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We introduce two kinds of quantum algorithm to explore microcanonical and canonical properties of
many-body systems. The first is a hybrid quantum algorithm that, given an efficiently preparable state,
computes expectation values in a finite energy interval around its mean energy. This algorithm is based
on a filtering operator, similar to quantum phase estimation, which filters out energies outside the desired
energy interval. However, instead of performing this operation on a physical state, it recovers the physical
values by performing interferometric measurements without the need to prepare the filtered state. We show
that the computational time scales polynomially with the number of qubits, the inverse of the prescribed
variance, and the inverse error. In practice, the algorithm does not require the evolution for long times, but
instead a significant number of measurements in order to obtain sensible results. Our second algorithm is a
quantum assisted Monte Carlo sampling method to compute other quantities that approach the expectation
values for the microcanonical and canonical ensembles. Using classical Monte Carlo techniques and the
quantum computer as a resource, this method circumvents the sign problem that plagues classical quantum
Monte Carlo simulations, as long as one can prepare states with suitable energies. All algorithms can be
used with small quantum computers and analog quantum simulators, as long as they can perform the
interferometric measurements. We also show that this last task can be greatly simplified at the expense of

performing more measurements.
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I. INTRODUCTION

The advent of quantum simulators [1,2] opens many
exciting opportunities to probe and understand fundamen-
tal problems in physics, ranging from condensed mat-
ter to high-energy physics and quantum chemistry [3-5].
Feynman’s original proposal in 1982 was to build a univer-
sal digital quantum computer that can imitate any physical
system. Although tremendous progress has been made,
building a universal quantum computer that will fulfill
Feynman’s vision is still a long-term task. However, both
near-term (noisy) quantum computers and analog quan-
tum simulators can already help us to address some of
those problems. The latter, where the interaction is engi-
neered directly according to the physical Hamiltonian
under investigation, are particularly advanced in differ-
ent platforms, like cold atoms in optical lattices [6,7],
trapped ions [8], Rydberg atoms [9], quantum dots [10],
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superconductors [11], photons [12], etc. In particular, very
controlled experiments can be carried out with around
50 qubits [13-26] and it is expected that this number will
be significantly increased in the coming years.

There are many questions that seek answers from quan-
tum simulators, especially physical properties of ground,
nonequilibrium, and finite temperature states. Most of the
theoretical work on quantum simulations has focused on
the dynamics of many-body quantum systems, as well
as on their properties at zero temperature. Since the first
algorithm [2] that showed how the dynamics could be effi-
ciently simulated, large improvements have been achieved,
leading to a very economic algorithm [27]. In practice,
in analog quantum simulators the dynamics are naturally
implemented by letting the system evolve according to
the engineered Hamiltonian [3]. For ground state prob-
lems, the situation is quite different since determining its
properties is very demanding and, in general, it requires
exponential time in N, the number of qubits to be simu-
lated [28]. A quantum simulator can still be of significant
help since the corresponding classical simulator requires
exponential resources both in time and memory, whereas
the quantum one achieves a moderate speed-up albeit with
polynomial memory. The first algorithms [29-31] used
quantum phase estimation to project onto an eigenstate
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of the Hamiltonian, and have been successively improved
[32-35]. In particular, in Ref. [34] a cosine-filtering oper-
ator is used to prepare a state close to the ground state
with a very small variance. It is similar in its conception
to quantum phase estimation, but has a better scaling for
that purpose. This idea has also been used in the context
of tensor networks [36] to estimate the amount of entan-
glement required to achieve small energy variances along
the whole spectrum of a Hamiltonian. Although all these
quantum algorithms were originally designed for scalable
quantum computers, proposals to use them with analog
quantum simulators have recently been put forward [37].
This can be very convenient for small simulators, as the
exponential scaling of the resources still limits their appli-
cability to large systems. Other heuristic algorithms, like
adiabatic [38—40] and variational [41,42] strategies, can be
very useful and overcome the exponential scaling in certain
cases [4].

Quantum algorithms for excited states or finite tem-
perature are more scarce. Chowdhury and Somma [43]
showed how to realize the imaginary time evolution oper-
ator to produce a Gibbs state, whereas other algorithms

Filtering |y) at finite energy density e

propose sampling techniques [44—46]. Phase estimation
can also be directly used to prepare states at different
energies, and thus address quantum statistical questions
in the microcanonical ensemble. All those algorithms may
work well in practice. However, as for classical ones, they
require an exponential time in N, although only polyno-
mial memory resources. Additionally, it remains challeng-
ing to implement most of them with the existing small
quantum computers or analog quantum simulators.

In this paper we introduce and test two different types
of quantum algorithm to determine physical properties in
an energy interval or at finite temperature (see Fig. 1 for
a graphical summary). The idea underlying our proposal
relies on the cosine filter of Refs. [34,36] to target states
with small energy variance at selected energies, in which
the observables could be measured. Preparing those states
may nevertheless be challenging in practice. We overcome
this obstacle by showing that observations obtained after
running quantum simulators for different stroboscopic evo-
lution times are sufficient to determine the values of inter-
esting quantities, without the need to prepare the filtered
state at all. This is in the spirit of the time series approach
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FIG. 1.

Graphical summary of the concept and main results of the paper. Left: our algorithms compute properties of a state with

narrow energy variance (a schematic spectral distribution is shown in orange), which would result from applying a filter onto an easy
to prepare state, e.g., a product state (green curve). For local Hamiltonians, for which the density of states in the thermodynamic limit
approaches a Gaussian distribution of width proportional to +/N (blue curve), the accessible energy densities can lie on the tails of the
spectrum. The box under the graph shows the actual energy spectrum for a N = 10 Ising chain. Right: the main contribution of our
paper is the proposal of two sets of algorithms, schematically summarized in this figure. The first (top) is a provably efficient hybrid
quantum-classical algorithm for computing expectation values of observables in filtered states, as illustrated on the left. It is based
on repeated preparation, evolution, and measurements on an easy-to-prepare state, run by a quantum device, and postprocessing by
classical computation. The second algorithm is a quantum assisted sampling algorithm that can be used to compute microcanonical
and canonical properties (summarized at the bottom for the canonical case). This algorithm performs classical Monte Carlo importance
sampling where the quantum device is used to determine the sampling probabilities efficiently. It requires shorter coherence time than
the first algorithm, at the expense of more measurements.
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introduced in Ref. [47] and later used for the related
question of estimating the (binned averages of) Hamil-
tonian eigenvalues [48] (see also extensions based on
Hamiltonian querying and Chebyshev expansions [49,50]).
Our algorithms explicitly target finite energy properties,
such as microcanonical expectation values, for which we
can demonstrate efficiency. The quantities required in our
method can be obtained with interferometric measure-
ments, which involve the conditional evolution depending
on the state of a single qubit, and are especially suited
for quantum simulators. More concretely, we consider the
following algorithms.

1. Our first algorithm is an efficient hybrid quantum-
classical algorithm that targets the physical proper-
ties of states in an energy interval around that of
any state that can be efficiently prepared (see Fig. 1
for an illustration). We prove that this algorithm can
be carried out in time that is polynomial in N, the
inverse error, and the inverse width of the filter-
ing operations. The later is related to the energy
variance of the targeted state. To our knowledge,
no classical algorithm achieves this polynomial
scaling.

2. Our second algorithm combines the quantum
simulation with classical Monte Carlo methods,
and provides practical methods to obtain both
microcanonical and canonical expectation values
of observables (see Fig. 1 for an illustration).
These quantum assisted Monte Carlo methods use
quantum simulators to compute the sampling prob-
abilities that are required in quantum Monte Carlo
methods. Remarkably, they circumvent the sign
problem [51], the main obstacle of applying such
methods to many physics problems, so long as one
can prepare (a product or other kind of) states of
suitable energies.

Let us briefly mention that our proposal is different from
other emerging families of quantum methods that make
use of hybrid schemes, such as variational quantum eigen-
solvers [41,42] and, in particular, hybrid ansatzes [52]
or quantum subspace diagonalization [53] (see also Refs.
[54-57]). Different to our algorithms, such methods typi-
cally target ground state problems and, while some of them
[53] also use a superposition of a state evolved to different
times, the coefficients of the superposition are variational
parameters that need to be optimized, unlike in our pro-
posal, where the coefficients are fixed by the filter. An even
more significant difference is that these methods are not
proven to be efficient.

