝑋𝑖 into chunks 𝑋𝑖,1, 𝑋𝑖,2, . . . such that all chunks have size

|𝑋𝑖, 𝑗 | ≤ 𝑇 . In fact, all chunks except for the last one have size

exactly 𝑇 . We note that in this way we have constructed at most

𝑂 (𝑚) chunks: On the one hand, there can be at most𝑚 chunks of

size exactly 𝑇 since 𝐴 has sparsity 𝑘 = Θ(𝑚𝑇). On the other hand,

there can be at most𝑚 chunks of size less than 𝑇 by the way the

greedy algorithm works.

Now focus on an arbitrary chunk 𝑋𝑖, 𝑗 ; for simplicity assume

that |𝑋𝑖, 𝑗 | = 𝑇 and let 𝑥1, . . . , 𝑥𝑇 denote the elements of 𝑋𝑖, 𝑗 in an

arbitrary order. We set up the following transposed Vandermonde

system with indeterminate 𝑦𝑖, 𝑗 ∈ Z𝑇𝑞 :

𝑦𝑖, 𝑗 =

1 1 · · · 1

𝜔𝑥1 𝜔𝑥2 · · · 𝜔𝑥𝑇

𝜔2𝑥1 𝜔2𝑥2 · · · 𝜔2𝑥𝑇

.

.

.
.
.
.

. . .
.
.
.

𝜔 (𝑇−1)𝑥1 𝜔 (𝑇−1)𝑥2 · · · 𝜔 (𝑇−1)𝑥𝑇

𝐴𝑥1

𝐴𝑥2
.
.
.

𝐴𝑥𝑇

.

Since𝜔 hasmultiplicative order at least𝑈 , the numbers𝜔𝑥1 , . . . , 𝜔𝑥𝑇

are distinct and we can apply Theorem 4.5 to compute 𝑦. It remains

to return the vectors (𝜔𝑡 • 𝐴) mod𝑚 for all 𝑡 ∈ [𝑇], computed

as ((𝜔𝑡 •𝐴) mod𝑚)𝑖 =
∑

𝑗 𝑦
𝑖, 𝑗
𝑡 . It is easy to check that 𝑦

𝑖, 𝑗
𝑡 equals

((𝜔𝑡 •𝐴′) mod𝑚)𝑖 for𝐴′ the vector obtained from𝐴 by restricting

the support to 𝑋𝑖, 𝑗 . The correctness of the whole algorithm follows

immediately.

1719

STOC ’21, June 21–25, 2021, Virtual, Italy Karl Bringmann, Nick Fischer, and Vasileios Nakos

Finally, we analyze the running time. Precomputing the powers

of 𝜔 using Lemma 4.3 accounts for time𝑂 (𝑘 log𝑘 𝑈). The construc-
tion of the chunks takes time 𝑂 (𝑚𝑇) = 𝑂 (𝑘), and also writing

down all vectors (𝜔𝑡 •𝐴) mod𝑚 takes time 𝑂 (𝑘) given the 𝑦𝑖, 𝑗 ’s.

The dominant step is to solve a Vandermonde system for every

chunk. Since there are 𝑂 (𝑚) chunks in total and the running time

for solving a single system is bounded by 𝑂 (𝑇 log
2𝑇) (by Theo-

rem 4.5), the total running time is𝑂 (𝑚𝑇 log
2𝑇) plus𝑂 (𝑚𝑇 log

2𝑇)
ring operations and 𝑂 (𝑚 polylog(𝑇)) divisions in Z𝑞 .

Additions, subtractions and multiplications take constant time

each on a random-access machine and can therefore by counted into

the time bound. However, divisions in a prime field are computation-

ally more expensive. The common way is to implement inversions

by Euclid’s algorithm in time𝑂 (log𝑞) and so the naive time bound

becomes𝑂 (𝑚 polylog(𝑇) · log𝑞). This can be optimized by exploit-

ing Lemma 4.4: Recall that we are executing Theorem 4.5𝑚 times in

parallel, and each call requires up to polylog(𝑇) inversions. There-
fore, we can apply Lemma 4.4 to replace 𝑚 inversions by 𝑂 (𝑚)
multiplications and a single inversion in time 𝑂 (𝑚 + log𝑞). In that

way, it takes time𝑂 (polylog(𝑇) · (𝑚 + log𝑞)) = 𝑂 (𝑚 polylog(𝑇) +
polylog(𝑞)) to deal with all divisions and the total running time is

𝑂 (𝑚𝑇 log
2𝑇 + polylog(𝑞)) = 𝑂 (𝑘 log2 (𝑚/𝑘) + polylog(𝑞)). □

Proof of Lemma 5.4. Given 𝐴0 = (𝐴 • 𝜔0) mod𝑚, . . . , 𝐴𝑇−1 =
(𝐴 • 𝜔𝑇−1) mod𝑚, the goal is to recover a good approximation 𝐴

of 𝐴, provided that an approximation 𝑋 of supp(𝐴) is given. As
before, we partition 𝑋 into buckets 𝑋𝑖 = {𝑥 ∈ 𝑋 : 𝑥 mod𝑚 = 𝑖}.
We say that the bucket 𝑋𝑖 is overfull if |𝑋𝑖 | > 𝑇 . In contrast to Fold,

we can afford to ignore all overfull buckets here, so focus on an

arbitrary bucket 𝑋𝑖 with |𝑋𝑖 | ≤ 𝑇 . Letting 𝑥1, . . . , 𝑥𝑇 denote the

elements in 𝑋𝑖 in an arbitrary order (and assuming for the sake of

simplicity that there are exactly 𝑇 of these), it suffices to solve the

following Vandermonde system with indeterminates 𝐴𝑥1 , . . . , 𝐴𝑥𝑇 :

𝐴0

𝑖
𝐴1

𝑖
𝐴2

𝑖
.
.
.

𝐴𝑇−1
𝑖

=

1 1 · · · 1

𝜔𝑥1 𝜔𝑥2 · · · 𝜔𝑥𝑇

𝜔2𝑥1 𝜔2𝑥2 · · · 𝜔2𝑥𝑇

.

.

.
.
.
.

. . .
.
.
.

𝜔 (𝑇−1)𝑥1 𝜔 (𝑇−1)𝑥2 · · · 𝜔 (𝑇−1)𝑥𝑇

𝐴𝑥1

𝐴𝑥2
.
.
.

𝐴𝑥𝑇

.

