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Abstract

Accelerated charges emit electromagnetic radiation and the consequent energy-momentum loss

alters their trajectory. This phenomenon is known as radiation reaction and the Landau-Lifshitz

(LL) equation is the classical equation of motion of the electron, which takes into account radiation-

reaction effects in the electron trajectory. By using the analytical solution of the LL equation in an

arbitrary plane wave, we compute the analytical expression of the classical emission spectrum via

nonlinear Thomson scattering including radiation-reaction effects. Both the angularly-resolved and

the angularly-integrated spectra are reported, which are valid in an arbitrary plane wave. Also, we

have obtained a phase-dependent expression of the electron dressed mass, which includes radiation-

reaction effects. Finally, the corresponding spectra within the locally constant field approximation

have been derived.

PACS numbers: 12.20.Ds, 41.60.-m

I. INTRODUCTION

Maxwell’s and Lorentz equations allow one in principle to describe self-consistently the

classical dynamics of electric charges and their electromagnetic field. However, even in the

case of a single elementary charge, an electron for definiteness, the solution of the self-

consistent problem of the electron dynamics and of that of its own electromagnetic field is

plagued by physical inconsistencies, which ultimately are related to the divergent self energy

of a point-like charge. In fact, the inclusion of the “reaction” of the self electromagnetic field

on the electron dynamics (known as radiation reaction) implies an unavoidable Coulomb-

like divergence when one evaluates the self field at the electron position [1–4]. However, this

divergence can be reabsorbed via a redefinition of the electron mass, which ultimately leads

to one of the most controversial equations in physics, the Lorentz-Abraham-Dirac (LAD)

equation [5–7]. In the case of interest here, where the external force is also electromagnetic,

the LAD equation can be derived by eliminating from the Maxwell-Lorentz system of equa-

tions the electromagnetic field generated by the electron. In this respect, solving the LAD

equation amounts to solving exactly the electron dynamics in the external electromagnetic
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field and plugging the resulting solution into the Liénard-Wiechert potentials amounts to

determining the corresponding exact electromagnetic field.

Even after the absorption of the divergent electron self-energy via the classical mass

renormalization, the LAD equation remains problematic as it allows for so-called runaway

solutions, where the electron’s acceleration may exponentially increase with time even if

the external field, for example, vanishes identically [1–4]. The origin of the existence of the

runaway solutions is precisely a term in the radiation-reaction force, known as the Schott

term, which depends on the time-derivative of the electron acceleration, thus rendering the

LAD equation a third-order differential equation with non-Newtonian features.

Landau and Lifshitz realized that within the realm of classical electrodynamics, i.e., if

quantum effects are negligible, the radiation-reaction force in the instantaneous rest frame

of the electron is always much weaker than the Lorentz force [2]. This allows one to replace

the electron four-acceleration in the radiation-reaction four-force with its leading-order ex-

pression, i.e., with the Lorentz four-force divided by the electron mass [2]. It is important to

stress that the “reduction of order” proposed by Landau and Lifshitz is such that neglected

quantities are much smaller than corrections induced by quantum effects, which are already

ignored classically. The resulting equation is known as the Landau-Lifshitz (LL) equation

and it is free of the physical inconsistencies of the LAD equation [8]. The equivalence be-

tween the LL equation and the LAD equation within the realm of classical electrodynamics

has to be intended as these equations differ by terms much smaller than quantum corrections

(see Refs. [9, 10] for numerical tests about this equivalence and Ref. [11] for a numerical

example where the predictions of the LL and the LAD equations differ but where quantum

effects indeed are large). Presently the LL equation, as well as the problem of radiation

reaction in general, is being investigated by several groups both theoretically [12–25] and

experimentally [26–28] (see also the recent reviews [29–32] for previous publications).

Here, we present analytical expressions of the energy emission spectrum of an electron

driven by an external intense plane wave (nonlinear Thomson scattering) by taking into

account radiation-reaction effects via the LL equation. To achieve this goal, we use the

analytical solution of the LL equation in an arbitrary plane wave [33] and we derive the

angularly-resolved and the angularly-integrated energy spectra as double integrals over the

phase of the plane wave. In this respect, we point out that additional classical corrections to

the energy spectra, which would be brought about, i.e., by using the LAD equation would be
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smaller than already ignored quantum corrections. Finally, the corresponding expressions

within the so-called locally constant field approximation (LCFA) are derived as single phase-

integrals [30, 34, 35]. These results obtained here also complement the ones obtained in Ref.

[36], where the analytical expression of the infrared limit of the emission spectrum including

radiation-reaction effects was presented.

Units with ~ = c = 4πǫ0 = 1 are employed throughout and the metric tensor is ηµν =

diag(+1,−1,−1,−1).