Finally, the interferometric methods required for the
algorithms presented here have been used in the con-
text of the Loschmidt echo [58] in NMR [59]. They
have also been proposed for ions [60], atoms [61], and,

more recently, to perform phase estimation with such
systems [37]. We give several alternative procedures to
simplify that task that can be applied in different situations.
First, we show that one can replace phase estimation by
the ability of both preparing catlike states [62] and hav-
ing access to two additional internal states. This capability
already exists in different platforms [26,63—71]. We then
show that one can perform a similar procedure but with-
out the requirement of the two additional states. Then,
we give a procedure that does not require the preparation
of catlike states, but proceeds with a sequence of mea-
surements. Finally, we give an even simpler method that
works for Hamiltonians possessing certain symmetries,
like XY or Hubbard models. The last two methods have
an advantage with respect to the previous methods since
no catlike state needs to be evolved, and thus the method is
more resilient against decoherence. However, they require
a larger number of measurements.

The structure of this paper is as follows. In Sec. II we
introduce the models and the basic idea of the cosine fil-
ter. In Sec. III, we present the first algorithm and show
how one can use a quantum simulator to efficiently com-
pute certain expectation values around fixed energies. In
Sec. IV we give more practical methods for the same
purpose and we test them numerically. In Sec. V, we
present a family of quantum assisted Monte Carlo algo-
rithms for microcanonical and canonical observables that
combine classical Monte Carlo and quantum simulators.
We numerically explore their performance and demon-
strate that they are robust against certain noises. In the
appendices we present the methods to replace interfero-
metric measurements, describe the specific model we used
in our numerical study, give details of the proof regarding
the polynomial scaling of our algorithm, and investigate
how much one has to decrease the variance in order to
converge to the microcanonical and canonical results for
a nonexactly solvable model.

I1. SETUP AND COSINE FILTERING
A. Setup

We consider N spins on a lattice and a Hamiltonian

H=> hy, (1)

and denote by Ey, and Ep.c the minimum and maxi-
mum eigenvalues of H. We assume that |Ewyinl, |Emax| <
N /2, so that the spectrum of H lies within the interval
[-N/2,N/2]. The Hamiltonian H could be local in any
spatial dimension, i.e., the term /4, acts only on the nth lat-
tice site and its neighbors. However, we emphasize that the
algorithms proposed here can also be applied to more gen-
eral setups, where 4, has long-range interactions or even
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with more complicated Hamiltonians, although some of
our estimations will rely on the original form (1) or in its
locality. The main requirement is that the evolution gener-
ated by H can be efficiently implemented with the quantum
simulator. More specifically, given an initial state, v, and
an observable 4, one can efficiently determine

aqy (1) = (Ylde ™M y), (2a)
ay () = (Yle” ™ [y), (2b)

with a sufficiently small error. Furthermore, if one can
measure those quantities, one also has access to

aqy (t,0) = (Yle™Mde 2 |y), 3)

since ayy (t1,1) = a4y (t2 — t1). The value of Eq. (3)
can be readily measured using a quantum computer (see,
e.g., Ref. [72]). For analog quantum simulators, this may
not be possible. In Appendix A we give a series of alterna-
tives to obtain such quantities. In general, by repeating the

experiment L times, the error will be additive and scale as
L2,

B. Initial states
In order for the simulation algorithm to be efficient, we
choose as 1 a state that can be prepared by the simulator.
The simplest is a product state

lp) = |p1,p2, -, DN)s “4)

where the p, are normalized states, e.g., for qubits,
) = c0s(6,)10) + € sin(6,)|1). (5)

In general, we denote the mean energy and variance of H
in the state i by

Ey = (Y|H|Y), (62)
o) = (YI(H — Ey)’|¥). (6b)

In case H is local and the state i has finite correlation
length, both Ey, and o will scale as N.

The energies of states that can be efficiently prepared
will determine the range of energies that our algorithm
can efficiently explore. If we restrict ourselves to prod-
uct states, the mean energy £, does not cover the whole
spectrum of H; there are energies E, nin and E, nax such
that we can always choose a state p with E, in the interval
[£) min> £p max] but never outside (see Fig. 1 for an illustra-
tion). It has been shown that the range of the interval can be
extensive in NV for a local Hamiltonian (see Appendix C for
more details). Finding product states within this interval
amounts to solving a mean-field problem, and thus can be
done efficiently on classical computers. In order to access

energies outside this interval, one can consider other states,
Y, that are still easy to prepare but can cover a wider
range of energies. In particular, we could consider prod-
ucts of spin blocks, matrix product states [73—75], or states
obtained through adiabatic evolution or variational meth-
ods. Alternatively, the state ¥ could be prepared by starting
from a product state and running the quantum simulator
with a different Hamiltonian for some time.

C. Cosine filter
Following Ref. [34], we define the cosine-filtering oper-

ator
H — E\W /5
Ps(E) = [cos( I >:| , (7

where we use | -], to indicate the nearest even integer. Here
8 can take arbitrary values, including decreasing (e.g., § ~
1/N) or constant (§ ~ 1) with N, which will be considered
in the following sections. In order to interpret the action of
this operator, it is useful to approximate [34]

_ _ 2 2
P5(E) =~ e~ (H—E)"/257 (®)

as long as the spectrum of the operator that appears in the
argument of the cosine lies in the interval [—x /2, 7/2] (in
fact, this is also true in a larger interval; see Appendix E).
Thus, it basically projects out the eigenstates of H that
have an energy £’ with |E’ — E| > §, and thus acts as a
filter around E [76]. By definition, 0 < Ps(E) < 1.

As in Ref. [34], we approximate

lxv/M] _
cos” (X) ~ Z e 2mX 9)
m=—x+/M]

up to an error (in the operator norm) bounded by 2e~/2
for || X |loc < 1, and where

1 M
on =1 (s /s m): (10)

We can use this expansion to express cosine filter (7) in
terms of the evolution operator e~ for certain times 7.
For |[E| < N/2,wetake X = (H — E)/N, so that

R
Py(E) = Y cpe M, (11)
m=—R
where
R =xN/8, ty =2m/N. (12)

The idea will be, as in Ref. [36], to apply Eq. (9) to certain
states in order to filter them around some energy E, and
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then to obtain expectation values of observables with the
resulting states. However, instead of preparing the state,
we first express the desired values in terms of Egs. (2), and
then use the quantum simulator to measure those values
separately. The number of measurements will be 2R times
the number of repetitions required to obtain a prescribed
accuracy. Each of the runs of the simulator will be for a
time ¢ < 2x/6. In the end, we perform the multiplications
and sum classically.

D. Ising model

In order to benchmark our algorithms, we use a rather
trivial model for which we can obtain numerical results
for values of N ~ 100 qubits, which should be attainable
in present or planned quantum simulators. Let us take an
even number N of fermionic modes and a Hamiltonian

N
H= % Z;(an +al)(an —al,) +h Xn}aian —1/2),

(13)

where the @, are annihilation operators of the vacuum
|[vac) and we have chosen periodic boundary conditions
for the fermions: ay,; = a;. Through the Jordan-Wigner
transformation, this corresponds to the Ising Hamiltonian

g N h N
H = 5 ;Gn,x0n+l,x + E ;O—n,m (14)

where the o, are Pauli operators, with appropriate bound-
ary conditions.
Defining the operators in the momentum representation

N
1 .
bk - § elZﬂkn/Nan’ (15)
VN =

where k = —N/2 +1,...,N /2, we perform some compu-
tations with (Fock) states of the form

k) = bj -+ b} Ivac), (16)

where k; <k, < --- <ky. They form an orthonormal
basis and, even though they are not eigenstates of H, they
are easy to deal with for large values of N. In Appendix B
we provide the analytical formulas that allow us to obtain
exact numerical results for this model. The minimal eigen-
value of H, Epnin, and the minimal energy attained by a state
of form (16), E, min, can be easily computed with those
formulas.

Even though we are interested in energies above Epiy
and finite temperatures, we note that at zero temperature
Hamiltonian (13) features a phase transition at g = . For
h > g, the ground state is the vacuum, whereas for 4 <
g, it is a superposition of the vacuum with states where
excitations occur in pairs of momenta k.

III. EFFICIENT QUANTUM ALGORITHM FOR
OBSERVABLES AT FINITE ENERGY

Given a state ¢y and an observable 4, we define

(W|[4Ps(E) + Ps(E)A]|Y)
2(Y|Ps(E)|Yr) ’
(W |Ps(E)APs(E) )
(WIPs(E)?]Y)

Both quantities are related to the microcanonical expecta-
tion value of A. In particular, if (E]y) # 0, where |E) is the
eigenstate of H corresponding to the energy £, Eq. (17b)
converges to that value in the limit § — 0.

The numerators and denominators of Egs. (17) can
be expressed in terms of ay .y (%, #,). Thus, the quantum
algorithm uses the quantum simulator to determine those
quantities up to the required precision, classically com-
putes ¢, and exp(iEt,,), and then (classically) performs the
required sums and multiplications. We will show that both
Egs. (17a) and (17b) can be efficiently computed using a
quantum simulator that has access to Egs. (2). But for that,
we have to first explain what we mean by “efficiently” and
also formulate the problem more precisely.