The running time can be analyzed in the same way as before, so let

us focus on proving that ∥𝐴 −𝐴∥0 is small. We say that a bucket

𝑋𝑖 is successful if (i) it is not overfull, and if (ii) there exists no

support element 𝑥 ∈ supp(𝐴) \ 𝑋 with 𝑥 mod𝑚 = 𝑖 . The claim is

that whenever 𝑋𝑖 is successful, then 𝐴𝑥 = 𝐴𝑥 for all 𝑥 ∈ 𝑋𝑖 . Indeed,
for any successful bucket one can verify by the definition of the

•-product that the equation system is valid for 𝐴𝑥 in place of 𝐴𝑥 ,

and as the Vandermonde matrix has full rank this is the unique

solution.

Therefore, it suffices to bound the total size of all non-successful

buckets: On the one hand, the number of elements in buckets for

which condition (i) holds but (ii) fails is at most 𝑇 · | supp(𝐴) \ 𝑋 |.
On the other hand, the contribution of elements in buckets for

which condition (i) fails is exactly the flatness of 𝑋 modulo𝑚, by

definition. Together, these yield the claimed bound on ∥𝐴−𝐴∥0. □

Algorithm 1 TinyUniv-Approx-SetQuery(𝐴, 𝐵,𝑈 , 𝑘, 𝑋)

Input: • Nonnegative vectors 𝐴, 𝐵 of length𝑈 ≤ 𝑘/𝛾2
• An integer 𝑘 such that ∥𝐴★ 𝐵∥0 ≤ 𝑘

• A set 𝑋 ⊆ [𝑈] of size𝑂 (𝑘) with | supp(𝐴★𝐵) \𝑋 | ≤ 𝑜 (𝛾2𝑘)
Output: A vector 𝐶 such that ∥𝐴★𝐵 −𝐶 ∥0 ≤ 𝛾𝑘 with probability

1 − 𝛿
(Part 1: Find a suitable linear hash function)

1: Let𝑚 = Θ(𝛾𝑘), let 𝑇 = ⌊2|𝑋 |/𝑚⌋ and let 𝑝 ≥ 4𝑈 2
be a prime

2: repeat
3: Pick 𝜎, 𝜏 ∈ [𝑝] uniformly at random

4: Let 𝜋 (𝑥) = (𝜎𝑥 + 𝜏) mod 𝑝

5: 𝑋 ← 𝜋 (𝑋) + {0, 𝑝}
6: until 𝑋 is 𝛾𝑘/2-flat modulo𝑚

(Part 2: Set up a sufficiently large finite field)

7: Let 𝑞 > 𝑈 3∥𝐴∥∞∥𝐵∥∞ be a prime; the following calculations

are over Z𝑞
8: Pick 𝜔 ∈ Z×𝑞 uniformly at random

(Part 3: Fold – Convolve – Unfold)

9: 𝐴0, . . . , 𝐴𝑇−1 ← Fold(𝜋 (𝐴), 𝜔)
10: 𝐵0, . . . , 𝐵𝑇−1 ← Fold(𝜋 (𝐵), 𝜔)
11: for 𝑡 ← 0, . . . ,𝑇 − 1 do
12: 𝐶𝑡 ← 𝐴𝑡 ★𝑚 𝐵𝑡 (using the dense convolution algorithm)

13: 𝑅 ← Unfold(𝐶0, . . . ,𝐶𝑇−1, 𝜔, 𝑋)
14: 𝐶 ← 𝜋−1 (𝑅)
15: return 𝐶 (cast back to an integer vector)

5.2 The Algorithm
We are ready to prove Lemma 5.1 by analyzing the pseudo-code

given in Algorithm 1. The analysis is split into three parts corre-

sponding to the three parts in Algorithm 1. The first step is to prove

that the loop in Part 1 quickly terminates.

Lemma 5.5 (Analysis of Part 1). With probability 1 − 𝛿/2, the
loop in Lines 2–6 terminates in time 𝑂 (𝑘 log(1/𝛿)).

Proof. We prove that a single iteration of the loop succeeds

with constant probability. Having established that fact, it is clear

that the loop is left after at most𝑂 (log(1/𝛿)) independent iterations
with probability at least 1 − 𝛿/2. Recall that the loop ends if 𝑋 is

𝛾𝑘/2-flat modulo𝑚, that is,

∑︁
𝑥 ∈𝑋

∑︁
𝑥 ′∈𝑋

[
𝑥 = 𝑥 ′ (mod 𝑚)

]
>

2|𝑋 |
𝑚

 ≤
𝛾𝑘

2

. (2)

Since by definition 𝑋 = 𝜋 (𝑋) + {0, 𝑝}, we may fix offsets 𝑜, 𝑜 ′ ∈
{0, 𝑝} and instead bound∑︁
𝑥 ∈𝑋

[∑︁
𝑥 ′∈𝑋

[
ℎ(𝑥) + 𝑜 = ℎ(𝑥 ′) + 𝑜 ′ (mod 𝑚)

]
>

2|𝑋 |
𝑚

]
≤ 𝛾𝑘

4

, (3)

where ℎ(𝑥) = 𝜋 (𝑥) mod𝑚 is a linear hash function with parame-

ters 𝑝 and𝑚. Indeed, if the latter event happens (simultaneously

for all offsets 𝑜, 𝑜 ′), then also the former event happens. Fix 𝑜, 𝑜 ′

1720

Sparse Nonnegative Convolution Is Equivalent to Dense Nonnegative Convolution STOC ’21, June 21–25, 2021, Virtual, Italy

and fix any 𝑥 ∈ 𝑋 . Then:

P

(∑︁
𝑥 ′∈𝑋

[
ℎ(𝑥) + 𝑜 = ℎ(𝑥 ′) + 𝑜 ′ (mod 𝑚)

]
>

2|𝑋 |
𝑚

)
=

∑︁
𝑎∈[𝑚]

P(ℎ(𝑥) = 𝑎)

· P
(∑︁
𝑥 ′∈𝑋

[
ℎ(𝑥 ′) = (𝑎 + 𝑜 − 𝑜 ′) mod𝑚

]
>

2|𝑋 |
𝑚

����� ℎ(𝑥) = 𝑎

)
This is where our concentration bounds come into play: Observe

that the conditional probability can be bounded by Theorem 4.2

with buckets 𝑎 and 𝑏 = (𝑎 +𝑜 −𝑜 ′) mod𝑚. Let 𝐹 =
∑
𝑥 ′∈𝑋 [ℎ(𝑥 ′) =

𝑏], then E(𝐹) = |𝑋 |/𝑚 +𝑂 (1). It follows that:

