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ABSTRACT
We investigate optimal states of photon pairs to excite a target transition in a multilevel quantum system. With the help of coherent control
theory for two-photon absorption with quantum light, we infer the maximal population achievable by optimal entangled vs separable states
of light. Interference between excitation pathways as well as the presence of nearby states may hamper the selective excitation of a particular
target state, but we show that quantum correlations can help to overcome this problem and enhance the achievable “selectivity” between two
energy levels, i.e., the relative difference in population transferred into each of them. We find that the added value of optimal entangled states
of light increases with broadening linewidths of the target states.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0049863

I. INTRODUCTION

The theoretical description of (nonlinear) spectroscopy is con-
ventionally based on a semiclassical approach, where the light
fields are treated classically and only the sample system is treated
fully quantum mechanically.1,2 In most situations, this approxima-
tion is extremely well justified owing to the weak nonlinearity of
light–matter interactions in free space.3 Nevertheless, recent years
have seen the rapid rise in theoretical investigations as well as first
proof-of-concept experiments that challenge this convention and
investigation on how quantum properties of light can be applied or
exploited beneficially in spectroscopic applications.4–8 This includes
the use of photon correlation measurements to analyze the light
fields emitted by a sample9–13 in single-molecule spectroscopy14–16

or to exploit coincidence measurements to detect particular spec-
tral features in the sample17–20 as well as the generation of photonic
entanglement in fluorescent proteins.21

However, the arguably most active field of research concerns
the use of quantum light and, in particular, of entangled photons
to excite the sample. Squeezed states can improve linear absorption
measurements.22,23 Nonlinear optical signals, such as two-photon
absorption, scale linearly with the photon flux,24–26 which could
enable nonlinear spectroscopy of photosensitive samples at very low
intensities. Following earlier experiments on two-photon absorption
in biomolecules,26,27 a series of recent experiments have scrutinized
the situation28–30 and report widely differing entangled two-photon
absorption cross sections. They inspired new theoretical investi-
gations into the enhancement that entanglement can provide in
two-photon absorption.31,32 Apart from the linear scaling, theoret-
ical proposals show that spectral quantum correlations of entangled
photon pairs could further help to disentangle complex optical sig-
nals and reveal otherwise hidden features33–35 and enable ultrafast
spectroscopy in a cw setup.36 They could also be used for the gener-
ation of pseudo-sunlight to imitate natural conditions37 and provide
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sensitive probes for dynamical symmetry breaking38 and many-body
correlations.39 The control of quantum correlations using temper-
ature,35 photon statistics,40,41 or spectral shaping42 could further
enhance these beneficial properties and provide experimentalists
with new handles to manipulate optical signals in a way that is not
possible in laser-based spectroscopies.

One pertinent question regarding the application of quantum
light to spectroscopy is how much the quantum nature of the former
can enhance a given spectroscopic task. To ultimately decide this in
an unbiased way, it is necessary to compare the performance with
optimized (classical) laser pulses, i.e., with the optimal performance
achievable by classical means. The optimal control with shaped clas-
sical laser pulses is a well-established field of research.43,44 In par-
ticular, optimal control of two-photon absorption was described
and implemented experimentally in the late 1990s.45–49 In these
applications, which typically rely on strong laser fields that can
manipulate the interference between excitation pathways, quantum
light is seen as rather detrimental, as pointed out in Ref. 50. How-
ever, we recently showed that this is not true for weak broadband
fields, where quantum correlations of light can enhance excitation
probabilities.51,52

To find these optimal quantum states of light to drive a
two-photon transition, we used a coherent control theory for
continuous-mode quantum light. In particular, this enabled us to
quantify the possible enhancement of the two-photon absorption
probability due to quantum correlations between frequency compo-
nents of the injected pulses, which go hand in hand with strong cor-
relations of the arrival time of the photons. We have so far restricted
this analysis to a simple three-level system. In this paper, we extend
this theory to two-photon excitations in multilevel systems.

We connect to our previous work by briefly recalling in Sec. II
the theoretical framework of light–matter interactions. In Sec. III,
we recollect the theory of optimal states driving a three-level system
and then generalize this to multilevel targets, where the excitation
of undesired nearby states can prevent that of the particular tar-
get states. Finally, in Sec. IV, we apply the formalism to a cavity
polariton system, where an interesting interference effect involving
entangled photons was recently reported in Ref. 53. We conclude
with Sec. V.