We say that a state y can be efficiently prepared if, for
any prescribed error € > 0, we can obtain a state ¢ with
le — ¥||* < € in time

Ag,w (E) = (173)

Ay (E) = (17b)

T = poly(N, 1/e). (18)

Furthermore, we say that the quantum simulator can effi-
ciently measure 4 if it can perform measurements to obtain
ayy (f, 1) (with ¢ < ¢) with an error smaller than € in time

T = poly(N,t,1/¢€). (19)

Note that this basically requires an efficient procedure to
evolve according to the Hamiltonian and the possibility of
performing interferometric measurements.

Result. If a quantum simulator can efficiently prepare
and measure 4, with ||4|| < 1, then, for any €,6 > 0, one
can always find

E € [Ey —roy,Ey +roy] (20)

with » = {31og[2(1 + 207, /6*)]}'/2, so that one can obtain
Egs. (17) up to an additive error € in time

T = poly(N, 1/8,1/¢), 1)

including the cost of finding the value E.

Note that, for § = poly(1/N), the result can still be
obtained in polynomial time. Furthermore, since oy <
N/2, E will differ from E, by at most a constant times

oy logl/z(N). If oy O(+/N), as it occurs in states with
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finite correlation length and local Hamiltonians, this differ-
ence will only scale as /N log N. The reader may wonder
why we need to introduce an interval, instead of simply
fixing £ to some value, for instance £ = E,. The reason is
that the spectrum of H is discrete and it may well be that
(Y |Ps(E)|yr) is exponentially small in N. As we show in
Appendix C, this issue can be avoided if we are allowed to
vary E in a small interval. We are not aware of any classical
algorithm that can achieve this scaling.

The result can be proven by expressing the numerators
and denominators of Egs. (17a) and (17b) as a function of
Egs. (2) by means of Eq. (9), and then showing that both,
as well as their quotient, can be computed with the required
accuracy in time (21). Here, we show it explicitly only for
Eq. (17a), but it can be done in the same way for Eq. (17b).
We define

P = (VI[4Ps(E) + Ps(E)A]l¥),
q = 2(Y|Ps(E)|V),

(22a)
(22b)

and denote by Ap, Ag the bounds on their error; that is,
if the measured values are p, g, they fulfill |[p — p| < Ap
(and analogously for g). Let us first argue that if we require
Ap to scale polynomially with N~!, 8, and €, we can reach
it with the quantum simulator in time (21). The reason is
that, using Egs. (9) and (12), we only need to determine the
2xN /8 values ay y (f,), and each will require running the
quantum simulator for a time not larger than 2x/§. Further-
more, we have to repeat the procedure a number of times in
order to reduce the error. The time to perform those tasks
scales as Eq. (21), given that, by assumption, the quan-
tum simulator can efficiently measure 4. An analogous
argument applies to Agq.

For a given E, the total error |p/q — p/q| will be upper
bounded by

Ap +pAqg/q - Ax +2Aq/q
g—Aq¢ T~ q—Agq ’

(23)

as long as Ag < ¢, where we have used the fact thatp < 2.
One can readily check that if Ap = eg/3 and Aq = €¢*/6
then the error will be bounded by €. Thus, the problem is
reduced to proving that

g = poly(N, 1/é), (24)
since in this case, Ap and Aq will scale polynomially with
N~', 8, and €, which, as argued above, can be accom-
plished with Eq. (21). As for the cost of finding the value
E, we show in Appendix C that there always exists an
interval of energies of size AE > §2/6N within inter-
val (20), where ¢ > (1/4)[6?/(8* + 20,)]*/. Since o, <
N /2, then in that interval ¢ fulfills Eq. (24). Thus, the pro-
cedure consists of dividing interval (20) into 24Nra, /8>
equal slices and picking an energy £ in each of them. At

least one is then guaranteed to fulfill Eq. (24) and thus we
will be able to determine Eqs. (17) with an error smaller
than € in time (21).

IV. PRACTICAL COMPUTATIONS

In practice, one can use the quantum simulator much
more efficiently than what has been presented in the pre-
vious section, and also employ it to access other physical
properties. In this section we propose and analyze several
algorithms to compute different quantities related to the
microcanonical and canonical quantum statistical ensem-
bles. We also illustrate them with some examples for the
model of Sec. II D.

A. Local density of states

The simplest quantity is a broadened version of the local
density of states,

Dsy (E) = (Y |Ps(E)|V), (25)

which (up to a factor) converges to that quantity in the limit
8 — 0. Using Eq. (9), we can express

R
Dsy(E) ~ Y cpay (tn)e =50, (26)

m=—R

where R and #,, are defined as in Eq. (12).

As before, our algorithm uses the quantum simulator
to determine ay (#,,). The method can be made more effi-
cient by noting that norm of Xy = (4 — Ey)/(roy) will
be bounded by one in the subspace where the state i has
most of its weight if we choose 7 ~ 1. Thus, we can use
expansion (9) with X = X, and M =70 /8* to obtain
Eq. (25), but now with R = x7oy, /§ and t,, = 2m/(7oy).
For 0, < +/N, the number of required measurements will
significantly decrease with respect to Eq. (12). In that case,
we letroy, = N , o that

R=xr/N/S,  tn=2m/(rvV/N). (27)
In Fig. 2 we plot Ds;(Ey) on the logarithmic scale for
N = 100 spins, 6 = 0.1, and Hamiltonian (13) with g = 1,
h = 2, for 50 randomly generated states |k) (16). We take
x = 3 and compare the results of the original (12) (circles)
and the optimized alternatives (27) (crosses for » = 0.4,
plus symbols for » = 1). For this value of §, the improved
method yielding Eq. (27) with » = 0.4 corresponds to 120
measurements of ay (¥) and a maximum value of ¢ = 60.
For § = 1, it requires 12 measurements with a maximum
value of t = 6, which is very reasonable for present exper-
iments. We observe that, for » = 1, one already obtains
an error of the order of 1073, whereas for » = 0.4, it is
about 1072, which is what one could expect with imperfect
devices.
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FIG. 2. Local density of states as a function of the mean
energy for Hamiltonian (13) for N = 100 spins, g = 1, h = 2,
8 = 0.1, and 50 randomly chosen states |k). The circles have
been computed with Eq. (12) whereas the cross and plus sym-
bols correspond to Eq. (27) with » = 0.4 and r = 1, respectively.
In all cases x = 3.

B. Microcanonical observables

The very same simplified program can be applied to Egs.
(17), as we can also choose different values of » to make
the procedure much more efficient. In Fig. 3 we plot Eq.
(17a) for model (13) with g =1, 2 = 2, and we choose
the energy as an observable, i.e., 4 = H/N. Note that the
microcanonical expectation value of 4 = H at E is only
trivial (i.e., equal to £ exactly) in the limit § — 0. Here,
our purpose is to investigate the convergence of Hs y, (£)
with respect to §. We again choose 50 random states |k)
and subtract their mean energy E£;/N to optimize the visu-
alization, since H;(Ey) ~ Er. We take § = 0.1 for the
triangles, and § = 1 for the plus symbols and circles. Only
for the latter do we choose the more efficient version (27)
with » = 1. We observe a clear difference (at the percent
level) for different values of §; however, the value r = 1 is
sufficient to obtain reliable results.

An interesting question in this context is to what extent
one can recover the microcanonical expectation value by
decreasing §. This makes sense if the system is suf-
ficiently large and fulfills the eigenstate thermalization
hypothesis (ETH) [77,78], which ensures the convergence
of the procedure in the thermodynamic limit. The ques-
tion of how narrow the energy support of a pure state
needs to be in order to recover microcanonical expecta-
tion values has been analyzed in Refs. [36,79] for one-
dimensional systems. Dymarsky and Liu [79] concluded
that, for generic systems, § needs to decrease with N, while
Baiiuls et al. [36] provided evidence that § ~ 1/log(N)
may suffice for local observables. In Appendix D we ana-
lyze this question for a nonintegrable model and up to
N = 28 spins, and give further evidence for the need to
decrease § with N. This can be qualitatively understood as
follows. Let us denote by |E) the eigenvectors of H with

8 2<10_3 T T T T ml
A §=0.1 (Original) ® ©
i - ;i (=]
6 od§=1 (Original) o © .
+ §=1 (Optimized r=1) @
= 4r ® % ® ® 1
~ 2] @
= @ ®
R 27 A A A é“ é
\ NN fa
L MA A M
z o e B T S
=2 o 6 a :
< ) o ©
T, o © 0® |
=, e
-6 ® ) @
® 0®
-8 o I I I I I
-30 20 -10 0 10 20 30
Ey
FIG. 3. Expectation value of the energy for the same model

and parameters as in Fig. 2. The data show the results of Eq. (12)
for § = 0.1 (triangle) and 1 (circles), and Eq. (27) for § = 1 with
r = 1 (plus symbols).

energy E. In the case where the ETH applies, the diagonal
matrix elements of physical observables (which can also
include, for instance, correlation functions) in the energy
basis rapidly converge to the microcanonical expectation
value, while off-diagonal elements vanish exponentially
fast [77]. However, when one has a superposition of an
exponential number of eigenstates around some energy,
the sum of the off-diagonal terms does not need to con-
verge even though the diagonal terms do. This is also the
reason why & must decrease with N, since Ps(E)|y) con-
tains superpositions of |E) and thus the expectation value
depends on off-diagonal elements.