II. ANALYTICAL SPECTRUM OF NONLINEAR THOMSON SCATTERING

Let us consider an electron (charge e < 0 and mass m, respectively), whose trajec-

tory is characterized by the instantaneous position x(t) and the instantaneous velocity

β(t) = dx(t)/dt. The electromagnetic energy E radiated by the electron per unit of an-

gular frequency ω and along the direction n = (sin ϑ cosϕ, sinϑ sinϕ, cosϑ) within a solid

angle dΩ = sinϑdϑdϕ is given by [see, e.g., Eq. (14.67) in Ref. [1]]

dE
dωdΩ

=
e2ω2

4π2

∣

∣

∣

∣

∫ ∞

−∞

dtn× (n× β(t))eiω(t−n·x(t))

∣

∣

∣

∣

2

, (1)

and we stress that this expression of the emitted energy is valid for an arbitrary trajectory

of the electron.

Now, we assume that the electron moves in the presence of a plane-wave background field,

described by the four-vector potential Aµ(φ) = (A0(φ),A(φ)), where φ = (n0x) = t−n0 ·x,
with nµ

0 = (1,n0) and the unit vector n0 identifying the propagation direction of the plane

wave itself. We decide to work in the Lorenz gauge ∂µA
µ(φ) = (n0A

′(φ)) = 0 with the

additional condition A0(φ) = 0. Here and below, the prime indicates the derivative with

respect to the argument of a function. By assuming that limφ→±∞A(φ) = 0, then the

Lorenz-gauge condition implies n0 ·A(φ) = 0. Thus, the four-vector potential Aµ(φ) can be

written as Aµ(φ) =
∑2

j=1 a
µ
jψj(φ), where the four-vectors aµj have the form aµj = (0,aj) and

fulfill the orthogonality conditions (ajaj′) = −δjj′, with j, j′ = 1, 2, and (n0aj) = −n0 ·aj =

0, and where the functions ψj(φ) are arbitrary (physically well-behaved) functions such that

limφ→±∞ ψj(φ) = 0.

It is convenient first to express the emitted energy dE/dωdΩ as an integral over the laser

phase ϕ = ω0φ, where ω0 is the central angular frequency of the plane wave (or, more in
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general, an arbitrary frequency scale describing the time dependence of the plane wave).

This is easily done because dφ(t)/dt = 1 − n0 · β(t) along the electron trajectory and one

obtains
dE
dωdΩ

=
e2

4π2

ω2

ω2
0

∣

∣

∣

∣

∫ ∞

−∞

dϕ
n× (n× p(ϕ))

p−(ϕ)
e
i ω
ω0

∫ ϕ
−∞

dϕ′ ε(ϕ
′)−n·p(ϕ′)

p−(ϕ′)

∣

∣

∣

∣

2

, (2)

where pµ(ϕ) = (ε(ϕ),p(ϕ)) = ε(ϕ)(1,β(ϕ)), with ε(ϕ) = m/
√

1− β2(ϕ), is the electron

four-momentum and p−(ϕ) = (n0p(ϕ)). In fact, it is in general convenient to introduce also

the four-dimensional quantity ñµ
0 = (1,−n0)/2 because nµ

0 , ñ
µ
0 , and a

µ
j fulfill the complete-

ness relation: ηµν = nµ
0 ñ

ν
0 + ñµ

0n
ν
0 − aµ1a

ν
1 − aµ2a

ν
2 (note that (n0ñ0) = 1 and that, as we have

already seen, (a1a1) = (a2a2) = −1, whereas all other possible scalar products among nµ
0 ,

ñµ
0 , and aµj vanish). By using the quantities nµ

0 , ñ
µ
0 , and aµj one can define the light-cone

coordinates of an arbitrary four-vector vµ = (v0, v) as v+ = (ñ0v), v⊥ = −((va1), (va2)),

and v− = (n0v). Also, the four-dimensional scalar product between two four-vectors aµ and

bµ can be written as (ab) = a+b− + a−b+ − a⊥ · b⊥.
Now, we recall that the LL equation in an external electromagnetic field F µν = F µν(x)

reads [2]

m
duµ

ds
=eF µνuν +

2

3
e2
[ e

m
(∂αF

µν)uαuν

+
e2

m2
F µνFναu

α +
e2

m2
(F ανuν)(Fαλu

λ)uµ
]

,
(3)

where s is the electron proper time and uµ(s) = pµ(s)/m is the electron four-velocity. In the

case of the plane wave described above, we can introduce the central laser four-wave-vector

as kµ0 = ω0n
µ
0 such that the laser phase reads ϕ = (k0x). By indicating as pµ0 = (ε0,p0),

with ε0 =
√

m2 + p2
0, the initial four-momentum of the electron, i.e., limϕ→−∞ pµ(ϕ) = pµ0 ,

the four-momentum pµ(ϕ) at the generic phase ϕ is given by [33]

pµ(ϕ) =
1

h(ϕ)