II. THEORETICAL FRAMEWORK
We consider two pulses—each carrying a single

photon—impinging on the atomic target. These fields and
matter degrees of freedom are described, respectively, by Hamil-
tonians Hf and Hm, and are coupled by a light–matter interaction
Hamiltonian W, which we present in the following paragraphs. The
total Hamiltonian thus reads H = Hf +Hm +W.

Both quantized pulses are injected along fixed and distinct
spatial directions and are described by continuous-mode oper-
ators, a1(ω) and a2(ω), respectively.54 The fields’ Hamiltonian,
ignoring the vacuum energy, is then Hf = ∑j∫

∞

0 dωh̵ωa†
j (ω)aj(ω).

The positive-frequency electric field operator acting on the Hilbert
space of photon j (in the interaction picture with respect to Hf)
reads

E+j (z, t) = i∫
∞

0
dω
√

h̵ω
4πϵ0cA

aj(ω)ei[k(ω)z−ωt]. (1)

Here, z is the position along the propagation direction, A is the quan-
tization area perpendicular to it, and c is the speed of light, and we
assume a parallel polarization of the pulses. We consider the target
sample placed at z = 0, and much smaller than the wavelength of the
light field, such that we can drop the spatial modulation of the field
operator (1). Furthermore, we only consider field states character-
ized by narrow pulse shapes, of bandwidth Δω, distributed around
a central frequency ω0 ≫ Δω. Since all expectation values are calcu-
lated with respect to these states, we can safely extend the range of
frequency integration and write the electric field operator (1) in the
narrow bandwidth approximation54 as

E+j (t) = iE0∫

∞

−∞

dω aj(ω)e−iωt , (2)

where E0 = (h̵ω0/4πϵ0cA)1/2 approximates the field normalization
of (1). The range of integration (−∞,∞) will be assumed from
now on.

As for the matter degrees of freedom, we consider a system
with a ground state ∣g⟩, multiple intermediate states ∣e1⟩, ∣e2⟩, . . . ,
and multiple final states ∣ f 1⟩, ∣ f 2⟩, . . .. With each state ∣s⟩ we asso-
ciate an energy hωs (we set hωg = 0), an inverse lifetime γs (γg = 0
since the ground state cannot decay), and a Lorentzian line shape
Ls(ω) = (ω − zs)

−1, where zs = ωs − iγs. For eigenstates with a finite
lifetime, we consider an effective, non-Hermitian55 matter Hamil-
tonian Hm = ∑jh̵zej ∣ej⟩⟨ej∣ + ∑kh̵z f k ∣ f k⟩⟨ f k∣. Adjacent manifolds are
dipole-coupled with dipole matrix elements (along the fields’ polar-
ization) μgej and μej f k , respectively.

The light–matter interaction Hamiltonian in the rotating
wave approximation—which is certainly valid in the present near-
resonant perturbative regime where μE0 ≪ h̵ω0 (for any of the dipole
matrix elements μ above)—and, as the subscript indicates, in the
interaction picture with respect to Hf +Hm, is therefore given by54

WI(t) = −V(t)E−(t) − V†
(t)E+(t), (3)

where the components of the dipole operator that annihilate an
electronic excitation may be written as

V(t) = ∑
j,k
μgej e

−izej t
∣g⟩⟨ej∣ + μej f k e−i(z f k

−zej)t
∣ej⟩⟨ f k∣ (4)

and E+(−) = E+(−)1 + E+(−)2 since we assume that each pulse couples
identically to the matter degrees of freedom.

III. OPTIMIZATION PROCEDURE
A. Single final state

We seek a two-photon state ∣Φ f ⟩ of the incoming fields, which
optimizes the two-photon transition from the ground state ∣g⟩ to a
single final state ∣ f ⟩, via a manifold of ne intermediate states ∣ej⟩.

Mathematically, we consider an initial state ∣Φ f ⟩ ⊗ ∣g⟩ in the
combined matter-field Hilbert space H = Hf ⊗Hm (mirroring the
subscripts of the Hamiltonians in Sec. II) and determine ∣Φ f ⟩

such that the time evolution operator UI(t, t0) in the interac-
tion picture of Hf +Hm maximizes the population of the target
state ∣0⟩ ⊗ ∣ f ⟩, where both photons have been absorbed in order
to drive the matter degrees of freedom to the final state ∣ f ⟩. As
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described in detail in Ref. 52, we can find this transition ampli-
tude perturbatively. Tracing out the matter degrees of freedom, the
desired transition is mediated by an operator acting on Hf alone,