V. QUANTUM ASSISTED MONTE CARLO
ALGORITHMS FOR MICROCANONICAL AND
CANONICAL OBSERVABLES

The considerations at the end of the previous section
suggest an alternative strategy that can be used for micro-
canonical and canonical observables. At a high level, the
algorithms we propose in this section can be seen as a
quantum version of the classical quantum Monte Carlo
algorithms: they use classical Monte Carlo to sample
different initial states, while the quantum device assists
with the computation of sampling probabilities and the
measurements of observables.

Different to the algorithm presented in Sec. 111, the quan-
tum assisted sampling discussed here is not proven to be
efficient. However, when compared to the first algorithm
from an experimental point of view, these methods offer
the potential advantage of requiring shorter coherence
times, at the cost of an increased number of measure-
ments in the quantum device. Moreover, the sampling
probabilities are always positive and the sign problem in
classical quantum Monte Carlo [51] is circumvented. We
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also present numerical experiments for a N = 100 Ising
Hamiltonian, to demonstrate the viability of these methods
on near-term devices. The results show that physical quan-
tities can be obtained accurately even in the presence of a
certain level of noise.

A. Microcanonical observables
The quantity

_ t[APs(E)]
As(E) = m (28)

may converge to the microcanonical expectation value
even for constant § since, by definition, Ps(F) is diagonal
in the eigenbasis of H and thus no off-diagonal element
appears in the expectation value. This is indeed observed
in Ref. [80], where tensor network techniques are used
in order to compute quantities closely related to Eq. (28)
with energy resolution corresponding to larger values of §
than those required by Eqs. (17). In fact, that a constant
d suffices also follows from the fact that, if the thermody-
namic limit N — oo exists for the observable 4, then in
that limit the expectation value of 4 in almost all eigen-
states of H should coincide if the corresponding energies
fulfill |Ey — Ej|/N — 0. The intuitive reason is that in
that limit, only intensive quantities matter. Therefore, what
is relevant is §/NV, so that as long as it vanishes, one should
obtain the thermodynamic value.

In principle, one could obtain Eq. (28) in the very same
way as Eq. (17a). This can be seen by noting that

A5 (E) = 45,0 (E), 29)

where @ is a maximally entangled state of each spin with
an auxiliary one spin,

| ) [10,0) + |1, 1)]®V. (30)

T N2

That is, just one has to add an auxiliary qubit for each exist-
ing one and prepare an entangled state of each pair. Thus,
from Egs. (29) and (17a), it follows that one could com-
pute the numerator and denominator independently with
the help of the quantum simulator, and then the quotient.
However, we face the problem that the denominator will
typically decrease exponentially with N. For local Hamil-
tonians, the reason is that o o +/N and therefore, for
any extensive value of the energy E = eN, (®|[Ps(E) ®
1]|®) ~ exp (—cN) for some ¢ = O(1). This makes this
procedure impracticable for N 2 20.

In the following, we propose an algorithm to circum-
vent, at least in part, this issue. Let us reexpress Eq. (28)

with the help of an (over)complete basis of states fulfilling

fmeMw=ﬂ, G31)

where djiy is a measure in the basis set. For instance,
we can take an orthonormal basis of product states

|p1,p2, - - ., py) or all product states (5), in which case
N N
dp, = [[dn = e [ [sin@ndbude,.  (32)
T
n=1 n=1

Inserting Eq. (31) into Eq. (28) and using definitions (17a)
and (28), we can rewrite Eq. (28) as

A5 (E) = fdes,lp(E)Aa,w(E). (33)

[ dpyDsy (E)

This quantity can be computed using Monte Carlo algo-
rithms so long as one is able to compute Djs, (F) and
As 4 (E). These values can be computed using the quantum
simulator. More concretely, one can implement impor-
tance sampling according to a distribution proportional to
Ds y (E). For instance, using a basis of product states, as
mentioned above, this can be achieved by a Metropolis-
Hastings algorithm in which, once a move is proposed,
the quantum simulator is used to estimate the correspond-
ing value of Ds . (£), and thus determine the acceptance
rate. The Monte Carlo algorithm circumvents not only the
burden of summing over all states, but also the need to
measure Ds ., (£) with an exponentially small accuracy,
because Dj 4 (E) needs to be evaluated only for states
for which it is not negligible. We also emphasize that if
the observable 4 is chosen so that A|y) = A|Y), and A can
be classically computed, then one only has to determine
Ds  (E) with the quantum simulator.

We have tested this algorithm with Hamiltonian (13)
and the simplest Monte Carlo algorithm that changes one
spin at a time for the sampling. Note that our goal is to
demonstrate the viability of the approach, rather than the
competitiveness of the algorithm, since that would require
optimizing the sampling methods and other parameters.
We choose the Hamiltonian so that we can compare the
results with an exact calculation for N ~ 100 spins. We
implement a Metropolis algorithm that takes a random
state |k) (16), according to a probability proportional to
Ds 1 (E). We then compute the magnetization 4 = M with

N
1
M=— nz + 1 34
3 et D (34)

as a function of E. Since the model is exactly solv-
able, we also compute 45(F) directly using the method of
Appendix B. This direct numerical calculation requires the
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FIG. 4. Magnetization computed according to Eq. (28) for
Hamiltonian (13) and N = 20 spins computed exactly (solid
lines) and via the Monte Carlo (MC) method described in the text
with 10° samples per point (symbols). The Monte Carlo simula-
tions are carried out for the full expression (12) with x = 3 for
the different values of § shown in the legend. In(a)g = 1,2 = 2,
whereasin (b)g =2, h = 1.

computation of very large and small numbers, so one can
easily run into precision problems. In fact, for some plots,
we can only provide the exact result for some values of E,
since otherwise our exact method does not give consistent
values.

In Fig. 4(a) we plot Ms(E) for N = 20 spins, g = 1,
h=2,and § = 1,4 (red and blue lines) obtained with the
numerical computation. The symbols are obtained with
the Monte Carlo method with § = 1 (circles) and § = 4
(squares). We have checked that the results for § = 1 and
8 = 0.1 are almost indistinguishable, and this is why we
only plot the results for § = 1. Each point is sampled
10° times. In Fig. 4(b) we plot the same for g = 1 and
h = 2, also showing very good results. Note that the lower
curve terminates at around E; ~ —25; the reason is that
the lowest energy that can be reached with states (16) is
Ep min = —20, —14.39 for Figs. 4(a) and 4(b), respectively,
and thus at lower energies, D; ,, (E) becomes very small for
any state ¥. Thus, we encounter convergence problems for
such low energies not only with the Monte Carlo method
but also with the exact method and this is why they are not
included in the plot. We used an exact summation to obtain
the dotted line. This is only possible because we only have
N = 20 spins in this figure.

In Fig. 5 we consider larger systems, with N = 100.
In Fig. 5(a) we depict the magnetization for g = 1 and
h = 2. For a more convenient graphical representation
of the data, we plot in the inset the modified quantity
M{(E) = Ms(E) — 1/2 — 0.004E/N as a function of E.
The solid lines indicate the exact results for § = 1,4 (red
and blue), while the symbols show the Monte Carlo results
(circles and crosses for § = 1, squares and plus symbols
for § = 4). As before, we sample 10° times for each point.
The cross and plus symbols in the inset indicate the results
when a cutoff of 1072 is set for Ds;(E). That is, in the
Metropolis method, as soon as we compute it and obtain
a smaller value, we set it to zero. In practice, the intention
is to mimic an experiment where this quantity has been
obtained to that precision. The solid lines are exact results,
which have only been computed up to some value of E,
since otherwise we encounter precision problems. As one
can gather from the plots, the Monte Carlo results resem-
ble the corresponding values well. For E < —60, the exact
method encounters precision problems, while this happens
for the Monte Carlo method only for £ < —100 = E,, yin.
When decreasing § even further, the results are practically
indistinguishable from those of § = 1. However, the pro-
gram becomes unstable for energies £ < E, min since, as
expected, the values of Dj 4 (E) become extremely small
due to the Gaussian dependence.