=
∑︁

𝑎∈[𝑚]
P(ℎ(𝑥) = 𝑎) · P

(
𝐹 >

2|𝑋 |
𝑚

���� ℎ(𝑥) = 𝑎

)
,

=
∑︁

𝑎∈[𝑚]
P(ℎ(𝑥) = 𝑎) · P

(
𝐹 − E(𝐹) > |𝑋 |

𝑚
−𝑂 (1)

���� ℎ(𝑥) = 𝑎

)
,

≤
∑︁

𝑎∈[𝑚]
P(ℎ(𝑥) = 𝑎) ·𝑂

(
𝑚𝑈 log𝑈

|𝑋 |2

)
= 𝑂

(
𝑚𝑈 log𝑈

|𝑋 |2

)
where for the inequality we applied Theorem 4.2 with _ =

√︁
|𝑋 |/𝑚−

𝑂 (1). Choosing𝑚 = Θ(𝛾𝑘) for some small enough constant, this

becomes

≤ 𝛾𝑘𝑈 log𝑈

12𝑘2
≤ 𝛾𝑘 (𝑘/𝛾2) log(𝑘/𝛾2)

12𝑘2
≤ log𝑘

12𝛾
≤ 1

12

.

Here we used the assumption log𝑘 ≤ 1/𝛾 ≤ poly(𝑘). By a union

bound over the three possible values of 𝑜 − 𝑜 ′ and by Markov’s

inequality, we conclude that the event in (3) (and thereby the event

in (2)) happens with probability at least 1/2.
As we just proved, with probability 1−𝛿/2 the loop in Lines 2–6

runs for at most 𝑂 (log(1/𝛿)) iterations. Moreover, each execution

of the loop body takes time 𝑂 (𝑘), and thus the loop terminates in

time 𝑂 (𝑘 log(1/𝛿)). □

Lemma 5.6 (Analysis of Part 2). With probability 1−1/poly(𝑘)
and in polylog(𝑘, ∥𝐴∥∞, ∥𝐵∥∞) time we correctly compute 𝑞 and 𝜔

such that 𝜔 has multiplicative order at least𝑈 in Z×𝑞 .

Proof. Computing 𝑞 takes time polylog(𝑘, ∥𝐴∥∞, ∥𝐵∥∞) and
succeeds with high probability. The interesting part is to show

that 𝜔 is as claimed. It is well-known that Z×𝑞 is isomorphic to the

cyclic group Z𝑞−1 and thus our problem is equivalent to finding an

element in Z𝑞−1 with (additive) order at least𝑈 . In a cyclic group

there can be at most 𝑖 elements with order 𝑖 (the only possible

candidates are multiples of (𝑞 − 1)/𝑖) and thus there are at most∑
𝑖≤𝑈 𝑖 ≤ 𝑈 2

elements with order at most𝑈 . Hence, the probability

of sampling 𝜔 as claimed is at least 1 − 𝑈 2/𝑞 ≥ 1 − 1/𝑈 ≥ 1 −
1/poly(𝑘). □

Lemma 5.7 (Analysis of Part 3). With probability 1−1/poly(𝑘),
Part 3 correctly outputs a vector 𝐶 with ∥𝐴★ 𝐵 −𝐶 ∥0 ≤ 𝛾𝑘 and runs

in time 𝑂 (𝐷 (𝑘) + 𝑘 log2 (1/𝛾) + polylog(𝑘, ∥𝐴∥∞, ∥𝐵∥∞)).

Proof. In the event that the previous parts succeeded the tech-

nical condition of Lemmas 5.3 and 5.4 is satisfied (namely that𝜔 has

large multiplicative order) and we may apply Fold and Unfold. In

Lines 9 and 10 we thus correctly compute𝐴𝑡 = (𝜔𝑡 •𝜋 (𝐴)) mod𝑚,

for all 𝑡 ∈ [𝑇], and similarly for 𝐵. As we are assuming (for now)

that the dense convolution algorithm succeeds with probability 1, in

Line 12 we correctly compute the cyclic convolutions𝐶𝑡 = 𝐴𝑡★𝑚𝐵𝑡 .

The interesting step is to analyze the unfolding in Line 13. By

Proposition 5.2 and some elementary identities about cyclic convo-

lutions we have

𝐶𝑡 = 𝐴𝑡 ★𝑚 𝐵𝑡

= (𝜔𝑡 • 𝜋 (𝐴)) ★𝑚 (𝜔𝑡 • 𝜋 (𝐵))
= ((𝜔𝑡 • 𝜋 (𝐴)) ★ (𝜔𝑡 • 𝜋 (𝐵))) mod𝑚

= (𝜔𝑡 • (𝜋 (𝐴) ★ 𝜋 (𝐵))) mod𝑚,

i.e. it holds that 𝐶𝑡 = (𝜔𝑡 • 𝑅) mod𝑚 for 𝑅 = 𝜋 (𝐴) ★ 𝜋 (𝐵). For
that reason, Lemma 5.4 guarantees that the call to Unfold will

approximately recover 𝑅 and the approximation quality is bounded

by

∥𝑅 − 𝑅∥0 ≤ 𝑇 · | supp(𝑅) \ 𝑋 | + 𝐹𝑚 (𝑋) .

By the loop guard in Line 6 we can assume that 𝐹𝑚 (𝑋) ≤ 𝛾𝑘/2. We

can put the same bound on the term𝑇 · | supp(𝑅) \𝑋 |. Indeed, note
that since supp(𝑅) ⊆ 𝜋 (supp(𝐴 ★ 𝐵)) + {0, 𝑝} and 𝑋 = 𝑋 + {0, 𝑝},
we must have that | supp(𝑅) \ 𝑋 | ≤ 2| supp(𝐴★ 𝐵) \ 𝑋 |. It follows
that

𝑇 · | supp(𝑅) \ 𝑋 | ≤ 2𝑇 · | supp(𝐴★ 𝐵) \ 𝑋 | ≤ 𝑜 (𝛾2𝑘2)
𝑚

,

which becomes 𝛾𝑘/2 for sufficiently large 𝑘 since we picked𝑚 =

Θ(𝛾𝑘). All in all, this shows that ∥𝑅 − 𝑅∥0 ≤ 𝛾𝑘 as claimed.