T̂ f = ⟨ f (t)∣UI(t, t0)∣g⟩ = ∬ T f (ω1,ω2)a1(ω1)a2(ω2)dω1dω2,
(5)

with the explicit expression of the matter response function

T f (ω1,ω2) = (
iE0

h̵
)

2

∑
j
μgejμej f [Lej(ω1) +Lej(ω2)]

×L f (ω1 + ω2)e−i(ω1+ω2)t . (6)

The matter response function (6) is to be derived for the excitation
of the population of ∣ f ⟩ at a fixed time t, with the interaction WI(t)
turned on at t0 → −∞. Without loss of generality, we can therefore
set t = 0. The state ∣Φ f ⟩ can now be found by the variation of the
functional51,52

Jsingle[∣Φ⟩] = p f − λ(⟨Φ∣Φ⟩ − 1), (7)

where p f = ∣⟨0∣T̂ f ∣Φ⟩∣2 is the population in the target state ∣ f ⟩ cre-
ated by the absorption of ∣Φ⟩, leaving the field in the vacuum
state ∣0⟩. The Lagrange multiplier λ constrains the optimization to
normalized states.56 Defining the (unnormalized) two-photon state
∣T f ⟩ = T̂†

f ∣0⟩ via (5), the functional (7) is maximized51,52 by the state

∣Φ f ⟩ = N
−1/2
f ∣T f ⟩ whose associated wave function reads

Φ f (ω1,ω2) = ⟨0∣a1(ω1)a2(ω2)∣Φ f ⟩ =
T∗f (ω1,ω2)
√
N f

, (8)

given the appropriate normalization N f = ⟨T f ∣T f ⟩, which we deter-
mine analytically in Subsection III B.

B. Multiple final states
We now generalize the formalism to the case of a manifold

with n f target states. Our aim is to find the optimal two-photon
state that maximally populates a given final state ∣ f 1⟩ while min-
imizing the population of all other energetically near-degenerate
states ∣ f 2⟩, ∣ f 3⟩, . . ., which are equally reachable in terms of the
energy of the incoming radiation (and assuming that no selection
rule prevents this). To this end, we need to generalize functional (7)
such that the target state’s population p f 1 is maximized, while the
excitation of any other states ∣ f j≠1⟩ is penalized,

J[∣Φ⟩] = p f 1 −∑
j≠1

p f j − λ(⟨Φ∣Φ⟩ − 1). (9)

Note that enforcing strictly vanishing populations in the states
∣ f j⟩ ≠ ∣ f 1⟩ is prevented by the fact that the matter response functions
(6) for different target states ∣ f j⟩, in general, exhibit finite overlap.

In analogy to Subsection III A, to maximize (9), we first define
two-photon states ∣T f j⟩ = T̂†

f j
∣0⟩. We remind here that these states

are not normalized, but their normalization will be taken care of in
(12). By writing p f j = ∣⟨T f j ∣Φ⟩∣

2, functional (9) transforms into

J[∣Φ⟩] = ∣⟨T f 1 ∣Φ⟩∣
2
−∑

j≠1
∣⟨T f j ∣Φ⟩∣

2
− λ(⟨Φ∣Φ⟩ − 1). (10)

The state ∣Φ̃⟩ that maximizes this functional is found by requiring
the variational derivative with respect to the dual state52 ⟨Φ∣ to
vanish,

δJ
δ⟨Φ∣

= 0 ⇔
⎛

⎝
K f 1 −∑

j≠1
K f j

⎞

⎠
∣Φ⟩ = λ∣Φ⟩, (11)

with K f j = ∣T f j⟩⟨T f j ∣. A direct and robust way to solve this eigen-
value problem—compared, e.g., to the introduction of an orthonor-
mal basis via an orthogonalization procedure—is to formulate it on
the subspace spanned by the non-orthogonal states {∣T f j⟩}j. We
then obtain the generalized eigenvalue problem57 (GEP)

diag(1,−1,−1, . . .) ⋅ v = λM ⋅ v, Mjk =
Σ f j f k

√
N f jN f k

, (12)

where the matrix M is given by the overlaps

Σ f j f k = ⟨T f j ∣T f k⟩ = −8π2
(
E0

h̵
)

4

∑
m,n

μgemμem f jμgenμen f k

(zem − z∗en)(z f − z∗f ′)
(13)

and the normalization constants

N f = Σ f f =
8π2E4

0

h̵4γ f
∑
m<n

μgemμem f μgenμen f (γem + γen)

(ωem − ωen)
2
+ (γem + γen)

2 . (14)

We remark here that the original optimization problem (9) on
the space of square-integrable functions on R2 has been reduced to
an eigenvalue problem of dimension n f on the target state manifold.
All matrices that enter (12) are known analytically and exclusively
depend on the spectral properties (eigenenergies, dipole matrix ele-
ments, and lifetimes) of the matter degrees of freedom (the factors
E0/h̵ drop out).