B. Canonical observable

Now we show how, using similar ideas, one can also
compute canonical observables, i.e.,

tr(e P 4)

AB) = ———, 35
B =~ (35)
where 8 is the inverse temperature. We use the fact that,

for sufficiently small §, we can approximate
£y
e P ~ / dEe PEPs(E), (36)
Eo

where E, 01 = E6,1 F yé with Ej, (E}) the lowest (high-
est) eigenvalue of H, and y > 1. This motivates the
definition

f dE e PEtr[Ps(E)A]

A 37
O e raner O

which converges to the canonical value for § — 0. Using
Eq. (33), we have

45(B) ;;l dE e PE f d,uq/, D55¢, (E)A(s,,/, (E) (38)
) = .
[zt dE eE [ dpuy, Dy g (E)

The quantum algorithm proceeds in the same way as
before, by using the quantum simulator to recover ay, (¢,)
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FIG. 5. Magnetization as a function of energy, as in Fig. 4 but

with N = 100. For the inset plot, we subtracted 1/2 4+ 0.004E /N
in order to make the curves more visible. There, the crosses and
plus symbols indicate the values obtained by setting a cutoff of
1072 in the sampling procedure to resemble an experiment. In (a)
g=1,h=2,whereasin(b)g=2,h=1.

and a4 (f,), and then a classical computation to do the
rest. In particular, Monte Carlo samples both the states
¥ and the energies £ with a probability proportional to
e*’f’ED(;,lﬂ (E). For observables that are diagonal in the cho-
sen basis, it is also possible to sample only over states,
with the integrated probability [ dEe ?£D;, (E), which
can be reconstructed using the quantum simulator in the
same way as for the microcanonical observables, since the
energy dependence can be integrated analytically.

We performed Monte Carlo computations and show the
results in Fig. 6. We plot magnetization (34) as a func-
tion of the inverse temperature B for Hamiltonian (13)
with N = 100 spins and g = 0.3, 7 = 0.8 (lower curve)
and g = 0.4 and 4 = 0.4 (upper curve). The solid line is
the exact result (B14) computed with the formulas given
in Appendix B. Note that here there is no problem with
the precision, as most of the products in the numerator

0.5
0.4+ 1
<03/ ¥ g=04,h=04"
— +
= +
= 0.2+ R ° %
+
01F g=03,h=0.8]
]
0-0 1 1 1 1
0 1 2 3 4 5

g

FIG. 6. Magnetization as a function of the inverse temperature
for Hamiltonian (13) for N = 100 spins, g = 0.3, and 2 = 0.8
(lower curve) and g = & = 0.4 (upper curve). The solid line rep-
resents the exact value M (), whereas the symbols are obtained
with the Monte Carlo method, with 10° samples per point and
6 =1 and x = 3. We discretize the values of the energy from
—N to N in intervals of 0.5. The plus symbols are obtained by
setting a cutoff equal to 1072 in Dj 4 (E).

and denominator cancel and one ends up with a simple
sum (B15), and that the result is independent of § [since
definition (B14) is, too]. The symbols are obtained with
the Monte Carlo simulation for § = 1 and x = 3. We dis-
cretize the energy integral appearing in Eq. (38) by taking
E from —N to N in steps of 0.5, and sampling only those
values, although the Metropolis algorithm only takes val-
ues around certain energies, £ £ 5, for each value of S.
For the Monte Carlo methods, we take Ey; = £3N /2, but
these values are never reached in the Metropolis sampling.
From the figure we conclude that the result converges very
well for § = 1, and also that the performance of the Monte
Carlo method is very good. One can observe that, for larger
values of B, there is a little bias towards smaller values of
the magnetization. In the inset of Fig. 5, we also display the
results carried out with the Monte Carlo computation with
a cutoff 1072, still rendering competitive results. We note
that the fact that the upper curve corresponds to the crit-
ical point g = & does not have relevant consequences at
the temperatures considered here. For lower temperatures,
the program does not give reliable results as it has to scan
energies for which Ds y, (£) becomes very small.

VI. SUMMARY AND OUTLOOK

We propose and analyze two types of quantum
algorithm to characterize quantum many-body states in
finite energy intervals and temperatures. They are based
on the cosine filter, which when applied to a state, reduces
its variance to a predetermined value around a given
energy. However, instead of preparing the filtered state,
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our algorithms compute different quantities that allow one
to reconstruct expectation values of observables or other
magnitudes. The algorithms we propose are quite flexi-
ble—they can either be implemented on digital quantum
computers (e.g., based on superconducting qubits, trapped
ions, or Rydberg atoms) and on analog quantum simulators
(e.g., based on cold atoms, trapped ions, photons), as long
as they can perform certain kinds of interferometric mea-
surements. We also present in Appendix A more practical
approaches that, in some cases, possess clear advantages
with respect to such measurements.

We show how our first algorithm can be used to effi-
ciently compute expectation values over filtered states, as
long as we can prepare the initial state. The algorithm
requires a time that scales polynomially with the system
size, N, the inverse variance, and the inverse error. We
also show how it can be simplified in practice, leading to a
practicable method for present or planned quantum simu-
lators. The simulator has to be run for times < 6/§ (where
we take x ~ 3 and » ~ 1) and therefore, for § = O(1), this
should be feasible for existing devices. The price one has to
pay is that one has to perform many more measurements.
This number can be estimated by taking into account the
fact that we need to compute sums of the form (26), where
we add 2R terms so that to have a total error of the order
of ¢, this will require of the order of Re 2 ~ 3/N/8€?
measurements. For N = 100, § = 1, and € = 1072, this
yields of the order of 3 - 10° measurements. Actually, by
taking into account the fact that ¢,, becomes small, using
smaller x ~ 1, exploiting symmetries and other optimiza-
tions, we expect that it is possible to significantly reduce
this number, to the order of 10*.

The second algorithm we introduce proposes a way to
combine the first algorithm with Monte Carlo simulations
in order to obtain the expectation value of microcanoni-
cal and canonical observables. The resulting methods also
rely on the ability to prepare certain states (e.g., product
states) efficiently, to run the quantum simulator for times
of the order of 6/6 and to perform interferometric mea-
surements. Our numerical simulations of this algorithm for
a simple model indicate that with several tens of thousands
of samplings one can obtain reliable results, at least in
some energy regimes. This algorithm can also be signifi-
cantly improved by using standard Monte Carlo strategies
to speed up convergence. Such quantum assisted sam-
pling algorithms open new possibilities to study thermal
properties of quantum many-body systems with near-term
quantum devices.

There are other modifications that may help to improve
the algorithms. First, one could take a different expansion
of the filter. For instance, instead of using the cosine filter,
one can use Chebyshev expansions for a quantum com-
puter [34,36,49,50], a low-pass filter, or choose c,, differ-
ently for an analog simulator to better adapt to the specific
errors in which it may incur. Second, in the sampling, there

is information that can be collected to investigate other
physical questions. For instance, the spins or energy sam-
ples that are used in the Monte Carlo methods can be used
to estimate other quantities directly (like higher moments),
without the need to make other computations. Another pos-
sibility is to use the adiabatic or variational algorithms
to prepare states with small variance to start with, which
would make the algorithms more efficient, or allow us to
access energies that are out of the scope of product states.

We formulate most of our results for a many-body spin
Hamiltonian with local interactions. However, they can be
equally applied to fermionic systems, systems with longer-
range interactions, or disordered setups, as long as the
quantum device can emulate the corresponding Hamiltoni-
ans. Also, the ideas developed here can be easily adapted
to measure other quantities of interest, like Green functions
or structure factors.
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APPENDIX A: WAYS TO RETRIEVE a4 (1)

In this appendix, we describe different methods to
retrieve ay () and a4y (f) from analog quantum simula-
tors. Such methods typically possess severe limitations in
the available operations as compared with quantum com-
puters, and thus they may not be able to carry out the
interferometric measurements that are needed to obtain
those quantities. The methods adapt to different situations
and have different requirements.

We start out by briefly reviewing the standard method
based on conditional dynamics where, during the evolu-
tion, all the qubits have to be coupled to an extra one,
called the control qubit. Then, we analyze a closely related
method where the interaction with the control qubit only
needs to occur at the beginning and at the end of the
evolution, although at the expense of using other internal
states. The third method does not require a control qubit
but the possibility of creating certain catlike states, as well
as an extra internal state; the latter can be avoided for cer-
tain kinds of Hamiltonian for which one can prepare one
eigenstate efficiently, like, for instance, Hamiltonians of
Heisenberg type. The fourth method builds on the previ-
ous one and does not need cat states. This is thus much
simpler to implement in practice and may be more robust
against decoherence. However, it requires more measure-
ments. The last method applies to Hamiltonians with some
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special symmetries, like XY or Hubbard models, and can
be very practical.