The remaining steps are easy to analyze: Since 𝑝 is a prime, the

function 𝜋 (𝑥) = (𝜎𝑥 + 𝜏) mod 𝑝 is invertible on [𝑝] (assuming that

𝜎 ≠ 0, which happens with high probability). As 𝜋 (𝐴★ 𝐵) = 𝑅 and

as 𝐴★𝐵 is a vector of length𝑈 < 𝑝 it follows that 𝐴★𝐵 = 𝜋−1 (𝑅).
In the same way, we obtain for𝐶 = 𝜋−1 (𝑅) that ∥𝐴★𝐵 −𝐶 ∥0 ≤ 𝛾𝑘 .
In the final step we use that 𝑞 is large enough (larger than any entry

in the convolution𝐴★𝐵), so we can safely cast𝐶 back to an integer

vector.

Let us finally bound the running time of Part 3. The calls to Fold

and Unfold take time 𝑂 (𝑘 log2 (𝑘/𝑚) + 𝑘 log𝑘 𝑈 + polylog(𝑞)) =
𝑂 (𝑘 log2 (1/𝛾) + polylog(𝑘, ∥𝐴∥∞, ∥𝐵∥∞)). Computing𝑇 = 𝑂 (1/𝛾)
convolutions of vectors of length𝑚 = 𝑂 (𝛾𝑘) takes time at most

𝑂

(
1

𝛾
· 𝐷 (𝛾𝑘)

)
= 𝑂

(
𝛾𝑘

𝛾
· 𝐷 (𝛾𝑘)

𝛾𝑘

)
= 𝑂

(
𝑘 · 𝐷 (𝑘)

𝑘

)
= 𝑂 (𝐷 (𝑘)),

assuming that 𝐷 (𝑛)/𝑛 is nondecreasing. Summing the two contri-

butions yields the claimed running time. □

In combination, Lemmas 5.5, 5.6 and 5.7 show that Algorithm 1

is correct and runs in the correct running time with probability

at least 1 − 𝛿/2 − 1/poly(𝑘) ≥ 1 − 𝛿 . This finishes the proof of

Lemma 5.1.

1721

STOC ’21, June 21–25, 2021, Virtual, Italy Karl Bringmann, Nick Fischer, and Vasileios Nakos

5.3 Corrections for Randomized Dense
Convolution

In the previous subsection, we assumed that we have black-box ac-

cess to a deterministic algorithm computing the dense convolution

of two length-𝑛 vectors in time 𝐷 (𝑛). We will now prove that it

suffices to assume that the black-box algorithm errs with constant

probability, say 1/3.

Lemma 5.8. Let log𝑘 ≤ 1/𝛾 ≤ poly(𝑘) and let 1/𝛿 ≤ poly(𝑘).
There is an algorithm for the TinyUniv-Approx-SetQuery problem

running in time

𝑂 (𝐷
1/3 (𝑘) + 𝑘 log2 (1/𝛾) + 𝑘 log(1/𝛿) + polylog(𝑘, ∥𝐴∥∞, ∥𝐵∥∞)) .

The idea is simple: Every call to the randomized dense convo-

lution algorithm is followed by a call to the verifier presented in

Lemma 5.9. If a faulty output is detected, then we repeat the convo-

lution (with fresh randomness) and test again.

Lemma 5.9 (Dense Verification). Given three vectors 𝐴, 𝐵,𝐶 of

length 𝑈 , there is a randomized algorithm running in time 𝑂 (𝑈 +
polylog(𝑈 , ∥𝐴∥∞, ∥𝐵∥∞)), which checks whether 𝐴 ★ 𝐵 = 𝐶 . The

algorithm fails with probability at most 1/poly(𝑈).

The proof of Lemma 5.9 is by a standard application of the clas-

sical Schwartz-Zippel lemma; in the full version we prove a more

general statement about a sparse verifier. We also need the follow-

ing tail bound on the sum of geometric random variables [33]:

Theorem 5.10 ([33, Theorem 2.1]). Let 𝑋1, . . . , 𝑋𝑛 be indepen-

dent, identically distributed geometric random variables, and let

𝑋 =
∑
𝑖 𝑋𝑖 . Then, for any _ ≥ 1:

P(𝑋 > _ E(𝑋)) ≤ exp(−𝑛(_ − 1 − ln _)) .

Proof of Lemma 5.8. The overall proof follows Lemma 5.1 ex-

actly, we merely substitute the black-box calls to the dense convo-

lution algorithm. The only place where this algorithm is directly

called is in the proof of Lemma 5.7, where we compute 𝑇 = 𝑂 (1/𝛾)
convolutions of length𝑚 = 𝑂 (𝛾𝑘). Each such call is replaced by a

test-and-repeat loop using the verifier in Lemma 5.9. As the failure

probability of the verifier is at most 1/poly(𝑚) = 1/poly(𝑘), we
can afford a union bound and assume that the verifier never fails,

i.e., we uphold the assumption that dense convolution succeeds.

It remains to bound the running time overhead. A single iter-

ation of the test-and-repeat loop takes time 𝑂 (𝐷
1/3 (𝑚) + 𝑚) =

𝑂 (𝐷
1/3 (𝑚)). To bound the number of iterations 𝑋 =

∑
𝑖 𝑋𝑖 , let 𝑋𝑖

model the number of iterations caused by the 𝑖-th dense convolution

call. Observe that 𝑋𝑖 is geometrically distributed with parameter

𝑝 = 2/3 and thus E(𝑋) = 3𝑇 /2. By Theorem 5.10 with, say, _ = 4,

it follows that P(𝑋 > 4E(𝑋)) ≤ exp(−𝑇) ≤ exp(−Ω(1/𝛾)). Us-
ing that log𝑘 ≤ 1/𝛾 , the number of iterations is bounded by 6𝑇

with high probability 1 − 1/poly(𝑘) and therefore the total run-

ning time to answer all dense convolution queries is bounded by

𝑂 (𝑇𝐷
1/3 (𝑚)) = 𝑂 (𝐷

1/3 (𝑘)). □

6 APPROXIMATING THE SUPPORT SET
This section is devoted to finding a set 𝑋 which closely approxi-

mates supp(𝐴★ 𝐵). To that end, our goal is to solve the following

problem, which is later applied with𝑌 = supp(𝐴) and 𝑍 = supp(𝐵).