{

pµ0 +
1

2η0
[h2(ϕ)− 1]kµ0 +

ω0

mη0
Pµ(ϕ)− ω2

0

2m4η30
P2(ϕ)kµ0

}

. (4)

In this expression we have introduced the parameter η0 = (k0p0)/m
2 and the functions

h(ϕ) = 1 +
2

3
e2η0

∫ ϕ

−∞

dϕ̃ ξ2
⊥(ϕ̃), (5)

Pµ(ϕ) = Fµν(ϕ)p0,ν, (6)

where

Fµν(ϕ) =

∫ ϕ

−∞

dϕ̃

[

h(ϕ̃)ξµν(ϕ̃) +
2

3
e2η0ξ

′µν(ϕ̃)

]

, (7)
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with ξ⊥(ϕ) = (e/m)A′
⊥(ϕ) and ξ

µν(ϕ) = (e/m)[nµ
0A

′ ν(ϕ)−nν
0A

′µ(ϕ)]. Note that, assuming

that |ξµν(ϕ)| ∼ |ξ′µν(ϕ)| as it is typically the case for standard laser fields, the term propor-

tional to ξ′µν(ϕ) in Fµν(ϕ) can be neglected according to Landau and Lifshitz reduction of

order [2] (see Ref. [37] for a recent study on this term and Ref. [21] for a situation where it

cannot be ignored). For this reason we write

Fµν(ϕ) =

∫ ϕ

−∞

dϕ̃ h(ϕ̃)ξµν(ϕ̃) (8)

and we use this expression below. For the sake of later convenience, we also report here the

light-cone components of the four-momentum of the electron in the plane wave including

radiation reaction:

p−(ϕ) =
p0,−
h(ϕ)

, (9)

p⊥(ϕ) =
1

h(ϕ)
[p0,⊥ −mF⊥(ϕ)], (10)

p+(ϕ) =
m2 + p2

⊥(ϕ)

2p−(ϕ)
=

1

h(ϕ)

m2h2(ϕ) + [p0,⊥ −mF⊥(ϕ)]
2

2p0,−
, (11)

where F⊥(ϕ) =
∫ ϕ

−∞
dϕ̃ h(ϕ̃)ξ⊥(ϕ̃) [see Eq. (8)] as well as the corresponding longitudinal

momentum [p‖(ϕ) = n0 · p(ϕ)] and the energy:

p‖(ϕ) = p+(ϕ)−
p−(ϕ)

2
=

p0,−
2h(ϕ)

{

m2h2(ϕ) + [p0,⊥ −mF⊥(ϕ)]
2

p20,−
− 1

}

, (12)

ε(ϕ) = p+(ϕ) +
p−(ϕ)

2
=

p0,−
2h(ϕ)

{

m2h2(ϕ) + [p0,⊥ −mF⊥(ϕ)]
2

p20,−
+ 1

}

. (13)

Before replacing Eq. (4) [or equivalently Eqs. (9)-(11)] in Eq. (2), it is convenient to

write the latter equation in the form

dE
dk

= − e2

4π2

∫

dϕdϕ′ (p(ϕ)p(ϕ′))

(k0p(ϕ))(k0p(ϕ′))
e
i
∫ ϕ

ϕ′ dϕ̃
(kp(ϕ̃))
(k0p(ϕ̃)) , (14)

where we have introduced the four-wave-vector of the emitted radiation kµ = (ω,k) =

ω(1,n) and we have used the identity (see also Refs. [1, 35] on this)

∫ ∞

−∞

dϕ
(kp(ϕ))

(k0p(ϕ))
e
i
∫ ϕ
−∞

dϕ̃ (kp(ϕ̃))
(k0p(ϕ̃)) = 0. (15)

Equation (14) is especially useful if one expresses the four-dimensional scalar products in

light-cone coordinates and exploits the fact that the electron four-momentum is on-shell,
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i.e., p2(ϕ) = m2. After a few straightforward manipulations, one can easily write Eq. (14)

in the form

dE
dk

= − e2

8π2m2η20

∫

dϕdϕ′ e
i

k−
2p0,−η0

∫ ϕ

ϕ′ dϕ̃h
2(ϕ̃)[1+π2

⊥
(ϕ̃)] {

h2(ϕ) + h2(ϕ′) + [F⊥(ϕ)−F⊥(ϕ
′)]2
}

,

(16)

where

π⊥(ϕ) =
1

m

[

p⊥(ϕ)−
p−(ϕ)

k−
k⊥

]

=
1

mh(ϕ)

[

p0,⊥ −mF⊥(ϕ)−
p0,−
k−

k⊥

]

(17)

This expression shows that the effects of radiation reaction are all encoded in the function

h(ϕ) [see Eq. (5)] and if radiation reaction is ignored, i.e., for h(ϕ) = 1, one obtains the

classical spectrum of Thomson scattering. This, in turn, can be obtained as the classical

limit of the spectrum of nonlinear Compton scattering as reported, e.g., in Ref. [38], which

is accomplished by neglecting the recoil of the emitted radiation (emitted photon in the

quantum language) on the electron. More precisely, we recall here that Eq. (16) divided

by ω corresponds to the classical limit of the average number of photons emitted by the

electron per units of emitted photon momentum [39–41].