1. Conditional dynamics
The conceptually simplest way to obtain ayy (¥) is to
carry out conditional dynamics [72] depending on the state
of one of the qubits, the control qubit, which we call ¢. This
corresponds to the operation

Ul0)e ® |¥) = [0)c ® e ]y), (Ala)

UDe® [¥) =1 ® [¥). (Alb)

If we denote by H. the Hadamard transformation on the
control qubit then one can first produce the state

HIUH|0): ® |¥). (A2)
By then measuring the control qubit in the computational
basis, and the observable 4 on the rest, one can retrieve
Egs. (2). This method requires the ability to couple all the
qubits to the control one during the evolution in order to
apply Egs. (A1), which may be difficult in practice. How-
ever, it can be very naturally applied in trapped ion simula-
tors [37,60], since all ions are coupled to the same phonon
bus, and in Rydberg atoms in optical lattices, as one atom
in a Rydberg state can influence the dynamics of the rest
[81]. In fact, very efficient techniques have been proposed
to perform this kind of dynamics and measurements using
that implementation [82—84].

2. Additional internal states

The next method does not require coupling all the sys-
tems to the control qubit during the interaction, but makes
use of extra levels in each of the systems. Instead of qubits,
one uses four-level systems where, apart from the qubit
states |0) and |1), there are two other levels, |ag;) (see
Fig. 7), that are idle with respect to the action of the
Hamiltonian; that is, U = e~ only acts nontrivially in the
subspace spanned by |0) and |1). Let us assume that one
has the possibility of adding extra two-body operations

Wn|0>c ® |l>n = |0>c ® |i>ns (A3a)

Wilao)e ® |iYy = |ao)e ® |ai)n, (A3b)

as well as the Hadamard H,. between levels |0). and |ag)..
Then, one can implement

HIW OWH,|0). ® [v/), (A4)
where W = ®ﬁ,v:1 W,. As before, by measuring in the basis

|0)¢, |ao). the control qubit, and the observable 4 on the
rest, one can also obtain Egs. (2).

), ——

eﬂﬁt
1), ] - lai),, « -
0),, W |ao),, - -

FIG. 7. Internal level scheme for the interferometric measure-
ment: the simulation acts on levels |0) and |1), while the other
two levels are used to generate the catlike state.

3. Catlike states

We show now that neither an ancilla system nor addi-
tional internal states are required as long as one can prepare
some catlike states. This has been achieved with different
setups already [26,63—71].

Let us first assume that H has an eigenstate ¢, i.e.,

Hlp) = Alg), (A5)
such that, for a given state i, one can efficiently apply an
operator V(0), fulfilling

1
V2

In general, ¥ and ¢ may be very different, in the sense that
they can be distinguished by measuring few qubits [85],
and thus the state on the right-hand side of Eq. (A6) will
be a catlike state. In some cases, ¢ is just a product state.
This occurs, for instance, for the Heisenberg Hamiltonian
(in any dimension)

H =2 JumOn Gn+ Y IhuOn.
nm n

V)0,...,0) = —(p) + €°[¥)). (A6)

(A7)

Indeed, for arbitrary J,, and A, |¢) =10,...,0) is an

eigenstate. Here 6 = (o, oy,02) is a vector of Pauli oper-

ators and o, is the one that acts on the nth qubit.
Under the above assumption, one can prepare

1B(6,6") = V(&) e V©O)[0,...,0)  (AB)

and measure in the computational basis to obtain ay (). In

order to show this, without loss of generality, we set A = 0

as we can always subtract it from the Hamiltonian. The
probability of obtaining the state |0, . ..,0) is

0, ..., 01D (8,0))]> = Lle™™ + ay (He™ + 2rcos(B) I,
(A9)

where (V|p) =re™™, r>0, a =@ —6)/2, and B =
(6@ +6')/2 + y. Note that, apart from ay (), r and y are,
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in principle, unknown. If they can be computed classi-
cally (e.g., if we deal with product states) then one can
directly obtain ay, (f) by measuring this quantity for § = 0
and o« = 0,77/2, and 7 /4. If not, one can proceed as fol-
lows. First, set « = 0; by changing 6 + 6’ one can find
when 8 = 0 or 7, as the expression is maximal or minimal.
Then, one can also identify when g = /2. Using these
three values, it is possible to recover the real part of ay, (¢).
By choosing « = 7/2 and proceeding in the same way, one
can then get the imaginary part. The procedure to measure
a4,y (f) is the same, but (i) one has to apply the operator 4
before the measurement and (ii) one has to classically com-
pute (or measure with the simulator) (¢|A4|¢). The first task
can be obtained as follows, as long as one can use the sim-
ulator to evolve according to the dynamics generated by 4.
One just applies the operator exp(—iddf) ~ 1 — iAdt for a
short time §¢ < ||4]|» and measures as before. If 4 is not
Hermitian, one can always write it as a sum 4 = A4, + i4;,
where 4, = AI and 4; = Aj and measure these two inde-
pendently. In practice, there may be simpler procedures
that do not involve small times, for instance, if 42 = 1.

So far we have requested that A has an eigenstate that
can be easily prepared. This condition can always be sat-
isfied so long as one has an extra level available on each
system, |ap), where the Hamiltonian does not act. In that
case, taking |p) = |ay, . ..,aq) one has H|¢) = 0 and thus
it is an eigenstate.

4. Product states

The procedure presented above can be further simplified
if one wants to measure a4 (f) for states of the form

N
) =[] onale), (A10)
n=1

where oy, is a Pauli operator. For instance, if ¢ is a prod-
uct state, this allows one to obtain Egs. (2) for any product
state. Also, it can be easily extended to states that are
connected with products of other simple operators.

The idea is to sequentially measure ay g, (f) (for m =1
tom = N), where

m

om) = [ [ onan!®) = Oman|@m1),

n=1

(All)

o = ¢, and gy = . Once a,, ,(?) is obtained, one can
start out with ¢,,_; and obtain a4, () since the proce-
dure explained immediately after Eq. (A8) can be applied
if a, (¢) is known (it does not have to be equal to one).

With single qubit operations acting only on the mth
qubit, one can prepare

1

7 (Im-1) + €’ 1¢m)) (Al2)

Vm(9)|(pm—1) =

and follow the same procedure as before. This method
does not require the preparation of catlike states, as the
two states building the superposition at any given step
differ just on one qubit. However, it requires many more
measurements since one has to obtain a,, (f) for n < m.
Note that one has to obtain, at most, N of those quanti-
ties. Note also that this procedure may have some practical
restrictions as the errors accumulate.

5. Symmetric Hamiltonians
A special class of Hamiltonians for which one can use a
simplified procedure contains those for which there exists
a unitary operator R and a Hermitian operator 7 such that

RIHR=-H+T (A13)

with [T, H] = 0 and for which  is an eigenstate, i.e.,

Riyr)y =Aly),  TIY) = uly). (Al4)

Given such R, T, and ¢,
ay () = (IR e RIy) = (Y1) = ay (ne ™,
Thus, ay, (f)e'™/? is real. Moreover, if

RTAR = +4, (A15)
and additionally if either ¢ is an eigenstate of 4
(with eigenvalue 1 for simplicity) or [4,H] =0, then
a4y (€2 is also real or purely imaginary, depending on
the sign in Eq. (A15). To determine a4,y (¢) then, one only
needs the absolute value |a,y (f)| and a sign. Since
lasy O = [(¥]de ™y P, (A16)
the former can be found just by letting the system evolve
and then measuring in a basis that contains A|y). The sign
change can be inferred if we track when the absolute value
becomes zero as follows. Because we have a finite sys-
tem, a4y (f) will be an analytic function of ¢ so that we
can Taylor expand it when it is near zero. Suppose that
a4,y (1) approaches zero at a time #y; then one can expand it
to the leading order: a4y () ~ a(t — ty)" + O[(t — )" 1].
If n is odd then a4 () will change sign and if it is even,
it will not. Since we are measuring the square of a4y (9),
|(W|Ade~ ™|y} |?, we can determine the value 2, and thus
n. In practice, n =1 or 2, so that this can be obtained
more easily. Hence, here we only require individual mea-
surements, available in several labs worldwide that possess
analog quantum computers [13,15,16,20,23,25]
In the rest of this section, we show physically relevant
examples in which one can find the operators R and T
with an especially simple structure, and a whole basis of
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common product eigenstates ¥ can be used to run the
algorithms from Sec. IV. There are many textbook Hamil-
tonians and states fulfilling properties (A13) and (A14).
For instance, if one has a bipartite lattice with sublattices 4
and B, and N sites in total, and a Hamiltonian of the form

H= E [Jn,m,xan,rgnz,x + Jn,m,yan,yam,y]

nedA,meB

N
+ Y Mo,
n=1

(A17)

then

R = Q)0 om,

neA meB

(A18)

fulfills Eq. (A13) with 7' = 0. Therefore, if one chooses
as an eigenstate of R (e.g., a product state), the require-
ments are satisfied. The operator R is, up to single qubit
rotations, a parity operator.