Algorithm 2 TinyUniv-ApproxSupp(𝑌, 𝑍,𝑈 , 𝑘)
Input: Sets 𝑌, 𝑍 ⊆ [𝑈] over a universe𝑈 ≤ 𝑘/𝛾 with |𝑌 + 𝑍 | ≤ 𝑘

Output: A set 𝑋 ⊆ [𝑈] of size 𝑂 (𝑘) such that | (𝑌 + 𝑍) \ 𝑋 | ≤ 𝛾𝑘
1: Let𝑚 = 40𝑘 and pick a prime 𝑝 ≥ 𝑈

2: Let 𝐿 = ⌈log(1/𝛾)⌉
3: 𝑋𝐿 ← {0, 1, . . . , ⌈𝑈 /2ℓ ⌉}
4: for ℓ ← 𝐿 − 1, . . . , 1, 0 do
5: 𝑌ℓ ← 𝑌 div 2

ℓ

6: 𝑍ℓ ← 𝑍 div 2
ℓ

7: 𝑀 ← 2𝑋ℓ+1 + {0, 1, 2}
8: repeat 𝑅 = Θ(log(1/𝛾) + log(1/𝛿)) times
9: Sample a linear hash function ℎ with param. 𝑝 and𝑚

10: O ← output of Indyk’s algorithm (Theorem 6.2)

with input ℎ(𝑌ℓ), ℎ(𝑍ℓ)
11: for 𝑥 ∈ 𝑀 do
12: if (ℎ(0) + ℎ(𝑥) + 𝑜) mod𝑚 ∈ (O mod𝑚)

for some 𝑜 ∈ {−𝑝, 0, 𝑝} then
13: Give a vote to 𝑥

14: 𝑋ℓ ← all elements in𝑀 with at least 3𝑅/4 votes
15: return 𝑋 = 𝑋0

Problem (TinyUniv-ApproxSupp).

Input: Sets𝑌, 𝑍 ⊆ [𝑈] and𝑘 ∈ N, such that𝑈 ≤ 𝑘/𝛾 and |𝑌 +𝑍 | ≤ 𝑘 .

Task: Compute a set 𝑋 of size 𝑂 (𝑘) such that | (𝑌 + 𝑍) \ 𝑋 | ≤ 𝛾𝑘 .

Lemma 6.1. There is an𝑂 (𝑘 log(1/𝛾) log(1
𝛾𝛿
))-time algorithm for

the TinyUniv-ApproxSupp problem.

A key ingredient to the algorithm is the following routine to

approximately compute sumsets, which we shall refer to as Indyk’s

algorithm.

Theorem 6.2 (Randomized Boolean Convolution [28]). There

exists an algorithm which takes as input two sets 𝑌, 𝑍 ⊆ [𝑈], and in
time 𝑂 (𝑈) outputs a set O ⊆ 𝑌 + 𝑍 , such that for all 𝑥 ∈ 𝑌 + 𝑍 we

have P(𝑥 ∈ O) ≥ 99

100
.

The algorithm claimed in Lemma 6.1 is given in Algorithm 2.

For the remainder of this section, we will analyze this algorithm in

several steps. We shall call the iterations of the outer loop levels and

call an element 𝑥 awitness at level ℓ if 𝑥 ∈ 𝑌ℓ +𝑍ℓ . Otherwise, we say
that 𝑥 is a non-witness. Fix a level ℓ and consider a single iteration of

the inner loop (Lines 8–13). The voting probability of𝑥 at level ℓ is the

probability that 𝑥 is given a vote in Line 13. Recall that in every such

iteration, we pick a random linear hash function ℎ : [𝑈] → [𝑚]
using fresh randomness. The following lemmas prove that witnesses

have large voting probability and non-witnesses have small voting

probability.

Lemma 6.3 (Witnesses have Large Voting Probability). At

any level ℓ , the voting probability of a witness 𝑥 is at least
99

100
.

Proof. Recall that if 𝑥 is a witness at level ℓ , then 𝑥 = 𝑦 + 𝑧 for
some 𝑦 ∈ 𝑌ℓ and 𝑧 ∈ 𝑍ℓ . By the almost-affinity of linear hashing

(Lemma 4.1), it holds that ℎ(𝑦) +ℎ(𝑧) = ℎ(𝑥) +ℎ(0) +𝑜 (mod𝑚) for
some offset 𝑜 ∈ {−𝑝, 0, 𝑝}. It follows that (ℎ(𝑥) +ℎ(0) +𝑜) mod𝑚 is

an element of the sumset (ℎ(𝑌ℓ) +ℎ(𝑍ℓ)) mod𝑚. However, in order

for𝑥 to gain a vote, this conditionmust be true for the setO returned

1722

Sparse Nonnegative Convolution Is Equivalent to Dense Nonnegative Convolution STOC ’21, June 21–25, 2021, Virtual, Italy

by Indyk’s algorithm. By the guarantee of Theorem 6.2, O contains

every element of ℎ(𝑌ℓ) + ℎ(𝑍ℓ) with probability at least
99

100
, which

yields the claim. □

Lemma 6.4 (Non-Witnesses have Small Voting Probability).

At any level ℓ , the voting probability of a non-witness 𝑥 is at most 1/2.

Proof. Given the fact that Indyk’s algorithm never returns a

false positive, it suffices to prove that none of the three values

(ℎ(0) +ℎ(𝑥) +{−𝑝, 0, 𝑝}) mod𝑚 is contained in the sumset (ℎ(𝑌ℓ) +
ℎ(𝑍ℓ)) mod𝑚, with sufficiently large probability. By the almost-

affinity of ℎ, we have

ℎ(𝑌ℓ) + ℎ(𝑍ℓ) mod𝑚 ⊆ (ℎ(0) + ℎ(𝑌ℓ + 𝑍ℓ) + {−𝑝, 0, 𝑝}) mod𝑚.

So fix some offsets 𝑜, 𝑜 ′ ∈ {−𝑝, 0, 𝑝} and some witness 𝑥 ′ ∈ 𝑌ℓ + 𝑍ℓ .
As 𝑥 is not a witness, we must have 𝑥 ≠ 𝑥 ′. It suffices to bound the

following bound the probability:

P(ℎ(0) + ℎ(𝑥) + 𝑜 = ℎ(0) + ℎ(𝑥 ′) + 𝑜 ′ mod𝑚)

= P(ℎ(𝑥) = (ℎ(𝑥 ′) + 𝑜 ′ − 𝑜) mod𝑚) ≤ 4

𝑚
,

where in the last step we applied the universality of ℎ (Lemma 4.1).