The selective optimal two-photon wave function Φ̃(ω1,ω2) is
determined by the eigenvector ṽ associated with the largest eigen-
value of (12) since we seek to maximize (9). Its components pro-
vide the optimal linear combination of the indistinctive optimal
two-photon wave functions Φ f j from (8),

Φ̃(ω1,ω2) = ∑
j
ṽj

T∗f j
(ω1,ω2)
√
N f j

. (15)

From the eigenvectors, we can also immediately compute the max-
imal final-state populations excited by the selective optimal state,

p f k = ∣(M ⋅ ṽ)k∣
2, (16)

where we remind the reader that the eigenvectors of a GEP are
orthonormal with respect to the scalar product induced by the M
matrix: (vj,vk)M = v

∗

j ⋅M ⋅ vk = δjk.

IV. APPLICATION TO A NEAR-DEGENERATE
MANIFOLD

The coherent superposition (15) of indistinctive optimal states
(8) suggests that interference effects between the latter might play
an important role in maximizing the target state’s population p f 1 .
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However, this information must be encoded in the coefficients ṽj
whose specific value, even if analytically computable, might not
prove insightful. Therefore, to assess the effectiveness of our opti-
mization method in selectively driving a pre-defined two-photon
transition, we want to apply it to a manifold with both near-
degenerate and non-degenerate states, as a benchmark. Such a struc-
ture is given, e.g., by the atom-field Hamiltonian describing N atoms
“dressed” by a quantized cavity mode.58 After defining the model,
we study how the structure of the optimal two-photon states reflects
the different excitation pathways ∣g⟩ → ∣ej⟩ → ∣ f k⟩, i.e., the possible
transitions, through the intermediate manifold of ∣ej⟩ states, which
maximize the yield of the target two-photon transition ∣g⟩ → ∣ f k⟩. In
particular, we discuss the selectivity with which a specific state, from
a near-degenerate pair, can be excited by entangled or separable
states of light.

A. Dressed-state Hamiltonian
The N-atom-field Hamiltonian we work with reads

H =
N

∑
n=1

ωnσ†
nσn + ω0b†b +

N

∑
n=1

gn(σ†
n + σn)(b + b†

), (17)

with h ≡ 1. We consider N = 2 two-level atoms, each with its indi-
vidual frequency ωn and raising (lowering) Pauli operators σn (σ†

n ).
Each atom couples with the strength gn to a monochromatic field,
i.e., to a quantized harmonic oscillator with frequency ω0 and
annihilation (creation) operator b (b†). When the rotating wave
approximation is applied, i.e., when gn ≪ ∣ω0 − ωn∣ ≪ ωn, ∀n, the
counter-rotating terms σnb and σ†

n b† can be ignored to obtain
the Jaynes–Cummings59 (for N = 1) or Tavis–Cummings60 (N > 1)
model. In this work, since N = 2, we target the two-excitation man-
ifold of the Tavis–Cummings Hamiltonian, which is spanned by
the basis states61 ∣gg; 2⟩, ∣ge; 1⟩, ∣eg; 1⟩, and ∣ee; 0⟩, which contain,
in total, two shared excitations between field and atomic degrees
of freedom. Diagonalization of the Tavis–Cummings Hamiltonian
in this manifold yields the four dressed states ∣ f 1⟩, . . . , ∣ f 4⟩, where
the two central states ∣ f 2⟩ and ∣ f 3⟩ are degenerate with energy 2ω0;
however, when gn ∼ ∣ω0 − ωn∣, the counter-rotating terms of the full
Hamiltonian (17) lift this degeneracy. The discrimination of either

state against the other, then, depends on the competition between
their energy separation and their linewidths due to lifetime broad-
ening. When these are similar, we have the ideal scenario to test the
ability of our method to selectively excite just one of them.