The Hubbard model in a bipartite lattice

H= Z Z J”smﬂ [az,gam,a + a,t,’aan,(,]

neAd,meB o=1,]

N
+Y Ud}ana) any, (A19)

n=1

with ' and a the fermionic creation and annihilation
operators, also fulfills Eq. (A17). In such a case,

R — o Tned 4y ny 1_[(“"’ i+ a; NS (A20a)
n

N
T=)Ud a,. (A20b)

We can find a whole orthogonal basis of common eigen-
states of R and 7 with simple structure in the following
way. In particular, if the number of sites N is even, we
can divide the lattice in N /2 disjoint pairs of sites S; =
(n;,m;). For each pair S;, we choose a state |¢y; ) Whlch is
the vacuum of spin up modes and an arbitrary Fock state
of spin down modes, and define

l9f) = (@], , £ia), Do), (A21)
¢) = (1 £ ia), ray, Dldo,). (A22)

Then, an orthogonal basis of common eigenvectors |{/) can
be formed as all possible products of one of these factors
for each pair of sites.

APPENDIX B: ISING MODEL

In this appendix we give some formulas that we have
used in our numerical illustrations regarding the Ising
model. Let us consider N fermionic modes and a Hamil-
tonian

NIOQ

N
Z ay+a}) (@ —ay, ) +hY (afa, —1/2),
! ' (B1)

where the a, are annihilation operators of the vacuum |vac)
and we have taken periodic boundary conditions for the
fermions, ay;| = a;. Through the Jordan-Wigner transfor-
mation, this corresponds to the Ising-like Hamiltonian

(B2)

g N h N
- 5 2:: OnxOnt1x + 5 nXZI:O'n,Za

where the o, ; are Pauli operators, with appropriate bound-
ary conditions.

As usual, we first perform a Fourier transform with (we
assume even N)

N
E szk/N

| N/2
_ —i2nnk/N
ay = — Z e’ by.
VN k=—N/2+1
The new Hamiltonian is
N/2

(B3)

H =Y Hy,
k=0

where
H, = xk(b/tbk + bikb—k — 1) + i (bkb—y — bikb;t),
Hy = xo(bbo — 1/2),
Hy) = xN/Z(b]Tv/sz/Z —1/2),

and

Xy = h+ gcos(2nk/N),
vi = gsinnk/N).

Note that tr(Hj) = 0.
We now proceed as follows. For each value of k =
.,N/2 — 1, we write H, = H as a4 x 4 matrix in the
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basis

1) = |vac),
12) = bb" |vac),
13) = bj|vac),

|4) = b |vac),

and also define Hy = Hy + Hy »2 and write it as a 4 x 4

matrix in the basis

|1) = |vac),
12) = b}, ,by|vac)

13) = bl Ivac),

|4) = b} [vac).
We obtain
N/2—1
H= Y H, (B4)
k=0
where
Hj = [x40; +kaV] @0,
Hy = [x0,+-0:] & [x0,-0:],
with
Xo+ = (Xo £xn/2)/2 (B5)
and

(-1 0
O; = 0 1]
The direct sum structure corresponds to the subspaces
{I1),12)} and {|3),|4)}. Thus, the problem is reduced to

N /2 noninteracting four-level systems.
We can easily compute the eigenvalues of H;. For

k # 0, they are given by E ;i = +z; and E,ii = 0 (doubly
degenerate), where

(B6)

2k = /X + Vi

and by E(l):i = *£x04+ and Egi = £xo_ fork=0.

The expectation value of the Hamiltonian in a product
state |p) = |p1,...,pnp2) Withpy =1,...,41s

N/2—1 N/2—1
E,=(plHp)= > (pelHilpe) = Y Ep.  (BY)
k=0 k=0
where, fork=1,...,N/2 — 1,
= (L|Hk|l) = —x,
Ekz = (2|Hk|2) = x4,
Ey3 = (3|Hk|3) =
Era = (4|Hil4) =
with the rest zero, and
Eoy = (1|Ho|l) = —x0.+,
Eop = (2|1Ho|2) = X0+,
Eo3 = (3|Hy|3) = —xo,—,
Eo4 = (4|Hol4) = xo,—

In order to evaluate the expressions required for the simu-
lation, we need to compute

N/2
plep) = [ [(wile™ pr). (B8)
k=1
We find that
(11€M|1) = cos(zxt) — isin(zgt)xi/zx, (B9a)
(21eM|2) = cos(zxt) + i sin(zxt)xy /2, (B9b)
(3]"13) = (4]"|4) =1, (B9c)
for k # 0, whereas
(n|ef"|n) = eFont (B10)

forn=1,...,4.

Although we are interested here in finite energies and
temperatures, we now briefly discuss the zero temperature
behavior (i.e., the ground state). In the basis introduced
here, it can be written as

[ JCexl Vi + Bil2)e)

k

(B11)

with eigenvalue Eg = — ), z;. The coefficients o and
Bi depend on g and 4. In particular, for 4 >> g, we have
ar ~ 1 and B; ~ 0, whereas for 4 < g, they change with
k, and thus one gets superpositions of many configurations.
Atg=h,zyp-1 — 0 as N — oo, so that the gap closes
and there is a quantum phase transition.
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1. Microcanonical average

We now compute some of the quantities that are used in
the numerical illustrations. For the sake of simplicity, let
us assume that

N/2-1

A= Z A,
k=0

where A only depends on b for k£ # 0 and on bg /> for
k = 0. Mapping back to qubits, operator 4 is such that it
can be decomposed into a sum of local operators, of which
the magnetization we used in Eq. (34) is an example.

Let us start with

(B12)

R
PIPsE)p) = Y cne™ N ay (t),
m=—R

where the ¢,, are defined with respect to § and R is given in
Eq. (12) or (27). We have

ay(tn) = (ple”>""Np) = [ T(oxle>"/~ |ps),
k

which can be readily computed using Egs. (B9).
We can also compute Eq. (28) directly,

R i2mE /N
Zm=fR Cm€ nim

R . b
e R CmeIZmE/Ndm

A(E) = (B13)

where

1 .
Ry = 2_Ntr(e—l2mH/NA)

| NtE N2
=3 2 [ [1 tr(e"'z"”’q/’%][tr(e—”'"Hk/NAk)],
k=0 q=0,g#k
| N/2-1
dm — Z_Ntr(e—[ZmH/N) — 2_N 1_[ tr(e—iZMHk/N)'
k=0
Defining
s = Sta(e N,

A 1 —2mHy /N
s;i = str(dge™ mH /Ny

we can write

N/2—1 o N/2—1

Ny = Z |: l_[ rm,qi|sm,k5
k=0 =q=0,q7#k
N/2—-1

dm = 1_[ V-
k=0

Using Egs. (B9) and (B10), we have

P = cos” [ 2%
m, N

fork=1,...,N/2—1and
Fmo = 2[cos(2mxo /N) + cos(2mxo_ /N)],
while the values of s, depend on the observable.

2. Canonical average

In a similar way we may compute the canonical average

A(B) = tr(e PP A) jtr(e P1). (B14)

We have

tre” ) = 2" [ [ 7.
k

tre™ P 4) =2V []‘[ ;q}ik =tr(e?) )" r—"
r kK

k q#k

and, thus,

AB) = Z‘;—i,

k

(B15)

where
Fe = Str(e Py,
50 = Ltr(ape Py,
Using Egs. (B9) and (B10),

Fo = 3[cosh(Bxo4) + cosh(Bxo )],
7r = cosh?(Bzi/2).

APPENDIX C: EFFICIENT COMPUTATION

Here we prove the statement that was used to show that
one can compute Eq. (17a) efficiently. Namely, we show
that, for any state v and any 8 < N/+/2, there exists an
interval of width at least §2/6N contained in an energy
window |E — Ey | < roy (20) such that, for any E in that
interval,

1 82\
n(E) := (y|Ps(E)|Y) = ‘—‘(m) (C1)
and
r={3log[2(1 4 20, /8*)]}'/>. (C2)

We emphasize that, for our purposes, we do not need a tight
bound, so we will be very rough when bounding different
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quantities with the goal of obtaining simple expressions.
Moreover, although n(E) involves cosine filter (7), it is
simpler to bound the result of the Gaussian approximation
(8). Specifically, we prove that there is an energy inter-
val of radius at least §2/3N, contained in window (20) and
with its center inside the spectral limits of H, such that, for
any energy inside this interval,

BE) = (e Ty s L (3
A(E) = (/]e V2 e (@

where § = §/+/2. Since cos(x) > e for x] < 1.3, if E
fulfills

[(H = E)/N|loo < 1.3, (C4)

we have n(E) > n(E). Because ||[H|s = N/2, and the

center of the interval is within the limits of the spectrum of

H, we can ensure that |[H — E|| <N + §?/6N < 13N/12,

and thus Eq. (C4) is satisfied for E, so that bounding the

Gaussian approximation is enough for the desired result.
Let

—(E—Ey)? /2a£
A/ 27‘[ O'w .