By a union bound over the five possible values of 𝑜 ′ − 𝑜 and over

all witnesses 𝑥 ′, we conclude that the voting probability of 𝑥 is at

most 20|𝑌ℓ + 𝑍ℓ |/𝑚 ≤ 20𝑘/𝑚 ≤ 1/2. □

We are now ready to prove Lemma 6.1. We shall do it in two

steps: First we bound the running time and the number of false

positives, i.e. |𝑋 \ (𝑌 +𝑍) |, and second the number of false negatives,

i.e. | (𝑌 + 𝑍) \ 𝑋 |.

Lemma 6.5 (Running Time of Algorithm 2). With probability

1 − 𝛿/2, Algorithm 2 outputs a set 𝑋 of size 𝑂 (𝑘), and its running

time is 𝑂 (𝑘 log(1/𝛾) log(1
𝛾𝛿
)).

Proof. Fix any level ℓ . By Lemma 6.4 we know that the voting

probability of any non-witness 𝑥 is at most 1/2. Thus, by an appli-

cation of Chernoff’s bound, the probability that 𝑥 receives more

than 3𝑅/4 votes over all 𝑅 = Ω(log𝐿 + log(1/𝛿)) rounds is at most

2
−Ω (𝑅) ≤ 𝛿/(12𝐿) by appropriately choosing the constant in the

definition of 𝑅 (in the upcoming Lemma 6.6 we will see why 𝑅 is

even slightly larger). By Markov’s inequality, we obtain that with

probability 1 − 𝛿/(2𝐿) the number of non-witness elements in𝑀

which will be inserted in 𝑋ℓ is at most |𝑀 |/6 ≤ 3|𝑋ℓ+1 |/6. By a

union bound over all levels, with probability 1 − 𝛿/2 we get that

|𝑋ℓ | ≤ 𝑘 + 1

2

|𝑋ℓ+1 |,

for all ℓ ∈ [𝐿]. As initially |𝑋𝐿 | ≤ 𝑘 it follows by induction that

|𝑋ℓ | ≤ (
∑∞
𝑖=0 1/2𝑖)𝑘 = 2𝑘 . In particular we have that |𝑋 | = |𝑋0 | =

𝑂 (𝑘), as claimed.

The total running time of the algorithm can be split into two

parts: (i) the time spent on running Indyk’s algorithm in Line 10,

and (ii) the time needed to iterate over all elements 𝑥 ∈ 𝑀 across

all levels and assign them votes (Line 13). The former is 𝑂 (𝑚𝐿𝑅) =
𝑂 (𝑘𝐿𝑅) (recall that Indyk’s algorithm runs for sets over the uni-

verse [𝑚]) and also the latter is∑︁
ℓ∈[𝐿]

𝑂 (|𝑋ℓ |𝑅) =
∑︁
ℓ∈[𝐿]

𝑂 (𝑘𝑅) = 𝑂 (𝑘𝐿𝑅).

Together, we obtain the desired bound on the running time𝑂 (𝑘𝐿𝑅) =
𝑂 (𝑘 log(1/𝛾) log(1

𝛾𝛿
)). □

Lemma 6.6 (Correctness of Algorithm 2). With probability

1−𝛿/2, Algorithm 2 correctly outputs a set𝑋 with | (𝑌 +𝑍) \𝑋 | ≤ 𝛾𝑘 .

Proof. Fix any𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 and define𝑦ℓ = ⌊ 𝑦
2
ℓ ⌋, 𝑧ℓ = ⌊ 𝑧

2
ℓ ⌋ and

𝑥ℓ = 𝑦ℓ + 𝑧ℓ . The first step is to prove that 𝑥ℓ ∈ 2{𝑥ℓ+1} + {0, 1, 2}.
Indeed, from the basic inequalities 2⌊𝑎⌋ ≤ ⌊2𝑎⌋ ≤ 2⌊𝑎⌋ + 1, for all
rationals 𝑎, it follows directly that

𝑥ℓ − 2𝑥ℓ+1 =
⌊ 𝑦
2
ℓ

⌋
+

⌊ 𝑧
2
ℓ

⌋
− 2

⌊ 𝑦

2
ℓ+1

⌋
− 2

⌊ 𝑧

2
ℓ+1

⌋
≤ 2,

and in the same way 𝑥ℓ − 2𝑥ℓ+1 ≥ 0.

Coming back to the algorithm, we claim that with probability

1−𝛿𝛾/2, 𝑥 = 𝑦 +𝑧 will participate in 𝑋 . It suffices to show that with

the claimed probability, for all levels ℓ the element 𝑥ℓ belongs to 𝑋ℓ .

Note that trivially 𝑥𝐿 ∈ 𝑋𝐿 . Fix a specific level ℓ . Conditioning on

𝑥ℓ+1 ∈ 𝑋ℓ+1, it will be the case that 𝑥ℓ is inserted into 𝑀 = 2𝑋ℓ +
{0, 1, 2} in Line 7, by the fact that 𝑥ℓ ∈ 2{𝑥ℓ+1} + {0, 1, 2}. Moreover,

recall that 𝑥ℓ is a witness at level ℓ and thus, by Lemma 6.3, its voting

probability is at least
99

100
. Therefore it receives more than 3𝑅/4

votes and is inserted into 𝑋ℓ with probability at least 1 − 2−Ω (𝑅) ≥
1 − 𝛿𝛾/(2𝐿). Taking a union bound over all levels we obtain that 𝑥

is contained in 𝑋 with probability 1−𝛿𝛾/2, and hence we can apply

Markov’s inequality to conclude that with probability 1 − 𝛿/2 it is
the case that | (𝑌 + 𝑍) \ 𝑋 | ≤ 𝛾𝑘 . □

This finishes the proof of Lemma 6.1. Putting together the results

from the previous section (Lemma 5.8) and this section (Lemma 6.1

with 𝛾 ′ = 𝑜 (𝛾2)), we have established an efficient algorithm to

approximate convolutions in a tiny universe:

Lemma 6.7. Let log𝑘 ≤ 1/𝛾 ≤ poly(𝑘) and let 1/𝛿 ≤ poly(𝑘).
There is an algorithm for the TinyUniv-Approx-SparseConv problem

running in time

𝑂 (𝐷
1/3 (𝑘) + 𝑘 log(1/𝛾) log(1𝛾𝛿) + polylog(𝑘, ∥𝐴∥∞, ∥𝐵∥∞)).

REFERENCES
[1] Gaussian smoothing. https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm.

[2] Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–

1051, 1987.

[3] Peyman Afshani, Casper B. Freksen, Lior Kamma, and Kasper G. Larsen. Lower

bounds for multiplication via network coding. In Proceedings of the 46th Inter-

national Colloquium Automata, Languages, and Programming, ICALP ’19, pages

10:1–10:12. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2019.