The dressed electronic states of the atom-field Hamiltonian
are also called (cavity) polaritons since (17) constitutes a minimal
model of the coupling between photons and the oscillating elec-
tric dipoles in a loosely bound crystal.62 In this context, and in the
text that follows, states from the single- and double-excitation man-
ifolds are addressed, respectively, as “polaritons” and “bipolaritons.”
Two-photon absorption to the manifold of bipolariton states was
recently considered in Ref. 53. The transition was excited by an
entangled biphoton state, created by a cw pump laser, with a fre-
quency sum matching the excitation energy ω1 + ω2 of the targeted
two-excitation manifold. It was shown that when the bandwidth
of the individual photons, which is determined by the so-called
entanglement time, becomes very narrow such that the biphoton
state becomes effectively separable, certain bipolariton states become
unaccessible (“dark”53) due to destructive interference between exci-
tation pathways.

Here, instead, we are interested in the interference between
different excitation pathways that manifests in the general spec-
tral structure of the optimal states (15), with no further constraints
beyond those introduced by functional (9). We therefore gather
all spectral information on the (dressed) matter degrees of free-
dom by diagonalizing Hamiltonian (17) with the maximal num-
ber of excitations in the cavity mode fixed at 15 photons (which
is sufficient for numerical convergence). To ease comparison, we
use the parameter values extracted from Ref. 53: ω0 = 1 eV, ω1 =

0.8ω0, ω2 = 1.2ω0, and g1 = g2 = 0.14 eV. Of the polaritonic spec-
trum, we consider the non-degenerate ground state ∣g⟩, the ne = 3
polaritons in the single-excitation manifold, and the n f = 4 bipolari-
tons in the double-excitation manifold [note that, under the above
assumption of sufficiently weak coupling gn, the uncoupled polari-
tonic and bipolaritonic manifolds remain spectrally well-separated
such that the attributes “(bi)polaritonic” still remain meaningful].
As in Sec. II, we set the origin of our energy scale at ωg , although,
for completeness, we report the unshifted energy levels of the
dressed states in Table I. To characterize the available excitation

TABLE I. Eigenenergies ωr (in units of the cavity mode frequency ω0, with h ≡ 1) of the dressed states ∣g⟩, ∣ej⟩, and ∣ f k⟩, j = 1, 2, 3, k = 1, . . . , 4, of the Hamiltonian
(17) for N = 2 two-level systems with eigenfrequencies ω1 = 0.8ω0 and ω2 = 1.2ω0, respectively, and their mutual dipole matrix elements μrs. Due to the weak coupling
g1, g2 = 0.14 eV ≪ ω0 = 1 eV ≃ ω1 ≃ ω2, the spectral structure of the uncoupled (g1 = g2 = 0) dressed system—one non-degenerate ground state, three degenerate
single-excitation states, and four degenerate double-excitation states—remains essentially intact, apart from the degeneracies being lifted.

ωr/ω0 −2.04 × 10−2 0.698 0.979 1.26 1.58 1.97 2.00 2.37
μrs g e1 e2 e3 f 1 f 2 f 3 f 4

G 0 1.09 1.61 × 10−3 0.939 0 0 0 0
e1 1.09 0 0 0 0.891 0.475 0.705 0.125
e2 1.61 × 10−3 0 0 0 0.757 −7.95 × 10−2

−7.34 × 10−2 0.688
e3 0.939 0 0 0 −0.205 0.515 0.706 −0.779
f 1 0 0.891 0.757 −0.205 0 0 0 0
f 2 0 0.475 −7.95 × 10−2 0.515 0 0 0 0
f 3 0 0.705 −7.34 × 10−2 0.706 0 0 0 0
f 4 0 0.125 0.688 −0.779 0 0 0 0
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pathways from the ground state to the two-excitation manifold,
we compute the dipole matrix elements entering (4). The element
μrs = ∑n⟨r∣σ

†
n + σn∣s⟩ is taken along the polarization direction of the

electric field and connects the eigenstates ∣r⟩ and ∣s⟩ of (17) via
the excitation of either two-level system, which we take as aligned
dipoles. The values of the dipole matrix elements are also reported in
Table I.63

The last quantity we need to calculate the overlaps in (13) are
the linewidths of the (bi)polariton states. As we mentioned above,
we wish to assess how well our method can resolve two near-
degenerate states in the two-excitation manifold. For this reason,
we set, for now, γ f = 0.01ω0 ≈ (ω f 3 − ω f 2)/3. This implies a sig-
nificant overlap between the indistinctive optimal pulses (8) that
excite each bipolariton individually, as one finds directly with (13).
For the single-excitation manifold, instead, we take γe = γ f /2 as one
would expect for the radiative decay of two uncoupled two-level
systems.