First, we show that, for Eq. (C2), T(r) is upper and lower
bounded by some quantity, which will indicate that there
exists some £ in the interval such that 7#(F) is sufficiently
large. Then, by upper bounding the derivative of n(E), we
conclude that there is a neighborhood of that £ where 7(E)
fulfills the required condition.

We write T(r) = Ty — T;(r), where

00 e—(E—Ew)Z/zaé
Ty = / dE n(E) ————
—o0 V2moy

and T (r) = T(r) — T). Given that n(E) < 1, we have

2 o0
1Ty (r)| < \/; f dEe E*/?

= erfe(r/+/2)

2e N
< —
“VmToor

<" (€7

Ey+ro
() = / dE (E) (C5)
E,

Yoy

(Co)

where the last step uses the fact that, for Eq. (C2), r <
/2/7. We can perform the integration in Eq. (C6) explic-
itly using Eq. (C3) with Eq. (C2), to get

—(H-Ey)?/[2(c5 +82
g e TRy
0= .

J1 —i—oé/gz

(C8)

Using e > 1 — 2x2, we obtain

To > (1+ 0y /8573 (C9)

Thus, putting things together we obtain the lower bound

T() = (1 +02 /872 — e = 11 + 03 /837,
(C10)

where we have chosen Eq. (C2) and used the fact that
/2 > log[2(1 + o /8%)3/2].

In order to bound 7(r) from above, let us denote by Ej
the value where n(F) attains its maximum within interval
(20). Note that Ey must be within [Ein, Emax] (since, if it
was outside, choosing the closest extreme eigenvalue of H
would yield a larger value for #7). We then have

_ Ey+roy —(E—E¢)2/202 -
T(r) < n(Eo) dE e v < n(Ep),

1
A/ 2no El// —roy,
(C11)
so that

A(Eg) = 5(1+0,/8%) 72 (C12)
It is now possible to show that in a neighborhood of Ej
of radius 82/3N, 7 takes sufficiently large values, 7(E) >
n(Ey)/2. For that, we just have to bound the derivative of
n within interval (20). Let us call 7;,,, the maximal value
of the derivative of n(E) with respect to £ in that inter-
val, which occurs at some £ = E;. Although E| could lie

outside the limits of the spectrum of H, if that is the case,
and using the fact that xe=*/2 has a maximum at x = 1, it
is easy to see that the maximum cannot occur more than
§ away from the edges, so that |[H — Ej|joc <N +38 <
3N /2. Then we can bound,

- 3Nn~(E1) - 3Nn~(E0)'

78 C13
Ml = 5 = om0 (€1
Finally, for any value of energy such that
8'2
E—Ey| < —, Cl4
| ol < IV (C14)
we have
- ~ , n(Ey)
A(E0) — A(E) < |y, 1By — E] < =%, (C15)
and, thus,
n(E) = n(Eo) — |n(Ep) — n(E)|
n(Eo)
-2
> 1(1+0, /6572 (C16)
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We end this appendix with a remark on the difficulty of
finding the state i given a prescribed energy. As men-
tioned at the end of Sec. II B, this can be analyzed, for
instance, through mean field theory for product states,
or with matrix product states in one-dimensional prob-
lems. Regarding rigorous bounds, for product states, it was
shown by Lieb [86] that, for any local Hamiltonian with a
spectrum contained in [—N, N], one can efficiently find a
product state with an energy —DN, where D > 1/9. While
this is a theoretical bound, we expect that, for most relevant
Hamiltonians, D will be much larger (in fact, one can find
much tighter bounds for specific models, like those used in
this paper). Furthermore, as emphasized in the main text,
one does not necessarily have to use product states, which
gives access to even larger values of D.

APPENDIX D: CONVERGENCE TO THE
MICROCANONICAL AND CANONICAL VALUES
FOR A NONINTEGRABLE MODEL

In this appendix we numerically investigate the con-
vergence to the microcanonical and canonical values of
the quantities defined in the main text using exact diag-
onalization. In particular, we show how a polynomially
decreasing 6 ~ poly(1/N) seems to be enough for the
quantity 45 , (E) (17b) to converge to the true microcanon-
ical expectation value.

We consider the Ising model in a tilted field, described
by the Hamiltonian

N—-1 N N
Hsing = J|: Z Onz0n+1z +h Z On:+ & Z O'n,xi|a
n=1 n=1 n=1
(D1)

which is in general nonintegrable, except in the limits g =
0 (classical) and # = 0 (transverse field Ising model). In
the following, we choose a strongly nonintegrable point
h=0.5g=—1.05[87], and we take J = 1. Note that this
corresponds to a different normalization for H /N than that
used in the main text. However, it is enough to ensure that
Eq. (7) filters out energies much farther than the width §
for all the states analyzed here (see Appendix E), so that
it allows us to study how the microcanonical values are
approached as the width decreases.

We consider real translationally invariant product states,
which can be parameterized as | ¥ (0)) = |p(6))®", where
|p(0)) = cos6|0) + sinf|1). In the thermodynamic limit,
these states have energy density E/N = cos’(20) +
hcos(26) 4 g sin(20), ranging over most of the energy
band (see Fig. 8).

We choose three values of 6 corresponding to states
in the lower part of the energy band, namely 6, =
/4, for which E\/(JN)=g=—1.05, 6, =mn/3, for
which E,/(JN) = —0.909, and 6; = 7/6, with E5/(JN) =
—0.409. For each of these states, and for several local

—E(0) /JN:

Y 0=m/6 -

0=m/3 §

Fbh=m/4 f

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 8. Energy density in the nonintegrable Ising chain (D1)
in the thermodynamic limit. The solid line indicates the energy
density of translationally invariant real product states, while
the dashed horizontal lines indicate the energy densities of the
ground and maximally excited states (estimated numerically with
MPS). The colored symbols indicate the states chosen in our
numerical simulations.

observables, we compute exactly the expression 4 , (E' =
Ey) from Eq. (17b) for different values of §. In order to
check that it is enough to decrease § polynomially with the
system size, we run the calculations for system sizes 10 <
N <28, and § «x N* for s = 0,—1,—2. The results, for
observables 4 = O[N/21z ® O[N /2412 and 4 = O[N /2] x> ATC
shown in Fig. 9. As reference, we estimate the microcanon-
ical expectation values in the thermodynamic limit using
uniform matrix product state (MPS) [74] (more concretely,
we approximate the canonical ensemble at the same energy
density in the thermodynamic limit as a matrix product
operator, in which the observables can be easily computed,
and use the fact that in this limit, both ensembles are
equivalent).

Our results indicate that, although a constant value of 8
is not enough for 45 , to approximate the microcanonical
value, when § decreases as 1/N?, the expectation values
indeed converge. For § o« 1/N, we observe that the values
are reasonably close, and they would be compatible with a
slower convergence.

APPENDIX E: APPROXIMATING THE COSINE
FILTER AS GAUSSIAN

We want to bound the absolute value of the difference

fux) = M2 oM x. (ED)
Since both terms are even, we can consider only x > 0. If

2 ..
¥/2 > cosx, and both terms are positive, so

—Mx2)2

x| <m/2, e

also0 <cosMx <e , and

s )| = fu(x) < e ™72, (E2)
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FIG. 9. Convergence of Eq. (17b) to the microcanonical values for several local observables, in the nonintegrable Ising model (D1).

Each column corresponds to a real translationally invariant product state (in order of increasing energy density), determined by 6 = 7 /4
(left), 7 /3 (center), and 7t /6 (right). The upper row illustrates the results for the two-site observable o, ® 0., and the lower row for oy,
measured, in both cases, in the center of the chain. The dashed lines indicate the microcanonical values in the thermodynamic limit
corresponding to the same energy density. Our results show that § oc 1/N? converges fast to the microcanonical expectation value, and
for § o« 1/N, the values are reasonably close.

The bound actually holds for slightly larger x, as long as

e—x2 /2

[3]

I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simula-
tion, Rev. Mod. Phys. 86, 153 (2014).

> | cos x|, which is true up to x; &~ 0.5667.

Actually, the Gaussian form also approximates the
cosine beyond this value, since, for x; <x <7 — pu, it
holds that

_ 2
M2 < cosM x < cosM p,

[fir(@)| = cosMx — e (E3)

where we have assumed that M is even, as in the text. Thus,
the difference decreases exponentially with M up to x =
T — .

At very small x it is more useful to use the Taylor
expansion. There we can note that at very small |x| the dif-
ference vanishes as fj; (x) &~ Mx*/12 + O(x®), and, in fact,
Su(x) < Mx*/12.
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