[4] Amihood Amir, Ayelet Butman, and Ely Porat. On the relationship between

histogram indexing and block-mass indexing. Philosophical Transactions of the

Royal Society A: Mathematical, Physical and Engineering Sciences, 372, 2014.

[5] Amihood Amir, Oren Kapah, and Ely Porat. Deterministic length reduction: Fast

convolution in sparse data and applications. In Proceedings of the 18th Symposium

on Combinatorial Pattern Matching, CPM ’07, pages 183–194. Springer, 2007.

[6] Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string

matching with 𝑘 mismatches. J. Algorithms, 50(2):257–275, 2004.

[7] Andrew Arnold and Daniel S. Roche. Output-sensitive algorithms for sumset

and sparse polynomial multiplication. In Proceedings of the 40th International

Symposium on Symbolic and Algebraic Computation, ISSAC ’15, pages 29–36.

ACM, 2015.

[8] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Saeed Seddighin, and

Cliff Stein. Fast algorithms for knapsack via convolution and prediction. In

Proceedings of the 50th ACM Symposium on Theory of Computing, STOC ’18, pages

1269–1282. ACM, 2018.

[9] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multi-

variate polynomial interpolation. In Proceedings of the 20th ACM Symposium on

Theory of Computing, STOC ’88, pages 301–309. ACM, 1988.

1723

https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

STOC ’21, June 21–25, 2021, Virtual, Italy Karl Bringmann, Nick Fischer, and Vasileios Nakos

[10] Leo I. Bluestein. A linear filtering approach to the computation of discrete Fourier

transform. IEEE Transactions on Audio and Electroacoustics, 18(4):451–455, 1970.

[11] Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum.

In Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms, SODA

’17, pages 1073–1084. SIAM, 2017.

[12] Karl Bringmann and Vasileios Nakos. Top-𝑘-convolution and the quest for near-

linear output-sensitive subset sum. In Proceedings of the 52nd ACM Symposium

on Theory of Computing, STOC ’20, pages 982–995. ACM, 2020.

[13] David E. Cardoze and Leonard J. Schulman. Patternmatching for spatial point sets.

In Proceedings of the 39th IEEE Annual Symposium on Foundations of Computer

Science, FOCS ’98, pages 156–165. IEEE Computer Society, 1998.

[14] Timothy M. Chan and Qizheng He. Reducing 3SUM to convolution-3SUM. In

Proceedings of the 3rd Symposium on Simplicity in Algorithms, SOSA ’20, pages

1–7. SIAM, 2020.

[15] Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive

combinatorics. In Proceedings of the 47th ACM Symposium on Theory of Computing,

STOC ’15, pages 31–40. ACM, 2015.

[16] Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse

and wildcard matching. In Proceedings of the 34th ACM Symposium on Theory of

Computing, STOC ’02, pages 592–601. ACM, 2002.

[17] A. Dutt and Vladimir Rokhlin. Fast Fourier transforms for nonequispaced data.

SIAM J. Comput., 14(6):1368–1393, 1993.

[18] Michael J. Fischer and Michael S. Paterson. String matching and other products.

Complexity of Computation, 7:113–125, 1974.

[19] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, S. Muthukrishnan, and Martin J.

Strauss. Near-optimal sparse Fourier representations via sampling. In Proceedings

of the 34th ACM Symposium on Theory of Computing, STOC ’02, pages 152–161.

ACM, 2002.

[20] Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss. Approximate sparse

recovery: Optimizing time and measurements. In Proceedings of the 42nd ACM

Symposium on Theory of Computing, STOC ’10, pages 475–484. ACM, 2010.

[21] Anna C. Gilbert, S. Muthukrishnan, and Martin J. Strauss. Improved time bounds

for near-optimal space Fourier representations. Proceedings of SPIE – The Inter-

national Society for Optical Engineering, 2005.

[22] Anna C. Gilbert, Hung Q. Ngo, Ely Porat, Atri Rudra, andMartin J. Strauss. 𝐿2/𝐿2-
foreach sparse recovery with low risk. In Proceedings of the 40th International

Colloquium Automata, Languages, and Programming, ICALP ’13, pages 461–472.

Springer, 2013.

[23] Pascal Giorgi, Bruno Grenet, and Armelle Perret du Cray. Essentially optimal

sparse polynomial multiplication. In Proceedings of the 45th International Sympo-

sium on Symbolic and Algebraic Computation, ISSAC ’20, pages 202–209. ACM,

2020.

[24] Bernard Gold and Charles M. Rader. Digital processing of signals. Krieger, 1969.

[25] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly optimal

sparse Fourier transform. In Proceedings of the 44th ACM Symposium on Theory

of Computing, STOC ’12, pages 563–578. ACM, 2012.

[26] Ishay Haviv and Oded Regev. The restricted isometry property of subsampled

Fourier matrices. In Geometric aspects of functional analysis, pages 163–179.

Springer, 2017.

[27] Qiao-Long Huang. Sparse polynomial interpolation over fields with large or zero

characteristic. In Proceedings of the 44th International Symposium on Symbolic

and Algebraic Computation, ISSAC ’19, pages 219–226. ACM, 2019.

[28] Piotr Indyk. Faster algorithms for string matching problems: matching the convo-

lution bound. In Proceedings of the 39th IEEE Annual Symposium on Foundations

of Computer Science, FOCS ’98, pages 166–173. IEEE Computer Society, 1998.

[29] Piotr Indyk and Michael Kapralov. Sample-optimal Fourier sampling in any

constant dimension. In Proceedings of the 55th IEEE Annual Symposium on Foun-

dations of Computer Science, FOCS ’14, pages 514–523. IEEE Computer Society,

2014.

[30] Piotr Indyk, Michael Kapralov, and Eric Price. (Nearly) sample-optimal sparse

Fourier transform. In Proceedings of the 25th ACM-SIAM Symposium on Discrete

Algorithms, SODA ’14, pages 480–499. SIAM, 2014.

[31] Piotr Indyk, Eric Price, and David P. Woodruff. On the power of adaptivity in

sparse recovery. In Proceedings of the 52nd IEEE Annual Symposium on Foundations

of Computer Science, FOCS ’11, pages 285–294. IEEE Computer Society, 2011.

[32] Klaus Jansen and Lars Rohwedder. On integer programming and convolution. In

Proceedings of the 10th Innovations in Theoretical Computer Science Conference,

ITCS ’19, pages 43:1–43:17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

2019.