B. Optimal states

The selective optimal two-photon wave functions (15) exciting
either one of the bipolariton states ∣ f j⟩ are distinct. Their moduli
square, ∣Φ̃ f j(ω1,ω2)∣

2, are all displayed in Fig. 1(a). If the excita-
tion frequency of the target state is ω f , the maxima of the wave
functions are aligned along the antidiagonal ω1 + ω2 = ω f (black
dotted line). Since the excitation of ∣e2⟩ is suppressed (μge2 ≈ 0; see
Table I), any bipolariton will be reached predominantly by either
exciting ∣e1⟩ or ∣e3⟩ first. Hence, we will get maximal population in
∣ f 1⟩, for instance, with photon pairs of frequencies (ωe1 ,ω f 1 − ωe1)

and, to a lesser degree,64 (ωe3 ,ω f 1 − ωe3). Consequently, these two
points in the two-photon frequency space is where the optimized
wave function’s density is peaked. As discussed at the end of Sec. II,
the photons couple identically to the matter, which means that
either photon can excite the ∣g⟩ → ∣e⟩ transition, while the other
must complete the two-photon absorption by exciting ∣e⟩ → ∣ f ⟩. As a

FIG. 1. (a) Selective optimal two-photon wave functions (15) exciting, from left to right, the bipolaritons ∣ f 1⟩ to ∣ f 4⟩, as indicated in the top-right corner. Colors and fine-dotted
contour lines indicate the intensity of ∣Φ̃(ω1,ω2)∣

2 on a logarithmic scale. The gray dashed lines indicate the resonance frequency of the states ej in the single-excitation
manifold, while the black dotted lines delineate the antidiagonal ω1 + ω2 = ω f . (b) Red (left) and blue (right) bars: populations in each bipolariton, in units of N f (14),
excited by, respectively, the selective optimal state (15) depicted in the panel directly above and the corresponding classical pulse (19) depicted in the panel directly below.
The bars that are not visible are too small compared to the scale but are never exactly zero. (c) Classical pulses (19) obtained from the pulses in row (a). Colors and
fine-dotted contour lines indicate the intensity of ∣Φ̃cl(ω1,ω2)∣

2 on a logarithmic scale. The gray dashed lines indicate the resonance frequency of the states ej in the
single-excitation manifold, while the black dotted lines delineate the antidiagonal ω1 + ω2 = ω f . Simulations run with γ f = 0.01ω0.
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consequence, the optimal wave function is symmetric with respect to
the two frequencies ω1 and ω2.

The bipolariton population correspondingly excited by each
such pulse is given by the red (left) bars in Fig. 1(b). Note that the
populations are given in units of the state normalization N f intro-
duced in Eq. (14). When columns are not visible, the populations
are very small compared to the dominating states but are never
exactly zero. From these histograms, we see that we can populate
almost perfectly the bipolariton states ∣ f 1⟩ and ∣ f 4⟩, which are well
separated in energy from competing states. The excitation targeting
either ∣ f 2⟩ or ∣ f 3⟩, however, induces a fraction of population also
in the respective other state. This is consistent with the two states
having a non-negligible overlap for γ f = 0.01ω0, as in this regime
ω f 3 − ω f 2 ≈ 3γ f .

As shown in Refs. 51 and 52, the optimal population of the
bipolaritons is achieved by the optimized coherent superposition of
different frequency modes such that the atomic response to any fre-
quency pair (ω1,ω2) adds up constructively. In general, this can only
be accomplished if the incoming field modes exhibit entanglement.

The minimal set of modes required to construct a given entangled
state can be computed using the following Schmidt decomposition:65

Φ̃(ω1,ω2) =
M

∑
j=1

rjϕj(ω1)ψj(ω2), (18)

which is a weighted sum of M orthonormal modes {ϕj}j and {ψj}j.
The weights rj can be chosen real and are listed in decreasing order,
by convention. The normalization of the state requires∑jr

2
j = 1.