As one can easily recognize, from Eq. (16) one can obtain the angularly-integrated energy

emission spectrum dE/dk− by using the fact that dk = (ω/k−)dk−dk⊥ and then

dE
dk−

= − e2

8π2m2η20

∫

dk⊥
ω

k−

∫

dϕdϕ′ e
i

k−
2p0,−η0

∫ ϕ

ϕ′ dϕ̃h
2(ϕ̃)[1+π2

⊥
(ϕ̃)]

×
{

h2(ϕ) + h2(ϕ′) + [F⊥(ϕ)−F⊥(ϕ
′)]2
}

.

(18)

By noticing that ω = k++k−/2 = k2
⊥/2k−+k−/2, the integral in dk⊥ is easily taken as it is

Gaussian. By passing for convenience to the average and the relative phases ϕ+ = (ϕ+ϕ′)/2

and ϕ− = ϕ− ϕ′, the resulting energy spectrum is given by

dE
dk−

= − ie2

8πη0

k−
p0,−

∫

dϕ+dϕ−

ϕ− + i0
e
i

k−
2p0,−η0

{

∫ ϕ−/2

−ϕ−/2
dϕ̃[h2(ϕ++ϕ̃)+F

2
⊥
(ϕ++ϕ̃)]− 1

ϕ−

[

∫ ϕ−/2

−ϕ−/2
dϕ̃F⊥(ϕ++ϕ̃)

]2
}

×
{

h2
(

ϕ+ +
ϕ−

2

)

+ h2
(

ϕ+ − ϕ−

2

)

+
[

F⊥

(

ϕ+ +
ϕ−

2

)

−F⊥

(

ϕ+ − ϕ−

2

)]2
}

×
((
(

1 +
m2

p20,−

{

1

ϕ−

∫ ϕ−/2

−ϕ−/2

dϕ̃
[p0,⊥

m
−F⊥(ϕ+ + ϕ̃)

]

}2

+
2im2η0
k−p0,−

1

ϕ− + i0

))
)

,

(19)

where the shift of the pole at ϕ− = 0 toward the negative imaginary half-plane can be

understood by imposing that the Gaussian integral converges [20, 35, 38].
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We observe that the structure of the exponential function in the first line of this equation

allows for introducing the concept of electron dressed mass inside a plane wave [42, 43] also

when radiation-reaction effects are important. Indeed, the phase-dependent electron square

dressed mass m̃2(ϕ+, ϕ−) can be defined here as [see Eq. (19)]

m̃2(ϕ+, ϕ−) = m2

{

1

ϕ−

∫ ϕ−/2

−ϕ−/2

dϕ̃ h2(ϕ+ + ϕ̃)

+
1

ϕ−

∫ ϕ−/2

−ϕ−/2

dϕ̃F
2
⊥(ϕ+ + ϕ̃)−

[

1

ϕ−

∫ ϕ−/2

−ϕ−/2

dϕ̃F⊥(ϕ+ + ϕ̃)

]2






.

(20)

This expression generalizes the phase-dependent square electron dressed mass as reported,

e.g., in Refs. [42–45], as it includes radiation-reaction effects.

Equation (19) can be explicitly regularized. First, we integrate by parts the term pro-

portional to [h2(ϕ+ + ϕ−/2) + h2(ϕ+ − ϕ−/2)]/ϕ
2
− and we obtain

dE
dk−

= − ie2

4πη0

k−
p0,−

∫

dϕ+dϕ−

ϕ− + i0
e
i

k−
2p0,−

m̃2(ϕ+,ϕ−)

m2η0
ϕ−

×
((
(

h̄2(ϕ+, ϕ−)

{

1 +
m2

p20,−
[p0,⊥ − 〈F⊥〉(ϕ+, ϕ−)]

2 − m2

p20,−
h̄2(ϕ+, ϕ−)

}

+
im2η0
k−p0,−

[

h
(

ϕ+ +
ϕ−

2

)

h′
(

ϕ+ +
ϕ−

2

)

− h
(

ϕ+ − ϕ−

2

)

h′
(

ϕ+ − ϕ−

2

)]

− m2

p20,−
h̄2(ϕ+, ϕ−)