[33] Svante Janson. Tail bounds for sums of geometric and exponential variables.

Statistics & Probability Letters, 135:1–6, 2018.

[34] Michael Kapralov. Sparse Fourier transform in any constant dimension with

nearly-optimal sample complexity in sublinear time. In Proceedings of the 48th

ACM Symposium on Theory of Computing, STOC ’16, pages 264–277. ACM, 2016.

[35] Michael Kapralov. Sample efficient estimation and recovery in sparse FFT via

isolation on average. In Proceedings of the 58th IEEE Annual Symposium on Foun-

dations of Computer Science, FOCS ’17, pages 651–662. IEEE Computer Society,

2017.

[36] Michael Kapralov, Ameya Velingker, and Amir Zandieh. Dimension-independent

sparse Fourier transform. In Proceedings of the 30th ACM-SIAM Symposium on

Discrete Algorithms, SODA ’19, pages 2709–2728. SIAM, 2019.

[37] Howard J. Karloff. Fast algorithms for approximately counting mismatches. Inf.

Process. Lett., 48(2):53–60, 1993.

[38] Mathias B. T. Knudsen. Linear hashing is awesome. In Proceedings of the 57th

IEEE Annual Symposium on Foundations of Computer Science, FOCS ’16, pages

345–352. IEEE Computer Society, 2016.

[39] Konstantinos Koiliaris and Chao Xu. Faster pseudopolynomial time algorithms

for subset sum. ACM Trans. Algorithms, 15(3):40:1–40:20, 2019.

[40] Tsvi Kopelowitz and Ely Porat. A simple algorithm for approximating the text-

to-pattern hamming distance. In Proceedings of the 1st Symposium on Simplicity

in Algorithms, SOSA ’18, pages 10:1–10:5. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik, 2018.

[41] Lei Li. On the arithmetic operational complexity for solving Vandermonde linear

equations. Japan Journal of Industrial and Applied Mathematics, 17, 2000.

[42] Michael Monagan and Roman Pearce. Parallel sparse polynomial multiplication

using heaps. In Proceedings of the 34th International Symposium on Symbolic and

Algebraic Computation, ISSAC ’09, pages 263–270. ACM, 2009.

[43] Michael Monagan and Roman Pearce. POLY: A new polynomial data structure

for Maple 17. In Computer Mathematics, pages 325–348. Springer, 2014.

[44] Michael Monagan and Roman Pearce. The design of Maple’s sum-of-products

and POLY data structures for representing mathematical objects. ACM Commu-

nications in Computer Algebra, 48(3/4):166–186, 2015.

[45] MarcinMucha, KarolWegrzycki, andMichalWlodarczyk. A subquadratic approx-

imation scheme for partition. In Proceedings of the 30th ACM-SIAM Symposium

on Discrete Algorithms, SODA ’19, pages 70–88. SIAM, 2019.

[46] ShanmugavelayuthamMuthukrishnan. New results and open problems related to

non-standard stringology. In Proceedings of the 6th Symposium on Combinatorial

Pattern Matching, CPM ’95, pages 298–317. Springer, 1995.

[47] Vasileios Nakos. Nearly optimal sparse polynomial multiplication. IEEE Trans.

Inf. Theory, 66(11):7231–7236, 2020.

[48] Vasileios Nakos, Zhao Song, and Zhengyu Wang. (Nearly) sample-optimal sparse

Fourier transform in any dimension; RIPless and filterless. In Proceedings of

the 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS ’19,

pages 1568–1577. IEEE Computer Society, 2019.

[49] Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In

Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC ’10,

pages 603–610. ACM, 2010.

[50] Nicholas Pippenger. On the evaluation of powers and monomials. SIAM J.

Comput., 9(2):230–250, 1980.

[51] Eric Price and Zhao Song. A robust sparse Fourier transform in the continuous

setting. In Proceedings of the 56th IEEE Annual Symposium on Foundations of

Computer Science, FOCS ’15, pages 583–600. IEEE Computer Society, 2015.

[52] Eric Price and David P. Woodruff. Applications of the Shannon-Hartley theorem

to data streams and recovery. In Proceedings of the 45th IEEE International

Symposium on Information Theory, ISIT ’12, pages 2446–2450. IEEE, 2012.

[53] Daniel S. Roche. Adaptive polynomial multiplication. Proceedings of Milestones

in Computer Algebra, pages 65–72, 2008.

[54] Daniel S. Roche. Chunky and equal-spaced polynomial multiplication. Journal

of Symbolic Computation, 46(7):791–806, 2011.

[55] Daniel S. Roche. What can (and can’t) we do with sparse polynomials? In Proceed-

ings of the 43rd International Symposium on Symbolic and Algebraic Computation,

ISSAC ’18, pages 25–30. ACM, 2018.

[56] Allan Steel. Multivariate polynomial rings. http://magma.maths.usyd.edu.au/

magma/handbook/text/223#1924, 2018.

[57] Joris Van Der Hoeven and Grégoire Lecerf. On the complexity of multivariate

blockwise polynomial multiplication. In Proceedings of the 37th International

Symposium on Symbolic and Algebraic Computation, ISSAC ’12, pages 211–218.

ACM, 2012.

[58] Joris Van Der Hoeven and Grégoire Lecerf. On the bit-complexity of sparse

polynomial and series multiplication. Journal of Symbolic Computation, 50:227–

254, 2013.

[59] Jack K. Wolf. Decoding of Bose-Chaudhuri-Hocquenghem codes and Prony’s

method for curve fitting. IEEE Transactions on Information Theory, 13(4):608–608,

1967.

[60] Andrew Chi-Chih Yao. On the evaluation of powers. SIAM J. Comput., 5(1):100–

103, 1976.

1724

http://magma.maths.usyd.edu.au/magma/handbook/text/223#1924
http://magma.maths.usyd.edu.au/magma/handbook/text/223#1924

	Abstract
	1 Introduction
	1.1 Results
	1.2 Discussion and Open Problems
	1.3 Organization

	2 Preliminaries
	3 Technical Overview
	3.1 Previous Techniques
	3.2 Our Approach
	3.3 What Makes General Convolution Harder?

	4 Tools
	4.1 Linear Hashing
	4.2 Algebraic Computations

	5 Set Queries in a Tiny Universe
	5.1 Folding & Unfolding
	5.2 The Algorithm
	5.3 Corrections for Randomized Dense Convolution

	6 Approximating the Support Set
	References