The Schmidt modes are useful in constructing the optimal sep-
arable or classical state, which contains no quantum correlations,

Φ̃cl(ω1,ω2) = ϕ1(ω1)ψ1(ω2). (19)

It can excite a fraction r2
1 of the optimal population.51 This “classical”

population, which we plot as blue (right) columns in Fig. 1(b), can
be excited, in principle, by conventionally shaping the frequency
spectrum of the individual broadband photons using, for instance, a
spatial light modulator to optimize the photonic pulse forms.25,49,66

FIG. 2. As in Fig. 1. (a) Selective optimal two-photon wave functions (15) exciting, from left to right, the bipolaritons ∣ f 1⟩ to ∣ f 4⟩, as indicated in the top-right corner. Colors
and fine-dotted contour lines indicate the intensity of ∣Φ̃(ω1,ω2)∣

2 on a logarithmic scale. The gray dashed lines indicate the resonance frequency of the states ej in the
single-excitation manifold, while the black dotted lines delineate the antidiagonal ω1 + ω2 = ω f . (b) Red (left) and blue (right) bars: populations in each bipolariton, in units
of N f (14), excited by, respectively, the selective optimal state (15) depicted in the panel directly above and the corresponding classical pulse (19) depicted in the panel
directly below. The bars that are not visible are too small compared to the scale but are never exactly zero. (c) Classical pulses (19) obtained from the pulses in row (a).
Colors and fine-dotted contour lines indicate the intensity of ∣Φ̃cl(ω1,ω2)∣

2 on a logarithmic scale. The gray dashed lines indicate the resonance frequency of the states ej
in the single-excitation manifold, while the black dotted lines delineate the antidiagonal ω1 + ω2 = ω f . Simulations run with γ f = 0.1ω0.

J. Chem. Phys. 154, 214114 (2021); doi: 10.1063/5.0049863 154, 214114-6

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

It cannot, however, rely on entanglement, i.e., on the superposition
of different products of modes as in (18).

In Fig. 1(c), we show the optimal classical states derived from
each optimal wave function of row (a). The comparison between
the two rows clarifies the role of the coherent superposition of the
modes in (18): only their constructive or destructive interference can
reproduce the profile, dominated by the antidiagonal, of the opti-
mal two-photon wave function. If we consider again the case of ∣ f 1⟩,
we see that the classical pulse excites the (ωe1 ,ω f 1 − ωe1) and (ωe3 ,
ω f 1 − ωe3) transitions, which are resonant with ∣ f 1⟩. In addition,
however, there is also substantial spectral weight at (ωe1 ,ωe1) and
(ω f 1 − ωe1 ,ω f 1 − ωe1), i.e., at frequency combinations that are off-
resonant for the given γ f . In the absence of quantum correlations,
they cannot be suppressed. The superposition of Schmidt modes in
the entangled state enhances the first two resonant frequency combi-
nations and suppresses the off-resonant combinations, thus enhanc-
ing the population by roughly a factor of 2 compared to the classical
case [see Fig. 1(b)].

Since the natural linewidth γ f of the bipolaritons determines
how close to resonance the two-photon transitions are, Fig. 2 shows
the optimal two-photon wave functions, the target state population
histograms, and the accordingly shaped classical pulses for bipo-
laritons with a linewidth enlarged by a factor of 10 (i.e., shorter
lifetimes), γ′f = 0.1ω0 = 10γ f . As one would expect intuitively, while
the general structure of the optimal states can still be recognized,
given our knowledge of their structures for narrow linewidths as
depicted in Fig. 1, some details are washed out by the broadened
resonances. For the state ∣ f 1⟩, for instance, the square-like structure,
visible in Fig. 1, of the classical pulse, for γ f , cannot be resolved any-
more for γ′f because the single-photon frequency distributions are
much broader than the difference (ω f 1 − ωe1) − ωe1 = ω f 1 − 2ωe1 .
This explains why the population induced by the shaped classical
state is larger for γ′f than for γ f . Similarly, when we try to optimally
populate ∣ f 2⟩, we now also obtain a larger population in ∣ f 3⟩, as well
as some in ∣ f 4⟩. The latter is due to the classical pulse having a sig-
nificant peak around (ωe3 ,ωe3), which is broad enough to excite the
(ωe3 ,ω f 4 − ωe3) two-photon transition to ∣ f 4⟩.