[

F̄ 2,⊥(ϕ+, ϕ−) + 〈F⊥〉2(ϕ+, ϕ−)− 2F̄⊥(ϕ+, ϕ−) · 〈F⊥〉(ϕ+, ϕ−)
]

+
1

2

[

F⊥

(

ϕ+ +
ϕ−

2

)

−F⊥

(

ϕ+ − ϕ−

2

)]2

×
{

1 +
m2

p20,−
[p0,⊥ − 〈F⊥〉(ϕ+, ϕ−)]

2 +
2im2η0
k−p0,−

1

ϕ−

}))
)

,

(21)
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where we have introduced the notation

h̄2(ϕ+, ϕ−) =
1

2

[

h2
(

ϕ+ +
ϕ−

2

)

+ h2
(

ϕ+ − ϕ−

2

)]

, (22)

〈h2〉(ϕ+, ϕ−) =
1

ϕ−

∫ ϕ−/2

−ϕ−/2

dϕ̃ h2(ϕ+ + ϕ̃), (23)

F̄⊥(ϕ+, ϕ−) =
1

2

[

F⊥

(

ϕ+ +
ϕ−

2

)

+F⊥

(

ϕ+ − ϕ−

2

)]

, (24)

F̄2,⊥(ϕ+, ϕ−) =
1

2

[

F
2
⊥

(

ϕ+ +
ϕ−

2

)

+F
2
⊥

(

ϕ+ − ϕ−

2

)]

, (25)

〈F⊥〉(ϕ+, ϕ−) =
1

ϕ−

∫ ϕ−/2

−ϕ−/2

dϕ̃F⊥(ϕ+ + ϕ̃), (26)

〈F2
⊥〉(ϕ+, ϕ−) =

1

ϕ−

∫ ϕ−/2

−ϕ−/2

dϕ̃F
2
⊥(ϕ+ + ϕ̃). (27)

Note that with these definitions, the square of the electron dressed mass can be simply

written as

m̃2(ϕ+, ϕ−) = m2
[

〈h2〉(ϕ+, ϕ−) + 〈F2
⊥〉(ϕ+, ϕ−)− 〈F⊥〉2(ϕ+, ϕ−)

]

. (28)

At this point only the terms in the second line of Eq. (21) need an explicit regularization. In

the absence of radiation reaction, this is achieved by imposing that the emission spectrum has

to vanish in the absence of the external field [20, 35, 38]. Here, due to the effect of radiation

reaction, we need to introduce a slightly more complicated regularization procedure. To this

end, we introduce the function

H2(ϕ+, ϕ−) = ϕ−〈h2〉(ϕ+, ϕ−) =

∫ ϕ−/2

−ϕ−/2

dϕ̃ h2(ϕ+ + ϕ̃) (29)

and notice that
∂H2(ϕ+, ϕ−)

∂ϕ−
= h̄2(ϕ+, ϕ−) > 0 (30)

for any ϕ+. Now, for any positive real number a, it is
∫ ∞

−∞

dH2

H2 + i0
eiaH2 = 0. (31)

We have indicated the integration variable as H2 here because, by exploiting the result in

Eq. (30), we change variable to ϕ− and we obtain
∫ ∞

−∞

dϕ−

H2(ϕ+, ϕ−) + i0

∂H2(ϕ+, ϕ−)

∂ϕ−

eiaH2(ϕ+,ϕ−)

=

∫ ∞

−∞

dϕ−

H2(ϕ+, ϕ−) + i0
h̄2(ϕ+, ϕ−)e

iaH2(ϕ+,ϕ−) = 0.

(32)
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This result shows that we can formally regularize the remaining terms of Eq. (21) by

subtracting the vanishing quantity

h2(ϕ+)

{

1 +
m2

p20,−
[p0,⊥ −F⊥(ϕ+)]

2 − m2

p20,−
h2(ϕ+)

}

×
∫ ∞

−∞

dϕ−

H2(ϕ+, ϕ−) + i0
h̄2(ϕ+, ϕ−)e

i
k−

2p0,−η0
H2(ϕ+,ϕ−)

(33)

inside the integral in ϕ+. As it will be clear below, the additional front factor h2(ϕ+) is

included because for |ϕ−| ≪ 1 it is H2(ϕ+, ϕ−) ≈ h2(ϕ+)ϕ−. The resulting regularized

expression of the energy spectrum reads

dE
dk−

= − ie2

4πη0

k−
p0,−

∫

dϕ+dϕ− e
i

k−
2p0,−

m̃2(ϕ+,ϕ−)

m2η0
ϕ−

×
((
(

h̄2(ϕ+, ϕ−)

{

1 + m2

p20,−
[p0,⊥ − 〈F⊥〉(ϕ+, ϕ−)]

2 − m2

p20,−
h̄2(ϕ+, ϕ−)

ϕ−

−
1 + m2

p20,−
[p0,⊥ −F⊥(ϕ+)]

2 − m2

p20,−
h2(ϕ+)

H2(ϕ+, ϕ−)/h2(ϕ+)
e
−i

k−
2p0,−η0

ϕ−[〈F2
⊥
〉(ϕ+,ϕ−)−〈F⊥〉2(ϕ+,ϕ−)]







+
im2η0
k−p0,−

1

ϕ−

[

h
(

ϕ+ +
ϕ−

2

)

h′
(

ϕ+ +
ϕ−

2

)

− h
(

ϕ+ − ϕ−

2

)

h′
(

ϕ+ − ϕ−

2

)]

− m2

p20,−

h̄2(ϕ+, ϕ−)

ϕ−

[

F̄2,⊥(ϕ+, ϕ−) + 〈F⊥〉2(ϕ+, ϕ−)− 2F̄⊥(ϕ+, ϕ−) · 〈F⊥〉(ϕ+, ϕ−)
]

+
1

2ϕ−

[

F⊥

(

ϕ+ +
ϕ−

2

)

−F⊥

(

ϕ+ − ϕ−

2

)]2

×
{

1 +
m2

p20,−
[p0,⊥ − 〈F⊥〉(ϕ+, ϕ−)]

2 +
2im2η0
k−p0,−

1

ϕ−

}

))
)

,

(34)

where we have removed the now unnecessary shift +i0 of the pole. Notice that the above

regularization prescription reduces to the known one in the absence of radiation reaction,

which guarantees that the energy spectrum dE/dk− vanishes if the external plane wave

vanishes.

III. THE EMISSION SPECTRUM WITHIN THE LCFA

In order to implement the LCFA, we use the same strategy as in Ref. [38] by expanding

Eqs. (16) and (19) for small values of |ϕ−| [recall that within the LCFA the problematic term

proportional to 1/(ϕ− + i0) can be integrated analytically, see, e.g., Refs. [35, 38], whereas

10



it is easier to perform the integration by parts of the terms proportional to 1/(ϕ− + i0)2

after the expansion for |ϕ−| ≪ 1].

It is interesting to notice that the regime where the LCFA applies well overlaps with the

regime where classical radiation-reaction effects are large. In fact, the LCFA is typically

applicable at large values of the classical nonlinearity parameter ξ0 = |e|A0/m = |e|E0/mω0

[30, 34, 35], where A0 = E0/ω0 and E0 are the amplitude of the vector potential A⊥(ϕ) and

of the electric field E⊥(ϕ) = −ω0A
′
⊥(ϕ) of the plane wave, such that ξ0 is the amplitude of

ξ⊥(ϕ) = (e/m)A′
⊥(ϕ) (see Refs. [20, 38, 46–57] for investigations about the limitations of

the LCFA). Moreover, in the realm of classical electrodynamics one has to assume that the

quantum nonlinearity parameter χ0 = η0ξ0 is much smaller than unity [30, 34, 35]. Under

these conditions the LCFA is expected to be very accurate except possibly for extremely

small emitted radiation frequencies, which we do not consider here [38, 53, 54]. This indeed

well overlaps with the regime where classical radiation-reaction effects are typically large

because, apart from long laser pulses, radiation-reaction effects become large for ξ0 ≫ 1 [see

Eq. (5)] but still with χ0 ≪ 1, to be able to neglect quantum corrections.

Under the above assumptions, as it is known, one has to expand the phases in Eqs. (16)

and (19) up to the third order in ϕ−, whereas the leading-order expansion is sufficient for the

preexponential functions. The resulting angularly-resolved and angularly-integrated energy

spectra within the LCFA can be written as [see the appendix for details on the more involved

derivation of Eq. (36)]

dELCFA

dk
=

e2√
3π2

1

m2η0

∫

dϕ+
h2(ϕ+)

χ(ϕ+)

√

1 + π2
⊥(ϕ+)

×
[

1 + 2π2
⊥(ϕ+)

]

K1/3

(

2

3

k−
p0,−

h2(ϕ+)

χ(ϕ+)

[

1 + π2
⊥(ϕ+)

]3/2
)

,

(35)

dELCFA

dk−
=

2e2√
3π

k−
p0,−

∫

dϕ+
ε(ϕ+)

p−(ϕ+)

h2(ϕ+)

η0

×
[

K2/3

(

2

3

k−
p0,−

h2(ϕ+)

χ(ϕ+)

)

− 1

2
IK1/3

(

2

3

k−
p0,−

h2(ϕ+)

χ(ϕ+)

)]

.