C. Selectivity
Subsection IV B showed that, if the linewidth of the states is

much larger than the frequency differences involved in the two-
photon transitions, (i) the quantum advantage due to the frequency
entanglement in the optimal pulses is reduced, (ii) the achievable
populations in ∣ f 1⟩ and ∣ f 4⟩ decrease (increase) with increasing γ f
when using an entangled (classical) two-photon state, and (iii) the
target population in ∣ f 2⟩ (∣ f 3⟩) decreases with increasing γ f , while
that of ∣ f 3⟩ (∣ f 2⟩) increases. This latter point, in particular, implies
that the selectivity of the optimal pulse (15), captured by the contrast
between the populations of ∣ f 2⟩ and ∣ f 3⟩,

S =
∣p f 2 − p f 3 ∣

p f 2 + p f 3

, (20)

worsens for broader linewidths.
Finally, an analysis of how the desired selectivity scales with

the intermediate and target states’ linewidths (γ f = 2γe), for opti-
mal quantum vs classical two-photon states, reveals the advantage

FIG. 3. Top: selectivity S from Eq. (20) calculated for selectively optimal [(15),
red circles], shaped classical [(19), blue diamonds], and indistinctive optimal [(8),
green squares] pulses. Bottom: ratio of the selectivity achieved with selectively
optimal (red circles) or shaped classical pulses (blue diamonds) to the selectivity
achievable with an indistinctive optimal pulse.

of performing the optimization presented in this work. In Fig. 3, we
compare the selectivity in those cases where the population of ∣ f 2⟩

is induced by selective optimal entangled states (15) to that achieved
by shaped classical states of light (19). In addition, we compare these
results to those achieved with the indistinctive optimal quantum
state (8), which, we remind from Sec. III, is optimized to excite the
∣g⟩ → ∣ f 2⟩ transition most efficiently, without the additional con-
straint to minimize the excitation of other nearby bipolaritons from
the same manifold. For all three possible injected two-photon states,
the selectivity decays with γ f , in a qualitatively exponential fashion
(top panel). Yet, selective optimization, as conceived in Sec. III, for
classical and for quantum light, slows this decay down. For instance,
at γ f = 0.05ω0, the indistinctive optimal (quantum) pulse will hardly
discriminate ∣ f 2⟩ against ∣ f 3⟩ any more, while the optimization pro-
cedure can still achieve ca. 25% selectivity. This relative improve-
ment is visualized by plotting the ratio of selective vs indistinctive
yields in the bottom panel of Fig. 3: this ratio actually increases with
increasing γ f . This has a very intuitive explanation: the possibility
of constructing suitable linear superpositions (15) of indistinctive
optimal states (8) relies, in the first place, on their overlap, which
increases with γ f .

V. CONCLUSIONS
We have investigated continuous-mode two-photon states to

populate a target matter state reachable by two-photon absorption.
The method discussed in this work optimizes the excitation’s selec-
tivity, i.e., it maximizes the target state population while minimizing
residual population within the complement of the target state’s man-
ifold. The optimal quantum state of light to drive this transition can
be obtained by solving a generalized eigenvalue problem where all
matrices depend analytically on the spectral properties of the driven
system and have a dimension given by that of the manifold the target
state is embedded in.

We have applied our method to the specific setting of two non-
interacting atoms dressed by a cavity mode, with the goal of driving
the transition from the ground state to one of the four bipolariton
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states in the two-excitation manifold. If the bipolariton states are
well separated in energy, our procedure is equivalent to the opti-
mization of a single pathway analyzed in previous work.51,52 If they
overlap instead, the excitation of an individual transition inevitably
induces transitions to the nearby states too. In this case, however,
we manage to obtain an appreciable selectivity even when it would
be impossible to otherwise discern closely neighboring resonances.
The Hamiltonian (17) considered in this study is formally similar to
excitonic models of molecular aggregates67 in physical chemistry in
the sense that, in the parameter regime considered here, we obtain
energetically well-separated manifolds of states where adjacent ones
are dipole-coupled. It seems highly likely that the excitation physics
presented here will carry over to entangled two-photon excitation
of molecular aggregates.33,34 We note, however, that the inevitable
coupling of the electronic states to environmental degrees of free-
dom will induce additional relaxation processes, such as incoherent
electronic population transfer. These processes are not captured by
the non-Hermitian Hamiltonian considered here and would rather
require an open system description where the material degrees of
freedom evolve according to a master equation.

While the solution of the selective optimization problem is gen-
eral, its benchmark inevitably depends on the specific structure of
the target spectrum considered. In particular, to enable a compari-
son with Ref. 53, we considered a sufficiently small coupling constant
gn in (17) such that the single- and double-excitation manifolds
remain well separated in energy. The selective excitation of transi-
tions in a spectrum where the said manifolds mix, instead will be a
topic of future research.
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