(36)

Here, we have introduced the local quantum nonlinearity parameter χ(ϕ) = η0|ξ⊥(ϕ)| (it
is easily checked that the above formulas do not contain ~ explicitly), the modified Bessel

function Kν(z) of order ν [58] and the function

IKν(z) =

∫ ∞

z

dz′Kν(z
′). (37)
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As expected from the very meaning of the LCFA, the above Eqs. (35)-(36) can be obtained

from the corresponding expressions in the absence of radiation reaction by replacing the

components of the electron four-momentum obtained from solving the Lorentz equation in

the plane wave with the corresponding expressions obtained from solving the LL equation

[see Eqs. (9)-(13)]. In particular, one can find that in the absence of radiation reaction

Eq. (36) has exactly the same form as the classical limit of the quantum energy emitted

spectrum as computed in Ref. [34]. However, we point out that the quantities dELCFA/dk

and dELCFA/dk− are not local in ϕ+ because both the function h(ϕ) [see Eq. (5)] and the

function F⊥(ϕ) [see the definitions below Eqs. (7) and (11)] are not local in the laser phase.

This is also expected from the physical meaning of radiation reaction, with one of the main

physical consequences being the accumulation effects of energy-momentum loss.

As an additional remark, we notice that by taking the integral of Eq. (36) in dk− one

obtains that the total energy radiated is given by

ELCFA =
2

3
e2η0

∫

dϕ+
ε(ϕ+)

h(ϕ+)
ξ2
⊥(ϕ+). (38)

Although this result is obtained within the LCFA, it coincides with the total energy radiated

by the electron in general, i.e., also beyond the LCFA [see Eq. (19) in Ref. [36]]. This

circumstance also occurs in the absence of radiation reaction, as it can be ascertained by

comparing the general relativistic Larmor formula dE/dt = −(2/3)e2a2 = (2/3)e2m2χ2 (see,

e.g., Ref. [1]), where aµ = Fµνuν/m is the four-acceleration of the electron, with the last

equation on page 522 in Ref. [34].

Interestingly, the total minus component

dK−

dϕ+
=

∫ ∞

0

dk−

∫

dk⊥
k−
ω

dE
dk−dk⊥dϕ+

=

∫ ∞

0

dk−

∫

dk⊥
dE

dkdϕ+
(39)

of the four-momentum radiated classically per unit of laser phase by an electron in a plane

wave including radiation reaction has been recently computed within the LCFA in Ref. [59]

in the different context of the so-called Ritus-Narozhny conjecture on strong-field QED [60–

65]. According to Eq. (39), by defining dELCFA/dkdϕ+ as the integrand in Eq. (35), and by

performing the integral of this quantity over dk⊥ one can easily show that

dK−,LCFA

dϕ+
=

2e2√
3π

∫ ∞

0

dk−
k−
p0,−

h2(ϕ+)

η0

[

K2/3

(

2

3

k−
p0,−

h2(ϕ+)

χ(ϕ+)

)

− 1

2
IK1/3

(

2

3

k−
p0,−

h2(ϕ+)

χ(ϕ+)

)]

(40)

in agreement with the result in Ref. [59].
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IV. CONCLUSIONS

In conclusion, we have derived analytically the angularly-resolved and the angularly-

integrated energy emission spectra of nonlinear Thomson scattering by including radiation-

reaction effects. This has been accomplished by starting from the analytical solution of the

LL in an arbitrary plane wave and by using the classical formulas of radiation by accelerated

charges.

The general expressions of the spectra are presented in Eqs. (16) and (34), are valid for

an arbitrary plane wave, and are obtained as double integrals over the plane-wave phase. A

particular, new regularization technique has to be used in order to regularize the angularly-

integrated spectrum. We point out that the resulting spectra include higher-order classical

radiative corrections according to the Landau and Lifshitz reduction of order, meaning that

neglected classical corrections are much smaller than quantum corrections, which have been

of course ignored from the beginning.

Moreover, we have obtained a phase-dependent expression of the electron dressed mass,

which includes radiation-reaction effects.

Finally, the expressions of the angularly-resolved and the angularly-integrated spectra

within the locally constant field approximations have been derived as well. These expres-

sions have the property that are expressed as single integrals over the laser phase of the

corresponding expressions without radiation reaction with the electron four-momentum re-

placed with its expression including radiation reaction. Thus, they turn out to be nonlocal

exactly for the nature itself of radiation reaction giving rise to cumulative energy-momentum

loss effects.

Appendix: Derivation of Eq. (36)

The staring point is Eq. (19) and in order to implement the LCFA there, we expand each

term of the preexponent up to the leading order for |ϕ−| ≪ 1, whereas we keep terms up to

ϕ3
− in the phase (see, e.g., [38]):

dELCFA

dk−
= − ie2

4πη0

k−
p0,−

∫

dϕ+ h
2(ϕ+)

∫

dϕ−

ϕ− + i0
e
i

k−
2p0,−η0

h2(ϕ+)ϕ−[1+ 1
12

ξ2
⊥
(ϕ+)ϕ2

−]

×
[

1 +
1

2
ξ2
⊥(ϕ+)ϕ

2
−

]{

1 +
m2

p20,−

[p0,⊥

m
−F⊥(ϕ+)

]2

+
2im2η0
k−p0,−

1

ϕ− + i0

}

.

(41)
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Now, we integrate by parts the only term containing 1/(ϕ− + i0)2 in the preexponent and

we obtain

dELCFA

dk−
= − ie2

4πη0

k−
p0,−

∫

dϕ+ h
2(ϕ+)

∫

dϕ−

ϕ− + i0
e
i

k−
2p0,−η0

h2(ϕ+)ϕ−[1+ 1
12

ξ2
⊥
(ϕ+)ϕ2

−]

×
((
(
{

1 +
m2

p20,−

[p0,⊥

m
−F⊥(ϕ+)

]2
}[

1 +
1

2
ξ2
⊥(ϕ+)ϕ

2
−

]

− m2

p20,−
h2(ϕ+)

[

1 +
1

4
ξ2
⊥(ϕ+)ϕ

2
−

]

+
im2η0
k−p0,−

ξ2
⊥(ϕ+)ϕ−

))
)

.

(42)

This equation is already regular and can been expressed in terms of modified Bessel functions

but, for the sake of convenience, we integrate by parts the last term and have

dELCFA

dk−
= − ie2

4πη0

k−
p0,−

∫

dϕ+ h
2(ϕ+)

∫

dϕ−

ϕ− + i0
e
i

k−
2p0,−η0

h2(ϕ+)ϕ−[1+ 1
12

ξ2
⊥
(ϕ+)ϕ2

−]

×
((
(
{

1 +
m2

p20,−

[p0,⊥

m
−F⊥(ϕ+)

]2
}[

1 +
1

2
ξ2
⊥(ϕ+)ϕ

2
−

]

− m2

p20,−
h2(ϕ+)

[

1− 1

2
ξ2
⊥(ϕ+)ϕ

2
−

] [

1 +
1

4
ξ2
⊥(ϕ+)ϕ

2
−

]))
)

= − ie2

4πη0

k−
p0,−

∫

dϕ+ h
2(ϕ+)

∫

dy

y + i0
e
i

k−
p0,−

h2(ϕ+)

χ(ϕ+)
y

(

1+ y2

3

)

× (1 + 2y2)

{

1 +
m2

p20,−

[p0,⊥

m
−F⊥(ϕ+)

]2

− m2

p20,−
h2(ϕ+)

1− y2 − 2y4

1 + 2y2

}

,

(43)

where we have introduced local quantum nonlinearity parameter χ(ϕ) = η0|ξ⊥(ϕ)| (see also
the main text). At this point, we observe that the main contribution to the integral in

y = ϕ−|ξ⊥(ϕ)|/2 comes from the region |y| . 1. Moreover, we recall that within the LCFA

we are assuming that ξ0 ≫ 1 (see the discussion at the beginning of Sec. III), which means

that the largest contribution to the integral in ϕ+ comes from the regions where F⊥(ϕ+) is

at the largest. From the definitions below Eqs. (7) and (11), we obtain that

F⊥(ϕ) =

∫ ϕ

−∞

dϕ̃ h(ϕ̃)ξ⊥(ϕ̃) =
e

m

∫ ϕ

−∞

dϕ̃ h(ϕ̃)A′
⊥(ϕ)

=
e

m

[

h(ϕ)A⊥(ϕ)−
2

3
e2η0

∫ ϕ

−∞

dϕ̃ ξ2
⊥(ϕ̃)A⊥(ϕ̃)

]

,

(44)

which shows that |F⊥(ϕ)| . h(ϕ)ξ0. In conclusion, we can consistently neglect the last

term in Eq. (43) as compared to the second-last one within the LCFA (note that we do not

make any assumptions about the values of |p0,⊥|/m and p0,−/m as compared with ξ0) and

14



we finally obtain the expression in the main text:

dELCFA

dk−
=

2e2√
3π

k−
p0,−

∫

dϕ+
ε(ϕ+)

p−(ϕ+)

h2(ϕ+)

η0

×
[

K2/3

(

2

3

k−
p0,−

h2(ϕ+)

χ(ϕ+)

)

− 1

2
IK1/3

(

2

3

k−
p0,−

h2(ϕ+)

χ(ϕ+)

)]

,

(45)

where we have used the integral definitions of the modified Bessel functions Kν(z) [58]

and the expression (13) of the energy of the electron inside the plane wave, neglecting the

term proportional to m2 there. The last approximations used prevent the possibility of

interpreting the integrand of Eq. (45) as the energy emitted per unit of laser phase and unit

of k−.
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